1 //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements an idiom recognizer that transforms simple loops into a 11 // non-loop form. In cases that this kicks in, it can be a significant 12 // performance win. 13 // 14 //===----------------------------------------------------------------------===// 15 // 16 // TODO List: 17 // 18 // Future loop memory idioms to recognize: 19 // memcmp, memmove, strlen, etc. 20 // Future floating point idioms to recognize in -ffast-math mode: 21 // fpowi 22 // Future integer operation idioms to recognize: 23 // ctpop, ctlz, cttz 24 // 25 // Beware that isel's default lowering for ctpop is highly inefficient for 26 // i64 and larger types when i64 is legal and the value has few bits set. It 27 // would be good to enhance isel to emit a loop for ctpop in this case. 28 // 29 // This could recognize common matrix multiplies and dot product idioms and 30 // replace them with calls to BLAS (if linked in??). 31 // 32 //===----------------------------------------------------------------------===// 33 34 #include "llvm/Transforms/Scalar.h" 35 #include "llvm/ADT/MapVector.h" 36 #include "llvm/ADT/SetVector.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/Analysis/AliasAnalysis.h" 39 #include "llvm/Analysis/BasicAliasAnalysis.h" 40 #include "llvm/Analysis/GlobalsModRef.h" 41 #include "llvm/Analysis/LoopPass.h" 42 #include "llvm/Analysis/LoopAccessAnalysis.h" 43 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 44 #include "llvm/Analysis/ScalarEvolutionExpander.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/IRBuilder.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Utils/Local.h" 57 #include "llvm/Transforms/Utils/LoopUtils.h" 58 using namespace llvm; 59 60 #define DEBUG_TYPE "loop-idiom" 61 62 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 63 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 64 65 namespace { 66 67 class LoopIdiomRecognize : public LoopPass { 68 Loop *CurLoop; 69 AliasAnalysis *AA; 70 DominatorTree *DT; 71 LoopInfo *LI; 72 ScalarEvolution *SE; 73 TargetLibraryInfo *TLI; 74 const TargetTransformInfo *TTI; 75 const DataLayout *DL; 76 77 public: 78 static char ID; 79 explicit LoopIdiomRecognize() : LoopPass(ID) { 80 initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry()); 81 } 82 83 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 84 85 /// This transformation requires natural loop information & requires that 86 /// loop preheaders be inserted into the CFG. 87 /// 88 void getAnalysisUsage(AnalysisUsage &AU) const override { 89 AU.addRequired<TargetLibraryInfoWrapperPass>(); 90 AU.addRequired<TargetTransformInfoWrapperPass>(); 91 getLoopAnalysisUsage(AU); 92 } 93 94 private: 95 typedef SmallVector<StoreInst *, 8> StoreList; 96 typedef MapVector<Value *, StoreList> StoreListMap; 97 StoreListMap StoreRefsForMemset; 98 StoreListMap StoreRefsForMemsetPattern; 99 StoreList StoreRefsForMemcpy; 100 bool HasMemset; 101 bool HasMemsetPattern; 102 bool HasMemcpy; 103 104 /// \name Countable Loop Idiom Handling 105 /// @{ 106 107 bool runOnCountableLoop(); 108 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 109 SmallVectorImpl<BasicBlock *> &ExitBlocks); 110 111 void collectStores(BasicBlock *BB); 112 bool isLegalStore(StoreInst *SI, bool &ForMemset, bool &ForMemsetPattern, 113 bool &ForMemcpy); 114 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, 115 bool ForMemset); 116 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 117 118 bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, 119 unsigned StoreAlignment, Value *StoredVal, 120 Instruction *TheStore, 121 SmallPtrSetImpl<Instruction *> &Stores, 122 const SCEVAddRecExpr *Ev, const SCEV *BECount, 123 bool NegStride); 124 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); 125 126 /// @} 127 /// \name Noncountable Loop Idiom Handling 128 /// @{ 129 130 bool runOnNoncountableLoop(); 131 132 bool recognizePopcount(); 133 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, 134 PHINode *CntPhi, Value *Var); 135 136 /// @} 137 }; 138 139 } // End anonymous namespace. 140 141 char LoopIdiomRecognize::ID = 0; 142 INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms", 143 false, false) 144 INITIALIZE_PASS_DEPENDENCY(LoopPass) 145 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 146 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 147 INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms", 148 false, false) 149 150 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); } 151 152 /// deleteDeadInstruction - Delete this instruction. Before we do, go through 153 /// and zero out all the operands of this instruction. If any of them become 154 /// dead, delete them and the computation tree that feeds them. 155 /// 156 static void deleteDeadInstruction(Instruction *I, 157 const TargetLibraryInfo *TLI) { 158 SmallVector<Value *, 16> Operands(I->value_op_begin(), I->value_op_end()); 159 I->replaceAllUsesWith(UndefValue::get(I->getType())); 160 I->eraseFromParent(); 161 for (Value *Op : Operands) 162 RecursivelyDeleteTriviallyDeadInstructions(Op, TLI); 163 } 164 165 //===----------------------------------------------------------------------===// 166 // 167 // Implementation of LoopIdiomRecognize 168 // 169 //===----------------------------------------------------------------------===// 170 171 bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) { 172 if (skipOptnoneFunction(L)) 173 return false; 174 175 CurLoop = L; 176 // If the loop could not be converted to canonical form, it must have an 177 // indirectbr in it, just give up. 178 if (!L->getLoopPreheader()) 179 return false; 180 181 // Disable loop idiom recognition if the function's name is a common idiom. 