1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements an idiom recognizer that transforms simple loops into a 10 // non-loop form. In cases that this kicks in, it can be a significant 11 // performance win. 12 // 13 // If compiling for code size we avoid idiom recognition if the resulting 14 // code could be larger than the code for the original loop. One way this could 15 // happen is if the loop is not removable after idiom recognition due to the 16 // presence of non-idiom instructions. The initial implementation of the 17 // heuristics applies to idioms in multi-block loops. 18 // 19 //===----------------------------------------------------------------------===// 20 // 21 // TODO List: 22 // 23 // Future loop memory idioms to recognize: 24 // memcmp, memmove, strlen, etc. 25 // Future floating point idioms to recognize in -ffast-math mode: 26 // fpowi 27 // Future integer operation idioms to recognize: 28 // ctpop 29 // 30 // Beware that isel's default lowering for ctpop is highly inefficient for 31 // i64 and larger types when i64 is legal and the value has few bits set. It 32 // would be good to enhance isel to emit a loop for ctpop in this case. 33 // 34 // This could recognize common matrix multiplies and dot product idioms and 35 // replace them with calls to BLAS (if linked in??). 36 // 37 //===----------------------------------------------------------------------===// 38 39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" 40 #include "llvm/ADT/APInt.h" 41 #include "llvm/ADT/ArrayRef.h" 42 #include "llvm/ADT/DenseMap.h" 43 #include "llvm/ADT/MapVector.h" 44 #include "llvm/ADT/SetVector.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/ADT/StringRef.h" 49 #include "llvm/Analysis/AliasAnalysis.h" 50 #include "llvm/Analysis/LoopAccessAnalysis.h" 51 #include "llvm/Analysis/LoopInfo.h" 52 #include "llvm/Analysis/LoopPass.h" 53 #include "llvm/Analysis/MemoryLocation.h" 54 #include "llvm/Analysis/MemorySSA.h" 55 #include "llvm/Analysis/MemorySSAUpdater.h" 56 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 57 #include "llvm/Analysis/ScalarEvolution.h" 58 #include "llvm/Analysis/ScalarEvolutionExpander.h" 59 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 60 #include "llvm/Analysis/TargetLibraryInfo.h" 61 #include "llvm/Analysis/TargetTransformInfo.h" 62 #include "llvm/Analysis/ValueTracking.h" 63 #include "llvm/IR/Attributes.h" 64 #include "llvm/IR/BasicBlock.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugLoc.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Dominators.h" 71 #include "llvm/IR/GlobalValue.h" 72 #include "llvm/IR/GlobalVariable.h" 73 #include "llvm/IR/IRBuilder.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/PassManager.h" 82 #include "llvm/IR/Type.h" 83 #include "llvm/IR/User.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/IR/ValueHandle.h" 86 #include "llvm/InitializePasses.h" 87 #include "llvm/Pass.h" 88 #include "llvm/Support/Casting.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Debug.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Transforms/Scalar.h" 93 #include "llvm/Transforms/Utils/BuildLibCalls.h" 94 #include "llvm/Transforms/Utils/Local.h" 95 #include "llvm/Transforms/Utils/LoopUtils.h" 96 #include <algorithm> 97 #include <cassert> 98 #include <cstdint> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "loop-idiom" 105 106 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 107 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 108 109 static cl::opt<bool> UseLIRCodeSizeHeurs( 110 "use-lir-code-size-heurs", 111 cl::desc("Use loop idiom recognition code size heuristics when compiling" 112 "with -Os/-Oz"), 113 cl::init(true), cl::Hidden); 114 115 namespace { 116 117 class LoopIdiomRecognize { 118 Loop *CurLoop = nullptr; 119 AliasAnalysis *AA; 120 DominatorTree *DT; 121 LoopInfo *LI; 122 ScalarEvolution *SE; 123 TargetLibraryInfo *TLI; 124 const TargetTransformInfo *TTI; 125 const DataLayout *DL; 126 OptimizationRemarkEmitter &ORE; 127 bool ApplyCodeSizeHeuristics; 128 std::unique_ptr<MemorySSAUpdater> MSSAU; 129 130 public: 131 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, 132 LoopInfo *LI, ScalarEvolution *SE, 133 TargetLibraryInfo *TLI, 134 const TargetTransformInfo *TTI, MemorySSA *MSSA, 135 const DataLayout *DL, 136 OptimizationRemarkEmitter &ORE) 137 : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) { 138 if (MSSA) 139 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 140 } 141 142 bool runOnLoop(Loop *L); 143 144 private: 145 using StoreList = SmallVector<StoreInst *, 8>; 146 using StoreListMap = MapVector<Value *, StoreList>; 147 148 StoreListMap StoreRefsForMemset; 149 StoreListMap StoreRefsForMemsetPattern; 150 StoreList StoreRefsForMemcpy; 151 bool HasMemset; 152 bool HasMemsetPattern; 153 bool HasMemcpy; 154 155 /// Return code for isLegalStore() 156 enum LegalStoreKind { 157 None = 0, 158 Memset, 159 MemsetPattern, 160 Memcpy, 161 UnorderedAtomicMemcpy, 162 DontUse // Dummy retval never to be used. Allows catching errors in retval 163 // handling. 164 }; 165 166 /// \name Countable Loop Idiom Handling 167 /// @{ 168 169 bool runOnCountableLoop(); 170 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 171 SmallVectorImpl<BasicBlock *> &ExitBlocks); 172 173 void collectStores(BasicBlock *BB); 174 LegalStoreKind isLegalStore(StoreInst *SI); 175 enum class ForMemset { No, Yes }; 176 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, 177 ForMemset For); 178 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 179 180 bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, 181 MaybeAlign StoreAlignment, Value *StoredVal, 182 Instruction *TheStore, 183 SmallPtrSetImpl<Instruction *> &Stores, 184 const SCEVAddRecExpr *Ev, const SCEV *BECount, 185 bool NegStride, bool IsLoopMemset = false); 186 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); 187 bool avoidLIRForMultiBlockLoop(bool IsMemset = false, 188 bool IsLoopMemset = false); 189 190 /// @} 191 /// \name Noncountable Loop Idiom Handling 192 /// @{ 193 194 bool runOnNoncountableLoop(); 195 196 bool recognizePopcount(); 197 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, 198 PHINode *CntPhi, Value *Var); 199 bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz 200 void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, 201 Instruction *CntInst, PHINode *CntPhi, 202 Value *Var, Instruction *DefX, 203 const DebugLoc &DL, bool ZeroCheck, 204 bool IsCntPhiUsedOutsideLoop); 205 206 /// @} 207 }; 208 209 class LoopIdiomRecognizeLegacyPass : public LoopPass { 210 public: 211 static char ID; 212 213 explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) { 214 initializeLoopIdiomRecognizeLegacyPassPass( 215 *PassRegistry::getPassRegistry()); 216 } 217 218 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 219 if (skipLoop(L)) 220 return false; 221 222 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 223 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 224 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 225 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 226 TargetLibraryInfo *TLI = 227 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 228 *L->getHeader()->getParent()); 229 const TargetTransformInfo *TTI = 230 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 231 *L->getHeader()->getParent()); 232 const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout(); 233 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 234 MemorySSA *MSSA = nullptr; 235 if (MSSAAnalysis) 236 MSSA = &MSSAAnalysis->getMSSA(); 237 238 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 239 // pass. Function analyses need to be preserved across loop transformations 240 // but ORE cannot be preserved (see comment before the pass definition). 241 OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); 242 243 LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE); 244 return LIR.runOnLoop(L); 245 } 246 247 /// This transformation requires natural loop information & requires that 248 /// loop preheaders be inserted into the CFG. 249 void getAnalysisUsage(AnalysisUsage &AU) const override { 250 AU.addRequired<TargetLibraryInfoWrapperPass>(); 251 AU.addRequired<TargetTransformInfoWrapperPass>(); 252 AU.addPreserved<MemorySSAWrapperPass>(); 253 getLoopAnalysisUsage(AU); 254 } 255 }; 256 257 } // end anonymous namespace 258 259 char LoopIdiomRecognizeLegacyPass::ID = 0; 260 261 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, 262 LoopStandardAnalysisResults &AR, 263 LPMUpdater &) { 264 const auto *DL = &L.getHeader()->getModule()->getDataLayout(); 265 266 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 267 // pass. Function analyses need to be preserved across loop transformations 268 // but ORE cannot be preserved (see comment before the pass definition). 