1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements an idiom recognizer that transforms simple loops into a
10 // non-loop form.  In cases that this kicks in, it can be a significant
11 // performance win.
12 //
13 // If compiling for code size we avoid idiom recognition if the resulting
14 // code could be larger than the code for the original loop. One way this could
15 // happen is if the loop is not removable after idiom recognition due to the
16 // presence of non-idiom instructions. The initial implementation of the
17 // heuristics applies to idioms in multi-block loops.
18 //
19 //===----------------------------------------------------------------------===//
20 //
21 // TODO List:
22 //
23 // Future loop memory idioms to recognize:
24 //   memcmp, memmove, strlen, etc.
25 // Future floating point idioms to recognize in -ffast-math mode:
26 //   fpowi
27 // Future integer operation idioms to recognize:
28 //   ctpop
29 //
30 // Beware that isel's default lowering for ctpop is highly inefficient for
31 // i64 and larger types when i64 is legal and the value has few bits set.  It
32 // would be good to enhance isel to emit a loop for ctpop in this case.
33 //
34 // This could recognize common matrix multiplies and dot product idioms and
35 // replace them with calls to BLAS (if linked in??).
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
40 #include "llvm/ADT/APInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/MapVector.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/ADT/StringRef.h"
49 #include "llvm/Analysis/AliasAnalysis.h"
50 #include "llvm/Analysis/LoopAccessAnalysis.h"
51 #include "llvm/Analysis/LoopInfo.h"
52 #include "llvm/Analysis/LoopPass.h"
53 #include "llvm/Analysis/MemoryLocation.h"
54 #include "llvm/Analysis/MemorySSA.h"
55 #include "llvm/Analysis/MemorySSAUpdater.h"
56 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
57 #include "llvm/Analysis/ScalarEvolution.h"
58 #include "llvm/Analysis/ScalarEvolutionExpander.h"
59 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
60 #include "llvm/Analysis/TargetLibraryInfo.h"
61 #include "llvm/Analysis/TargetTransformInfo.h"
62 #include "llvm/Analysis/ValueTracking.h"
63 #include "llvm/IR/Attributes.h"
64 #include "llvm/IR/BasicBlock.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugLoc.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Dominators.h"
71 #include "llvm/IR/GlobalValue.h"
72 #include "llvm/IR/GlobalVariable.h"
73 #include "llvm/IR/IRBuilder.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/PassManager.h"
82 #include "llvm/IR/Type.h"
83 #include "llvm/IR/User.h"
84 #include "llvm/IR/Value.h"
85 #include "llvm/IR/ValueHandle.h"
86 #include "llvm/InitializePasses.h"
87 #include "llvm/Pass.h"
88 #include "llvm/Support/Casting.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Debug.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Transforms/Scalar.h"
93 #include "llvm/Transforms/Utils/BuildLibCalls.h"
94 #include "llvm/Transforms/Utils/Local.h"
95 #include "llvm/Transforms/Utils/LoopUtils.h"
96 #include <algorithm>
97 #include <cassert>
98 #include <cstdint>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "loop-idiom"
105 
106 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
107 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
108 
109 static cl::opt<bool> UseLIRCodeSizeHeurs(
110     "use-lir-code-size-heurs",
111     cl::desc("Use loop idiom recognition code size heuristics when compiling"
112              "with -Os/-Oz"),
113     cl::init(true), cl::Hidden);
114 
115 namespace {
116 
117 class LoopIdiomRecognize {
118   Loop *CurLoop = nullptr;
119   AliasAnalysis *AA;
120   DominatorTree *DT;
121   LoopInfo *LI;
122   ScalarEvolution *SE;
123   TargetLibraryInfo *TLI;
124   const TargetTransformInfo *TTI;
125   const DataLayout *DL;
126   OptimizationRemarkEmitter &ORE;
127   bool ApplyCodeSizeHeuristics;
128   std::unique_ptr<MemorySSAUpdater> MSSAU;
129 
130 public:
131   explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
132                               LoopInfo *LI, ScalarEvolution *SE,
133                               TargetLibraryInfo *TLI,
134                               const TargetTransformInfo *TTI, MemorySSA *MSSA,
135                               const DataLayout *DL,
136                               OptimizationRemarkEmitter &ORE)
137       : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {
138     if (MSSA)
139       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
140   }
141 
142   bool runOnLoop(Loop *L);
143 
144 private:
145   using StoreList = SmallVector<StoreInst *, 8>;
146   using StoreListMap = MapVector<Value *, StoreList>;
147 
148   StoreListMap StoreRefsForMemset;
149   StoreListMap StoreRefsForMemsetPattern;
150   StoreList StoreRefsForMemcpy;
151   bool HasMemset;
152   bool HasMemsetPattern;
153   bool HasMemcpy;
154 
155   /// Return code for isLegalStore()
156   enum LegalStoreKind {
157     None = 0,
158     Memset,
159     MemsetPattern,
160     Memcpy,
161     UnorderedAtomicMemcpy,
162     DontUse // Dummy retval never to be used. Allows catching errors in retval
163             // handling.