182 StringRef Name = L->getHeader()->getParent()->getName(); 183 if (Name == "memset" || Name == "memcpy") 184 return false; 185 186 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 187 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 188 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 189 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 190 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 191 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 192 *CurLoop->getHeader()->getParent()); 193 DL = &CurLoop->getHeader()->getModule()->getDataLayout(); 194 195 HasMemset = TLI->has(LibFunc::memset); 196 HasMemsetPattern = TLI->has(LibFunc::memset_pattern16); 197 HasMemcpy = TLI->has(LibFunc::memcpy); 198 199 if (HasMemset || HasMemsetPattern || HasMemcpy) 200 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 201 return runOnCountableLoop(); 202 203 return runOnNoncountableLoop(); 204 } 205 206 bool LoopIdiomRecognize::runOnCountableLoop() { 207 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 208 assert(!isa<SCEVCouldNotCompute>(BECount) && 209 "runOnCountableLoop() called on a loop without a predictable" 210 "backedge-taken count"); 211 212 // If this loop executes exactly one time, then it should be peeled, not 213 // optimized by this pass. 214 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 215 if (BECst->getAPInt() == 0) 216 return false; 217 218 SmallVector<BasicBlock *, 8> ExitBlocks; 219 CurLoop->getUniqueExitBlocks(ExitBlocks); 220 221 DEBUG(dbgs() << "loop-idiom Scanning: F[" 222 << CurLoop->getHeader()->getParent()->getName() << "] Loop %" 223 << CurLoop->getHeader()->getName() << "\n"); 224 225 bool MadeChange = false; 226 // Scan all the blocks in the loop that are not in subloops. 227 for (auto *BB : CurLoop->getBlocks()) { 228 // Ignore blocks in subloops. 229 if (LI->getLoopFor(BB) != CurLoop) 230 continue; 231 232 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); 233 } 234 return MadeChange; 235 } 236 237 static unsigned getStoreSizeInBytes(StoreInst *SI, const DataLayout *DL) { 238 uint64_t SizeInBits = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 239 assert(((SizeInBits & 7) || (SizeInBits >> 32) == 0) && 240 "Don't overflow unsigned."); 241 return (unsigned)SizeInBits >> 3; 242 } 243 244 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { 245 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); 246 return ConstStride->getAPInt(); 247 } 248 249 /// getMemSetPatternValue - If a strided store of the specified value is safe to 250 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 251 /// be passed in. Otherwise, return null. 252 /// 253 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 254 /// just replicate their input array and then pass on to memset_pattern16. 255 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { 256 // If the value isn't a constant, we can't promote it to being in a constant 257 // array. We could theoretically do a store to an alloca or something, but 258 // that doesn't seem worthwhile. 259 Constant *C = dyn_cast<Constant>(V); 260 if (!C) 261 return nullptr; 262 263 // Only handle simple values that are a power of two bytes in size. 264 uint64_t Size = DL->getTypeSizeInBits(V->getType()); 265 if (Size == 0 || (Size & 7) || (Size & (Size - 1))) 266 return nullptr; 267 268 // Don't care enough about darwin/ppc to implement this. 269 if (DL->isBigEndian()) 270 return nullptr; 271 272 // Convert to size in bytes. 273 Size /= 8; 274 275 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 276 // if the top and bottom are the same (e.g. for vectors and large integers). 277 if (Size > 16) 278 return nullptr; 279 280 // If the constant is exactly 16 bytes, just use it. 281 if (Size == 16) 282 return C; 283 284 // Otherwise, we'll use an array of the constants. 285 unsigned ArraySize = 16 / Size; 286 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 287 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); 288 } 289 290 bool LoopIdiomRecognize::isLegalStore(StoreInst *SI, bool &ForMemset, 291 bool &ForMemsetPattern, bool &ForMemcpy) { 292 // Don't touch volatile stores. 293 if (!SI->isSimple()) 294 return false; 295 296 // Avoid merging nontemporal stores. 297 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 298 return false; 299 300 Value *StoredVal = SI->getValueOperand(); 301 Value *StorePtr = SI->getPointerOperand(); 302 303 // Reject stores that are so large that they overflow an unsigned. 304 uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); 305 if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) 306 return false; 307 308 // See if the pointer expression is an AddRec like {base,+,1} on the current 309 // loop, which indicates a strided store. If we have something else, it's a 310 // random store we can't handle. 311 const SCEVAddRecExpr *StoreEv = 312 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 313 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 314 return false; 315 316 // Check to see if we have a constant stride. 317 if (!isa<SCEVConstant>(StoreEv->getOperand(1))) 318 return false; 319 320 // See if the store can be turned into a memset. 