269 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 270 271 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, 272 AR.MSSA, DL, ORE); 273 if (!LIR.runOnLoop(&L)) 274 return PreservedAnalyses::all(); 275 276 auto PA = getLoopPassPreservedAnalyses(); 277 if (AR.MSSA) 278 PA.preserve<MemorySSAAnalysis>(); 279 return PA; 280 } 281 282 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom", 283 "Recognize loop idioms", false, false) 284 INITIALIZE_PASS_DEPENDENCY(LoopPass) 285 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 286 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 287 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom", 288 "Recognize loop idioms", false, false) 289 290 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); } 291 292 static void deleteDeadInstruction(Instruction *I) { 293 I->replaceAllUsesWith(UndefValue::get(I->getType())); 294 I->eraseFromParent(); 295 } 296 297 //===----------------------------------------------------------------------===// 298 // 299 // Implementation of LoopIdiomRecognize 300 // 301 //===----------------------------------------------------------------------===// 302 303 bool LoopIdiomRecognize::runOnLoop(Loop *L) { 304 CurLoop = L; 305 // If the loop could not be converted to canonical form, it must have an 306 // indirectbr in it, just give up. 307 if (!L->getLoopPreheader()) 308 return false; 309 310 // Disable loop idiom recognition if the function's name is a common idiom. 311 StringRef Name = L->getHeader()->getParent()->getName(); 312 if (Name == "memset" || Name == "memcpy") 313 return false; 314 315 // Determine if code size heuristics need to be applied. 316 ApplyCodeSizeHeuristics = 317 L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs; 318 319 HasMemset = TLI->has(LibFunc_memset); 320 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); 321 HasMemcpy = TLI->has(LibFunc_memcpy); 322 323 if (HasMemset || HasMemsetPattern || HasMemcpy) 324 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 325 return runOnCountableLoop(); 326 327 return runOnNoncountableLoop(); 328 } 329 330 bool LoopIdiomRecognize::runOnCountableLoop() { 331 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 332 assert(!isa<SCEVCouldNotCompute>(BECount) && 333 "runOnCountableLoop() called on a loop without a predictable" 334 "backedge-taken count"); 335 336 // If this loop executes exactly one time, then it should be peeled, not 337 // optimized by this pass. 338 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 339 if (BECst->getAPInt() == 0) 340 return false; 341 342 SmallVector<BasicBlock *, 8> ExitBlocks; 343 CurLoop->getUniqueExitBlocks(ExitBlocks); 344 345 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 346 << CurLoop->getHeader()->getParent()->getName() 347 << "] Countable Loop %" << CurLoop->getHeader()->getName() 348 << "\n"); 349 350 // The following transforms hoist stores/memsets into the loop pre-header. 351 // Give up if the loop has instructions that may throw. 352 SimpleLoopSafetyInfo SafetyInfo; 353 SafetyInfo.computeLoopSafetyInfo(CurLoop); 354 if (SafetyInfo.anyBlockMayThrow()) 355 return false; 356 357 bool MadeChange = false; 358 359 // Scan all the blocks in the loop that are not in subloops. 360 for (auto *BB : CurLoop->getBlocks()) { 361 // Ignore blocks in subloops. 362 if (LI->getLoopFor(BB) != CurLoop) 363 continue; 364 365 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); 366 } 367 return MadeChange; 368 } 369 370 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { 371 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); 372 return ConstStride->getAPInt(); 373 } 374 375 /// getMemSetPatternValue - If a strided store of the specified value is safe to 376 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 377 /// be passed in. Otherwise, return null. 378 /// 379 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 380 /// just replicate their input array and then pass on to memset_pattern16. 381 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { 382 // FIXME: This could check for UndefValue because it can be merged into any 383 // other valid pattern. 384 385 // If the value isn't a constant, we can't promote it to being in a constant 386 // array. We could theoretically do a store to an alloca or something, but 387 // that doesn't seem worthwhile. 388 Constant *C = dyn_cast<Constant>(V); 389 if (!C) 390 return nullptr; 391 392 // Only handle simple values that are a power of two bytes in size. 393 uint64_t Size = DL->getTypeSizeInBits(V->getType()); 394 if (Size == 0 || (Size & 7) || (Size & (Size - 1))) 395 return nullptr; 396 397 // Don't care enough about darwin/ppc to implement this. 398 if (DL->isBigEndian()) 399 return nullptr; 400 401 // Convert to size in bytes. 402 Size /= 8; 403 404 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 405 // if the top and bottom are the same (e.g. for vectors and large integers). 406 if (Size > 16) 407 return nullptr; 408 409 // If the constant is exactly 16 bytes, just use it. 410 if (Size == 16) 411 return C; 412 413 // Otherwise, we'll use an array of the constants. 414 unsigned ArraySize = 16 / Size; 415 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 416 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); 417 } 418 419 LoopIdiomRecognize::LegalStoreKind 420 LoopIdiomRecognize::isLegalStore(StoreInst *SI) { 421 // Don't touch volatile stores. 422 if (SI->isVolatile()) 423 return LegalStoreKind::None; 424 // We only want simple or unordered-atomic stores. 425 if (!SI->isUnordered()) 426 return LegalStoreKind::None; 427 428 // Don't convert stores of non-integral pointer types to memsets (which stores 429 // integers). 430 if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType())) 431 return LegalStoreKind::None; 432 433 // Avoid merging nontemporal stores. 434 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 435 return LegalStoreKind::None; 436 437 Value *StoredVal = SI->getValueOperand(); 438 Value *StorePtr = SI->getPointerOperand(); 439 440 // Reject stores that are so large that they overflow an unsigned. 441 uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); 442 if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) 443 return LegalStoreKind::None; 444 445 // See if the pointer expression is an AddRec like {base,+,1} on the current 446 // loop, which indicates a strided store. If we have something else, it's a 447 // random store we can't handle. 448 const SCEVAddRecExpr *StoreEv = 449 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 450 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 451 return LegalStoreKind::None; 452 453 // Check to see if we have a constant stride. 454 if (!isa<SCEVConstant>(StoreEv->getOperand(1))) 455 return LegalStoreKind::None; 456 457 // See if the store can be turned into a memset. 458 459 // If the stored value is a byte-wise value (like i32 -1), then it may be 460 // turned into a memset of i8 -1, assuming that all the consecutive bytes 461 // are stored. A store of i32 0x01020304 can never be turned into a memset, 462 // but it can be turned into memset_pattern if the target supports it. 463 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 464 Constant *PatternValue = nullptr; 465 466 // Note: memset and memset_pattern on unordered-atomic is yet not supported 467 bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); 468 469 // If we're allowed to form a memset, and the stored value would be 470 // acceptable for memset, use it. 471 if (!UnorderedAtomic && HasMemset && SplatValue && 472 // Verify that the stored value is loop invariant. If not, we can't 473 // promote the memset. 474 CurLoop->isLoopInvariant(SplatValue)) { 475 // It looks like we can use SplatValue. 476 return LegalStoreKind::Memset; 477 } else if (!UnorderedAtomic && HasMemsetPattern && 478 // Don't create memset_pattern16s with address spaces. 479 StorePtr->getType()->getPointerAddressSpace() == 0 && 480 (PatternValue = getMemSetPatternValue(StoredVal, DL))) { 481 // It looks like we can use PatternValue! 