1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements an idiom recognizer that transforms simple loops into a 10 // non-loop form. In cases that this kicks in, it can be a significant 11 // performance win. 12 // 13 // If compiling for code size we avoid idiom recognition if the resulting 14 // code could be larger than the code for the original loop. One way this could 15 // happen is if the loop is not removable after idiom recognition due to the 16 // presence of non-idiom instructions. The initial implementation of the 17 // heuristics applies to idioms in multi-block loops. 18 // 19 //===----------------------------------------------------------------------===// 20 // 21 // TODO List: 22 // 23 // Future loop memory idioms to recognize: 24 // memcmp, strlen, etc. 25 // Future floating point idioms to recognize in -ffast-math mode: 26 // fpowi 27 // Future integer operation idioms to recognize: 28 // ctpop 29 // 30 // Beware that isel's default lowering for ctpop is highly inefficient for 31 // i64 and larger types when i64 is legal and the value has few bits set. It 32 // would be good to enhance isel to emit a loop for ctpop in this case. 33 // 34 // This could recognize common matrix multiplies and dot product idioms and 35 // replace them with calls to BLAS (if linked in??). 36 // 37 //===----------------------------------------------------------------------===// 38 39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" 40 #include "llvm/ADT/APInt.h" 41 #include "llvm/ADT/ArrayRef.h" 42 #include "llvm/ADT/DenseMap.h" 43 #include "llvm/ADT/MapVector.h" 44 #include "llvm/ADT/SetVector.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/ADT/StringRef.h" 49 #include "llvm/Analysis/AliasAnalysis.h" 50 #include "llvm/Analysis/CmpInstAnalysis.h" 51 #include "llvm/Analysis/LoopAccessAnalysis.h" 52 #include "llvm/Analysis/LoopInfo.h" 53 #include "llvm/Analysis/LoopPass.h" 54 #include "llvm/Analysis/MemoryLocation.h" 55 #include "llvm/Analysis/MemorySSA.h" 56 #include "llvm/Analysis/MemorySSAUpdater.h" 57 #include "llvm/Analysis/MustExecute.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ScalarEvolution.h" 60 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/IR/BasicBlock.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugLoc.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Dominators.h" 71 #include "llvm/IR/GlobalValue.h" 72 #include "llvm/IR/GlobalVariable.h" 73 #include "llvm/IR/IRBuilder.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/PassManager.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/IR/ValueHandle.h" 87 #include "llvm/InitializePasses.h" 88 #include "llvm/Pass.h" 89 #include "llvm/Support/Casting.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Debug.h" 92 #include "llvm/Support/InstructionCost.h" 93 #include "llvm/Support/raw_ostream.h" 94 #include "llvm/Transforms/Scalar.h" 95 #include "llvm/Transforms/Utils/BuildLibCalls.h" 96 #include "llvm/Transforms/Utils/Local.h" 97 #include "llvm/Transforms/Utils/LoopUtils.h" 98 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 99 #include <algorithm> 100 #include <cassert> 101 #include <cstdint> 102 #include <utility> 103 #include <vector> 104 105 using namespace llvm; 106 107 #define DEBUG_TYPE "loop-idiom" 108 109 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 110 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 111 STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores"); 112 STATISTIC( 113 NumShiftUntilBitTest, 114 "Number of uncountable loops recognized as 'shift until bitttest' idiom"); 115 STATISTIC(NumShiftUntilZero, 116 "Number of uncountable loops recognized as 'shift until zero' idiom"); 117 118 bool DisableLIRP::All; 119 static cl::opt<bool, true> 120 DisableLIRPAll("disable-" DEBUG_TYPE "-all", 121 cl::desc("Options to disable Loop Idiom Recognize Pass."), 122 cl::location(DisableLIRP::All), cl::init(false), 123 cl::ReallyHidden); 124 125 bool DisableLIRP::Memset; 126 static cl::opt<bool, true> 127 DisableLIRPMemset("disable-" DEBUG_TYPE "-memset", 128 cl::desc("Proceed with loop idiom recognize pass, but do " 129 "not convert loop(s) to memset."), 130 cl::location(DisableLIRP::Memset), cl::init(false), 131 cl::ReallyHidden); 132 133 bool DisableLIRP::Memcpy; 134 static cl::opt<bool, true> 135 DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy", 136 cl::desc("Proceed with loop idiom recognize pass, but do " 137 "not convert loop(s) to memcpy."), 138 cl::location(DisableLIRP::Memcpy), cl::init(false), 139 cl::ReallyHidden); 140 141 static cl::opt<bool> UseLIRCodeSizeHeurs( 142 "use-lir-code-size-heurs", 143 cl::desc("Use loop idiom recognition code size heuristics when compiling" 144 "with -Os/-Oz"), 145 cl::init(true), cl::Hidden); 146 147 namespace { 148 149 class LoopIdiomRecognize { 150 Loop *CurLoop = nullptr; 151 AliasAnalysis *AA; 152 DominatorTree *DT; 153 LoopInfo *LI; 154 ScalarEvolution *SE; 155 TargetLibraryInfo *TLI; 156 const TargetTransformInfo *TTI; 157 const DataLayout *DL; 158 OptimizationRemarkEmitter &ORE; 159 bool ApplyCodeSizeHeuristics; 160 std::unique_ptr<MemorySSAUpdater> MSSAU; 161 162 public: 163 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, 164 LoopInfo *LI, ScalarEvolution *SE, 165 TargetLibraryInfo *TLI, 166 const TargetTransformInfo *TTI, MemorySSA *MSSA, 167 const DataLayout *DL, 168 OptimizationRemarkEmitter &ORE) 169 : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) { 170 if (MSSA) 171 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 172 } 173 174 bool runOnLoop(Loop *L); 175 176 private: 177 using StoreList = SmallVector<StoreInst *, 8>; 178 using StoreListMap = MapVector<Value *, StoreList>; 179 180 StoreListMap StoreRefsForMemset; 181 StoreListMap StoreRefsForMemsetPattern; 182 StoreList StoreRefsForMemcpy; 183 bool HasMemset; 184 bool HasMemsetPattern; 185 bool HasMemcpy; 186 187 /// Return code for isLegalStore() 188 enum LegalStoreKind { 189 None = 0, 190 Memset, 191 MemsetPattern, 192 Memcpy, 193 UnorderedAtomicMemcpy, 194 DontUse // Dummy retval never to be used. Allows catching errors in retval 195 // handling. 196 }; 197 198 /// \name Countable Loop Idiom Handling 199 /// @{ 200 201 bool runOnCountableLoop(); 202 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 203 SmallVectorImpl<BasicBlock *> &ExitBlocks); 204 205 void collectStores(BasicBlock *BB); 206 LegalStoreKind isLegalStore(StoreInst *SI); 207 enum class ForMemset { No, Yes }; 208 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, 209 ForMemset For); 210 211 template <typename MemInst> 212 bool processLoopMemIntrinsic( 213 BasicBlock *BB, 214 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), 215 const SCEV *BECount); 216 bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount); 217 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 218 219 bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV, 220 MaybeAlign StoreAlignment, Value *StoredVal, 221 Instruction *TheStore, 222 SmallPtrSetImpl<Instruction *> &Stores, 223 const SCEVAddRecExpr *Ev, const SCEV *BECount, 224 bool IsNegStride, bool IsLoopMemset = false); 225 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); 226 bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr, 227 const SCEV *StoreSize, MaybeAlign StoreAlign, 228 MaybeAlign LoadAlign, Instruction *TheStore, 229 Instruction *TheLoad, 230 const SCEVAddRecExpr *StoreEv, 231 const SCEVAddRecExpr *LoadEv, 232 const SCEV *BECount); 233 bool avoidLIRForMultiBlockLoop(bool IsMemset = false, 234 bool IsLoopMemset = false); 235 236 /// @} 237 /// \name Noncountable Loop Idiom Handling 238 /// @{ 239 240 bool runOnNoncountableLoop(); 241 242 bool recognizePopcount(); 243 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, 244 PHINode *CntPhi, Value *Var); 245 bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz 246 void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, 247 Instruction *CntInst, PHINode *CntPhi, 248 Value *Var, Instruction *DefX, 249 const DebugLoc &DL, bool ZeroCheck, 250 bool IsCntPhiUsedOutsideLoop); 251 252 bool recognizeShiftUntilBitTest(); 253 bool recognizeShiftUntilZero(); 254 255 /// @} 256 }; 257 258 class LoopIdiomRecognizeLegacyPass : public LoopPass { 259 public: 260 static char ID; 261 262 explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) { 263 initializeLoopIdiomRecognizeLegacyPassPass( 264 *PassRegistry::getPassRegistry()); 265 } 266 267 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 268 if (DisableLIRP::All) 269 return false; 270 271 if (skipLoop(L)) 272 return false; 273 274 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 275 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 276 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 277 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 278 TargetLibraryInfo *TLI = 279 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 280 *L->getHeader()->getParent()); 281 const TargetTransformInfo *TTI = 282 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 283 *L->getHeader()->getParent()); 284 const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout(); 285 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 286 MemorySSA *MSSA = nullptr; 287 if (MSSAAnalysis) 288 MSSA = &MSSAAnalysis->getMSSA(); 289 290 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 291 // pass. Function analyses need to be preserved across loop transformations 292 // but ORE cannot be preserved (see comment before the pass definition). 293 OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); 294 295 LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE); 296 return LIR.runOnLoop(L); 297 } 298 299 /// This transformation requires natural loop information & requires that 300 /// loop preheaders be inserted into the CFG. 301 void getAnalysisUsage(AnalysisUsage &AU) const override { 302 AU.addRequired<TargetLibraryInfoWrapperPass>(); 303 AU.addRequired<TargetTransformInfoWrapperPass>(); 304 AU.addPreserved<MemorySSAWrapperPass>(); 305 getLoopAnalysisUsage(AU); 306 } 307 }; 308 309 } // end anonymous namespace 310 311 char LoopIdiomRecognizeLegacyPass::ID = 0; 312 313 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, 314 LoopStandardAnalysisResults &AR, 315 LPMUpdater &) { 316 if (DisableLIRP::All) 317 return PreservedAnalyses::all(); 318 319 const auto *DL = &L.getHeader()->getModule()->getDataLayout(); 320 321 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 322 // pass. Function analyses need to be preserved across loop transformations 323 // but ORE cannot be preserved (see comment before the pass definition). 324 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 325 326 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, 327 AR.MSSA, DL, ORE); 328 if (!LIR.runOnLoop(&L)) 329 return PreservedAnalyses::all(); 330 331 auto PA = getLoopPassPreservedAnalyses(); 332 if (AR.MSSA) 333 PA.preserve<MemorySSAAnalysis>(); 334 return PA; 335 } 336 337 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom", 338 "Recognize loop idioms", false, false) 339 INITIALIZE_PASS_DEPENDENCY(LoopPass) 340 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 341 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 342 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom", 343 "Recognize loop idioms", false, false) 344 345 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); } 346 347 static void deleteDeadInstruction(Instruction *I) { 348 I->replaceAllUsesWith(UndefValue::get(I->getType())); 349 I->eraseFromParent(); 350 } 351 352 //===----------------------------------------------------------------------===// 353 // 354 // Implementation of LoopIdiomRecognize 355 // 356 //===----------------------------------------------------------------------===// 357 358 bool LoopIdiomRecognize::runOnLoop(Loop *L) { 359 CurLoop = L; 360 // If the loop could not be converted to canonical form, it must have an 361 // indirectbr in it, just give up. 362 if (!L->getLoopPreheader()) 363 return false; 364 365 // Disable loop idiom recognition if the function's name is a common idiom. 366 StringRef Name = L->getHeader()->getParent()->getName(); 367 if (Name == "memset" || Name == "memcpy") 368 return false; 369 370 // Determine if code size heuristics need to be applied. 371 ApplyCodeSizeHeuristics = 372 L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs; 373 374 HasMemset = TLI->has(LibFunc_memset); 375 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); 376 HasMemcpy = TLI->has(LibFunc_memcpy); 377 378 if (HasMemset || HasMemsetPattern || HasMemcpy) 379 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 380 return runOnCountableLoop(); 381 382 return runOnNoncountableLoop(); 383 } 384 385 bool LoopIdiomRecognize::runOnCountableLoop() { 386 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 387 assert(!isa<SCEVCouldNotCompute>(BECount) && 388 "runOnCountableLoop() called on a loop without a predictable" 389 "backedge-taken count"); 390 391 // If this loop executes exactly one time, then it should be peeled, not 392 // optimized by this pass. 393 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 394 if (BECst->getAPInt() == 0) 395 return false; 396 397 SmallVector<BasicBlock *, 8> ExitBlocks; 398 CurLoop->getUniqueExitBlocks(ExitBlocks); 399 400 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 401 << CurLoop->getHeader()->getParent()->getName() 402 << "] Countable Loop %" << CurLoop->getHeader()->getName() 403 << "\n"); 404 405 // The following transforms hoist stores/memsets into the loop pre-header. 406 // Give up if the loop has instructions that may throw. 407 SimpleLoopSafetyInfo SafetyInfo; 408 SafetyInfo.computeLoopSafetyInfo(CurLoop); 409 if (SafetyInfo.anyBlockMayThrow()) 410 return false; 411 412 bool MadeChange = false; 413 414 // Scan all the blocks in the loop that are not in subloops. 