321 322 // If the stored value is a byte-wise value (like i32 -1), then it may be 323 // turned into a memset of i8 -1, assuming that all the consecutive bytes 324 // are stored. A store of i32 0x01020304 can never be turned into a memset, 325 // but it can be turned into memset_pattern if the target supports it. 326 Value *SplatValue = isBytewiseValue(StoredVal); 327 Constant *PatternValue = nullptr; 328 329 // If we're allowed to form a memset, and the stored value would be 330 // acceptable for memset, use it. 331 if (HasMemset && SplatValue && 332 // Verify that the stored value is loop invariant. If not, we can't 333 // promote the memset. 334 CurLoop->isLoopInvariant(SplatValue)) { 335 // It looks like we can use SplatValue. 336 ForMemset = true; 337 return true; 338 } else if (HasMemsetPattern && 339 // Don't create memset_pattern16s with address spaces. 340 StorePtr->getType()->getPointerAddressSpace() == 0 && 341 (PatternValue = getMemSetPatternValue(StoredVal, DL))) { 342 // It looks like we can use PatternValue! 343 ForMemsetPattern = true; 344 return true; 345 } 346 347 // Otherwise, see if the store can be turned into a memcpy. 348 if (HasMemcpy) { 349 // Check to see if the stride matches the size of the store. If so, then we 350 // know that every byte is touched in the loop. 351 APInt Stride = getStoreStride(StoreEv); 352 unsigned StoreSize = getStoreSizeInBytes(SI, DL); 353 if (StoreSize != Stride && StoreSize != -Stride) 354 return false; 355 356 // The store must be feeding a non-volatile load. 357 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); 358 if (!LI || !LI->isSimple()) 359 return false; 360 361 // See if the pointer expression is an AddRec like {base,+,1} on the current 362 // loop, which indicates a strided load. If we have something else, it's a 363 // random load we can't handle. 364 const SCEVAddRecExpr *LoadEv = 365 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 366 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 367 return false; 368 369 // The store and load must share the same stride. 370 if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) 371 return false; 372 373 // Success. This store can be converted into a memcpy. 374 ForMemcpy = true; 375 return true; 376 } 377 // This store can't be transformed into a memset/memcpy. 378 return false; 379 } 380 381 void LoopIdiomRecognize::collectStores(BasicBlock *BB) { 382 StoreRefsForMemset.clear(); 383 StoreRefsForMemsetPattern.clear(); 384 StoreRefsForMemcpy.clear(); 385 for (Instruction &I : *BB) { 386 StoreInst *SI = dyn_cast<StoreInst>(&I); 387 if (!SI) 388 continue; 389 390 bool ForMemset = false; 391 bool ForMemsetPattern = false; 392 bool ForMemcpy = false; 393 // Make sure this is a strided store with a constant stride. 394 if (!isLegalStore(SI, ForMemset, ForMemsetPattern, ForMemcpy)) 395 continue; 396 397 // Save the store locations. 398 if (ForMemset) { 399 // Find the base pointer. 400 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); 401 StoreRefsForMemset[Ptr].push_back(SI); 402 } else if (ForMemsetPattern) { 403 // Find the base pointer. 404 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); 405 StoreRefsForMemsetPattern[Ptr].push_back(SI); 406 } else if (ForMemcpy) 407 StoreRefsForMemcpy.push_back(SI); 408 } 409 } 410 411 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 412 /// with the specified backedge count. This block is known to be in the current 413 /// loop and not in any subloops. 414 bool LoopIdiomRecognize::runOnLoopBlock( 415 BasicBlock *BB, const SCEV *BECount, 416 SmallVectorImpl<BasicBlock *> &ExitBlocks) { 417 // We can only promote stores in this block if they are unconditionally 418 // executed in the loop. For a block to be unconditionally executed, it has 419 // to dominate all the exit blocks of the loop. Verify this now. 420 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 421 if (!DT->dominates(BB, ExitBlocks[i])) 422 return false; 423 424 bool MadeChange = false; 425 // Look for store instructions, which may be optimized to memset/memcpy. 426 collectStores(BB); 427 428 // Look for a single store or sets of stores with a common base, which can be 429 // optimized into a memset (memset_pattern). The latter most commonly happens 430 // with structs and handunrolled loops. 431 for (auto &SL : StoreRefsForMemset) 432 MadeChange |= processLoopStores(SL.second, BECount, true); 433 434 for (auto &SL : StoreRefsForMemsetPattern) 435 MadeChange |= processLoopStores(SL.second, BECount, false); 436 437 // Optimize the store into a memcpy, if it feeds an similarly strided load. 438 for (auto &SI : StoreRefsForMemcpy) 439 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); 440 441 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 442 Instruction *Inst = &*I++; 443 // Look for memset instructions, which may be optimized to a larger memset. 444 if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) { 445 WeakVH InstPtr(&*I); 446 if (!processLoopMemSet(MSI, BECount)) 447 continue; 448 MadeChange = true; 449 450 // If processing the memset invalidated our iterator, start over from the 451 // top of the block. 452 if (!InstPtr) 453 I = BB->begin(); 454 continue; 455 } 456 } 457 458 return MadeChange; 459 } 460 461 /// processLoopStores - See if this store(s) can be promoted to a memset. 462 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, 463 const SCEV *BECount, 464 bool ForMemset) { 465 // Try to find consecutive stores that can be transformed into memsets. 466 SetVector<StoreInst *> Heads, Tails; 467 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 468 469 // Do a quadratic search on all of the given stores and find 470 // all of the pairs of stores that follow each other. 