164   };
165 
166   /// \name Countable Loop Idiom Handling
167   /// @{
168 
169   bool runOnCountableLoop();
170   bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
171                       SmallVectorImpl<BasicBlock *> &ExitBlocks);
172 
173   void collectStores(BasicBlock *BB);
174   LegalStoreKind isLegalStore(StoreInst *SI);
175   enum class ForMemset { No, Yes };
176   bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
177                          ForMemset For);
178   bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
179 
180   bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
181                                MaybeAlign StoreAlignment, Value *StoredVal,
182                                Instruction *TheStore,
183                                SmallPtrSetImpl<Instruction *> &Stores,
184                                const SCEVAddRecExpr *Ev, const SCEV *BECount,
185                                bool NegStride, bool IsLoopMemset = false);
186   bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
187   bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
188                                  bool IsLoopMemset = false);
189 
190   /// @}
191   /// \name Noncountable Loop Idiom Handling
192   /// @{
193 
194   bool runOnNoncountableLoop();
195 
196   bool recognizePopcount();
197   void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
198                                PHINode *CntPhi, Value *Var);
199   bool recognizeAndInsertFFS();  /// Find First Set: ctlz or cttz
200   void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
201                                 Instruction *CntInst, PHINode *CntPhi,
202                                 Value *Var, Instruction *DefX,
203                                 const DebugLoc &DL, bool ZeroCheck,
204                                 bool IsCntPhiUsedOutsideLoop);
205 
206   /// @}
207 };
208 
209 class LoopIdiomRecognizeLegacyPass : public LoopPass {
210 public:
211   static char ID;
212 
213   explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
214     initializeLoopIdiomRecognizeLegacyPassPass(
215         *PassRegistry::getPassRegistry());
216   }
217 
218   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
219     if (skipLoop(L))
220       return false;
221 
222     AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
223     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
224     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
225     ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
226     TargetLibraryInfo *TLI =
227         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
228             *L->getHeader()->getParent());
229     const TargetTransformInfo *TTI =
230         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
231             *L->getHeader()->getParent());
232     const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
233     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
234     MemorySSA *MSSA = nullptr;
235     if (MSSAAnalysis)
236       MSSA = &MSSAAnalysis->getMSSA();
237 
238     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
239     // pass.  Function analyses need to be preserved across loop transformations
240     // but ORE cannot be preserved (see comment before the pass definition).
241     OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
242 
243     LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE);
244     return LIR.runOnLoop(L);
245   }
246 
247   /// This transformation requires natural loop information & requires that
248   /// loop preheaders be inserted into the CFG.