415 for (auto *BB : CurLoop->getBlocks()) { 416 // Ignore blocks in subloops. 417 if (LI->getLoopFor(BB) != CurLoop) 418 continue; 419 420 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); 421 } 422 return MadeChange; 423 } 424 425 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { 426 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); 427 return ConstStride->getAPInt(); 428 } 429 430 /// getMemSetPatternValue - If a strided store of the specified value is safe to 431 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 432 /// be passed in. Otherwise, return null. 433 /// 434 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 435 /// just replicate their input array and then pass on to memset_pattern16. 436 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { 437 // FIXME: This could check for UndefValue because it can be merged into any 438 // other valid pattern. 439 440 // If the value isn't a constant, we can't promote it to being in a constant 441 // array. We could theoretically do a store to an alloca or something, but 442 // that doesn't seem worthwhile. 443 Constant *C = dyn_cast<Constant>(V); 444 if (!C) 445 return nullptr; 446 447 // Only handle simple values that are a power of two bytes in size. 448 uint64_t Size = DL->getTypeSizeInBits(V->getType()); 449 if (Size == 0 || (Size & 7) || (Size & (Size - 1))) 450 return nullptr; 451 452 // Don't care enough about darwin/ppc to implement this. 453 if (DL->isBigEndian()) 454 return nullptr; 455 456 // Convert to size in bytes. 457 Size /= 8; 458 459 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 460 // if the top and bottom are the same (e.g. for vectors and large integers). 461 if (Size > 16) 462 return nullptr; 463 464 // If the constant is exactly 16 bytes, just use it. 465 if (Size == 16) 466 return C; 467 468 // Otherwise, we'll use an array of the constants. 469 unsigned ArraySize = 16 / Size; 470 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 471 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); 472 } 473 474 LoopIdiomRecognize::LegalStoreKind 475 LoopIdiomRecognize::isLegalStore(StoreInst *SI) { 476 // Don't touch volatile stores. 477 if (SI->isVolatile()) 478 return LegalStoreKind::None; 479 // We only want simple or unordered-atomic stores. 480 if (!SI->isUnordered()) 481 return LegalStoreKind::None; 482 483 // Avoid merging nontemporal stores. 484 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 485 return LegalStoreKind::None; 486 487 Value *StoredVal = SI->getValueOperand(); 488 Value *StorePtr = SI->getPointerOperand(); 489 490 // Don't convert stores of non-integral pointer types to memsets (which stores 491 // integers). 492 if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 493 return LegalStoreKind::None; 494 495 // Reject stores that are so large that they overflow an unsigned. 496 // When storing out scalable vectors we bail out for now, since the code 497 // below currently only works for constant strides. 498 TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); 499 if (SizeInBits.isScalable() || (SizeInBits.getFixedSize() & 7) || 500 (SizeInBits.getFixedSize() >> 32) != 0) 501 return LegalStoreKind::None; 502 503 // See if the pointer expression is an AddRec like {base,+,1} on the current 504 // loop, which indicates a strided store. If we have something else, it's a 505 // random store we can't handle. 506 const SCEVAddRecExpr *StoreEv = 507 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 508 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 509 return LegalStoreKind::None; 510 511 // Check to see if we have a constant stride. 512 if (!isa<SCEVConstant>(StoreEv->getOperand(1))) 513 return LegalStoreKind::None; 514 515 // See if the store can be turned into a memset. 516 517 // If the stored value is a byte-wise value (like i32 -1), then it may be 518 // turned into a memset of i8 -1, assuming that all the consecutive bytes 519 // are stored. A store of i32 0x01020304 can never be turned into a memset, 520 // but it can be turned into memset_pattern if the target supports it. 521 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 522 523 // Note: memset and memset_pattern on unordered-atomic is yet not supported 524 bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); 525 526 // If we're allowed to form a memset, and the stored value would be 527 // acceptable for memset, use it. 528 if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset && 529 // Verify that the stored value is loop invariant. If not, we can't 530 // promote the memset. 531 CurLoop->isLoopInvariant(SplatValue)) { 532 // It looks like we can use SplatValue. 533 return LegalStoreKind::Memset; 534 } 535 if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset && 536 // Don't create memset_pattern16s with address spaces. 537 StorePtr->getType()->getPointerAddressSpace() == 0 && 538 getMemSetPatternValue(StoredVal, DL)) { 539 // It looks like we can use PatternValue! 540 return LegalStoreKind::MemsetPattern; 541 } 542 543 // Otherwise, see if the store can be turned into a memcpy. 544 if (HasMemcpy && !DisableLIRP::Memcpy) { 545 // Check to see if the stride matches the size of the store. If so, then we 546 // know that every byte is touched in the loop. 547 APInt Stride = getStoreStride(StoreEv); 548 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 549 if (StoreSize != Stride && StoreSize != -Stride) 550 return LegalStoreKind::None; 551 552 // The store must be feeding a non-volatile load. 553 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); 554 555 // Only allow non-volatile loads 556 if (!LI || LI->isVolatile()) 557 return LegalStoreKind::None; 558 // Only allow simple or unordered-atomic loads 559 if (!LI->isUnordered()) 560 return LegalStoreKind::None; 561 562 // See if the pointer expression is an AddRec like {base,+,1} on the current 563 // loop, which indicates a strided load. If we have something else, it's a 564 // random load we can't handle. 565 const SCEVAddRecExpr *LoadEv = 566 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 567 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 568 return LegalStoreKind::None; 569 570 // The store and load must share the same stride. 571 if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) 572 return LegalStoreKind::None; 573 574 // Success. This store can be converted into a memcpy. 575 UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); 576 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy 577 : LegalStoreKind::Memcpy; 578 } 579 // This store can't be transformed into a memset/memcpy. 580 return LegalStoreKind::None; 581 } 582 583 void LoopIdiomRecognize::collectStores(BasicBlock *BB) { 584 StoreRefsForMemset.clear(); 585 StoreRefsForMemsetPattern.clear(); 586 StoreRefsForMemcpy.clear(); 587 for (Instruction &I : *BB) { 588 StoreInst *SI = dyn_cast<StoreInst>(&I); 589 if (!SI) 590 continue; 591 592 // Make sure this is a strided store with a constant stride. 593 switch (isLegalStore(SI)) { 594 case LegalStoreKind::None: 595 // Nothing to do 596 break; 597 case LegalStoreKind::Memset: { 598 // Find the base pointer. 599 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 600 StoreRefsForMemset[Ptr].push_back(SI); 601 } break; 602 case LegalStoreKind::MemsetPattern: { 603 // Find the base pointer. 604 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 605 StoreRefsForMemsetPattern[Ptr].push_back(SI); 606 } break; 607 case LegalStoreKind::Memcpy: 608 case LegalStoreKind::UnorderedAtomicMemcpy: 609 StoreRefsForMemcpy.push_back(SI); 610 break; 611 default: 612 assert(false && "unhandled return value"); 613 break; 614 } 615 } 616 } 617 618 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 619 /// with the specified backedge count. This block is known to be in the current 620 /// loop and not in any subloops. 621 bool LoopIdiomRecognize::runOnLoopBlock( 622 BasicBlock *BB, const SCEV *BECount, 623 SmallVectorImpl<BasicBlock *> &ExitBlocks) { 624 // We can only promote stores in this block if they are unconditionally 625 // executed in the loop. For a block to be unconditionally executed, it has 626 // to dominate all the exit blocks of the loop. Verify this now. 627 for (BasicBlock *ExitBlock : ExitBlocks) 628 if (!DT->dominates(BB, ExitBlock)) 629 return false; 630 631 bool MadeChange = false; 632 // Look for store instructions, which may be optimized to memset/memcpy. 633 collectStores(BB); 634 635 // Look for a single store or sets of stores with a common base, which can be 636 // optimized into a memset (memset_pattern). The latter most commonly happens 637 // with structs and handunrolled loops. 638 for (auto &SL : StoreRefsForMemset) 639 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); 640 641 for (auto &SL : StoreRefsForMemsetPattern) 642 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); 643 644 // Optimize the store into a memcpy, if it feeds an similarly strided load. 645 for (auto &SI : StoreRefsForMemcpy) 646 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); 647 648 MadeChange |= processLoopMemIntrinsic<MemCpyInst>( 649 BB, &LoopIdiomRecognize::processLoopMemCpy, BECount); 650 MadeChange |= processLoopMemIntrinsic<MemSetInst>( 651 BB, &LoopIdiomRecognize::processLoopMemSet, BECount); 652 653 return MadeChange; 654 } 655 656 /// See if this store(s) can be promoted to a memset. 657 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, 658 const SCEV *BECount, ForMemset For) { 659 // Try to find consecutive stores that can be transformed into memsets. 660 SetVector<StoreInst *> Heads, Tails; 661 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 662 663 // Do a quadratic search on all of the given stores and find 664 // all of the pairs of stores that follow each other. 665 SmallVector<unsigned, 16> IndexQueue; 666 for (unsigned i = 0, e = SL.size(); i < e; ++i) { 667 assert(SL[i]->isSimple() && "Expected only non-volatile stores."); 668 669 Value *FirstStoredVal = SL[i]->getValueOperand(); 670 Value *FirstStorePtr = SL[i]->getPointerOperand(); 671 const SCEVAddRecExpr *FirstStoreEv = 672 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); 673 APInt FirstStride = getStoreStride(FirstStoreEv); 674 unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); 675 676 // See if we can optimize just this store in isolation. 677 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { 678 Heads.insert(SL[i]); 679 continue; 680 } 681 682 Value *FirstSplatValue = nullptr; 683 Constant *FirstPatternValue = nullptr; 684 685 if (For == ForMemset::Yes) 686 FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL); 687 else 688 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); 689 690 assert((FirstSplatValue || FirstPatternValue) && 691 "Expected either splat value or pattern value."); 692 693 IndexQueue.clear(); 694 // If a store has multiple consecutive store candidates, search Stores 695 // array according to the sequence: from i+1 to e, then from i-1 to 0. 696 // This is because usually pairing with immediate succeeding or preceding 697 // candidate create the best chance to find memset opportunity. 698 unsigned j = 0; 699 for (j = i + 1; j < e; ++j) 700 IndexQueue.push_back(j); 701 for (j = i; j > 0; --j) 702 IndexQueue.push_back(j - 1); 703 704 for (auto &k : IndexQueue) { 705 assert(SL[k]->isSimple() && "Expected only non-volatile stores."); 706 Value *SecondStorePtr = SL[k]->getPointerOperand(); 707 const SCEVAddRecExpr *SecondStoreEv = 708 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); 709 APInt SecondStride = getStoreStride(SecondStoreEv); 710 711 if (FirstStride != SecondStride) 712 continue; 713 714 Value *SecondStoredVal = SL[k]->getValueOperand(); 715 Value *SecondSplatValue = nullptr; 716 Constant *SecondPatternValue = nullptr; 717 718 if (For == ForMemset::Yes) 719 SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL); 720 else 721 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); 722 723 assert((SecondSplatValue || SecondPatternValue) && 724 "Expected either splat value or pattern value."); 725 726 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { 727 if (For == ForMemset::Yes) { 728 if (isa<UndefValue>(FirstSplatValue)) 729 FirstSplatValue = SecondSplatValue; 730 if (FirstSplatValue != SecondSplatValue) 731 continue; 732 } else { 733 if (isa<UndefValue>(FirstPatternValue)) 734 FirstPatternValue = SecondPatternValue; 735 if (FirstPatternValue != SecondPatternValue) 736 continue; 737 } 738 Tails.insert(SL[k]); 739 Heads.insert(SL[i]); 740 ConsecutiveChain[SL[i]] = SL[k]; 741 break; 742 } 743 } 744 } 745 746 // We may run into multiple chains that merge into a single chain. We mark the 747 // stores that we transformed so that we don't visit the same store twice. 748 SmallPtrSet<Value *, 16> TransformedStores; 749 bool Changed = false; 750 751 // For stores that start but don't end a link in the chain: 752 for (StoreInst *I : Heads) { 753 if (Tails.count(I)) 754 continue; 755 756 // We found a store instr that starts a chain. Now follow the chain and try 757 // to transform it. 758 SmallPtrSet<Instruction *, 8> AdjacentStores; 759 StoreInst *HeadStore = I; 760 unsigned StoreSize = 0; 761 762 // Collect the chain into a list. 763 while (Tails.count(I) || Heads.count(I)) { 764 if (TransformedStores.count(I)) 765 break; 766 AdjacentStores.insert(I); 767 768 StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); 769 // Move to the next value in the chain. 