471 SmallVector<unsigned, 16> IndexQueue; 472 for (unsigned i = 0, e = SL.size(); i < e; ++i) { 473 assert(SL[i]->isSimple() && "Expected only non-volatile stores."); 474 475 Value *FirstStoredVal = SL[i]->getValueOperand(); 476 Value *FirstStorePtr = SL[i]->getPointerOperand(); 477 const SCEVAddRecExpr *FirstStoreEv = 478 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); 479 APInt FirstStride = getStoreStride(FirstStoreEv); 480 unsigned FirstStoreSize = getStoreSizeInBytes(SL[i], DL); 481 482 // See if we can optimize just this store in isolation. 483 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { 484 Heads.insert(SL[i]); 485 continue; 486 } 487 488 Value *FirstSplatValue = nullptr; 489 Constant *FirstPatternValue = nullptr; 490 491 if (ForMemset) 492 FirstSplatValue = isBytewiseValue(FirstStoredVal); 493 else 494 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); 495 496 assert((FirstSplatValue || FirstPatternValue) && 497 "Expected either splat value or pattern value."); 498 499 IndexQueue.clear(); 500 // If a store has multiple consecutive store candidates, search Stores 501 // array according to the sequence: from i+1 to e, then from i-1 to 0. 502 // This is because usually pairing with immediate succeeding or preceding 503 // candidate create the best chance to find memset opportunity. 504 unsigned j = 0; 505 for (j = i + 1; j < e; ++j) 506 IndexQueue.push_back(j); 507 for (j = i; j > 0; --j) 508 IndexQueue.push_back(j - 1); 509 510 for (auto &k : IndexQueue) { 511 assert(SL[k]->isSimple() && "Expected only non-volatile stores."); 512 Value *SecondStorePtr = SL[k]->getPointerOperand(); 513 const SCEVAddRecExpr *SecondStoreEv = 514 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); 515 APInt SecondStride = getStoreStride(SecondStoreEv); 516 517 if (FirstStride != SecondStride) 518 continue; 519 520 Value *SecondStoredVal = SL[k]->getValueOperand(); 521 Value *SecondSplatValue = nullptr; 522 Constant *SecondPatternValue = nullptr; 523 524 if (ForMemset) 525 SecondSplatValue = isBytewiseValue(SecondStoredVal); 526 else 527 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); 528 529 assert((SecondSplatValue || SecondPatternValue) && 530 "Expected either splat value or pattern value."); 531 532 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { 533 if (ForMemset) { 534 if (FirstSplatValue != SecondSplatValue) 535 continue; 536 } else { 537 if (FirstPatternValue != SecondPatternValue) 538 continue; 539 } 540 Tails.insert(SL[k]); 541 Heads.insert(SL[i]); 542 ConsecutiveChain[SL[i]] = SL[k]; 543 break; 544 } 545 } 546 } 547 548 // We may run into multiple chains that merge into a single chain. We mark the 549 // stores that we transformed so that we don't visit the same store twice. 550 SmallPtrSet<Value *, 16> TransformedStores; 551 bool Changed = false; 552 553 // For stores that start but don't end a link in the chain: 554 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 555 it != e; ++it) { 556 if (Tails.count(*it)) 557 continue; 558 559 // We found a store instr that starts a chain. Now follow the chain and try 560 // to transform it. 561 SmallPtrSet<Instruction *, 8> AdjacentStores; 562 StoreInst *I = *it; 563 564 StoreInst *HeadStore = I; 565 unsigned StoreSize = 0; 566 567 // Collect the chain into a list. 568 while (Tails.count(I) || Heads.count(I)) { 569 if (TransformedStores.count(I)) 570 break; 571 AdjacentStores.insert(I); 572 573 StoreSize += getStoreSizeInBytes(I, DL); 574 // Move to the next value in the chain. 575 I = ConsecutiveChain[I]; 576 } 577 578 Value *StoredVal = HeadStore->getValueOperand(); 579 Value *StorePtr = HeadStore->getPointerOperand(); 580 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 581 APInt Stride = getStoreStride(StoreEv); 582 583 // Check to see if the stride matches the size of the stores. If so, then 584 // we know that every byte is touched in the loop. 585 if (StoreSize != Stride && StoreSize != -Stride) 586 continue; 587 588 bool NegStride = StoreSize == -Stride; 589 590 if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(), 591 StoredVal, HeadStore, AdjacentStores, StoreEv, 592 BECount, NegStride)) { 593 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); 594 Changed = true; 595 } 596 } 597 598 return Changed; 599 } 600 601 /// processLoopMemSet - See if this memset can be promoted to a large memset. 602 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, 603 const SCEV *BECount) { 604 // We can only handle non-volatile memsets with a constant size. 605 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) 606 return false; 607 608 // If we're not allowed to hack on memset, we fail. 609 if (!TLI->has(LibFunc::memset)) 610 return false; 611 612 Value *Pointer = MSI->getDest(); 613 614 // See if the pointer expression is an AddRec like {base,+,1} on the current 615 // loop, which indicates a strided store. If we have something else, it's a 616 // random store we can't handle. 617 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 618 if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine()) 619 return false; 620 621 // Reject memsets that are so large that they overflow an unsigned. 622 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 623 if ((SizeInBytes >> 32) != 0) 624 return false; 625 626 // Check to see if the stride matches the size of the memset. If so, then we 627 // know that every byte is touched in the loop. 628 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 629 if (!ConstStride) 630 return false; 631 632 APInt Stride = ConstStride->getAPInt(); 633 if (SizeInBytes != Stride && SizeInBytes != -Stride) 634 return false; 635 636 // Verify that the memset value is loop invariant. If not, we can't promote 637 // the memset. 