482 return LegalStoreKind::MemsetPattern; 483 } 484 485 // Otherwise, see if the store can be turned into a memcpy. 486 if (HasMemcpy) { 487 // Check to see if the stride matches the size of the store. If so, then we 488 // know that every byte is touched in the loop. 489 APInt Stride = getStoreStride(StoreEv); 490 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 491 if (StoreSize != Stride && StoreSize != -Stride) 492 return LegalStoreKind::None; 493 494 // The store must be feeding a non-volatile load. 495 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); 496 497 // Only allow non-volatile loads 498 if (!LI || LI->isVolatile()) 499 return LegalStoreKind::None; 500 // Only allow simple or unordered-atomic loads 501 if (!LI->isUnordered()) 502 return LegalStoreKind::None; 503 504 // See if the pointer expression is an AddRec like {base,+,1} on the current 505 // loop, which indicates a strided load. If we have something else, it's a 506 // random load we can't handle. 507 const SCEVAddRecExpr *LoadEv = 508 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 509 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 510 return LegalStoreKind::None; 511 512 // The store and load must share the same stride. 513 if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) 514 return LegalStoreKind::None; 515 516 // Success. This store can be converted into a memcpy. 517 UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); 518 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy 519 : LegalStoreKind::Memcpy; 520 } 521 // This store can't be transformed into a memset/memcpy. 522 return LegalStoreKind::None; 523 } 524 525 void LoopIdiomRecognize::collectStores(BasicBlock *BB) { 526 StoreRefsForMemset.clear(); 527 StoreRefsForMemsetPattern.clear(); 528 StoreRefsForMemcpy.clear(); 529 for (Instruction &I : *BB) { 530 StoreInst *SI = dyn_cast<StoreInst>(&I); 531 if (!SI) 532 continue; 533 534 // Make sure this is a strided store with a constant stride. 535 switch (isLegalStore(SI)) { 536 case LegalStoreKind::None: 537 // Nothing to do 538 break; 539 case LegalStoreKind::Memset: { 540 // Find the base pointer. 541 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); 542 StoreRefsForMemset[Ptr].push_back(SI); 543 } break; 544 case LegalStoreKind::MemsetPattern: { 545 // Find the base pointer. 546 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); 547 StoreRefsForMemsetPattern[Ptr].push_back(SI); 548 } break; 549 case LegalStoreKind::Memcpy: 550 case LegalStoreKind::UnorderedAtomicMemcpy: 551 StoreRefsForMemcpy.push_back(SI); 552 break; 553 default: 554 assert(false && "unhandled return value"); 555 break; 556 } 557 } 558 } 559 560 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 561 /// with the specified backedge count. This block is known to be in the current 562 /// loop and not in any subloops. 563 bool LoopIdiomRecognize::runOnLoopBlock( 564 BasicBlock *BB, const SCEV *BECount, 565 SmallVectorImpl<BasicBlock *> &ExitBlocks) { 566 // We can only promote stores in this block if they are unconditionally 567 // executed in the loop. For a block to be unconditionally executed, it has 568 // to dominate all the exit blocks of the loop. Verify this now. 569 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 570 if (!DT->dominates(BB, ExitBlocks[i])) 571 return false; 572 573 bool MadeChange = false; 574 // Look for store instructions, which may be optimized to memset/memcpy. 575 collectStores(BB); 576 577 // Look for a single store or sets of stores with a common base, which can be 578 // optimized into a memset (memset_pattern). The latter most commonly happens 579 // with structs and handunrolled loops. 580 for (auto &SL : StoreRefsForMemset) 581 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); 582 583 for (auto &SL : StoreRefsForMemsetPattern) 584 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); 585 586 // Optimize the store into a memcpy, if it feeds an similarly strided load. 587 for (auto &SI : StoreRefsForMemcpy) 588 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); 589 590 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 591 Instruction *Inst = &*I++; 592 // Look for memset instructions, which may be optimized to a larger memset. 593 if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) { 594 WeakTrackingVH InstPtr(&*I); 595 if (!processLoopMemSet(MSI, BECount)) 596 continue; 597 MadeChange = true; 598 599 // If processing the memset invalidated our iterator, start over from the 600 // top of the block. 601 if (!InstPtr) 602 I = BB->begin(); 603 continue; 604 } 605 } 606 607 return MadeChange; 608 } 609 610 /// See if this store(s) can be promoted to a memset. 611 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, 612 const SCEV *BECount, ForMemset For) { 613 // Try to find consecutive stores that can be transformed into memsets. 614 SetVector<StoreInst *> Heads, Tails; 615 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 616 617 // Do a quadratic search on all of the given stores and find 618 // all of the pairs of stores that follow each other. 619 SmallVector<unsigned, 16> IndexQueue; 620 for (unsigned i = 0, e = SL.size(); i < e; ++i) { 621 assert(SL[i]->isSimple() && "Expected only non-volatile stores."); 622 623 Value *FirstStoredVal = SL[i]->getValueOperand(); 624 Value *FirstStorePtr = SL[i]->getPointerOperand(); 625 const SCEVAddRecExpr *FirstStoreEv = 626 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); 627 APInt FirstStride = getStoreStride(FirstStoreEv); 628 unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); 629 630 // See if we can optimize just this store in isolation. 631 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { 632 Heads.insert(SL[i]); 633 continue; 634 } 635 636 Value *FirstSplatValue = nullptr; 637 Constant *FirstPatternValue = nullptr; 638 639 if (For == ForMemset::Yes) 640 FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL); 641 else 642 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); 643 644 assert((FirstSplatValue || FirstPatternValue) && 645 "Expected either splat value or pattern value."); 646 647 IndexQueue.clear(); 648 // If a store has multiple consecutive store candidates, search Stores 649 // array according to the sequence: from i+1 to e, then from i-1 to 0. 650 // This is because usually pairing with immediate succeeding or preceding 651 // candidate create the best chance to find memset opportunity. 652 unsigned j = 0; 653 for (j = i + 1; j < e; ++j) 654 IndexQueue.push_back(j); 655 for (j = i; j > 0; --j) 656 IndexQueue.push_back(j - 1); 657 658 for (auto &k : IndexQueue) { 659 assert(SL[k]->isSimple() && "Expected only non-volatile stores."); 660 Value *SecondStorePtr = SL[k]->getPointerOperand(); 661 const SCEVAddRecExpr *SecondStoreEv = 662 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); 663 APInt SecondStride = getStoreStride(SecondStoreEv); 664 665 if (FirstStride != SecondStride) 666 continue; 667 668 Value *SecondStoredVal = SL[k]->getValueOperand(); 669 Value *SecondSplatValue = nullptr; 670 Constant *SecondPatternValue = nullptr; 671 672 if (For == ForMemset::Yes) 673 SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL); 674 else 675 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); 676 677 assert((SecondSplatValue || SecondPatternValue) && 678 "Expected either splat value or pattern value."); 679 680 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { 681 if (For == ForMemset::Yes) { 682 if (isa<UndefValue>(FirstSplatValue)) 683 FirstSplatValue = SecondSplatValue; 684 if (FirstSplatValue != SecondSplatValue) 685 continue; 686 } else { 687 if (isa<UndefValue>(FirstPatternValue)) 688 FirstPatternValue = SecondPatternValue; 689 if (FirstPatternValue != SecondPatternValue) 690 continue; 691 } 692 Tails.insert(SL[k]); 693 Heads.insert(SL[i]); 694 ConsecutiveChain[SL[i]] = SL[k]; 695 break; 696 } 697 } 698 } 699 700 // We may run into multiple chains that merge into a single chain. We mark the 701 // stores that we transformed so that we don't visit the same store twice. 