770 I = ConsecutiveChain[I]; 771 } 772 773 Value *StoredVal = HeadStore->getValueOperand(); 774 Value *StorePtr = HeadStore->getPointerOperand(); 775 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 776 APInt Stride = getStoreStride(StoreEv); 777 778 // Check to see if the stride matches the size of the stores. If so, then 779 // we know that every byte is touched in the loop. 780 if (StoreSize != Stride && StoreSize != -Stride) 781 continue; 782 783 bool IsNegStride = StoreSize == -Stride; 784 785 Type *IntIdxTy = DL->getIndexType(StorePtr->getType()); 786 const SCEV *StoreSizeSCEV = SE->getConstant(IntIdxTy, StoreSize); 787 if (processLoopStridedStore(StorePtr, StoreSizeSCEV, 788 MaybeAlign(HeadStore->getAlign()), StoredVal, 789 HeadStore, AdjacentStores, StoreEv, BECount, 790 IsNegStride)) { 791 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); 792 Changed = true; 793 } 794 } 795 796 return Changed; 797 } 798 799 /// processLoopMemIntrinsic - Template function for calling different processor 800 /// functions based on mem intrinsic type. 801 template <typename MemInst> 802 bool LoopIdiomRecognize::processLoopMemIntrinsic( 803 BasicBlock *BB, 804 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), 805 const SCEV *BECount) { 806 bool MadeChange = false; 807 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 808 Instruction *Inst = &*I++; 809 // Look for memory instructions, which may be optimized to a larger one. 810 if (MemInst *MI = dyn_cast<MemInst>(Inst)) { 811 WeakTrackingVH InstPtr(&*I); 812 if (!(this->*Processor)(MI, BECount)) 813 continue; 814 MadeChange = true; 815 816 // If processing the instruction invalidated our iterator, start over from 817 // the top of the block. 818 if (!InstPtr) 819 I = BB->begin(); 820 } 821 } 822 return MadeChange; 823 } 824 825 /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy 826 bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI, 827 const SCEV *BECount) { 828 // We can only handle non-volatile memcpys with a constant size. 829 if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength())) 830 return false; 831 832 // If we're not allowed to hack on memcpy, we fail. 833 if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy) 834 return false; 835 836 Value *Dest = MCI->getDest(); 837 Value *Source = MCI->getSource(); 838 if (!Dest || !Source) 839 return false; 840 841 // See if the load and store pointer expressions are AddRec like {base,+,1} on 842 // the current loop, which indicates a strided load and store. If we have 843 // something else, it's a random load or store we can't handle. 844 const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest)); 845 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 846 return false; 847 const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source)); 848 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 849 return false; 850 851 // Reject memcpys that are so large that they overflow an unsigned. 852 uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue(); 853 if ((SizeInBytes >> 32) != 0) 854 return false; 855 856 // Check if the stride matches the size of the memcpy. If so, then we know 857 // that every byte is touched in the loop. 858 const SCEVConstant *ConstStoreStride = 859 dyn_cast<SCEVConstant>(StoreEv->getOperand(1)); 860 const SCEVConstant *ConstLoadStride = 861 dyn_cast<SCEVConstant>(LoadEv->getOperand(1)); 862 if (!ConstStoreStride || !ConstLoadStride) 863 return false; 864 865 APInt StoreStrideValue = ConstStoreStride->getAPInt(); 866 APInt LoadStrideValue = ConstLoadStride->getAPInt(); 867 // Huge stride value - give up 868 if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64) 869 return false; 870 871 if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) { 872 ORE.emit([&]() { 873 return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI) 874 << ore::NV("Inst", "memcpy") << " in " 875 << ore::NV("Function", MCI->getFunction()) 876 << " function will not be hoisted: " 877 << ore::NV("Reason", "memcpy size is not equal to stride"); 878 }); 879 return false; 880 } 881 882 int64_t StoreStrideInt = StoreStrideValue.getSExtValue(); 883 int64_t LoadStrideInt = LoadStrideValue.getSExtValue(); 884 // Check if the load stride matches the store stride. 885 if (StoreStrideInt != LoadStrideInt) 886 return false; 887 888 return processLoopStoreOfLoopLoad( 889 Dest, Source, SE->getConstant(Dest->getType(), SizeInBytes), 890 MCI->getDestAlign(), MCI->getSourceAlign(), MCI, MCI, StoreEv, LoadEv, 891 BECount); 892 } 893 894 /// processLoopMemSet - See if this memset can be promoted to a large memset. 895 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, 896 const SCEV *BECount) { 897 // We can only handle non-volatile memsets. 898 if (MSI->isVolatile()) 899 return false; 900 901 // If we're not allowed to hack on memset, we fail. 902 if (!HasMemset || DisableLIRP::Memset) 903 return false; 904 905 Value *Pointer = MSI->getDest(); 906 907 // See if the pointer expression is an AddRec like {base,+,1} on the current 908 // loop, which indicates a strided store. If we have something else, it's a 909 // random store we can't handle. 910 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 911 if (!Ev || Ev->getLoop() != CurLoop) 912 return false; 913 if (!Ev->isAffine()) { 914 LLVM_DEBUG(dbgs() << " Pointer is not affine, abort\n"); 915 return false; 916 } 917 918 const SCEV *PointerStrideSCEV = Ev->getOperand(1); 919 const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength()); 920 if (!PointerStrideSCEV || !MemsetSizeSCEV) 921 return false; 922 923 bool IsNegStride = false; 924 const bool IsConstantSize = isa<ConstantInt>(MSI->getLength()); 925 926 if (IsConstantSize) { 927 // Memset size is constant. 928 // Check if the pointer stride matches the memset size. If so, then 929 // we know that every byte is touched in the loop. 930 LLVM_DEBUG(dbgs() << " memset size is constant\n"); 931 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 932 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 933 if (!ConstStride) 934 return false; 935 936 APInt Stride = ConstStride->getAPInt(); 937 if (SizeInBytes != Stride && SizeInBytes != -Stride) 938 return false; 939 940 IsNegStride = SizeInBytes == -Stride; 941 } else { 942 // Memset size is non-constant. 943 // Check if the pointer stride matches the memset size. 944 // To be conservative, the pass would not promote pointers that aren't in 945 // address space zero. Also, the pass only handles memset length and stride 946 // that are invariant for the top level loop. 947 LLVM_DEBUG(dbgs() << " memset size is non-constant\n"); 948 if (Pointer->getType()->getPointerAddressSpace() != 0) { 949 LLVM_DEBUG(dbgs() << " pointer is not in address space zero, " 950 << "abort\n"); 951 return false; 952 } 953 if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) { 954 LLVM_DEBUG(dbgs() << " memset size is not a loop-invariant, " 955 << "abort\n"); 956 return false; 957 } 958 959 // Compare positive direction PointerStrideSCEV with MemsetSizeSCEV 960 IsNegStride = PointerStrideSCEV->isNonConstantNegative(); 961 const SCEV *PositiveStrideSCEV = 962 IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV) 963 : PointerStrideSCEV; 964 LLVM_DEBUG(dbgs() << " MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n" 965 << " PositiveStrideSCEV: " << *PositiveStrideSCEV 966 << "\n"); 967 968 if (PositiveStrideSCEV != MemsetSizeSCEV) { 969 // If an expression is covered by the loop guard, compare again and 970 // proceed with optimization if equal. 971 const SCEV *FoldedPositiveStride = 972 SE->applyLoopGuards(PositiveStrideSCEV, CurLoop); 973 const SCEV *FoldedMemsetSize = 974 SE->applyLoopGuards(MemsetSizeSCEV, CurLoop); 975 976 LLVM_DEBUG(dbgs() << " Try to fold SCEV based on loop guard\n" 977 << " FoldedMemsetSize: " << *FoldedMemsetSize << "\n" 978 << " FoldedPositiveStride: " << *FoldedPositiveStride 979 << "\n"); 980 981 if (FoldedPositiveStride != FoldedMemsetSize) { 982 LLVM_DEBUG(dbgs() << " SCEV don't match, abort\n"); 983 return false; 984 } 985 } 986 } 987 988 // Verify that the memset value is loop invariant. If not, we can't promote 989 // the memset. 990 Value *SplatValue = MSI->getValue(); 991 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) 992 return false; 993 994 SmallPtrSet<Instruction *, 1> MSIs; 995 MSIs.insert(MSI); 996 return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()), 997 MaybeAlign(MSI->getDestAlignment()), 998 SplatValue, MSI, MSIs, Ev, BECount, 999 IsNegStride, /*IsLoopMemset=*/true); 1000 } 1001 1002 /// mayLoopAccessLocation - Return true if the specified loop might access the 1003 /// specified pointer location, which is a loop-strided access. The 'Access' 1004 /// argument specifies what the verboten forms of access are (read or write). 1005 static bool 1006 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, 1007 const SCEV *BECount, const SCEV *StoreSizeSCEV, 1008 AliasAnalysis &AA, 1009 SmallPtrSetImpl<Instruction *> &IgnoredInsts) { 1010 // Get the location that may be stored across the loop. Since the access is 1011 // strided positively through memory, we say that the modified location starts 1012 // at the pointer and has infinite size. 1013 LocationSize AccessSize = LocationSize::afterPointer(); 1014 1015 // If the loop iterates a fixed number of times, we can refine the access size 1016 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 1017 const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount); 1018 const SCEVConstant *ConstSize = dyn_cast<SCEVConstant>(StoreSizeSCEV); 1019 if (BECst && ConstSize) 1020 AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) * 1021 ConstSize->getValue()->getZExtValue()); 1022 1023 // TODO: For this to be really effective, we have to dive into the pointer 1024 // operand in the store. Store to &A[i] of 100 will always return may alias 1025 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 1026 // which will then no-alias a store to &A[100]. 1027 MemoryLocation StoreLoc(Ptr, AccessSize); 1028 1029 for (BasicBlock *B : L->blocks()) 1030 for (Instruction &I : *B) 1031 if (!IgnoredInsts.contains(&I) && 1032 isModOrRefSet( 1033 intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))) 1034 return true; 1035 return false; 1036 } 1037 1038 // If we have a negative stride, Start refers to the end of the memory location 1039 // we're trying to memset. Therefore, we need to recompute the base pointer, 1040 // which is just Start - BECount*Size. 1041 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, 1042 Type *IntPtr, const SCEV *StoreSizeSCEV, 1043 ScalarEvolution *SE) { 1044 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); 1045 if (!StoreSizeSCEV->isOne()) { 1046 // index = back edge count * store size 1047 Index = SE->getMulExpr(Index, 1048 SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr), 1049 SCEV::FlagNUW); 1050 } 1051 // base pointer = start - index * store size 1052 return SE->getMinusSCEV(Start, Index); 1053 } 1054 1055 /// Compute trip count from the backedge taken count. 1056 static const SCEV *getTripCount(const SCEV *BECount, Type *IntPtr, 1057 Loop *CurLoop, const DataLayout *DL, 1058 ScalarEvolution *SE) { 1059 const SCEV *TripCountS = nullptr; 1060 // The # stored bytes is (BECount+1). Expand the trip count out to 1061 // pointer size if it isn't already. 1062 // 1063 // If we're going to need to zero extend the BE count, check if we can add 1064 // one to it prior to zero extending without overflow. Provided this is safe, 1065 // it allows better simplification of the +1. 1066 if (DL->getTypeSizeInBits(BECount->getType()) < 1067 DL->getTypeSizeInBits(IntPtr) && 1068 SE->isLoopEntryGuardedByCond( 1069 CurLoop, ICmpInst::ICMP_NE, BECount, 1070 SE->getNegativeSCEV(SE->getOne(BECount->getType())))) { 1071 TripCountS = SE->getZeroExtendExpr( 1072 SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW), 1073 IntPtr); 1074 } else { 1075 TripCountS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr), 1076 SE->getOne(IntPtr), SCEV::FlagNUW); 1077 } 1078 1079 return TripCountS; 1080 } 1081 1082 /// Compute the number of bytes as a SCEV from the backedge taken count. 1083 /// 1084 /// This also maps the SCEV into the provided type and tries to handle the 1085 /// computation in a way that will fold cleanly. 1086 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, 1087 const SCEV *StoreSizeSCEV, Loop *CurLoop, 1088 const DataLayout *DL, ScalarEvolution *SE) { 1089 const SCEV *TripCountSCEV = getTripCount(BECount, IntPtr, CurLoop, DL, SE); 1090 1091 return SE->getMulExpr(TripCountSCEV, 1092 SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr), 1093 SCEV::FlagNUW); 1094 } 1095 1096 /// processLoopStridedStore - We see a strided store of some value. If we can 1097 /// transform this into a memset or memset_pattern in the loop preheader, do so. 1098 bool LoopIdiomRecognize::processLoopStridedStore( 1099 Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment, 1100 Value *StoredVal, Instruction *TheStore, 1101 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, 1102 const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) { 1103 Module *M = TheStore->getModule(); 1104 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 1105 Constant *PatternValue = nullptr; 1106 1107 if (!SplatValue) 1108 PatternValue = getMemSetPatternValue(StoredVal, DL); 1109 1110 assert((SplatValue || PatternValue) && 1111 "Expected either splat value or pattern value."); 1112 1113 // The trip count of the loop and the base pointer of the addrec SCEV is 1114 // guaranteed to be loop invariant, which means that it should dominate the 1115 // header. This allows us to insert code for it in the preheader. 