249   void getAnalysisUsage(AnalysisUsage &AU) const override {
250     AU.addRequired<TargetLibraryInfoWrapperPass>();
251     AU.addRequired<TargetTransformInfoWrapperPass>();
252     AU.addPreserved<MemorySSAWrapperPass>();
253     getLoopAnalysisUsage(AU);
254   }
255 };
256 
257 } // end anonymous namespace
258 
259 char LoopIdiomRecognizeLegacyPass::ID = 0;
260 
261 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
262                                               LoopStandardAnalysisResults &AR,
263                                               LPMUpdater &) {
264   const auto *DL = &L.getHeader()->getModule()->getDataLayout();
265 
266   // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
267   // pass.  Function analyses need to be preserved across loop transformations
268   // but ORE cannot be preserved (see comment before the pass definition).
269   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
270 
271   LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI,
272                          AR.MSSA, DL, ORE);
273   if (!LIR.runOnLoop(&L))
274     return PreservedAnalyses::all();
275 
276   auto PA = getLoopPassPreservedAnalyses();
277   if (AR.MSSA)
278     PA.preserve<MemorySSAAnalysis>();
279   return PA;
280 }
281 
282 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
283                       "Recognize loop idioms", false, false)
284 INITIALIZE_PASS_DEPENDENCY(LoopPass)
285 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
286 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
287 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
288                     "Recognize loop idioms", false, false)
289 
290 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
291 
292 static void deleteDeadInstruction(Instruction *I) {
293   I->replaceAllUsesWith(UndefValue::get(I->getType()));
294   I->eraseFromParent();
295 }
296 
297 //===----------------------------------------------------------------------===//
298 //
299 //          Implementation of LoopIdiomRecognize
300 //
301 //===----------------------------------------------------------------------===//
302 
303 bool LoopIdiomRecognize::runOnLoop(Loop *L) {
304   CurLoop = L;
305   // If the loop could not be converted to canonical form, it must have an
306   // indirectbr in it, just give up.
307   if (!L->getLoopPreheader())
308     return false;
309 
310   // Disable loop idiom recognition if the function's name is a common idiom.
311   StringRef Name = L->getHeader()->getParent()->getName();
312   if (Name == "memset" || Name == "memcpy")
313     return false;
314 
315   // Determine if code size heuristics need to be applied.
316   ApplyCodeSizeHeuristics =
317       L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
318 
319   HasMemset = TLI->has(LibFunc_memset);
320   HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
321   HasMemcpy = TLI->has(LibFunc_memcpy);
322 
323   if (HasMemset || HasMemsetPattern || HasMemcpy)
324     if (SE->hasLoopInvariantBackedgeTakenCount(L))
325       return runOnCountableLoop();
326 
327   return runOnNoncountableLoop();
328 }
329 
330 bool LoopIdiomRecognize::runOnCountableLoop() {
331   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
332   assert(!isa<SCEVCouldNotCompute>(BECount) &&
333          "runOnCountableLoop() called on a loop without a predictable"
334          "backedge-taken count");
335 
336   // If this loop executes exactly one time, then it should be peeled, not
337   // optimized by this pass.
338   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
339     if (BECst->getAPInt() == 0)
340       return false;
341 
342   SmallVector<BasicBlock *, 8> ExitBlocks;
343   CurLoop->getUniqueExitBlocks(ExitBlocks);
344 
345   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
346                     << CurLoop->getHeader()->getParent()->getName()
347                     << "] Countable Loop %" << CurLoop->getHeader()->getName()
348                     << "\n");
349 
350   // The following transforms hoist stores/memsets into the loop pre-header.
351   // Give up if the loop has instructions that may throw.
352   SimpleLoopSafetyInfo SafetyInfo;
353   SafetyInfo.computeLoopSafetyInfo(CurLoop);
354   if (SafetyInfo.anyBlockMayThrow())
355     return false;
356 
357   bool MadeChange = false;
358 
359   // Scan all the blocks in the loop that are not in subloops.
360   for (auto *BB : CurLoop->getBlocks()) {
361     // Ignore blocks in subloops.
362     if (LI->getLoopFor(BB) != CurLoop)
363       continue;
364 
365     MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
366   }
367   return MadeChange;
368 }
369 
370 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
371   const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
372   return ConstStride->getAPInt();
373 }
374 
375 /// getMemSetPatternValue - If a strided store of the specified value is safe to
376 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
377 /// be passed in.  Otherwise, return null.