638 Value *SplatValue = MSI->getValue(); 639 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) 640 return false; 641 642 SmallPtrSet<Instruction *, 1> MSIs; 643 MSIs.insert(MSI); 644 bool NegStride = SizeInBytes == -Stride; 645 return processLoopStridedStore(Pointer, (unsigned)SizeInBytes, 646 MSI->getAlignment(), SplatValue, MSI, MSIs, Ev, 647 BECount, NegStride); 648 } 649 650 /// mayLoopAccessLocation - Return true if the specified loop might access the 651 /// specified pointer location, which is a loop-strided access. The 'Access' 652 /// argument specifies what the verboten forms of access are (read or write). 653 static bool 654 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, 655 const SCEV *BECount, unsigned StoreSize, 656 AliasAnalysis &AA, 657 SmallPtrSetImpl<Instruction *> &IgnoredStores) { 658 // Get the location that may be stored across the loop. Since the access is 659 // strided positively through memory, we say that the modified location starts 660 // at the pointer and has infinite size. 661 uint64_t AccessSize = MemoryLocation::UnknownSize; 662 663 // If the loop iterates a fixed number of times, we can refine the access size 664 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 665 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 666 AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize; 667 668 // TODO: For this to be really effective, we have to dive into the pointer 669 // operand in the store. Store to &A[i] of 100 will always return may alias 670 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 671 // which will then no-alias a store to &A[100]. 672 MemoryLocation StoreLoc(Ptr, AccessSize); 673 674 for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; 675 ++BI) 676 for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) 677 if (IgnoredStores.count(&*I) == 0 && 678 (AA.getModRefInfo(&*I, StoreLoc) & Access)) 679 return true; 680 681 return false; 682 } 683 684 // If we have a negative stride, Start refers to the end of the memory location 685 // we're trying to memset. Therefore, we need to recompute the base pointer, 686 // which is just Start - BECount*Size. 687 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, 688 Type *IntPtr, unsigned StoreSize, 689 ScalarEvolution *SE) { 690 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); 691 if (StoreSize != 1) 692 Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize), 693 SCEV::FlagNUW); 694 return SE->getMinusSCEV(Start, Index); 695 } 696 697 /// processLoopStridedStore - We see a strided store of some value. If we can 698 /// transform this into a memset or memset_pattern in the loop preheader, do so. 699 bool LoopIdiomRecognize::processLoopStridedStore( 700 Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment, 701 Value *StoredVal, Instruction *TheStore, 702 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, 703 const SCEV *BECount, bool NegStride) { 704 Value *SplatValue = isBytewiseValue(StoredVal); 705 Constant *PatternValue = nullptr; 706 707 if (!SplatValue) 708 PatternValue = getMemSetPatternValue(StoredVal, DL); 709 710 assert((SplatValue || PatternValue) && 711 "Expected either splat value or pattern value."); 712 713 // The trip count of the loop and the base pointer of the addrec SCEV is 714 // guaranteed to be loop invariant, which means that it should dominate the 715 // header. This allows us to insert code for it in the preheader. 716 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); 717 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 718 IRBuilder<> Builder(Preheader->getTerminator()); 719 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 720 721 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); 722 Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS); 723 724 const SCEV *Start = Ev->getStart(); 725 // Handle negative strided loops. 726 if (NegStride) 727 Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE); 728 729 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 730 // this into a memset in the loop preheader now if we want. However, this 731 // would be unsafe to do if there is anything else in the loop that may read 732 // or write to the aliased location. Check for any overlap by generating the 733 // base pointer and checking the region. 734 Value *BasePtr = 735 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); 736 if (mayLoopAccessLocation(BasePtr, MRI_ModRef, CurLoop, BECount, StoreSize, 737 *AA, Stores)) { 738 Expander.clear(); 739 // If we generated new code for the base pointer, clean up. 740 RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI); 741 return false; 742 } 743 744 // Okay, everything looks good, insert the memset. 745 746 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to 747 // pointer size if it isn't already. 748 BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr); 749 750 const SCEV *NumBytesS = 751 SE->getAddExpr(BECount, SE->getOne(IntPtr), SCEV::FlagNUW); 752 if (StoreSize != 1) { 753 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), 754 SCEV::FlagNUW); 755 } 756 757 Value *NumBytes = 758 Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); 759 760 CallInst *NewCall; 761 if (SplatValue) { 762 NewCall = 763 Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment); 764 } else { 765 // Everything is emitted in default address space 766 Type *Int8PtrTy = DestInt8PtrTy; 767 768 Module *M = TheStore->getModule(); 769 Value *MSP = 770 M->getOrInsertFunction("memset_pattern16", Builder.getVoidTy(), 771 Int8PtrTy, Int8PtrTy, IntPtr, (void *)nullptr); 772 773 // Otherwise we should form a memset_pattern16. PatternValue is known to be 774 // an constant array of 16-bytes. Plop the value into a mergable global. 