1116 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); 1117 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1118 IRBuilder<> Builder(Preheader->getTerminator()); 1119 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1120 SCEVExpanderCleaner ExpCleaner(Expander); 1121 1122 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); 1123 Type *IntIdxTy = DL->getIndexType(DestPtr->getType()); 1124 1125 bool Changed = false; 1126 const SCEV *Start = Ev->getStart(); 1127 // Handle negative strided loops. 1128 if (IsNegStride) 1129 Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSizeSCEV, SE); 1130 1131 // TODO: ideally we should still be able to generate memset if SCEV expander 1132 // is taught to generate the dependencies at the latest point. 1133 if (!isSafeToExpand(Start, *SE)) 1134 return Changed; 1135 1136 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 1137 // this into a memset in the loop preheader now if we want. However, this 1138 // would be unsafe to do if there is anything else in the loop that may read 1139 // or write to the aliased location. Check for any overlap by generating the 1140 // base pointer and checking the region. 1141 Value *BasePtr = 1142 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); 1143 1144 // From here on out, conservatively report to the pass manager that we've 1145 // changed the IR, even if we later clean up these added instructions. There 1146 // may be structural differences e.g. in the order of use lists not accounted 1147 // for in just a textual dump of the IR. This is written as a variable, even 1148 // though statically all the places this dominates could be replaced with 1149 // 'true', with the hope that anyone trying to be clever / "more precise" with 1150 // the return value will read this comment, and leave them alone. 1151 Changed = true; 1152 1153 if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1154 StoreSizeSCEV, *AA, Stores)) 1155 return Changed; 1156 1157 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) 1158 return Changed; 1159 1160 // Okay, everything looks good, insert the memset. 1161 1162 const SCEV *NumBytesS = 1163 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); 1164 1165 // TODO: ideally we should still be able to generate memset if SCEV expander 1166 // is taught to generate the dependencies at the latest point. 1167 if (!isSafeToExpand(NumBytesS, *SE)) 1168 return Changed; 1169 1170 Value *NumBytes = 1171 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1172 1173 CallInst *NewCall; 1174 if (SplatValue) { 1175 AAMDNodes AATags = TheStore->getAAMetadata(); 1176 for (Instruction *Store : Stores) 1177 AATags = AATags.merge(Store->getAAMetadata()); 1178 if (auto CI = dyn_cast<ConstantInt>(NumBytes)) 1179 AATags = AATags.extendTo(CI->getZExtValue()); 1180 else 1181 AATags = AATags.extendTo(-1); 1182 1183 NewCall = Builder.CreateMemSet( 1184 BasePtr, SplatValue, NumBytes, MaybeAlign(StoreAlignment), 1185 /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias); 1186 } else if (isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16)) { 1187 // Everything is emitted in default address space 1188 Type *Int8PtrTy = DestInt8PtrTy; 1189 1190 StringRef FuncName = "memset_pattern16"; 1191 FunctionCallee MSP = getOrInsertLibFunc(M, *TLI, LibFunc_memset_pattern16, 1192 Builder.getVoidTy(), Int8PtrTy, Int8PtrTy, IntIdxTy); 1193 inferNonMandatoryLibFuncAttrs(M, FuncName, *TLI); 1194 1195 // Otherwise we should form a memset_pattern16. PatternValue is known to be 1196 // an constant array of 16-bytes. Plop the value into a mergable global. 1197 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 1198 GlobalValue::PrivateLinkage, 1199 PatternValue, ".memset_pattern"); 1200 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. 1201 GV->setAlignment(Align(16)); 1202 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); 1203 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); 1204 } else 1205 return Changed; 1206 1207 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1208 1209 if (MSSAU) { 1210 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1211 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1212 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1213 } 1214 1215 LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 1216 << " from store to: " << *Ev << " at: " << *TheStore 1217 << "\n"); 1218 1219 ORE.emit([&]() { 1220 OptimizationRemark R(DEBUG_TYPE, "ProcessLoopStridedStore", 1221 NewCall->getDebugLoc(), Preheader); 1222 R << "Transformed loop-strided store in " 1223 << ore::NV("Function", TheStore->getFunction()) 1224 << " function into a call to " 1225 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1226 << "() intrinsic"; 1227 if (!Stores.empty()) 1228 R << ore::setExtraArgs(); 1229 for (auto *I : Stores) { 1230 R << ore::NV("FromBlock", I->getParent()->getName()) 1231 << ore::NV("ToBlock", Preheader->getName()); 1232 } 1233 return R; 1234 }); 1235 1236 // Okay, the memset has been formed. Zap the original store and anything that 1237 // feeds into it. 1238 for (auto *I : Stores) { 1239 if (MSSAU) 1240 MSSAU->removeMemoryAccess(I, true); 1241 deleteDeadInstruction(I); 1242 } 1243 if (MSSAU && VerifyMemorySSA) 1244 MSSAU->getMemorySSA()->verifyMemorySSA(); 1245 ++NumMemSet; 1246 ExpCleaner.markResultUsed(); 1247 return true; 1248 } 1249 1250 /// If the stored value is a strided load in the same loop with the same stride 1251 /// this may be transformable into a memcpy. This kicks in for stuff like 1252 /// for (i) A[i] = B[i]; 1253 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, 1254 const SCEV *BECount) { 1255 assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); 1256 1257 Value *StorePtr = SI->getPointerOperand(); 1258 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 1259 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 1260 1261 // The store must be feeding a non-volatile load. 1262 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 1263 assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); 1264 1265 // See if the pointer expression is an AddRec like {base,+,1} on the current 1266 // loop, which indicates a strided load. If we have something else, it's a 1267 // random load we can't handle. 1268 Value *LoadPtr = LI->getPointerOperand(); 1269 const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr)); 1270 1271 const SCEV *StoreSizeSCEV = SE->getConstant(StorePtr->getType(), StoreSize); 1272 return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSizeSCEV, 1273 SI->getAlign(), LI->getAlign(), SI, LI, 1274 StoreEv, LoadEv, BECount); 1275 } 1276 1277 class MemmoveVerifier { 1278 public: 1279 explicit MemmoveVerifier(const Value &LoadBasePtr, const Value &StoreBasePtr, 1280 const DataLayout &DL) 1281 : DL(DL), BP1(llvm::GetPointerBaseWithConstantOffset( 1282 LoadBasePtr.stripPointerCasts(), LoadOff, DL)), 1283 BP2(llvm::GetPointerBaseWithConstantOffset( 1284 StoreBasePtr.stripPointerCasts(), StoreOff, DL)), 1285 IsSameObject(BP1 == BP2) {} 1286 1287 bool loadAndStoreMayFormMemmove(unsigned StoreSize, bool IsNegStride, 1288 const Instruction &TheLoad, 1289 bool IsMemCpy) const { 1290 if (IsMemCpy) { 1291 // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr 1292 // for negative stride. 1293 if ((!IsNegStride && LoadOff <= StoreOff) || 1294 (IsNegStride && LoadOff >= StoreOff)) 1295 return false; 1296 } else { 1297 // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr 1298 // for negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr. 1299 int64_t LoadSize = 1300 DL.getTypeSizeInBits(TheLoad.getType()).getFixedSize() / 8; 1301 if (BP1 != BP2 || LoadSize != int64_t(StoreSize)) 1302 return false; 1303 if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) || 1304 (IsNegStride && LoadOff + LoadSize > StoreOff)) 1305 return false; 1306 } 1307 return true; 1308 } 1309 1310 private: 1311 const DataLayout &DL; 1312 int64_t LoadOff = 0; 1313 int64_t StoreOff = 0; 1314 const Value *BP1; 1315 const Value *BP2; 1316 1317 public: 1318 const bool IsSameObject; 1319 }; 1320 1321 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad( 1322 Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV, 1323 MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore, 1324 Instruction *TheLoad, const SCEVAddRecExpr *StoreEv, 1325 const SCEVAddRecExpr *LoadEv, const SCEV *BECount) { 1326 1327 // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to 1328 // conservatively bail here, since otherwise we may have to transform 1329 // llvm.memcpy.inline into llvm.memcpy which is illegal. 1330 if (isa<MemCpyInlineInst>(TheStore)) 1331 return false; 1332 1333 // The trip count of the loop and the base pointer of the addrec SCEV is 1334 // guaranteed to be loop invariant, which means that it should dominate the 1335 // header. This allows us to insert code for it in the preheader. 1336 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1337 IRBuilder<> Builder(Preheader->getTerminator()); 1338 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1339 1340 SCEVExpanderCleaner ExpCleaner(Expander); 1341 1342 bool Changed = false; 1343 const SCEV *StrStart = StoreEv->getStart(); 1344 unsigned StrAS = DestPtr->getType()->getPointerAddressSpace(); 1345 Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS)); 1346 1347 APInt Stride = getStoreStride(StoreEv); 1348 const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(StoreSizeSCEV); 1349 1350 // TODO: Deal with non-constant size; Currently expect constant store size 1351 assert(ConstStoreSize && "store size is expected to be a constant"); 1352 1353 int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue(); 1354 bool IsNegStride = StoreSize == -Stride; 1355 1356 // Handle negative strided loops. 1357 if (IsNegStride) 1358 StrStart = 1359 getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSizeSCEV, SE); 1360 1361 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 1362 // this into a memcpy in the loop preheader now if we want. However, this 1363 // would be unsafe to do if there is anything else in the loop that may read 1364 // or write the memory region we're storing to. This includes the load that 1365 // feeds the stores. Check for an alias by generating the base address and 1366 // checking everything. 1367 Value *StoreBasePtr = Expander.expandCodeFor( 1368 StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); 1369 1370 // From here on out, conservatively report to the pass manager that we've 1371 // changed the IR, even if we later clean up these added instructions. There 1372 // may be structural differences e.g. in the order of use lists not accounted 1373 // for in just a textual dump of the IR. This is written as a variable, even 1374 // though statically all the places this dominates could be replaced with 1375 // 'true', with the hope that anyone trying to be clever / "more precise" with 1376 // the return value will read this comment, and leave them alone. 1377 Changed = true; 1378 1379 SmallPtrSet<Instruction *, 2> IgnoredInsts; 1380 IgnoredInsts.insert(TheStore); 1381 1382 bool IsMemCpy = isa<MemCpyInst>(TheStore); 1383 const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store"; 1384 1385 bool LoopAccessStore = 1386 mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1387 StoreSizeSCEV, *AA, IgnoredInsts); 1388 if (LoopAccessStore) { 1389 // For memmove case it's not enough to guarantee that loop doesn't access 1390 // TheStore and TheLoad. Additionally we need to make sure that TheStore is 1391 // the only user of TheLoad. 1392 if (!TheLoad->hasOneUse()) 1393 return Changed; 1394 IgnoredInsts.insert(TheLoad); 1395 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, 1396 BECount, StoreSizeSCEV, *AA, IgnoredInsts)) { 1397 ORE.emit([&]() { 1398 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore", 1399 TheStore) 1400 << ore::NV("Inst", InstRemark) << " in " 1401 << ore::NV("Function", TheStore->getFunction()) 1402 << " function will not be hoisted: " 1403 << ore::NV("Reason", "The loop may access store location"); 1404 }); 1405 return Changed; 1406 } 1407 IgnoredInsts.erase(TheLoad); 1408 } 1409 1410 const SCEV *LdStart = LoadEv->getStart(); 1411 unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace(); 1412 1413 // Handle negative strided loops. 1414 if (IsNegStride) 1415 LdStart = 1416 getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSizeSCEV, SE); 1417 1418 // For a memcpy, we have to make sure that the input array is not being 1419 // mutated by the loop. 1420 Value *LoadBasePtr = Expander.expandCodeFor( 1421 LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); 1422 1423 // If the store is a memcpy instruction, we must check if it will write to 1424 // the load memory locations. So remove it from the ignored stores. 1425 if (IsMemCpy) 1426 IgnoredInsts.erase(TheStore); 1427 MemmoveVerifier Verifier(*LoadBasePtr, *StoreBasePtr, *DL); 1428 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, 1429 StoreSizeSCEV, *AA, IgnoredInsts)) { 1430 if (!IsMemCpy) { 1431 ORE.emit([&]() { 1432 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad", 1433 TheLoad) 1434 << ore::NV("Inst", InstRemark) << " in " 1435 << ore::NV("Function", TheStore->getFunction()) 1436 << " function will not be hoisted: " 1437 << ore::NV("Reason", "The loop may access load location"); 1438 }); 1439 return Changed; 1440 } 1441 // At this point loop may access load only for memcpy in same underlying 1442 // object. If that's not the case bail out. 1443 if (!Verifier.IsSameObject) 1444 return Changed; 1445 } 1446 1447 bool UseMemMove = IsMemCpy ? Verifier.IsSameObject : LoopAccessStore; 1448 if (UseMemMove) 1449 if (!Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, *TheLoad, 1450 IsMemCpy)) 1451 return Changed; 1452 1453 if (avoidLIRForMultiBlockLoop()) 1454 return Changed; 1455 1456 // Okay, everything is safe, we can transform this! 1457 1458 const SCEV *NumBytesS = 1459 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); 1460 1461 Value *NumBytes = 1462 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1463 1464 AAMDNodes AATags = TheLoad->getAAMetadata(); 1465 AAMDNodes StoreAATags = TheStore->getAAMetadata(); 1466 AATags = AATags.merge(StoreAATags); 1467 if (auto CI = dyn_cast<ConstantInt>(NumBytes)) 1468 AATags = AATags.extendTo(CI->getZExtValue()); 1469 else 1470 AATags = AATags.extendTo(-1); 1471 1472 CallInst *NewCall = nullptr; 1473 // Check whether to generate an unordered atomic memcpy: 1474 // If the load or store are atomic, then they must necessarily be unordered 1475 // by previous checks. 1476 if (!TheStore->isAtomic() && !TheLoad->isAtomic()) { 1477 if (UseMemMove) 1478 NewCall = Builder.CreateMemMove( 1479 StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes, 1480 /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias); 1481 else 1482 NewCall = 1483 Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, 1484 NumBytes, /*isVolatile=*/false, AATags.TBAA, 1485 AATags.TBAAStruct, AATags.Scope, AATags.NoAlias); 1486 } else { 1487 // For now don't support unordered atomic memmove. 1488 if (UseMemMove) 1489 return Changed; 1490 // We cannot allow unaligned ops for unordered load/store, so reject 1491 // anything where the alignment isn't at least the element size. 1492 assert((StoreAlign.hasValue() && LoadAlign.hasValue()) && 1493 "Expect unordered load/store to have align."); 1494 if (StoreAlign.getValue() < StoreSize || LoadAlign.getValue() < StoreSize) 1495 return Changed; 1496 1497 // If the element.atomic memcpy is not lowered into explicit 1498 // loads/stores later, then it will be lowered into an element-size 1499 // specific lib call. If the lib call doesn't exist for our store size, then 1500 // we shouldn't generate the memcpy. 1501 if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) 1502 return Changed; 1503 1504 // Create the call. 1505 // Note that unordered atomic loads/stores are *required* by the spec to 1506 // have an alignment but non-atomic loads/stores may not. 1507 NewCall = Builder.CreateElementUnorderedAtomicMemCpy( 1508 StoreBasePtr, StoreAlign.getValue(), LoadBasePtr, LoadAlign.getValue(), 1509 NumBytes, StoreSize, AATags.TBAA, AATags.TBAAStruct, AATags.Scope, 1510 AATags.NoAlias); 1511 } 1512 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1513 1514 if (MSSAU) { 1515 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1516 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1517 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1518 } 1519 1520 LLVM_DEBUG(dbgs() << " Formed new call: " << *NewCall << "\n" 1521 << " from load ptr=" << *LoadEv << " at: " << *TheLoad 1522 << "\n" 1523 << " from store ptr=" << *StoreEv << " at: " << *TheStore 1524 << "\n"); 1525 1526 ORE.emit([&]() { 1527 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad", 1528 NewCall->getDebugLoc(), Preheader) 1529 << "Formed a call to " 1530 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1531 << "() intrinsic from " << ore::NV("Inst", InstRemark) 1532 << " instruction in " << ore::NV("Function", TheStore->getFunction()) 1533 << " function" 1534 << ore::setExtraArgs() 1535 << ore::NV("FromBlock", TheStore->getParent()->getName()) 1536 << ore::NV("ToBlock", Preheader->getName()); 1537 }); 1538 1539 // Okay, a new call to memcpy/memmove has been formed. Zap the original store 1540 // and anything that feeds into it. 1541 if (MSSAU) 1542 MSSAU->removeMemoryAccess(TheStore, true); 1543 deleteDeadInstruction(TheStore); 1544 if (MSSAU && VerifyMemorySSA) 1545 MSSAU->getMemorySSA()->verifyMemorySSA(); 1546 if (UseMemMove) 1547 ++NumMemMove; 1548 else 1549 ++NumMemCpy; 1550 ExpCleaner.markResultUsed(); 1551 return true; 1552 } 1553 1554 // When compiling for codesize we avoid idiom recognition for a multi-block loop 1555 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. 1556 // 1557 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, 1558 bool IsLoopMemset) { 1559 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { 1560 if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) { 1561 LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() 1562 << " : LIR " << (IsMemset ? "Memset" : "Memcpy") 1563 << " avoided: multi-block top-level loop\n"); 1564 return true; 1565 } 1566 } 1567 1568 return false; 1569 } 1570 1571 bool LoopIdiomRecognize::runOnNoncountableLoop() { 1572 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 1573 << CurLoop->getHeader()->getParent()->getName() 1574 << "] Noncountable Loop %" 1575 << CurLoop->getHeader()->getName() << "\n"); 1576 1577 return recognizePopcount() || recognizeAndInsertFFS() || 1578 recognizeShiftUntilBitTest() || recognizeShiftUntilZero(); 1579 } 1580 1581 /// Check if the given conditional branch is based on the comparison between 1582 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is 1583 /// true), the control yields to the loop entry. If the branch matches the 1584 /// behavior, the variable involved in the comparison is returned. This function 1585 /// will be called to see if the precondition and postcondition of the loop are 1586 /// in desirable form. 1587 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, 1588 bool JmpOnZero = false) { 1589 if (!BI || !BI->isConditional()) 1590 return nullptr; 1591 1592 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1593 if (!Cond) 1594 return nullptr; 1595 1596 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 1597 if (!CmpZero || !CmpZero->isZero()) 1598 return nullptr; 1599 1600 BasicBlock *TrueSucc = BI->getSuccessor(0); 1601 BasicBlock *FalseSucc = BI->getSuccessor(1); 1602 if (JmpOnZero) 1603 std::swap(TrueSucc, FalseSucc); 1604 1605 ICmpInst::Predicate Pred = Cond->getPredicate(); 1606 if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || 1607 (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) 1608 return Cond->getOperand(0); 1609 1610 return nullptr; 1611 } 1612 1613 // Check if the recurrence variable `VarX` is in the right form to create 1614 // the idiom. Returns the value coerced to a PHINode if so. 1615 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, 1616 BasicBlock *LoopEntry) { 1617 auto *PhiX = dyn_cast<PHINode>(VarX); 1618 if (PhiX && PhiX->getParent() == LoopEntry && 1619 (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) 1620 return PhiX; 1621 return nullptr; 1622 } 1623 1624 /// Return true iff the idiom is detected in the loop. 1625 /// 1626 /// Additionally: 1627 /// 1) \p CntInst is set to the instruction counting the population bit. 1628 /// 2) \p CntPhi is set to the corresponding phi node. 1629 /// 3) \p Var is set to the value whose population bits are being counted. 1630 /// 1631 /// The core idiom we are trying to detect is: 1632 /// \code 1633 /// if (x0 != 0) 1634 /// goto loop-exit // the precondition of the loop 1635 /// cnt0 = init-val; 1636 /// do { 1637 /// x1 = phi (x0, x2); 1638 /// cnt1 = phi(cnt0, cnt2); 1639 /// 1640 /// cnt2 = cnt1 + 1; 1641 /// ... 1642 /// x2 = x1 & (x1 - 1); 1643 /// ... 1644 /// } while(x != 0); 1645 /// 1646 /// loop-exit: 1647 /// \endcode 1648 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, 1649 Instruction *&CntInst, PHINode *&CntPhi, 1650 Value *&Var) { 1651 // step 1: Check to see if the look-back branch match this pattern: 1652 // "if (a!=0) goto loop-entry". 1653 BasicBlock *LoopEntry; 1654 Instruction *DefX2, *CountInst; 1655 Value *VarX1, *VarX0; 1656 PHINode *PhiX, *CountPhi; 1657 1658 DefX2 = CountInst = nullptr; 1659 VarX1 = VarX0 = nullptr; 1660 PhiX = CountPhi = nullptr; 1661 LoopEntry = *(CurLoop->block_begin()); 1662 1663 // step 1: Check if the loop-back branch is in desirable form. 1664 { 1665 if (Value *T = matchCondition( 1666 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1667 DefX2 = dyn_cast<Instruction>(T); 1668 else 1669 return false; 1670 } 1671 1672 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 1673 { 1674 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 1675 return false; 1676 1677 BinaryOperator *SubOneOp; 1678 1679 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 1680 VarX1 = DefX2->getOperand(1); 1681 else { 1682 VarX1 = DefX2->getOperand(0); 1683 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 1684 } 1685 if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) 1686 return false; 1687 1688 ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); 1689 if (!Dec || 1690 !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || 1691 (SubOneOp->getOpcode() == Instruction::Add && 1692 Dec->isMinusOne()))) { 1693 return false; 1694 } 1695 } 1696 1697 // step 3: Check the recurrence of variable X 1698 PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); 1699 if (!PhiX) 1700 return false; 1701 1702 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 1703 { 1704 CountInst = nullptr; 1705 for (Instruction &Inst : llvm::make_range( 1706 LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) { 1707 if (Inst.getOpcode() != Instruction::Add) 1708 continue; 1709 1710 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1)); 1711 if (!Inc || !Inc->isOne()) 1712 continue; 1713 1714 PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry); 1715 if (!Phi) 1716 continue; 1717 1718 // Check if the result of the instruction is live of the loop. 1719 bool LiveOutLoop = false; 1720 for (User *U : Inst.users()) { 1721 if ((cast<Instruction>(U))->getParent() != LoopEntry) { 1722 LiveOutLoop = true; 1723 break; 1724 } 1725 } 1726 1727 if (LiveOutLoop) { 1728 CountInst = &Inst; 1729 CountPhi = Phi; 1730 break; 1731 } 1732 } 1733 1734 if (!CountInst) 1735 return false; 1736 } 1737 1738 // step 5: check if the precondition is in this form: 1739 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 1740 { 1741 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1742 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); 1743 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 1744 return false; 1745 1746 CntInst = CountInst; 1747 CntPhi = CountPhi; 1748 Var = T; 1749 } 1750 1751 return true; 1752 } 1753 1754 /// Return true if the idiom is detected in the loop. 1755 /// 1756 /// Additionally: 1757 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) 1758 /// or nullptr if there is no such. 1759 /// 2) \p CntPhi is set to the corresponding phi node 1760 /// or nullptr if there is no such. 1761 /// 3) \p Var is set to the value whose CTLZ could be used. 1762 /// 4) \p DefX is set to the instruction calculating Loop exit condition. 1763 /// 1764 /// The core idiom we are trying to detect is: 1765 /// \code 1766 /// if (x0 == 0) 1767 /// goto loop-exit // the precondition of the loop 1768 /// cnt0 = init-val; 1769 /// do { 1770 /// x = phi (x0, x.next); //PhiX 1771 /// cnt = phi(cnt0, cnt.next); 1772 /// 1773 /// cnt.next = cnt + 1; 1774 /// ... 1775 /// x.next = x >> 1; // DefX 1776 /// ... 1777 /// } while(x.next != 0); 1778 /// 1779 /// loop-exit: 1780 /// \endcode 1781 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, 1782 Intrinsic::ID &IntrinID, Value *&InitX, 1783 Instruction *&CntInst, PHINode *&CntPhi, 1784 Instruction *&DefX) { 1785 BasicBlock *LoopEntry; 1786 Value *VarX = nullptr; 1787 1788 DefX = nullptr; 1789 CntInst = nullptr; 1790 CntPhi = nullptr; 1791 LoopEntry = *(CurLoop->block_begin()); 1792 1793 // step 1: Check if the loop-back branch is in desirable form. 1794 if (Value *T = matchCondition( 1795 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1796 DefX = dyn_cast<Instruction>(T); 1797 else 1798 return false; 1799 1800 // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" 1801 if (!DefX || !DefX->isShift()) 1802 return false; 1803 IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : 1804 Intrinsic::ctlz; 1805 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); 1806 if (!Shft || !Shft->isOne()) 1807 return false; 1808 VarX = DefX->getOperand(0); 1809 1810 // step 3: Check the recurrence of variable X 1811 PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); 1812 if (!PhiX) 1813 return false; 1814 1815 InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 1816 1817 // Make sure the initial value can't be negative otherwise the ashr in the 1818 // loop might never reach zero which would make the loop infinite. 1819 if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL)) 1820 return false; 1821 1822 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 1823 // or cnt.next = cnt + -1. 1824 // TODO: We can skip the step. If loop trip count is known (CTLZ), 1825 // then all uses of "cnt.next" could be optimized to the trip count 1826 // plus "cnt0". Currently it is not optimized. 1827 // This step could be used to detect POPCNT instruction: 1828 // cnt.next = cnt + (x.next & 1) 1829 for (Instruction &Inst : llvm::make_range( 1830 LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) { 1831 if (Inst.getOpcode() != Instruction::Add) 1832 continue; 1833 1834 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1)); 1835 if (!Inc || (!Inc->isOne() && !Inc->isMinusOne())) 1836 continue; 1837 1838 PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry); 1839 if (!Phi) 1840 continue; 1841 1842 CntInst = &Inst; 1843 CntPhi = Phi; 1844 break; 1845 } 1846 if (!CntInst) 1847 return false; 1848 1849 return true; 1850 } 1851 1852 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop 1853 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new 1854 /// trip count returns true; otherwise, returns false. 1855 bool LoopIdiomRecognize::recognizeAndInsertFFS() { 1856 // Give up if the loop has multiple blocks or multiple backedges. 