702 SmallPtrSet<Value *, 16> TransformedStores; 703 bool Changed = false; 704 705 // For stores that start but don't end a link in the chain: 706 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 707 it != e; ++it) { 708 if (Tails.count(*it)) 709 continue; 710 711 // We found a store instr that starts a chain. Now follow the chain and try 712 // to transform it. 713 SmallPtrSet<Instruction *, 8> AdjacentStores; 714 StoreInst *I = *it; 715 716 StoreInst *HeadStore = I; 717 unsigned StoreSize = 0; 718 719 // Collect the chain into a list. 720 while (Tails.count(I) || Heads.count(I)) { 721 if (TransformedStores.count(I)) 722 break; 723 AdjacentStores.insert(I); 724 725 StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); 726 // Move to the next value in the chain. 727 I = ConsecutiveChain[I]; 728 } 729 730 Value *StoredVal = HeadStore->getValueOperand(); 731 Value *StorePtr = HeadStore->getPointerOperand(); 732 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 733 APInt Stride = getStoreStride(StoreEv); 734 735 // Check to see if the stride matches the size of the stores. If so, then 736 // we know that every byte is touched in the loop. 737 if (StoreSize != Stride && StoreSize != -Stride) 738 continue; 739 740 bool NegStride = StoreSize == -Stride; 741 742 if (processLoopStridedStore(StorePtr, StoreSize, 743 MaybeAlign(HeadStore->getAlignment()), 744 StoredVal, HeadStore, AdjacentStores, StoreEv, 745 BECount, NegStride)) { 746 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); 747 Changed = true; 748 } 749 } 750 751 return Changed; 752 } 753 754 /// processLoopMemSet - See if this memset can be promoted to a large memset. 755 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, 756 const SCEV *BECount) { 757 // We can only handle non-volatile memsets with a constant size. 758 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) 759 return false; 760 761 // If we're not allowed to hack on memset, we fail. 762 if (!HasMemset) 763 return false; 764 765 Value *Pointer = MSI->getDest(); 766 767 // See if the pointer expression is an AddRec like {base,+,1} on the current 768 // loop, which indicates a strided store. If we have something else, it's a 769 // random store we can't handle. 770 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 771 if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine()) 772 return false; 773 774 // Reject memsets that are so large that they overflow an unsigned. 775 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 776 if ((SizeInBytes >> 32) != 0) 777 return false; 778 779 // Check to see if the stride matches the size of the memset. If so, then we 780 // know that every byte is touched in the loop. 781 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 782 if (!ConstStride) 783 return false; 784 785 APInt Stride = ConstStride->getAPInt(); 786 if (SizeInBytes != Stride && SizeInBytes != -Stride) 787 return false; 788 789 // Verify that the memset value is loop invariant. If not, we can't promote 790 // the memset. 791 Value *SplatValue = MSI->getValue(); 792 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) 793 return false; 794 795 SmallPtrSet<Instruction *, 1> MSIs; 796 MSIs.insert(MSI); 797 bool NegStride = SizeInBytes == -Stride; 798 return processLoopStridedStore( 799 Pointer, (unsigned)SizeInBytes, MaybeAlign(MSI->getDestAlignment()), 800 SplatValue, MSI, MSIs, Ev, BECount, NegStride, /*IsLoopMemset=*/true); 801 } 802 803 /// mayLoopAccessLocation - Return true if the specified loop might access the 804 /// specified pointer location, which is a loop-strided access. The 'Access' 805 /// argument specifies what the verboten forms of access are (read or write). 806 static bool 807 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, 808 const SCEV *BECount, unsigned StoreSize, 809 AliasAnalysis &AA, 810 SmallPtrSetImpl<Instruction *> &IgnoredStores) { 811 // Get the location that may be stored across the loop. Since the access is 812 // strided positively through memory, we say that the modified location starts 813 // at the pointer and has infinite size. 814 LocationSize AccessSize = LocationSize::unknown(); 815 816 // If the loop iterates a fixed number of times, we can refine the access size 817 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 818 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 819 AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) * 820 StoreSize); 821 822 // TODO: For this to be really effective, we have to dive into the pointer 823 // operand in the store. Store to &A[i] of 100 will always return may alias 824 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 825 // which will then no-alias a store to &A[100]. 826 MemoryLocation StoreLoc(Ptr, AccessSize); 827 828 for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; 829 ++BI) 830 for (Instruction &I : **BI) 831 if (IgnoredStores.count(&I) == 0 && 832 isModOrRefSet( 833 intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))) 834 return true; 835 836 return false; 837 } 838 839 // If we have a negative stride, Start refers to the end of the memory location 840 // we're trying to memset. Therefore, we need to recompute the base pointer, 841 // which is just Start - BECount*Size. 842 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, 843 Type *IntPtr, unsigned StoreSize, 844 ScalarEvolution *SE) { 845 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); 846 if (StoreSize != 1) 847 Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize), 848 SCEV::FlagNUW); 849 return SE->getMinusSCEV(Start, Index); 850 } 851 852 /// Compute the number of bytes as a SCEV from the backedge taken count. 853 /// 854 /// This also maps the SCEV into the provided type and tries to handle the 855 /// computation in a way that will fold cleanly. 856 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, 857 unsigned StoreSize, Loop *CurLoop, 858 const DataLayout *DL, ScalarEvolution *SE) { 859 const SCEV *NumBytesS; 860 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to 861 // pointer size if it isn't already. 862 // 863 // If we're going to need to zero extend the BE count, check if we can add 864 // one to it prior to zero extending without overflow. Provided this is safe, 865 // it allows better simplification of the +1. 866 if (DL->getTypeSizeInBits(BECount->getType()) < 867 DL->getTypeSizeInBits(IntPtr) && 868 SE->isLoopEntryGuardedByCond( 869 CurLoop, ICmpInst::ICMP_NE, BECount, 870 SE->getNegativeSCEV(SE->getOne(BECount->getType())))) { 871 NumBytesS = SE->getZeroExtendExpr( 872 SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW), 873 IntPtr); 874 } else { 875 NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr), 876 SE->getOne(IntPtr), SCEV::FlagNUW); 877 } 878 879 // And scale it based on the store size. 880 if (StoreSize != 1) { 881 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), 882 SCEV::FlagNUW); 883 } 884 return NumBytesS; 885 } 886 887 /// processLoopStridedStore - We see a strided store of some value. If we can 888 /// transform this into a memset or memset_pattern in the loop preheader, do so. 889 bool LoopIdiomRecognize::processLoopStridedStore( 890 Value *DestPtr, unsigned StoreSize, MaybeAlign StoreAlignment, 891 Value *StoredVal, Instruction *TheStore, 892 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, 893 const SCEV *BECount, bool NegStride, bool IsLoopMemset) { 894 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 895 Constant *PatternValue = nullptr; 896 897 if (!SplatValue) 898 PatternValue = getMemSetPatternValue(StoredVal, DL); 899 900 assert((SplatValue || PatternValue) && 901 "Expected either splat value or pattern value."); 902 903 // The trip count of the loop and the base pointer of the addrec SCEV is 904 // guaranteed to be loop invariant, which means that it should dominate the 905 // header. This allows us to insert code for it in the preheader. 906 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); 907 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 908 IRBuilder<> Builder(Preheader->getTerminator()); 909 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 910 911 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); 912 Type *IntIdxTy = DL->getIndexType(DestPtr->getType()); 913 914 const SCEV *Start = Ev->getStart(); 915 // Handle negative strided loops. 916 if (NegStride) 917 Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSize, SE); 918 919 // TODO: ideally we should still be able to generate memset if SCEV expander 920 // is taught to generate the dependencies at the latest point. 921 if (!isSafeToExpand(Start, *SE)) 922 return false; 923 924 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 925 // this into a memset in the loop preheader now if we want. However, this 926 // would be unsafe to do if there is anything else in the loop that may read 927 // or write to the aliased location. Check for any overlap by generating the 928 // base pointer and checking the region. 