775 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 776 GlobalValue::PrivateLinkage, 777 PatternValue, ".memset_pattern"); 778 GV->setUnnamedAddr(true); // Ok to merge these. 779 GV->setAlignment(16); 780 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); 781 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); 782 } 783 784 DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 785 << " from store to: " << *Ev << " at: " << *TheStore << "\n"); 786 NewCall->setDebugLoc(TheStore->getDebugLoc()); 787 788 // Okay, the memset has been formed. Zap the original store and anything that 789 // feeds into it. 790 for (auto *I : Stores) 791 deleteDeadInstruction(I, TLI); 792 ++NumMemSet; 793 return true; 794 } 795 796 /// If the stored value is a strided load in the same loop with the same stride 797 /// this may be transformable into a memcpy. This kicks in for stuff like 798 /// for (i) A[i] = B[i]; 799 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, 800 const SCEV *BECount) { 801 assert(SI->isSimple() && "Expected only non-volatile stores."); 802 803 Value *StorePtr = SI->getPointerOperand(); 804 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 805 APInt Stride = getStoreStride(StoreEv); 806 unsigned StoreSize = getStoreSizeInBytes(SI, DL); 807 bool NegStride = StoreSize == -Stride; 808 809 // The store must be feeding a non-volatile load. 810 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 811 assert(LI->isSimple() && "Expected only non-volatile stores."); 812 813 // See if the pointer expression is an AddRec like {base,+,1} on the current 814 // loop, which indicates a strided load. If we have something else, it's a 815 // random load we can't handle. 816 const SCEVAddRecExpr *LoadEv = 817 cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 818 819 // The trip count of the loop and the base pointer of the addrec SCEV is 820 // guaranteed to be loop invariant, which means that it should dominate the 821 // header. This allows us to insert code for it in the preheader. 822 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 823 IRBuilder<> Builder(Preheader->getTerminator()); 824 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 825 826 const SCEV *StrStart = StoreEv->getStart(); 827 unsigned StrAS = SI->getPointerAddressSpace(); 828 Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS); 829 830 // Handle negative strided loops. 831 if (NegStride) 832 StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE); 833 834 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 835 // this into a memcpy in the loop preheader now if we want. However, this 836 // would be unsafe to do if there is anything else in the loop that may read 837 // or write the memory region we're storing to. This includes the load that 838 // feeds the stores. Check for an alias by generating the base address and 839 // checking everything. 840 Value *StoreBasePtr = Expander.expandCodeFor( 841 StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); 842 843 SmallPtrSet<Instruction *, 1> Stores; 844 Stores.insert(SI); 845 if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount, 846 StoreSize, *AA, Stores)) { 847 Expander.clear(); 848 // If we generated new code for the base pointer, clean up. 849 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); 850 return false; 851 } 852 853 const SCEV *LdStart = LoadEv->getStart(); 854 unsigned LdAS = LI->getPointerAddressSpace(); 855 856 // Handle negative strided loops. 857 if (NegStride) 858 LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE); 859 860 // For a memcpy, we have to make sure that the input array is not being 861 // mutated by the loop. 862 Value *LoadBasePtr = Expander.expandCodeFor( 863 LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); 864 865 if (mayLoopAccessLocation(LoadBasePtr, MRI_Mod, CurLoop, BECount, StoreSize, 866 *AA, Stores)) { 867 Expander.clear(); 868 // If we generated new code for the base pointer, clean up. 869 RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI); 870 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); 871 return false; 872 } 873 874 // Okay, everything is safe, we can transform this! 875 876 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to 877 // pointer size if it isn't already. 878 BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy); 879 880 const SCEV *NumBytesS = 881 SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW); 882 if (StoreSize != 1) 883 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize), 884 SCEV::FlagNUW); 885 886 Value *NumBytes = 887 Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator()); 888 889 CallInst *NewCall = 890 Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes, 891 std::min(SI->getAlignment(), LI->getAlignment())); 892 NewCall->setDebugLoc(SI->getDebugLoc()); 893 894 DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" 895 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" 896 << " from store ptr=" << *StoreEv << " at: " << *SI << "\n"); 897 898 // Okay, the memcpy has been formed. Zap the original store and anything that 899 // feeds into it. 900 deleteDeadInstruction(SI, TLI); 901 ++NumMemCpy; 902 return true; 903 } 904 905 bool LoopIdiomRecognize::runOnNoncountableLoop() { 906 return recognizePopcount(); 907 } 908 909 /// Check if the given conditional branch is based on the comparison between 910 /// a variable and zero, and if the variable is non-zero, the control yields to 911 /// the loop entry. If the