1857 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1858 return false; 1859 1860 Intrinsic::ID IntrinID; 1861 Value *InitX; 1862 Instruction *DefX = nullptr; 1863 PHINode *CntPhi = nullptr; 1864 Instruction *CntInst = nullptr; 1865 // Help decide if transformation is profitable. For ShiftUntilZero idiom, 1866 // this is always 6. 1867 size_t IdiomCanonicalSize = 6; 1868 1869 if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, 1870 CntInst, CntPhi, DefX)) 1871 return false; 1872 1873 bool IsCntPhiUsedOutsideLoop = false; 1874 for (User *U : CntPhi->users()) 1875 if (!CurLoop->contains(cast<Instruction>(U))) { 1876 IsCntPhiUsedOutsideLoop = true; 1877 break; 1878 } 1879 bool IsCntInstUsedOutsideLoop = false; 1880 for (User *U : CntInst->users()) 1881 if (!CurLoop->contains(cast<Instruction>(U))) { 1882 IsCntInstUsedOutsideLoop = true; 1883 break; 1884 } 1885 // If both CntInst and CntPhi are used outside the loop the profitability 1886 // is questionable. 1887 if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) 1888 return false; 1889 1890 // For some CPUs result of CTLZ(X) intrinsic is undefined 1891 // when X is 0. If we can not guarantee X != 0, we need to check this 1892 // when expand. 1893 bool ZeroCheck = false; 1894 // It is safe to assume Preheader exist as it was checked in 1895 // parent function RunOnLoop. 1896 BasicBlock *PH = CurLoop->getLoopPreheader(); 1897 1898 // If we are using the count instruction outside the loop, make sure we 1899 // have a zero check as a precondition. Without the check the loop would run 1900 // one iteration for before any check of the input value. This means 0 and 1 1901 // would have identical behavior in the original loop and thus 1902 if (!IsCntPhiUsedOutsideLoop) { 1903 auto *PreCondBB = PH->getSinglePredecessor(); 1904 if (!PreCondBB) 1905 return false; 1906 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1907 if (!PreCondBI) 1908 return false; 1909 if (matchCondition(PreCondBI, PH) != InitX) 1910 return false; 1911 ZeroCheck = true; 1912 } 1913 1914 // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always 1915 // profitable if we delete the loop. 1916 1917 // the loop has only 6 instructions: 1918 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] 1919 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] 1920 // %shr = ashr %n.addr.0, 1 1921 // %tobool = icmp eq %shr, 0 1922 // %inc = add nsw %i.0, 1 1923 // br i1 %tobool 1924 1925 const Value *Args[] = {InitX, 1926 ConstantInt::getBool(InitX->getContext(), ZeroCheck)}; 1927 1928 // @llvm.dbg doesn't count as they have no semantic effect. 1929 auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug(); 1930 uint32_t HeaderSize = 1931 std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end()); 1932 1933 IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args); 1934 InstructionCost Cost = 1935 TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency); 1936 if (HeaderSize != IdiomCanonicalSize && 1937 Cost > TargetTransformInfo::TCC_Basic) 1938 return false; 1939 1940 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, 1941 DefX->getDebugLoc(), ZeroCheck, 1942 IsCntPhiUsedOutsideLoop); 1943 return true; 1944 } 1945 1946 /// Recognizes a population count idiom in a non-countable loop. 1947 /// 1948 /// If detected, transforms the relevant code to issue the popcount intrinsic 1949 /// function call, and returns true; otherwise, returns false. 1950 bool LoopIdiomRecognize::recognizePopcount() { 1951 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 1952 return false; 1953 1954 // Counting population are usually conducted by few arithmetic instructions. 1955 // Such instructions can be easily "absorbed" by vacant slots in a 1956 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 1957 // in a compact loop. 1958 1959 // Give up if the loop has multiple blocks or multiple backedges. 1960 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1961 return false; 1962 1963 BasicBlock *LoopBody = *(CurLoop->block_begin()); 1964 if (LoopBody->size() >= 20) { 1965 // The loop is too big, bail out. 1966 return false; 1967 } 1968 1969 // It should have a preheader containing nothing but an unconditional branch. 1970 BasicBlock *PH = CurLoop->getLoopPreheader(); 1971 if (!PH || &PH->front() != PH->getTerminator()) 1972 return false; 1973 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); 1974 if (!EntryBI || EntryBI->isConditional()) 1975 return false; 1976 1977 // It should have a precondition block where the generated popcount intrinsic 1978 // function can be inserted. 1979 auto *PreCondBB = PH->getSinglePredecessor(); 1980 if (!PreCondBB) 1981 return false; 1982 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1983 if (!PreCondBI || PreCondBI->isUnconditional()) 1984 return false; 1985 1986 Instruction *CntInst; 1987 PHINode *CntPhi; 1988 Value *Val; 1989 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) 1990 return false; 1991 1992 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); 1993 return true; 1994 } 1995 1996 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1997 const DebugLoc &DL) { 1998 Value *Ops[] = {Val}; 1999 Type *Tys[] = {Val->getType()}; 2000 2001 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 2002 Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); 2003 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 2004 CI->setDebugLoc(DL); 2005 2006 return CI; 2007 } 2008 2009 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 2010 const DebugLoc &DL, bool ZeroCheck, 2011 Intrinsic::ID IID) { 2012 Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)}; 2013 Type *Tys[] = {Val->getType()}; 2014 2015 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 2016 Function *Func = Intrinsic::getDeclaration(M, IID, Tys); 2017 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 2018 CI->setDebugLoc(DL); 2019 2020 return CI; 2021 } 2022 2023 /// Transform the following loop (Using CTLZ, CTTZ is similar): 2024 /// loop: 2025 /// CntPhi = PHI [Cnt0, CntInst] 2026 /// PhiX = PHI [InitX, DefX] 2027 /// CntInst = CntPhi + 1 2028 /// DefX = PhiX >> 1 2029 /// LOOP_BODY 2030 /// Br: loop if (DefX != 0) 2031 /// Use(CntPhi) or Use(CntInst) 2032 /// 2033 /// Into: 2034 /// If CntPhi used outside the loop: 2035 /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) 2036 /// Count = CountPrev + 1 2037 /// else 2038 /// Count = BitWidth(InitX) - CTLZ(InitX) 2039 /// loop: 2040 /// CntPhi = PHI [Cnt0, CntInst] 2041 /// PhiX = PHI [InitX, DefX] 2042 /// PhiCount = PHI [Count, Dec] 2043 /// CntInst = CntPhi + 1 2044 /// DefX = PhiX >> 1 2045 /// Dec = PhiCount - 1 2046 /// LOOP_BODY 2047 /// Br: loop if (Dec != 0) 2048 /// Use(CountPrev + Cnt0) // Use(CntPhi) 2049 /// or 2050 /// Use(Count + Cnt0) // Use(CntInst) 2051 /// 2052 /// If LOOP_BODY is empty the loop will be deleted. 2053 /// If CntInst and DefX are not used in LOOP_BODY they will be removed. 2054 void LoopIdiomRecognize::transformLoopToCountable( 2055 Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst, 2056 PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, 2057 bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) { 2058 BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); 2059 2060 // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block 2061 IRBuilder<> Builder(PreheaderBr); 2062 Builder.SetCurrentDebugLocation(DL); 2063 2064 // If there are no uses of CntPhi crate: 2065 // Count = BitWidth - CTLZ(InitX); 2066 // NewCount = Count; 2067 // If there are uses of CntPhi create: 2068 // NewCount = BitWidth - CTLZ(InitX >> 1); 2069 // Count = NewCount + 1; 2070 Value *InitXNext; 2071 if (IsCntPhiUsedOutsideLoop) { 2072 if (DefX->getOpcode() == Instruction::AShr) 2073 InitXNext = Builder.CreateAShr(InitX, 1); 2074 else if (DefX->getOpcode() == Instruction::LShr) 2075 InitXNext = Builder.CreateLShr(InitX, 1); 2076 else if (DefX->getOpcode() == Instruction::Shl) // cttz 2077 InitXNext = Builder.CreateShl(InitX, 1); 2078 else 2079 llvm_unreachable("Unexpected opcode!"); 2080 } else 2081 InitXNext = InitX; 2082 Value *Count = 2083 createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID); 2084 Type *CountTy = Count->getType(); 2085 Count = Builder.CreateSub( 2086 ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count); 2087 Value *NewCount = Count; 2088 if (IsCntPhiUsedOutsideLoop) 2089 Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1)); 2090 2091 NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType()); 2092 2093 Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); 2094 if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) { 2095 // If the counter was being incremented in the loop, add NewCount to the 2096 // counter's initial value, but only if the initial value is not zero. 2097 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 2098 if (!InitConst || !InitConst->isZero()) 2099 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 2100 } else { 2101 // If the count was being decremented in the loop, subtract NewCount from 2102 // the counter's initial value. 2103 NewCount = Builder.CreateSub(CntInitVal, NewCount); 2104 } 2105 2106 // Step 2: Insert new IV and loop condition: 2107 // loop: 2108 // ... 2109 // PhiCount = PHI [Count, Dec] 2110 // ... 2111 // Dec = PhiCount - 1 2112 // ... 2113 // Br: loop if (Dec != 0) 2114 BasicBlock *Body = *(CurLoop->block_begin()); 2115 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 2116 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 2117 2118 PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi", &Body->front()); 2119 2120 Builder.SetInsertPoint(LbCond); 2121 Instruction *TcDec = cast<Instruction>(Builder.CreateSub( 2122 TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true)); 2123 2124 TcPhi->addIncoming(Count, Preheader); 2125 TcPhi->addIncoming(TcDec, Body); 2126 2127 CmpInst::Predicate Pred = 2128 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 2129 LbCond->setPredicate(Pred); 2130 LbCond->setOperand(0, TcDec); 2131 LbCond->setOperand(1, ConstantInt::get(CountTy, 0)); 2132 2133 // Step 3: All the references to the original counter outside 2134 // the loop are replaced with the NewCount 2135 if (IsCntPhiUsedOutsideLoop) 2136 CntPhi->replaceUsesOutsideBlock(NewCount, Body); 2137 else 2138 CntInst->replaceUsesOutsideBlock(NewCount, Body); 2139 2140 // step 4: Forget the "non-computable" trip-count SCEV associated with the 2141 // loop. The loop would otherwise not be deleted even if it becomes empty. 2142 SE->forgetLoop(CurLoop); 2143 } 2144 2145 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, 2146 Instruction *CntInst, 2147 PHINode *CntPhi, Value *Var) { 2148 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 2149 auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); 2150 const DebugLoc &DL = CntInst->getDebugLoc(); 2151 2152 // Assuming before transformation, the loop is following: 2153 // if (x) // the precondition 2154 // do { cnt++; x &= x - 1; } while(x); 2155 2156 // Step 1: Insert the ctpop instruction at the end of the precondition block 2157 IRBuilder<> Builder(PreCondBr); 2158 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 2159 { 2160 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 2161 NewCount = PopCntZext = 2162 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 2163 2164 if (NewCount != PopCnt) 2165 (cast<Instruction>(NewCount))->setDebugLoc(DL); 2166 2167 // TripCnt is exactly the number of iterations the loop has 2168 TripCnt = NewCount; 2169 2170 // If the population counter's initial value is not zero, insert Add Inst. 2171 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 2172 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 2173 if (!InitConst || !InitConst->isZero()) { 2174 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 2175 (cast<Instruction>(NewCount))->setDebugLoc(DL); 2176 } 2177 } 2178 2179 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to 2180 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic 2181 // function would be partial dead code, and downstream passes will drag 2182 // it back from the precondition block to the preheader. 2183 { 2184 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 2185 2186 Value *Opnd0 = PopCntZext; 2187 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 2188 if (PreCond->getOperand(0) != Var) 2189 std::swap(Opnd0, Opnd1); 2190 2191 ICmpInst *NewPreCond = cast<ICmpInst>( 2192 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 2193 PreCondBr->setCondition(NewPreCond); 2194 2195 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); 2196 } 2197 2198 // Step 3: Note that the population count is exactly the trip count of the 2199 // loop in question, which enable us to convert the loop from noncountable 2200 // loop into a countable one. The benefit is twofold: 2201 // 2202 // - If the loop only counts population, the entire loop becomes dead after 2203 // the transformation. It is a lot easier to prove a countable loop dead 2204 // than to prove a noncountable one. (In some C dialects, an infinite loop 2205 // isn't dead even if it computes nothing useful. In general, DCE needs 2206 // to prove a noncountable loop finite before safely delete it.) 2207 // 2208 // - If the loop also performs something else, it remains alive. 