929 Value *BasePtr = 930 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); 931 if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, 932 StoreSize, *AA, Stores)) { 933 Expander.clear(); 934 // If we generated new code for the base pointer, clean up. 935 RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI); 936 return false; 937 } 938 939 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) 940 return false; 941 942 // Okay, everything looks good, insert the memset. 943 944 const SCEV *NumBytesS = 945 getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE); 946 947 // TODO: ideally we should still be able to generate memset if SCEV expander 948 // is taught to generate the dependencies at the latest point. 949 if (!isSafeToExpand(NumBytesS, *SE)) 950 return false; 951 952 Value *NumBytes = 953 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 954 955 CallInst *NewCall; 956 if (SplatValue) { 957 NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, 958 MaybeAlign(StoreAlignment)); 959 } else { 960 // Everything is emitted in default address space 961 Type *Int8PtrTy = DestInt8PtrTy; 962 963 Module *M = TheStore->getModule(); 964 StringRef FuncName = "memset_pattern16"; 965 FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(), 966 Int8PtrTy, Int8PtrTy, IntIdxTy); 967 inferLibFuncAttributes(M, FuncName, *TLI); 968 969 // Otherwise we should form a memset_pattern16. PatternValue is known to be 970 // an constant array of 16-bytes. Plop the value into a mergable global. 971 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 972 GlobalValue::PrivateLinkage, 973 PatternValue, ".memset_pattern"); 974 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. 975 GV->setAlignment(Align(16)); 976 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); 977 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); 978 } 979 NewCall->setDebugLoc(TheStore->getDebugLoc()); 980 981 if (MSSAU) { 982 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 983 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 984 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 985 } 986 987 LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 988 << " from store to: " << *Ev << " at: " << *TheStore 989 << "\n"); 990 991 ORE.emit([&]() { 992 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore", 993 NewCall->getDebugLoc(), Preheader) 994 << "Transformed loop-strided store into a call to " 995 << ore::NV("NewFunction", NewCall->getCalledFunction()) 996 << "() function"; 997 }); 998 999 // Okay, the memset has been formed. Zap the original store and anything that 1000 // feeds into it. 1001 for (auto *I : Stores) { 1002 if (MSSAU) 1003 MSSAU->removeMemoryAccess(I, true); 1004 deleteDeadInstruction(I); 1005 } 1006 if (MSSAU && VerifyMemorySSA) 1007 MSSAU->getMemorySSA()->verifyMemorySSA(); 1008 ++NumMemSet; 1009 return true; 1010 } 1011 1012 /// If the stored value is a strided load in the same loop with the same stride 1013 /// this may be transformable into a memcpy. This kicks in for stuff like 1014 /// for (i) A[i] = B[i]; 1015 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, 1016 const SCEV *BECount) { 1017 assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); 1018 1019 Value *StorePtr = SI->getPointerOperand(); 1020 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 1021 APInt Stride = getStoreStride(StoreEv); 1022 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 1023 bool NegStride = StoreSize == -Stride; 1024 1025 // The store must be feeding a non-volatile load. 1026 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 1027 assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); 1028 1029 // See if the pointer expression is an AddRec like {base,+,1} on the current 1030 // loop, which indicates a strided load. If we have something else, it's a 1031 // random load we can't handle. 1032 const SCEVAddRecExpr *LoadEv = 1033 cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 1034 1035 // The trip count of the loop and the base pointer of the addrec SCEV is 1036 // guaranteed to be loop invariant, which means that it should dominate the 1037 // header. This allows us to insert code for it in the preheader. 1038 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1039 IRBuilder<> Builder(Preheader->getTerminator()); 1040 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1041 1042 const SCEV *StrStart = StoreEv->getStart(); 1043 unsigned StrAS = SI->getPointerAddressSpace(); 1044 Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS)); 1045 1046 // Handle negative strided loops. 1047 if (NegStride) 1048 StrStart = getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSize, SE); 1049 1050 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 1051 // this into a memcpy in the loop preheader now if we want. However, this 1052 // would be unsafe to do if there is anything else in the loop that may read 1053 // or write the memory region we're storing to. This includes the load that 1054 // feeds the stores. Check for an alias by generating the base address and 1055 // checking everything. 1056 Value *StoreBasePtr = Expander.expandCodeFor( 1057 StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); 1058 1059 SmallPtrSet<Instruction *, 1> Stores; 1060 Stores.insert(SI); 1061 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1062 StoreSize, *AA, Stores)) { 1063 Expander.clear(); 1064 // If we generated new code for the base pointer, clean up. 1065 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); 1066 return false; 1067 } 1068 1069 const SCEV *LdStart = LoadEv->getStart(); 1070 unsigned LdAS = LI->getPointerAddressSpace(); 1071 1072 // Handle negative strided loops. 1073 if (NegStride) 1074 LdStart = getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSize, SE); 1075 1076 // For a memcpy, we have to make sure that the input array is not being 1077 // mutated by the loop. 1078 Value *LoadBasePtr = Expander.expandCodeFor( 1079 LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); 1080 1081 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, 1082 StoreSize, *AA, Stores)) { 1083 Expander.clear(); 1084 // If we generated new code for the base pointer, clean up. 1085 RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI); 1086 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); 1087 return false; 1088 } 1089 1090 if (avoidLIRForMultiBlockLoop()) 1091 return false; 1092 1093 // Okay, everything is safe, we can transform this! 1094 1095 const SCEV *NumBytesS = 1096 getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE); 1097 1098 Value *NumBytes = 1099 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1100 1101 CallInst *NewCall = nullptr; 1102 // Check whether to generate an unordered atomic memcpy: 1103 // If the load or store are atomic, then they must necessarily be unordered 1104 // by previous checks. 1105 if (!SI->isAtomic() && !LI->isAtomic()) 1106 NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlign(), LoadBasePtr, 1107 LI->getAlign(), NumBytes); 1108 else { 1109 // We cannot allow unaligned ops for unordered load/store, so reject 1110 // anything where the alignment isn't at least the element size. 1111 const MaybeAlign StoreAlign = SI->getAlign(); 1112 const MaybeAlign LoadAlign = LI->getAlign(); 1113 if (StoreAlign == None || LoadAlign == None) 1114 return false; 1115 if (*StoreAlign < StoreSize || *LoadAlign < StoreSize) 1116 return false; 1117 1118 // If the element.atomic memcpy is not lowered into explicit 1119 // loads/stores later, then it will be lowered into an element-size 1120 // specific lib call. If the lib call doesn't exist for our store size, then 1121 // we shouldn't generate the memcpy. 