branch matches the behavior, the variable involved 912 /// in the comparion is returned. This function will be called to see if the 913 /// precondition and postcondition of the loop are in desirable form. 914 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry) { 915 if (!BI || !BI->isConditional()) 916 return nullptr; 917 918 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 919 if (!Cond) 920 return nullptr; 921 922 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 923 if (!CmpZero || !CmpZero->isZero()) 924 return nullptr; 925 926 ICmpInst::Predicate Pred = Cond->getPredicate(); 927 if ((Pred == ICmpInst::ICMP_NE && BI->getSuccessor(0) == LoopEntry) || 928 (Pred == ICmpInst::ICMP_EQ && BI->getSuccessor(1) == LoopEntry)) 929 return Cond->getOperand(0); 930 931 return nullptr; 932 } 933 934 /// Return true iff the idiom is detected in the loop. 935 /// 936 /// Additionally: 937 /// 1) \p CntInst is set to the instruction counting the population bit. 938 /// 2) \p CntPhi is set to the corresponding phi node. 939 /// 3) \p Var is set to the value whose population bits are being counted. 940 /// 941 /// The core idiom we are trying to detect is: 942 /// \code 943 /// if (x0 != 0) 944 /// goto loop-exit // the precondition of the loop 945 /// cnt0 = init-val; 946 /// do { 947 /// x1 = phi (x0, x2); 948 /// cnt1 = phi(cnt0, cnt2); 949 /// 950 /// cnt2 = cnt1 + 1; 951 /// ... 952 /// x2 = x1 & (x1 - 1); 953 /// ... 954 /// } while(x != 0); 955 /// 956 /// loop-exit: 957 /// \endcode 958 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, 959 Instruction *&CntInst, PHINode *&CntPhi, 960 Value *&Var) { 961 // step 1: Check to see if the look-back branch match this pattern: 962 // "if (a!=0) goto loop-entry". 963 BasicBlock *LoopEntry; 964 Instruction *DefX2, *CountInst; 965 Value *VarX1, *VarX0; 966 PHINode *PhiX, *CountPhi; 967 968 DefX2 = CountInst = nullptr; 969 VarX1 = VarX0 = nullptr; 970 PhiX = CountPhi = nullptr; 971 LoopEntry = *(CurLoop->block_begin()); 972 973 // step 1: Check if the loop-back branch is in desirable form. 974 { 975 if (Value *T = matchCondition( 976 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 977 DefX2 = dyn_cast<Instruction>(T); 978 else 979 return false; 980 } 981 982 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 983 { 984 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 985 return false; 986 987 BinaryOperator *SubOneOp; 988 989 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 990 VarX1 = DefX2->getOperand(1); 991 else { 992 VarX1 = DefX2->getOperand(0); 993 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 994 } 995 if (!SubOneOp) 996 return false; 997 998 Instruction *SubInst = cast<Instruction>(SubOneOp); 999 ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1)); 1000 if (!Dec || 1001 !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) || 1002 (SubInst->getOpcode() == Instruction::Add && 1003 Dec->isAllOnesValue()))) { 1004 return false; 1005 } 1006 } 1007 1008 // step 3: Check the recurrence of variable X 1009 { 1010 PhiX = dyn_cast<PHINode>(VarX1); 1011 if (!PhiX || 1012 (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) { 1013 return false; 1014 } 1015 } 1016 1017 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 1018 { 1019 CountInst = nullptr; 1020 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1021 IterE = LoopEntry->end(); 1022 Iter != IterE; Iter++) { 1023 Instruction *Inst = &*Iter; 1024 if (Inst->getOpcode() != Instruction::Add) 1025 continue; 1026 1027 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1028 if (!Inc || !Inc->isOne()) 1029 continue; 1030 1031 PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0)); 1032 if (!Phi || Phi->getParent() != LoopEntry) 1033 continue; 1034 1035 // Check if the result of the instruction is live of the loop. 1036 bool LiveOutLoop = false; 1037 for (User *U : Inst->users()) { 1038 if ((cast<Instruction>(U))->getParent() != LoopEntry) { 1039 LiveOutLoop = true; 1040 break; 1041 } 1042 } 1043 1044 if (LiveOutLoop) { 1045 CountInst = Inst; 1046 CountPhi = Phi; 1047 break; 1048 } 1049 } 1050 1051 if (!CountInst) 1052 return false; 1053 } 1054 1055 // step 5: check if the precondition is in this form: 1056 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 1057 { 1058 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1059 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); 1060 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 1061 return false; 1062 1063 CntInst = CountInst; 1064 CntPhi = CountPhi; 1065 Var = T; 1066 } 1067 1068 return true; 1069 } 1070 1071 /// Recognizes a population count idiom in a non-countable loop. 1072 /// 1073 /// If detected, transforms the relevant code to issue the popcount intrinsic 1074 /// function call, and returns true; otherwise, returns false. 1075 bool LoopIdiomRecognize::recognizePopcount() { 1076 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 1077 return false; 1078 1079 // Counting population are usually conducted by few arithmetic instructions. 1080 // Such instructions can be easily "absorbed" by vacant slots in a 1081 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 1082 // in a compact loop. 1083 1084 // Give up if the loop has multiple blocks or multiple backedges. 1085 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1086 return false; 1087 1088 BasicBlock *LoopBody = *(CurLoop->block_begin()); 1089 if (LoopBody->size() >= 20) { 1090 // The loop is too big, bail out. 1091 return false; 1092 } 1093 1094 // It should have a preheader containing nothing but an unconditional branch. 