378 ///
379 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
380 /// just replicate their input array and then pass on to memset_pattern16.
381 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
382   // FIXME: This could check for UndefValue because it can be merged into any
383   // other valid pattern.
384 
385   // If the value isn't a constant, we can't promote it to being in a constant
386   // array.  We could theoretically do a store to an alloca or something, but
387   // that doesn't seem worthwhile.
388   Constant *C = dyn_cast<Constant>(V);
389   if (!C)
390     return nullptr;
391 
392   // Only handle simple values that are a power of two bytes in size.
393   uint64_t Size = DL->getTypeSizeInBits(V->getType());
394   if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
395     return nullptr;
396 
397   // Don't care enough about darwin/ppc to implement this.
398   if (DL->isBigEndian())
399     return nullptr;
400 
401   // Convert to size in bytes.
402   Size /= 8;
403 
404   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
405   // if the top and bottom are the same (e.g. for vectors and large integers).
406   if (Size > 16)
407     return nullptr;
408 
409   // If the constant is exactly 16 bytes, just use it.
410   if (Size == 16)
411     return C;
412 
413   // Otherwise, we'll use an array of the constants.
414   unsigned ArraySize = 16 / Size;
415   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
416   return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
417 }
418 
419 LoopIdiomRecognize::LegalStoreKind
420 LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
421   // Don't touch volatile stores.
422   if (SI->isVolatile())
423     return LegalStoreKind::None;
424   // We only want simple or unordered-atomic stores.
425   if (!SI->isUnordered())
426     return LegalStoreKind::None;
427 
428   // Don't convert stores of non-integral pointer types to memsets (which stores
429   // integers).
430   if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType()))
431     return LegalStoreKind::None;
432 
433   // Avoid merging nontemporal stores.
434   if (SI->getMetadata(LLVMContext::MD_nontemporal))
435     return LegalStoreKind::None;
436 
437   Value *StoredVal = SI->getValueOperand();
438   Value *StorePtr = SI->getPointerOperand();
439 
440   // Reject stores that are so large that they overflow an unsigned.
441   uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
442   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
443     return LegalStoreKind::None;
444 
445   // See if the pointer expression is an AddRec like {base,+,1} on the current
446   // loop, which indicates a strided store.  If we have something else, it's a
447   // random store we can't handle.
448   const SCEVAddRecExpr *StoreEv =
449       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
450   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
451     return LegalStoreKind::None;
452 
453   // Check to see if we have a constant stride.
454   if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
455     return LegalStoreKind::None;
456 
457   // See if the store can be turned into a memset.
458 
459   // If the stored value is a byte-wise value (like i32 -1), then it may be
460   // turned into a memset of i8 -1, assuming that all the consecutive bytes
461   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
462   // but it can be turned into memset_pattern if the target supports it.
463   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
464   Constant *PatternValue = nullptr;
465 
466   // Note: memset and memset_pattern on unordered-atomic is yet not supported
467   bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
468 
469   // If we're allowed to form a memset, and the stored value would be
470   // acceptable for memset, use it.
471   if (!UnorderedAtomic && HasMemset && SplatValue &&
472       // Verify that the stored value is loop invariant.  If not, we can't
473       // promote the memset.
474       CurLoop->isLoopInvariant(SplatValue)) {
475     // It looks like we can use SplatValue.
476     return LegalStoreKind::Memset;
477   } else if (!UnorderedAtomic && HasMemsetPattern &&
478              // Don't create memset_pattern16s with address spaces.
479              StorePtr->getType()->getPointerAddressSpace() == 0 &&
480              (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
481     // It looks like we can use PatternValue!
482     return LegalStoreKind::MemsetPattern;
483   }
484 
485   // Otherwise, see if the store can be turned into a memcpy.
486   if (HasMemcpy) {
487     // Check to see if the stride matches the size of the store.  If so, then we
488     // know that every byte is touched in the loop.