1122 if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) 1123 return false; 1124 1125 // Create the call. 1126 // Note that unordered atomic loads/stores are *required* by the spec to 1127 // have an alignment but non-atomic loads/stores may not. 1128 NewCall = Builder.CreateElementUnorderedAtomicMemCpy( 1129 StoreBasePtr, *StoreAlign, LoadBasePtr, *LoadAlign, NumBytes, 1130 StoreSize); 1131 } 1132 NewCall->setDebugLoc(SI->getDebugLoc()); 1133 1134 if (MSSAU) { 1135 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1136 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1137 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1138 } 1139 1140 LLVM_DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" 1141 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" 1142 << " from store ptr=" << *StoreEv << " at: " << *SI 1143 << "\n"); 1144 1145 ORE.emit([&]() { 1146 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad", 1147 NewCall->getDebugLoc(), Preheader) 1148 << "Formed a call to " 1149 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1150 << "() function"; 1151 }); 1152 1153 // Okay, the memcpy has been formed. Zap the original store and anything that 1154 // feeds into it. 1155 if (MSSAU) 1156 MSSAU->removeMemoryAccess(SI, true); 1157 deleteDeadInstruction(SI); 1158 if (MSSAU && VerifyMemorySSA) 1159 MSSAU->getMemorySSA()->verifyMemorySSA(); 1160 ++NumMemCpy; 1161 return true; 1162 } 1163 1164 // When compiling for codesize we avoid idiom recognition for a multi-block loop 1165 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. 1166 // 1167 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, 1168 bool IsLoopMemset) { 1169 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { 1170 if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) { 1171 LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() 1172 << " : LIR " << (IsMemset ? "Memset" : "Memcpy") 1173 << " avoided: multi-block top-level loop\n"); 1174 return true; 1175 } 1176 } 1177 1178 return false; 1179 } 1180 1181 bool LoopIdiomRecognize::runOnNoncountableLoop() { 1182 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 1183 << CurLoop->getHeader()->getParent()->getName() 1184 << "] Noncountable Loop %" 1185 << CurLoop->getHeader()->getName() << "\n"); 1186 1187 return recognizePopcount() || recognizeAndInsertFFS(); 1188 } 1189 1190 /// Check if the given conditional branch is based on the comparison between 1191 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is 1192 /// true), the control yields to the loop entry. If the branch matches the 1193 /// behavior, the variable involved in the comparison is returned. This function 1194 /// will be called to see if the precondition and postcondition of the loop are 1195 /// in desirable form. 1196 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, 1197 bool JmpOnZero = false) { 1198 if (!BI || !BI->isConditional()) 1199 return nullptr; 1200 1201 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1202 if (!Cond) 1203 return nullptr; 1204 1205 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 1206 if (!CmpZero || !CmpZero->isZero()) 1207 return nullptr; 1208 1209 BasicBlock *TrueSucc = BI->getSuccessor(0); 1210 BasicBlock *FalseSucc = BI->getSuccessor(1); 1211 if (JmpOnZero) 1212 std::swap(TrueSucc, FalseSucc); 1213 1214 ICmpInst::Predicate Pred = Cond->getPredicate(); 1215 if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || 1216 (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) 1217 return Cond->getOperand(0); 1218 1219 return nullptr; 1220 } 1221 1222 // Check if the recurrence variable `VarX` is in the right form to create 1223 // the idiom. Returns the value coerced to a PHINode if so. 1224 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, 1225 BasicBlock *LoopEntry) { 1226 auto *PhiX = dyn_cast<PHINode>(VarX); 1227 if (PhiX && PhiX->getParent() == LoopEntry && 1228 (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) 1229 return PhiX; 1230 return nullptr; 1231 } 1232 1233 /// Return true iff the idiom is detected in the loop. 1234 /// 1235 /// Additionally: 1236 /// 1) \p CntInst is set to the instruction counting the population bit. 1237 /// 2) \p CntPhi is set to the corresponding phi node. 1238 /// 3) \p Var is set to the value whose population bits are being counted. 1239 /// 1240 /// The core idiom we are trying to detect is: 1241 /// \code 1242 /// if (x0 != 0) 1243 /// goto loop-exit // the precondition of the loop 1244 /// cnt0 = init-val; 1245 /// do { 1246 /// x1 = phi (x0, x2); 1247 /// cnt1 = phi(cnt0, cnt2); 1248 /// 1249 /// cnt2 = cnt1 + 1; 1250 /// ... 1251 /// x2 = x1 & (x1 - 1); 1252 /// ... 1253 /// } while(x != 0); 1254 /// 1255 /// loop-exit: 1256 /// \endcode 1257 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, 1258 Instruction *&CntInst, PHINode *&CntPhi, 1259 Value *&Var) { 1260 // step 1: Check to see if the look-back branch match this pattern: 1261 // "if (a!=0) goto loop-entry". 1262 BasicBlock *LoopEntry; 1263 Instruction *DefX2, *CountInst; 1264 Value *VarX1, *VarX0; 1265 PHINode *PhiX, *CountPhi; 1266 1267 DefX2 = CountInst = nullptr; 1268 VarX1 = VarX0 = nullptr; 1269 PhiX = CountPhi = nullptr; 1270 LoopEntry = *(CurLoop->block_begin()); 1271 1272 // step 1: Check if the loop-back branch is in desirable form. 1273 { 1274 if (Value *T = matchCondition( 1275 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1276 DefX2 = dyn_cast<Instruction>(T); 1277 else 1278 return false; 1279 } 1280 1281 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 1282 { 1283 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 1284 return false; 1285 1286 BinaryOperator *SubOneOp; 1287 1288 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 1289 VarX1 = DefX2->getOperand(1); 1290 else { 1291 VarX1 = DefX2->getOperand(0); 1292 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 1293 } 1294 if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) 1295 return false; 1296 1297 ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); 1298 if (!Dec || 1299 !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || 1300 (SubOneOp->getOpcode() == Instruction::Add && 1301 Dec->isMinusOne()))) { 1302 return false; 1303 } 1304 } 1305 1306 // step 3: Check the recurrence of variable X 1307 PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); 1308 if (!PhiX) 1309 return false; 1310 1311 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 1312 { 1313 CountInst = nullptr; 1314 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1315 IterE = LoopEntry->end(); 1316 Iter != IterE; Iter++) { 1317 Instruction *Inst = &*Iter; 1318 if (Inst->getOpcode() != Instruction::Add) 1319 continue; 1320 1321 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1322 if (!Inc || !Inc->isOne()) 1323 continue; 1324 1325 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); 1326 if (!Phi) 1327 continue; 1328 1329 // Check if the result of the instruction is live of the loop. 1330 bool LiveOutLoop = false; 1331 for (User *U : Inst->users()) { 1332 if ((cast<Instruction>(U))->getParent() != LoopEntry) { 1333 LiveOutLoop = true; 1334 break; 1335 } 1336 } 1337 1338 if (LiveOutLoop) { 1339 CountInst = Inst; 1340 CountPhi = Phi; 1341 break; 1342 } 1343 } 1344 1345 if (!CountInst) 1346 return false; 1347 } 1348 1349 // step 5: check if the precondition is in this form: 1350 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 1351 { 1352 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1353 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); 1354 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 1355 return false; 1356 1357 CntInst = CountInst; 1358 CntPhi = CountPhi; 1359 Var = T; 1360 } 1361 1362 return true; 1363 } 1364 1365 /// Return true if the idiom is detected in the loop. 1366 /// 1367 /// Additionally: 1368 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) 1369 /// or nullptr if there is no such. 1370 /// 2) \p CntPhi is set to the corresponding phi node 1371 /// or nullptr if there is no such. 1372 /// 3) \p Var is set to the value whose CTLZ could be used. 1373 /// 4) \p DefX is set to the instruction calculating Loop exit condition. 1374 /// 1375 /// The core idiom we are trying to detect is: 1376 /// \code 1377 /// if (x0 == 0) 1378 /// goto loop-exit // the precondition of the loop 1379 /// cnt0 = init-val; 1380 /// do { 1381 /// x = phi (x0, x.next); //PhiX 1382 /// cnt = phi(cnt0, cnt.next); 1383 /// 1384 /// cnt.next = cnt + 1; 1385 /// ... 1386 /// x.next = x >> 1; // DefX 1387 /// ... 