2209 // Since it is transformed to countable form, it can be aggressively 2210 // optimized by some optimizations which are in general not applicable 2211 // to a noncountable loop. 2212 // 2213 // After this step, this loop (conceptually) would look like following: 2214 // newcnt = __builtin_ctpop(x); 2215 // t = newcnt; 2216 // if (x) 2217 // do { cnt++; x &= x-1; t--) } while (t > 0); 2218 BasicBlock *Body = *(CurLoop->block_begin()); 2219 { 2220 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 2221 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 2222 Type *Ty = TripCnt->getType(); 2223 2224 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 2225 2226 Builder.SetInsertPoint(LbCond); 2227 Instruction *TcDec = cast<Instruction>( 2228 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 2229 "tcdec", false, true)); 2230 2231 TcPhi->addIncoming(TripCnt, PreHead); 2232 TcPhi->addIncoming(TcDec, Body); 2233 2234 CmpInst::Predicate Pred = 2235 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 2236 LbCond->setPredicate(Pred); 2237 LbCond->setOperand(0, TcDec); 2238 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 2239 } 2240 2241 // Step 4: All the references to the original population counter outside 2242 // the loop are replaced with the NewCount -- the value returned from 2243 // __builtin_ctpop(). 2244 CntInst->replaceUsesOutsideBlock(NewCount, Body); 2245 2246 // step 5: Forget the "non-computable" trip-count SCEV associated with the 2247 // loop. The loop would otherwise not be deleted even if it becomes empty. 2248 SE->forgetLoop(CurLoop); 2249 } 2250 2251 /// Match loop-invariant value. 2252 template <typename SubPattern_t> struct match_LoopInvariant { 2253 SubPattern_t SubPattern; 2254 const Loop *L; 2255 2256 match_LoopInvariant(const SubPattern_t &SP, const Loop *L) 2257 : SubPattern(SP), L(L) {} 2258 2259 template <typename ITy> bool match(ITy *V) { 2260 return L->isLoopInvariant(V) && SubPattern.match(V); 2261 } 2262 }; 2263 2264 /// Matches if the value is loop-invariant. 2265 template <typename Ty> 2266 inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) { 2267 return match_LoopInvariant<Ty>(M, L); 2268 } 2269 2270 /// Return true if the idiom is detected in the loop. 2271 /// 2272 /// The core idiom we are trying to detect is: 2273 /// \code 2274 /// entry: 2275 /// <...> 2276 /// %bitmask = shl i32 1, %bitpos 2277 /// br label %loop 2278 /// 2279 /// loop: 2280 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] 2281 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask 2282 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 2283 /// %x.next = shl i32 %x.curr, 1 2284 /// <...> 2285 /// br i1 %x.curr.isbitunset, label %loop, label %end 2286 /// 2287 /// end: 2288 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2289 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2290 /// <...> 2291 /// \endcode 2292 static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX, 2293 Value *&BitMask, Value *&BitPos, 2294 Value *&CurrX, Instruction *&NextX) { 2295 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2296 " Performing shift-until-bittest idiom detection.\n"); 2297 2298 // Give up if the loop has multiple blocks or multiple backedges. 2299 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { 2300 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); 2301 return false; 2302 } 2303 2304 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2305 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2306 assert(LoopPreheaderBB && "There is always a loop preheader."); 2307 2308 using namespace PatternMatch; 2309 2310 // Step 1: Check if the loop backedge is in desirable form. 2311 2312 ICmpInst::Predicate Pred; 2313 Value *CmpLHS, *CmpRHS; 2314 BasicBlock *TrueBB, *FalseBB; 2315 if (!match(LoopHeaderBB->getTerminator(), 2316 m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)), 2317 m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) { 2318 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); 2319 return false; 2320 } 2321 2322 // Step 2: Check if the backedge's condition is in desirable form. 2323 2324 auto MatchVariableBitMask = [&]() { 2325 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && 2326 match(CmpLHS, 2327 m_c_And(m_Value(CurrX), 2328 m_CombineAnd( 2329 m_Value(BitMask), 2330 m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)), 2331 CurLoop)))); 2332 }; 2333 auto MatchConstantBitMask = [&]() { 2334 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && 2335 match(CmpLHS, m_And(m_Value(CurrX), 2336 m_CombineAnd(m_Value(BitMask), m_Power2()))) && 2337 (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask))); 2338 }; 2339 auto MatchDecomposableConstantBitMask = [&]() { 2340 APInt Mask; 2341 return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) && 2342 ICmpInst::isEquality(Pred) && Mask.isPowerOf2() && 2343 (BitMask = ConstantInt::get(CurrX->getType(), Mask)) && 2344 (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2())); 2345 }; 2346 2347 if (!MatchVariableBitMask() && !MatchConstantBitMask() && 2348 !MatchDecomposableConstantBitMask()) { 2349 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n"); 2350 return false; 2351 } 2352 2353 // Step 3: Check if the recurrence is in desirable form. 2354 auto *CurrXPN = dyn_cast<PHINode>(CurrX); 2355 if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) { 2356 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); 2357 return false; 2358 } 2359 2360 BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB); 2361 NextX = 2362 dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB)); 2363 2364 assert(CurLoop->isLoopInvariant(BaseX) && 2365 "Expected BaseX to be avaliable in the preheader!"); 2366 2367 if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) { 2368 // FIXME: support right-shift? 2369 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); 2370 return false; 2371 } 2372 2373 // Step 4: Check if the backedge's destinations are in desirable form. 2374 2375 assert(ICmpInst::isEquality(Pred) && 2376 "Should only get equality predicates here."); 2377 2378 // cmp-br is commutative, so canonicalize to a single variant. 2379 if (Pred != ICmpInst::Predicate::ICMP_EQ) { 2380 Pred = ICmpInst::getInversePredicate(Pred); 2381 std::swap(TrueBB, FalseBB); 2382 } 2383 2384 // We expect to exit loop when comparison yields false, 2385 // so when it yields true we should branch back to loop header. 2386 if (TrueBB != LoopHeaderBB) { 2387 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); 2388 return false; 2389 } 2390 2391 // Okay, idiom checks out. 2392 return true; 2393 } 2394 2395 /// Look for the following loop: 2396 /// \code 2397 /// entry: 2398 /// <...> 2399 /// %bitmask = shl i32 1, %bitpos 2400 /// br label %loop 2401 /// 2402 /// loop: 2403 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] 2404 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask 2405 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 2406 /// %x.next = shl i32 %x.curr, 1 2407 /// <...> 2408 /// br i1 %x.curr.isbitunset, label %loop, label %end 2409 /// 2410 /// end: 2411 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2412 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2413 /// <...> 2414 /// \endcode 2415 /// 2416 /// And transform it into: 2417 /// \code 2418 /// entry: 2419 /// %bitmask = shl i32 1, %bitpos 2420 /// %lowbitmask = add i32 %bitmask, -1 2421 /// %mask = or i32 %lowbitmask, %bitmask 2422 /// %x.masked = and i32 %x, %mask 2423 /// %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked, 2424 /// i1 true) 2425 /// %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros 2426 /// %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1 2427 /// %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos 2428 /// %tripcount = add i32 %backedgetakencount, 1 2429 /// %x.curr = shl i32 %x, %backedgetakencount 2430 /// %x.next = shl i32 %x, %tripcount 2431 /// br label %loop 2432 /// 2433 /// loop: 2434 /// %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ] 2435 /// %loop.iv.next = add nuw i32 %loop.iv, 1 2436 /// %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount 2437 /// <...> 2438 /// br i1 %loop.ivcheck, label %end, label %loop 2439 /// 2440 /// end: 2441 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2442 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2443 /// <...> 2444 /// \endcode 2445 bool LoopIdiomRecognize::recognizeShiftUntilBitTest() { 2446 bool MadeChange = false; 2447 2448 Value *X, *BitMask, *BitPos, *XCurr; 2449 Instruction *XNext; 2450 if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr, 2451 XNext)) { 2452 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2453 " shift-until-bittest idiom detection failed.\n"); 2454 return MadeChange; 2455 } 2456 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n"); 2457 2458 // Ok, it is the idiom we were looking for, we *could* transform this loop, 2459 // but is it profitable to transform? 2460 2461 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2462 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2463 assert(LoopPreheaderBB && "There is always a loop preheader."); 2464 2465 BasicBlock *SuccessorBB = CurLoop->getExitBlock(); 2466 assert(SuccessorBB && "There is only a single successor."); 2467 2468 IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); 2469 Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc()); 2470 2471 Intrinsic::ID IntrID = Intrinsic::ctlz; 2472 Type *Ty = X->getType(); 2473 unsigned Bitwidth = Ty->getScalarSizeInBits(); 2474 2475 TargetTransformInfo::TargetCostKind CostKind = 2476 TargetTransformInfo::TCK_SizeAndLatency; 2477 2478 // The rewrite is considered to be unprofitable iff and only iff the 2479 // intrinsic/shift we'll use are not cheap. Note that we are okay with *just* 2480 // making the loop countable, even if nothing else changes. 2481 IntrinsicCostAttributes Attrs( 2482 IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getTrue()}); 2483 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); 2484 if (Cost > TargetTransformInfo::TCC_Basic) { 2485 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2486 " Intrinsic is too costly, not beneficial\n"); 2487 return MadeChange; 2488 } 2489 if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) > 2490 TargetTransformInfo::TCC_Basic) { 2491 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n"); 2492 return MadeChange; 2493 } 2494 2495 // Ok, transform appears worthwhile. 2496 MadeChange = true; 2497 2498 // Step 1: Compute the loop trip count. 2499 2500 Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty), 2501 BitPos->getName() + ".lowbitmask"); 2502 Value *Mask = 2503 Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask"); 2504 Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked"); 2505 CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic( 2506 IntrID, Ty, {XMasked, /*is_zero_undef=*/Builder.getTrue()}, 2507 /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros"); 2508 Value *XMaskedNumActiveBits = Builder.CreateSub( 2509 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros, 2510 XMasked->getName() + ".numactivebits", /*HasNUW=*/true, 2511 /*HasNSW=*/Bitwidth != 2); 2512 Value *XMaskedLeadingOnePos = 2513 Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty), 2514 XMasked->getName() + ".leadingonepos", /*HasNUW=*/false, 2515 /*HasNSW=*/Bitwidth > 2); 2516 2517 Value *LoopBackedgeTakenCount = Builder.CreateSub( 2518 BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount", 2519 /*HasNUW=*/true, /*HasNSW=*/true); 2520 // We know loop's backedge-taken count, but what's loop's trip count? 2521 // Note that while NUW is always safe, while NSW is only for bitwidths != 2. 2522 Value *LoopTripCount = 2523 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), 2524 CurLoop->getName() + ".tripcount", /*HasNUW=*/true, 2525 /*HasNSW=*/Bitwidth != 2); 2526 2527 // Step 2: Compute the recurrence's final value without a loop. 2528 2529 // NewX is always safe to compute, because `LoopBackedgeTakenCount` 2530 // will always be smaller than `bitwidth(X)`, i.e. we never get poison. 2531 Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount); 2532 NewX->takeName(XCurr); 2533 if (auto *I = dyn_cast<Instruction>(NewX)) 2534 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); 2535 2536 Value *NewXNext; 2537 // Rewriting XNext is more complicated, however, because `X << LoopTripCount` 2538 // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen 2539 // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know 2540 // that isn't the case, we'll need to emit an alternative, safe IR. 2541 if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() || 2542 PatternMatch::match( 2543 BitPos, PatternMatch::m_SpecificInt_ICMP( 2544 ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(), 2545 Ty->getScalarSizeInBits() - 1)))) 2546 NewXNext = Builder.CreateShl(X, LoopTripCount); 2547 else { 2548 // Otherwise, just additionally shift by one. It's the smallest solution, 2549 // alternatively, we could check that NewX is INT_MIN (or BitPos is ) 2550 // and select 0 instead. 2551 NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1)); 2552 } 2553 2554 NewXNext->takeName(XNext); 2555 if (auto *I = dyn_cast<Instruction>(NewXNext)) 2556 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); 2557 2558 // Step 3: Adjust the successor basic block to recieve the computed 2559 // recurrence's final value instead of the recurrence itself. 2560 2561 XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB); 2562 XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB); 2563 2564 // Step 4: Rewrite the loop into a countable form, with canonical IV. 2565 2566 // The new canonical induction variable. 2567 Builder.SetInsertPoint(&LoopHeaderBB->front()); 2568 auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); 2569 2570 // The induction itself. 2571 // Note that while NUW is always safe, while NSW is only for bitwidths != 2. 2572 Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); 2573 auto *IVNext = 2574 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next", 2575 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 2576 2577 // The loop trip count check. 