489     APInt Stride = getStoreStride(StoreEv);
490     unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
491     if (StoreSize != Stride && StoreSize != -Stride)
492       return LegalStoreKind::None;
493 
494     // The store must be feeding a non-volatile load.
495     LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
496 
497     // Only allow non-volatile loads
498     if (!LI || LI->isVolatile())
499       return LegalStoreKind::None;
500     // Only allow simple or unordered-atomic loads
501     if (!LI->isUnordered())
502       return LegalStoreKind::None;
503 
504     // See if the pointer expression is an AddRec like {base,+,1} on the current
505     // loop, which indicates a strided load.  If we have something else, it's a
506     // random load we can't handle.
507     const SCEVAddRecExpr *LoadEv =
508         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
509     if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
510       return LegalStoreKind::None;
511 
512     // The store and load must share the same stride.
513     if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
514       return LegalStoreKind::None;
515 
516     // Success.  This store can be converted into a memcpy.
517     UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
518     return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
519                            : LegalStoreKind::Memcpy;
520   }
521   // This store can't be transformed into a memset/memcpy.
522   return LegalStoreKind::None;
523 }
524 
525 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
526   StoreRefsForMemset.clear();
527   StoreRefsForMemsetPattern.clear();
528   StoreRefsForMemcpy.clear();
529   for (Instruction &I : *BB) {
530     StoreInst *SI = dyn_cast<StoreInst>(&I);
531     if (!SI)
532       continue;
533 
534     // Make sure this is a strided store with a constant stride.
535     switch (isLegalStore(SI)) {
536     case LegalStoreKind::None:
537       // Nothing to do
538       break;
539     case LegalStoreKind::Memset: {
540       // Find the base pointer.
541       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
542       StoreRefsForMemset[Ptr].push_back(SI);
543     } break;
544     case LegalStoreKind::MemsetPattern: {
545       // Find the base pointer.
546       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
547       StoreRefsForMemsetPattern[Ptr].push_back(SI);
548     } break;
549     case LegalStoreKind::Memcpy:
550     case LegalStoreKind::UnorderedAtomicMemcpy:
551       StoreRefsForMemcpy.push_back(SI);
552       break;
553     default:
554       assert(false && "unhandled return value");
555       break;
556     }
557   }
558 }
559 
560 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
561 /// with the specified backedge count.  This block is known to be in the current
562 /// loop and not in any subloops.
563 bool LoopIdiomRecognize::runOnLoopBlock(
564     BasicBlock *BB, const SCEV *BECount,
565     SmallVectorImpl<BasicBlock *> &ExitBlocks) {
566   // We can only promote stores in this block if they are unconditionally
567   // executed in the loop.  For a block to be unconditionally executed, it has
568   // to dominate all the exit blocks of the loop.  Verify this now.
569   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
570     if (!DT->dominates(BB, ExitBlocks[i]))
571       return false;
572 
573   bool MadeChange = false;
574   // Look for store instructions, which may be optimized to memset/memcpy.
575   collectStores(BB);
576 
577   // Look for a single store or sets of stores with a common base, which can be
578   // optimized into a memset (memset_pattern).  The latter most commonly happens
579   // with structs and handunrolled loops.
580   for (auto &SL : StoreRefsForMemset)
581     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
582 
583   for (auto &SL : StoreRefsForMemsetPattern)
584     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
585 
586   // Optimize the store into a memcpy, if it feeds an similarly strided load.
587   for (auto &SI : StoreRefsForMemcpy)
588     MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
589 
590   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
591     Instruction *Inst = &*I++;
592     // Look for memset instructions, which may be optimized to a larger memset.
593     if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
594       WeakTrackingVH InstPtr(&*I);
595       if (!processLoopMemSet(MSI, BECount))
596         continue;
597       MadeChange = true;
598 
599       // If processing the memset invalidated our iterator, start over from the
600       // top of the block.
601       if (!InstPtr)
602         I = BB->begin();
603       continue;
604     }
605   }
606 
607   return MadeChange;
608 }
609 
610 /// See if this store(s) can be promoted to a memset.