1388 /// } while(x.next != 0); 1389 /// 1390 /// loop-exit: 1391 /// \endcode 1392 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, 1393 Intrinsic::ID &IntrinID, Value *&InitX, 1394 Instruction *&CntInst, PHINode *&CntPhi, 1395 Instruction *&DefX) { 1396 BasicBlock *LoopEntry; 1397 Value *VarX = nullptr; 1398 1399 DefX = nullptr; 1400 CntInst = nullptr; 1401 CntPhi = nullptr; 1402 LoopEntry = *(CurLoop->block_begin()); 1403 1404 // step 1: Check if the loop-back branch is in desirable form. 1405 if (Value *T = matchCondition( 1406 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1407 DefX = dyn_cast<Instruction>(T); 1408 else 1409 return false; 1410 1411 // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" 1412 if (!DefX || !DefX->isShift()) 1413 return false; 1414 IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : 1415 Intrinsic::ctlz; 1416 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); 1417 if (!Shft || !Shft->isOne()) 1418 return false; 1419 VarX = DefX->getOperand(0); 1420 1421 // step 3: Check the recurrence of variable X 1422 PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); 1423 if (!PhiX) 1424 return false; 1425 1426 InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 1427 1428 // Make sure the initial value can't be negative otherwise the ashr in the 1429 // loop might never reach zero which would make the loop infinite. 1430 if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL)) 1431 return false; 1432 1433 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 1434 // TODO: We can skip the step. If loop trip count is known (CTLZ), 1435 // then all uses of "cnt.next" could be optimized to the trip count 1436 // plus "cnt0". Currently it is not optimized. 1437 // This step could be used to detect POPCNT instruction: 1438 // cnt.next = cnt + (x.next & 1) 1439 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1440 IterE = LoopEntry->end(); 1441 Iter != IterE; Iter++) { 1442 Instruction *Inst = &*Iter; 1443 if (Inst->getOpcode() != Instruction::Add) 1444 continue; 1445 1446 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1447 if (!Inc || !Inc->isOne()) 1448 continue; 1449 1450 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); 1451 if (!Phi) 1452 continue; 1453 1454 CntInst = Inst; 1455 CntPhi = Phi; 1456 break; 1457 } 1458 if (!CntInst) 1459 return false; 1460 1461 return true; 1462 } 1463 1464 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop 1465 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new 1466 /// trip count returns true; otherwise, returns false. 1467 bool LoopIdiomRecognize::recognizeAndInsertFFS() { 1468 // Give up if the loop has multiple blocks or multiple backedges. 1469 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1470 return false; 1471 1472 Intrinsic::ID IntrinID; 1473 Value *InitX; 1474 Instruction *DefX = nullptr; 1475 PHINode *CntPhi = nullptr; 1476 Instruction *CntInst = nullptr; 1477 // Help decide if transformation is profitable. For ShiftUntilZero idiom, 1478 // this is always 6. 1479 size_t IdiomCanonicalSize = 6; 1480 1481 if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, 1482 CntInst, CntPhi, DefX)) 1483 return false; 1484 1485 bool IsCntPhiUsedOutsideLoop = false; 1486 for (User *U : CntPhi->users()) 1487 if (!CurLoop->contains(cast<Instruction>(U))) { 1488 IsCntPhiUsedOutsideLoop = true; 1489 break; 1490 } 1491 bool IsCntInstUsedOutsideLoop = false; 1492 for (User *U : CntInst->users()) 1493 if (!CurLoop->contains(cast<Instruction>(U))) { 1494 IsCntInstUsedOutsideLoop = true; 1495 break; 1496 } 1497 // If both CntInst and CntPhi are used outside the loop the profitability 1498 // is questionable. 1499 if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) 1500 return false; 1501 1502 // For some CPUs result of CTLZ(X) intrinsic is undefined 1503 // when X is 0. If we can not guarantee X != 0, we need to check this 1504 // when expand. 1505 bool ZeroCheck = false; 1506 // It is safe to assume Preheader exist as it was checked in 1507 // parent function RunOnLoop. 1508 BasicBlock *PH = CurLoop->getLoopPreheader(); 1509 1510 // If we are using the count instruction outside the loop, make sure we 1511 // have a zero check as a precondition. Without the check the loop would run 1512 // one iteration for before any check of the input value. This means 0 and 1 1513 // would have identical behavior in the original loop and thus 1514 if (!IsCntPhiUsedOutsideLoop) { 1515 auto *PreCondBB = PH->getSinglePredecessor(); 1516 if (!PreCondBB) 1517 return false; 1518 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1519 if (!PreCondBI) 1520 return false; 1521 if (matchCondition(PreCondBI, PH) != InitX) 1522 return false; 1523 ZeroCheck = true; 1524 } 1525 1526 // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always 1527 // profitable if we delete the loop. 1528 1529 // the loop has only 6 instructions: 1530 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] 1531 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] 1532 // %shr = ashr %n.addr.0, 1 1533 // %tobool = icmp eq %shr, 0 1534 // %inc = add nsw %i.0, 1 1535 // br i1 %tobool 1536 1537 const Value *Args[] = 1538 {InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext()) 1539 : ConstantInt::getFalse(InitX->getContext())}; 1540 1541 // @llvm.dbg doesn't count as they have no semantic effect. 1542 auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug(); 1543 uint32_t HeaderSize = 1544 std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end()); 1545 1546 if (HeaderSize != IdiomCanonicalSize && 1547 TTI->getIntrinsicCost(IntrinID, InitX->getType(), Args) > 1548 TargetTransformInfo::TCC_Basic) 1549 return false; 1550 1551 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, 1552 DefX->getDebugLoc(), ZeroCheck, 1553 IsCntPhiUsedOutsideLoop); 1554 return true; 1555 } 1556 1557 /// Recognizes a population count idiom in a non-countable loop. 1558 /// 1559 /// If detected, transforms the relevant code to issue the popcount intrinsic 1560 /// function call, and returns true; otherwise, returns false. 1561 bool LoopIdiomRecognize::recognizePopcount() { 1562 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 1563 return false; 1564 1565 // Counting population are usually conducted by few arithmetic instructions. 1566 // Such instructions can be easily "absorbed" by vacant slots in a 1567 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 1568 // in a compact loop. 1569 1570 // Give up if the loop has multiple blocks or multiple backedges. 1571 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1572 return false; 1573 1574 BasicBlock *LoopBody = *(CurLoop->block_begin()); 1575 if (LoopBody->size() >= 20) { 1576 // The loop is too big, bail out. 1577 return false; 1578 } 1579 1580 // It should have a preheader containing nothing but an unconditional branch. 1581 BasicBlock *PH = CurLoop->getLoopPreheader(); 1582 if (!PH || &PH->front() != PH->getTerminator()) 1583 return false; 1584 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); 1585 if (!EntryBI || EntryBI->isConditional()) 1586 return false; 1587 1588 // It should have a precondition block where the generated popcount intrinsic 1589 // function can be inserted. 1590 auto *PreCondBB = PH->getSinglePredecessor(); 1591 if (!PreCondBB) 1592 return false; 1593 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1594 if (!PreCondBI || PreCondBI->isUnconditional()) 1595 return false; 1596 1597 Instruction *CntInst; 1598 PHINode *CntPhi; 1599 Value *Val; 1600 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) 1601 return false; 1602 1603 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); 1604 return true; 1605 } 1606 1607 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1608 const DebugLoc &DL) { 1609 Value *Ops[] = {Val}; 1610 Type *Tys[] = {Val->getType()}; 1611 1612 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1613 Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); 1614 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1615 CI->setDebugLoc(DL); 1616 1617 return CI; 1618 } 1619 1620 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1621 const DebugLoc &DL, bool ZeroCheck, 1622 Intrinsic::ID IID) { 1623 Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()}; 1624 Type *Tys[] = {Val->getType()}; 1625 1626 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1627 Function *Func = Intrinsic::getDeclaration(M, IID, Tys); 1628 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1629 CI->setDebugLoc(DL); 1630 1631 return CI; 1632 } 1633 1634 /// Transform the following loop (Using CTLZ, CTTZ is similar): 1635 /// loop: 1636 /// CntPhi = PHI [Cnt0, CntInst] 1637 /// PhiX = PHI [InitX, DefX] 1638 /// CntInst = CntPhi + 1 1639 /// DefX = PhiX >> 1 1640 /// LOOP_BODY 1641 /// Br: loop if (DefX != 0) 1642 /// Use(CntPhi) or Use(CntInst) 1643 /// 1644 /// Into: 1645 /// If CntPhi used outside the loop: 1646 /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) 1647 /// Count = CountPrev + 1 1648 /// else 1649 /// Count = BitWidth(InitX) - CTLZ(InitX) 1650 /// loop: 1651 /// CntPhi = PHI [Cnt0, CntInst] 1652 /// PhiX = PHI [InitX, DefX] 1653 /// PhiCount = PHI [Count, Dec] 1654 /// CntInst = CntPhi + 1 1655 /// DefX = PhiX >> 1 1656 /// Dec = PhiCount - 1 1657 /// LOOP_BODY 1658 /// Br: loop if (Dec != 0) 1659 /// Use(CountPrev + Cnt0) // Use(CntPhi) 1660 /// or 1661 /// Use(Count + Cnt0) // Use(CntInst) 1662 /// 1663 /// If LOOP_BODY is empty the loop will be deleted. 