1095 BasicBlock *PH = CurLoop->getLoopPreheader(); 1096 if (!PH) 1097 return false; 1098 if (&PH->front() != PH->getTerminator()) 1099 return false; 1100 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); 1101 if (!EntryBI || EntryBI->isConditional()) 1102 return false; 1103 1104 // It should have a precondition block where the generated popcount instrinsic 1105 // function can be inserted. 1106 auto *PreCondBB = PH->getSinglePredecessor(); 1107 if (!PreCondBB) 1108 return false; 1109 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1110 if (!PreCondBI || PreCondBI->isUnconditional()) 1111 return false; 1112 1113 Instruction *CntInst; 1114 PHINode *CntPhi; 1115 Value *Val; 1116 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) 1117 return false; 1118 1119 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); 1120 return true; 1121 } 1122 1123 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1124 DebugLoc DL) { 1125 Value *Ops[] = {Val}; 1126 Type *Tys[] = {Val->getType()}; 1127 1128 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1129 Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); 1130 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1131 CI->setDebugLoc(DL); 1132 1133 return CI; 1134 } 1135 1136 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, 1137 Instruction *CntInst, 1138 PHINode *CntPhi, Value *Var) { 1139 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 1140 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1141 const DebugLoc DL = CntInst->getDebugLoc(); 1142 1143 // Assuming before transformation, the loop is following: 1144 // if (x) // the precondition 1145 // do { cnt++; x &= x - 1; } while(x); 1146 1147 // Step 1: Insert the ctpop instruction at the end of the precondition block 1148 IRBuilder<> Builder(PreCondBr); 1149 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 1150 { 1151 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 1152 NewCount = PopCntZext = 1153 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 1154 1155 if (NewCount != PopCnt) 1156 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1157 1158 // TripCnt is exactly the number of iterations the loop has 1159 TripCnt = NewCount; 1160 1161 // If the population counter's initial value is not zero, insert Add Inst. 1162 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 1163 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 1164 if (!InitConst || !InitConst->isZero()) { 1165 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 1166 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1167 } 1168 } 1169 1170 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to 1171 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic 1172 // function would be partial dead code, and downstream passes will drag 1173 // it back from the precondition block to the preheader. 1174 { 1175 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 1176 1177 Value *Opnd0 = PopCntZext; 1178 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 1179 if (PreCond->getOperand(0) != Var) 1180 std::swap(Opnd0, Opnd1); 1181 1182 ICmpInst *NewPreCond = cast<ICmpInst>( 1183 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 1184 PreCondBr->setCondition(NewPreCond); 1185 1186 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); 1187 } 1188 1189 // Step 3: Note that the population count is exactly the trip count of the 1190 // loop in question, which enable us to to convert the loop from noncountable 1191 // loop into a countable one. The benefit is twofold: 1192 // 1193 // - If the loop only counts population, the entire loop becomes dead after 1194 // the transformation. It is a lot easier to prove a countable loop dead 1195 // than to prove a noncountable one. (In some C dialects, an infinite loop 1196 // isn't dead even if it computes nothing useful. In general, DCE needs 1197 // to prove a noncountable loop finite before safely delete it.) 1198 // 1199 // - If the loop also performs something else, it remains alive. 1200 // Since it is transformed to countable form, it can be aggressively 1201 // optimized by some optimizations which are in general not applicable 1202 // to a noncountable loop. 1203 // 1204 // After this step, this loop (conceptually) would look like following: 1205 // newcnt = __builtin_ctpop(x); 1206 // t = newcnt; 1207 // if (x) 1208 // do { cnt++; x &= x-1; t--) } while (t > 0); 1209 BasicBlock *Body = *(CurLoop->block_begin()); 1210 { 1211 auto *LbBr = dyn_cast<BranchInst>(Body->getTerminator()); 1212 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 1213 Type *Ty = TripCnt->getType(); 1214 1215 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 1216 1217 Builder.SetInsertPoint(LbCond); 1218 Instruction *TcDec = cast<Instruction>( 1219 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 1220 "tcdec", false, true)); 1221 1222 TcPhi->addIncoming(TripCnt, PreHead); 1223 TcPhi->addIncoming(TcDec, Body); 1224 1225 CmpInst::Predicate Pred = 1226 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 1227 LbCond->setPredicate(Pred); 1228 LbCond->setOperand(0, TcDec); 1229 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 1230 } 1231 1232 // Step 4: All the references to the original population counter outside 1233 // the loop are replaced with the NewCount -- the value returned from 1234 // __builtin_ctpop(). 1235 CntInst->replaceUsesOutsideBlock(NewCount, Body); 1236 1237 // step 5: Forget the "non-computable" trip-count SCEV associated with the 1238 // loop. The loop would otherwise not be deleted even if it becomes empty. 1239 SE->forgetLoop(CurLoop); 1240 } 1241