611 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
612                                            const SCEV *BECount, ForMemset For) {
613   // Try to find consecutive stores that can be transformed into memsets.
614   SetVector<StoreInst *> Heads, Tails;
615   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
616 
617   // Do a quadratic search on all of the given stores and find
618   // all of the pairs of stores that follow each other.
619   SmallVector<unsigned, 16> IndexQueue;
620   for (unsigned i = 0, e = SL.size(); i < e; ++i) {
621     assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
622 
623     Value *FirstStoredVal = SL[i]->getValueOperand();
624     Value *FirstStorePtr = SL[i]->getPointerOperand();
625     const SCEVAddRecExpr *FirstStoreEv =
626         cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
627     APInt FirstStride = getStoreStride(FirstStoreEv);
628     unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
629 
630     // See if we can optimize just this store in isolation.
631     if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
632       Heads.insert(SL[i]);
633       continue;
634     }
635 
636     Value *FirstSplatValue = nullptr;
637     Constant *FirstPatternValue = nullptr;
638 
639     if (For == ForMemset::Yes)
640       FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
641     else
642       FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
643 
644     assert((FirstSplatValue || FirstPatternValue) &&
645            "Expected either splat value or pattern value.");
646 
647     IndexQueue.clear();
648     // If a store has multiple consecutive store candidates, search Stores
649     // array according to the sequence: from i+1 to e, then from i-1 to 0.
650     // This is because usually pairing with immediate succeeding or preceding
651     // candidate create the best chance to find memset opportunity.
652     unsigned j = 0;
653     for (j = i + 1; j < e; ++j)
654       IndexQueue.push_back(j);
655     for (j = i; j > 0; --j)
656       IndexQueue.push_back(j - 1);
657 
658     for (auto &k : IndexQueue) {
659       assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
660       Value *SecondStorePtr = SL[k]->getPointerOperand();
661       const SCEVAddRecExpr *SecondStoreEv =
662           cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
663       APInt SecondStride = getStoreStride(SecondStoreEv);
664 
665       if (FirstStride != SecondStride)
666         continue;
667 
668       Value *SecondStoredVal = SL[k]->getValueOperand();
669       Value *SecondSplatValue = nullptr;
670       Constant *SecondPatternValue = nullptr;
671 
672       if (For == ForMemset::Yes)
673         SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
674       else
675         SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
676 
677       assert((SecondSplatValue || SecondPatternValue) &&
678              "Expected either splat value or pattern value.");
679 
680       if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
681         if (For == ForMemset::Yes) {
682           if (isa<UndefValue>(FirstSplatValue))
683             FirstSplatValue = SecondSplatValue;
684           if (FirstSplatValue != SecondSplatValue)
685             continue;
686         } else {
687           if (isa<UndefValue>(FirstPatternValue))
688             FirstPatternValue = SecondPatternValue;
689           if (FirstPatternValue != SecondPatternValue)
690             continue;
691         }
692         Tails.insert(SL[k]);
693         Heads.insert(SL[i]);
694         ConsecutiveChain[SL[i]] = SL[k];
695         break;
696       }
697     }
698   }
699 
700   // We may run into multiple chains that merge into a single chain. We mark the
701   // stores that we transformed so that we don't visit the same store twice.
702   SmallPtrSet<Value *, 16> TransformedStores;
703   bool Changed = false;
704 
705   // For stores that start but don't end a link in the chain:
706   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
707        it != e; ++it) {
708     if (Tails.count(*it))
709       continue;
710 
711     // We found a store instr that starts a chain. Now follow the chain and try
712     // to transform it.
713     SmallPtrSet<Instruction *, 8> AdjacentStores;
714     StoreInst *I = *it;
715 
716     StoreInst *HeadStore = I;
717     unsigned StoreSize = 0;
718 
719     // Collect the chain into a list.
720     while (Tails.count(I) || Heads.count(I)) {
721       if (TransformedStores.count(I))
722         break;
723       AdjacentStores.insert(I);
724 
725       StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
726       // Move to the next value in the chain.