1664 /// If CntInst and DefX are not used in LOOP_BODY they will be removed. 1665 void LoopIdiomRecognize::transformLoopToCountable( 1666 Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst, 1667 PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, 1668 bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) { 1669 BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); 1670 1671 // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block 1672 IRBuilder<> Builder(PreheaderBr); 1673 Builder.SetCurrentDebugLocation(DL); 1674 Value *FFS, *Count, *CountPrev, *NewCount, *InitXNext; 1675 1676 // Count = BitWidth - CTLZ(InitX); 1677 // If there are uses of CntPhi create: 1678 // CountPrev = BitWidth - CTLZ(InitX >> 1); 1679 if (IsCntPhiUsedOutsideLoop) { 1680 if (DefX->getOpcode() == Instruction::AShr) 1681 InitXNext = 1682 Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1)); 1683 else if (DefX->getOpcode() == Instruction::LShr) 1684 InitXNext = 1685 Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1)); 1686 else if (DefX->getOpcode() == Instruction::Shl) // cttz 1687 InitXNext = 1688 Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1)); 1689 else 1690 llvm_unreachable("Unexpected opcode!"); 1691 } else 1692 InitXNext = InitX; 1693 FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID); 1694 Count = Builder.CreateSub( 1695 ConstantInt::get(FFS->getType(), 1696 FFS->getType()->getIntegerBitWidth()), 1697 FFS); 1698 if (IsCntPhiUsedOutsideLoop) { 1699 CountPrev = Count; 1700 Count = Builder.CreateAdd( 1701 CountPrev, 1702 ConstantInt::get(CountPrev->getType(), 1)); 1703 } 1704 1705 NewCount = Builder.CreateZExtOrTrunc( 1706 IsCntPhiUsedOutsideLoop ? CountPrev : Count, 1707 cast<IntegerType>(CntInst->getType())); 1708 1709 // If the counter's initial value is not zero, insert Add Inst. 1710 Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); 1711 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 1712 if (!InitConst || !InitConst->isZero()) 1713 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 1714 1715 // Step 2: Insert new IV and loop condition: 1716 // loop: 1717 // ... 1718 // PhiCount = PHI [Count, Dec] 1719 // ... 1720 // Dec = PhiCount - 1 1721 // ... 1722 // Br: loop if (Dec != 0) 1723 BasicBlock *Body = *(CurLoop->block_begin()); 1724 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 1725 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 1726 Type *Ty = Count->getType(); 1727 1728 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 1729 1730 Builder.SetInsertPoint(LbCond); 1731 Instruction *TcDec = cast<Instruction>( 1732 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 1733 "tcdec", false, true)); 1734 1735 TcPhi->addIncoming(Count, Preheader); 1736 TcPhi->addIncoming(TcDec, Body); 1737 1738 CmpInst::Predicate Pred = 1739 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 1740 LbCond->setPredicate(Pred); 1741 LbCond->setOperand(0, TcDec); 1742 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 1743 1744 // Step 3: All the references to the original counter outside 1745 // the loop are replaced with the NewCount 1746 if (IsCntPhiUsedOutsideLoop) 1747 CntPhi->replaceUsesOutsideBlock(NewCount, Body); 1748 else 1749 CntInst->replaceUsesOutsideBlock(NewCount, Body); 1750 1751 // step 4: Forget the "non-computable" trip-count SCEV associated with the 1752 // loop. The loop would otherwise not be deleted even if it becomes empty. 1753 SE->forgetLoop(CurLoop); 1754 } 1755 1756 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, 1757 Instruction *CntInst, 1758 PHINode *CntPhi, Value *Var) { 1759 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 1760 auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); 1761 const DebugLoc &DL = CntInst->getDebugLoc(); 1762 1763 // Assuming before transformation, the loop is following: 1764 // if (x) // the precondition 1765 // do { cnt++; x &= x - 1; } while(x); 1766 1767 // Step 1: Insert the ctpop instruction at the end of the precondition block 1768 IRBuilder<> Builder(PreCondBr); 1769 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 1770 { 1771 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 1772 NewCount = PopCntZext = 1773 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 1774 1775 if (NewCount != PopCnt) 1776 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1777 1778 // TripCnt is exactly the number of iterations the loop has 1779 TripCnt = NewCount; 1780 1781 // If the population counter's initial value is not zero, insert Add Inst. 1782 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 1783 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 1784 if (!InitConst || !InitConst->isZero()) { 1785 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 1786 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1787 } 1788 } 1789 1790 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to 1791 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic 1792 // function would be partial dead code, and downstream passes will drag 1793 // it back from the precondition block to the preheader. 1794 { 1795 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 1796 1797 Value *Opnd0 = PopCntZext; 1798 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 1799 if (PreCond->getOperand(0) != Var) 1800 std::swap(Opnd0, Opnd1); 1801 1802 ICmpInst *NewPreCond = cast<ICmpInst>( 1803 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 1804 PreCondBr->setCondition(NewPreCond); 1805 1806 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); 1807 } 1808 1809 // Step 3: Note that the population count is exactly the trip count of the 1810 // loop in question, which enable us to convert the loop from noncountable 1811 // loop into a countable one. The benefit is twofold: 1812 // 1813 // - If the loop only counts population, the entire loop becomes dead after 1814 // the transformation. It is a lot easier to prove a countable loop dead 1815 // than to prove a noncountable one. (In some C dialects, an infinite loop 1816 // isn't dead even if it computes nothing useful. In general, DCE needs 1817 // to prove a noncountable loop finite before safely delete it.) 1818 // 1819 // - If the loop also performs something else, it remains alive. 1820 // Since it is transformed to countable form, it can be aggressively 1821 // optimized by some optimizations which are in general not applicable 1822 // to a noncountable loop. 1823 // 1824 // After this step, this loop (conceptually) would look like following: 1825 // newcnt = __builtin_ctpop(x); 1826 // t = newcnt; 1827 // if (x) 1828 // do { cnt++; x &= x-1; t--) } while (t > 0); 1829 BasicBlock *Body = *(CurLoop->block_begin()); 1830 { 1831 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 1832 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 1833 Type *Ty = TripCnt->getType(); 1834 1835 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 1836 1837 Builder.SetInsertPoint(LbCond); 1838 Instruction *TcDec = cast<Instruction>( 1839 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 1840 "tcdec", false, true)); 1841 1842 TcPhi->addIncoming(TripCnt, PreHead); 1843 TcPhi->addIncoming(TcDec, Body); 1844 1845 CmpInst::Predicate Pred = 1846 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 1847 LbCond->setPredicate(Pred); 1848 LbCond->setOperand(0, TcDec); 1849 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 1850 } 1851 1852 // Step 4: All the references to the original population counter outside 1853 // the loop are replaced with the NewCount -- the value returned from 1854 // __builtin_ctpop(). 1855 CntInst->replaceUsesOutsideBlock(NewCount, Body); 1856 1857 // step 5: Forget the "non-computable" trip-count SCEV associated with the 1858 // loop. The loop would otherwise not be deleted even if it becomes empty. 1859 SE->forgetLoop(CurLoop); 1860 } 1861