2578 auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount, 2579 CurLoop->getName() + ".ivcheck"); 2580 Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB); 2581 LoopHeaderBB->getTerminator()->eraseFromParent(); 2582 2583 // Populate the IV PHI. 2584 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); 2585 IV->addIncoming(IVNext, LoopHeaderBB); 2586 2587 // Step 5: Forget the "non-computable" trip-count SCEV associated with the 2588 // loop. The loop would otherwise not be deleted even if it becomes empty. 2589 2590 SE->forgetLoop(CurLoop); 2591 2592 // Other passes will take care of actually deleting the loop if possible. 2593 2594 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n"); 2595 2596 ++NumShiftUntilBitTest; 2597 return MadeChange; 2598 } 2599 2600 /// Return true if the idiom is detected in the loop. 2601 /// 2602 /// The core idiom we are trying to detect is: 2603 /// \code 2604 /// entry: 2605 /// <...> 2606 /// %start = <...> 2607 /// %extraoffset = <...> 2608 /// <...> 2609 /// br label %for.cond 2610 /// 2611 /// loop: 2612 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] 2613 /// %nbits = add nsw i8 %iv, %extraoffset 2614 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits 2615 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 2616 /// %iv.next = add i8 %iv, 1 2617 /// <...> 2618 /// br i1 %val.shifted.iszero, label %end, label %loop 2619 /// 2620 /// end: 2621 /// %iv.res = phi i8 [ %iv, %loop ] <...> 2622 /// %nbits.res = phi i8 [ %nbits, %loop ] <...> 2623 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> 2624 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> 2625 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> 2626 /// <...> 2627 /// \endcode 2628 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE, 2629 Instruction *&ValShiftedIsZero, 2630 Intrinsic::ID &IntrinID, Instruction *&IV, 2631 Value *&Start, Value *&Val, 2632 const SCEV *&ExtraOffsetExpr, 2633 bool &InvertedCond) { 2634 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2635 " Performing shift-until-zero idiom detection.\n"); 2636 2637 // Give up if the loop has multiple blocks or multiple backedges. 2638 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { 2639 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); 2640 return false; 2641 } 2642 2643 Instruction *ValShifted, *NBits, *IVNext; 2644 Value *ExtraOffset; 2645 2646 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2647 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2648 assert(LoopPreheaderBB && "There is always a loop preheader."); 2649 2650 using namespace PatternMatch; 2651 2652 // Step 1: Check if the loop backedge, condition is in desirable form. 2653 2654 ICmpInst::Predicate Pred; 2655 BasicBlock *TrueBB, *FalseBB; 2656 if (!match(LoopHeaderBB->getTerminator(), 2657 m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB), 2658 m_BasicBlock(FalseBB))) || 2659 !match(ValShiftedIsZero, 2660 m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) || 2661 !ICmpInst::isEquality(Pred)) { 2662 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); 2663 return false; 2664 } 2665 2666 // Step 2: Check if the comparison's operand is in desirable form. 2667 // FIXME: Val could be a one-input PHI node, which we should look past. 2668 if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop), 2669 m_Instruction(NBits)))) { 2670 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n"); 2671 return false; 2672 } 2673 IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz 2674 : Intrinsic::ctlz; 2675 2676 // Step 3: Check if the shift amount is in desirable form. 2677 2678 if (match(NBits, m_c_Add(m_Instruction(IV), 2679 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && 2680 (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap())) 2681 ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset)); 2682 else if (match(NBits, 2683 m_Sub(m_Instruction(IV), 2684 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && 2685 NBits->hasNoSignedWrap()) 2686 ExtraOffsetExpr = SE->getSCEV(ExtraOffset); 2687 else { 2688 IV = NBits; 2689 ExtraOffsetExpr = SE->getZero(NBits->getType()); 2690 } 2691 2692 // Step 4: Check if the recurrence is in desirable form. 2693 auto *IVPN = dyn_cast<PHINode>(IV); 2694 if (!IVPN || IVPN->getParent() != LoopHeaderBB) { 2695 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); 2696 return false; 2697 } 2698 2699 Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB); 2700 IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB)); 2701 2702 if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) { 2703 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); 2704 return false; 2705 } 2706 2707 // Step 4: Check if the backedge's destinations are in desirable form. 2708 2709 assert(ICmpInst::isEquality(Pred) && 2710 "Should only get equality predicates here."); 2711 2712 // cmp-br is commutative, so canonicalize to a single variant. 2713 InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ; 2714 if (InvertedCond) { 2715 Pred = ICmpInst::getInversePredicate(Pred); 2716 std::swap(TrueBB, FalseBB); 2717 } 2718 2719 // We expect to exit loop when comparison yields true, 2720 // so when it yields false we should branch back to loop header. 2721 if (FalseBB != LoopHeaderBB) { 2722 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); 2723 return false; 2724 } 2725 2726 // The new, countable, loop will certainly only run a known number of 2727 // iterations, It won't be infinite. But the old loop might be infinite 2728 // under certain conditions. For logical shifts, the value will become zero 2729 // after at most bitwidth(%Val) loop iterations. However, for arithmetic 2730 // right-shift, iff the sign bit was set, the value will never become zero, 2731 // and the loop may never finish. 2732 if (ValShifted->getOpcode() == Instruction::AShr && 2733 !isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) { 2734 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n"); 2735 return false; 2736 } 2737 2738 // Okay, idiom checks out. 2739 return true; 2740 } 2741 2742 /// Look for the following loop: 2743 /// \code 2744 /// entry: 2745 /// <...> 2746 /// %start = <...> 2747 /// %extraoffset = <...> 2748 /// <...> 2749 /// br label %for.cond 2750 /// 2751 /// loop: 2752 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] 2753 /// %nbits = add nsw i8 %iv, %extraoffset 2754 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits 2755 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 2756 /// %iv.next = add i8 %iv, 1 2757 /// <...> 2758 /// br i1 %val.shifted.iszero, label %end, label %loop 2759 /// 2760 /// end: 2761 /// %iv.res = phi i8 [ %iv, %loop ] <...> 2762 /// %nbits.res = phi i8 [ %nbits, %loop ] <...> 2763 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> 2764 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> 2765 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> 2766 /// <...> 2767 /// \endcode 2768 /// 2769 /// And transform it into: 2770 /// \code 2771 /// entry: 2772 /// <...> 2773 /// %start = <...> 2774 /// %extraoffset = <...> 2775 /// <...> 2776 /// %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0) 2777 /// %val.numactivebits = sub i8 8, %val.numleadingzeros 2778 /// %extraoffset.neg = sub i8 0, %extraoffset 2779 /// %tmp = add i8 %val.numactivebits, %extraoffset.neg 2780 /// %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start) 2781 /// %loop.tripcount = sub i8 %iv.final, %start 2782 /// br label %loop 2783 /// 2784 /// loop: 2785 /// %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ] 2786 /// %loop.iv.next = add i8 %loop.iv, 1 2787 /// %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount 2788 /// %iv = add i8 %loop.iv, %start 2789 /// <...> 2790 /// br i1 %loop.ivcheck, label %end, label %loop 2791 /// 2792 /// end: 2793 /// %iv.res = phi i8 [ %iv.final, %loop ] <...> 2794 /// <...> 2795 /// \endcode 2796 bool LoopIdiomRecognize::recognizeShiftUntilZero() { 2797 bool MadeChange = false; 2798 2799 Instruction *ValShiftedIsZero; 2800 Intrinsic::ID IntrID; 2801 Instruction *IV; 2802 Value *Start, *Val; 2803 const SCEV *ExtraOffsetExpr; 2804 bool InvertedCond; 2805 if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV, 2806 Start, Val, ExtraOffsetExpr, InvertedCond)) { 2807 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2808 " shift-until-zero idiom detection failed.\n"); 2809 return MadeChange; 2810 } 2811 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n"); 2812 2813 // Ok, it is the idiom we were looking for, we *could* transform this loop, 2814 // but is it profitable to transform? 2815 2816 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2817 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2818 assert(LoopPreheaderBB && "There is always a loop preheader."); 2819 2820 BasicBlock *SuccessorBB = CurLoop->getExitBlock(); 2821 assert(SuccessorBB && "There is only a single successor."); 2822 2823 IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); 2824 Builder.SetCurrentDebugLocation(IV->getDebugLoc()); 2825 2826 Type *Ty = Val->getType(); 2827 unsigned Bitwidth = Ty->getScalarSizeInBits(); 2828 2829 TargetTransformInfo::TargetCostKind CostKind = 2830 TargetTransformInfo::TCK_SizeAndLatency; 2831 2832 // The rewrite is considered to be unprofitable iff and only iff the 2833 // intrinsic we'll use are not cheap. Note that we are okay with *just* 2834 // making the loop countable, even if nothing else changes. 2835 IntrinsicCostAttributes Attrs( 2836 IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getFalse()}); 2837 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); 2838 if (Cost > TargetTransformInfo::TCC_Basic) { 2839 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2840 " Intrinsic is too costly, not beneficial\n"); 2841 return MadeChange; 2842 } 2843 2844 // Ok, transform appears worthwhile. 2845 MadeChange = true; 2846 2847 bool OffsetIsZero = false; 2848 if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr)) 2849 OffsetIsZero = ExtraOffsetExprC->isZero(); 2850 2851 // Step 1: Compute the loop's final IV value / trip count. 2852 2853 CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic( 2854 IntrID, Ty, {Val, /*is_zero_undef=*/Builder.getFalse()}, 2855 /*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros"); 2856 Value *ValNumActiveBits = Builder.CreateSub( 2857 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros, 2858 Val->getName() + ".numactivebits", /*HasNUW=*/true, 2859 /*HasNSW=*/Bitwidth != 2); 2860 2861 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 2862 Expander.setInsertPoint(&*Builder.GetInsertPoint()); 2863 Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr); 2864 2865 Value *ValNumActiveBitsOffset = Builder.CreateAdd( 2866 ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset", 2867 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true); 2868 Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, 2869 {ValNumActiveBitsOffset, Start}, 2870 /*FMFSource=*/nullptr, "iv.final"); 2871 2872 auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub( 2873 IVFinal, Start, CurLoop->getName() + ".backedgetakencount", 2874 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true)); 2875 // FIXME: or when the offset was `add nuw` 2876 2877 // We know loop's backedge-taken count, but what's loop's trip count? 2878 Value *LoopTripCount = 2879 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), 2880 CurLoop->getName() + ".tripcount", /*HasNUW=*/true, 2881 /*HasNSW=*/Bitwidth != 2); 2882 2883 // Step 2: Adjust the successor basic block to recieve the original 2884 // induction variable's final value instead of the orig. IV itself. 2885 2886 IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB); 2887 2888 // Step 3: Rewrite the loop into a countable form, with canonical IV. 2889 2890 // The new canonical induction variable. 2891 Builder.SetInsertPoint(&LoopHeaderBB->front()); 2892 auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); 2893 2894 // The induction itself. 2895 Builder.SetInsertPoint(LoopHeaderBB->getFirstNonPHI()); 2896 auto *CIVNext = 2897 Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next", 2898 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 2899 2900 // The loop trip count check. 2901 auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount, 2902 CurLoop->getName() + ".ivcheck"); 2903 auto *NewIVCheck = CIVCheck; 2904 if (InvertedCond) { 2905 NewIVCheck = Builder.CreateNot(CIVCheck); 2906 NewIVCheck->takeName(ValShiftedIsZero); 2907 } 2908 2909 // The original IV, but rebased to be an offset to the CIV. 2910 auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false, 2911 /*HasNSW=*/true); // FIXME: what about NUW? 2912 IVDePHId->takeName(IV); 2913 2914 // The loop terminator. 2915 Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); 2916 Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB); 2917 LoopHeaderBB->getTerminator()->eraseFromParent(); 2918 2919 // Populate the IV PHI. 2920 CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); 2921 CIV->addIncoming(CIVNext, LoopHeaderBB); 2922 2923 // Step 4: Forget the "non-computable" trip-count SCEV associated with the 2924 // loop. The loop would otherwise not be deleted even if it becomes empty. 2925 2926 SE->forgetLoop(CurLoop); 2927 2928 // Step 5: Try to cleanup the loop's body somewhat. 2929 IV->replaceAllUsesWith(IVDePHId); 2930 IV->eraseFromParent(); 2931 2932 ValShiftedIsZero->replaceAllUsesWith(NewIVCheck); 2933 ValShiftedIsZero->eraseFromParent(); 2934 2935 // Other passes will take care of actually deleting the loop if possible. 2936 2937 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n"); 2938 2939 ++NumShiftUntilZero; 2940 return MadeChange; 2941 } 2942