727       I = ConsecutiveChain[I];
728     }
729 
730     Value *StoredVal = HeadStore->getValueOperand();
731     Value *StorePtr = HeadStore->getPointerOperand();
732     const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
733     APInt Stride = getStoreStride(StoreEv);
734 
735     // Check to see if the stride matches the size of the stores.  If so, then
736     // we know that every byte is touched in the loop.
737     if (StoreSize != Stride && StoreSize != -Stride)
738       continue;
739 
740     bool NegStride = StoreSize == -Stride;
741 
742     if (processLoopStridedStore(StorePtr, StoreSize,
743                                 MaybeAlign(HeadStore->getAlignment()),
744                                 StoredVal, HeadStore, AdjacentStores, StoreEv,
745                                 BECount, NegStride)) {
746       TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
747       Changed = true;
748     }
749   }
750 
751   return Changed;
752 }
753 
754 /// processLoopMemSet - See if this memset can be promoted to a large memset.
755 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
756                                            const SCEV *BECount) {
757   // We can only handle non-volatile memsets with a constant size.
758   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
759     return false;
760 
761   // If we're not allowed to hack on memset, we fail.
762   if (!HasMemset)
763     return false;
764 
765   Value *Pointer = MSI->getDest();
766 
767   // See if the pointer expression is an AddRec like {base,+,1} on the current
768   // loop, which indicates a strided store.  If we have something else, it's a
769   // random store we can't handle.
770   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
771   if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
772     return false;
773 
774   // Reject memsets that are so large that they overflow an unsigned.
775   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
776   if ((SizeInBytes >> 32) != 0)
777     return false;
778 
779   // Check to see if the stride matches the size of the memset.  If so, then we
780   // know that every byte is touched in the loop.
781   const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
782   if (!ConstStride)
783     return false;
784 
785   APInt Stride = ConstStride->getAPInt();
786   if (SizeInBytes != Stride && SizeInBytes != -Stride)
787     return false;
788 
789   // Verify that the memset value is loop invariant.  If not, we can't promote
790   // the memset.
791   Value *SplatValue = MSI->getValue();
792   if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
793     return false;
794 
795   SmallPtrSet<Instruction *, 1> MSIs;
796   MSIs.insert(MSI);
797   bool NegStride = SizeInBytes == -Stride;
798   return processLoopStridedStore(
799       Pointer, (unsigned)SizeInBytes, MaybeAlign(MSI->getDestAlignment()),
800       SplatValue, MSI, MSIs, Ev, BECount, NegStride, /*IsLoopMemset=*/true);
801 }
802 
803 /// mayLoopAccessLocation - Return true if the specified loop might access the
804 /// specified pointer location, which is a loop-strided access.  The 'Access'
805 /// argument specifies what the verboten forms of access are (read or write).
806 static bool
807 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
808                       const SCEV *BECount, unsigned StoreSize,
809                       AliasAnalysis &AA,
810                       SmallPtrSetImpl<Instruction *> &IgnoredStores) {
811   // Get the location that may be stored across the loop.  Since the access is
812   // strided positively through memory, we say that the modified location starts
813   // at the pointer and has infinite size.
814   LocationSize AccessSize = LocationSize::unknown();
815 
816   // If the loop iterates a fixed number of times, we can refine the access size
817   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
818   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
819     AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
820                                        StoreSize);
821 
822   // TODO: For this to be really effective, we have to dive into the pointer
823   // operand in the store.  Store to &A[i] of 100 will always return may alias
824   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
825   // which will then no-alias a store to &A[100].
826   MemoryLocation StoreLoc(Ptr, AccessSize);
827 
828   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
829        ++BI)
830     for (Instruction &I : **BI)
831       if (IgnoredStores.count(&I) == 0 &&
832           isModOrRefSet(
833               intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
834         return true;
835 
836   return false;
837 }
838 
839 // If we have a negative stride, Start refers to the end of the memory location
840 // we're trying to memset.  Therefore, we need to recompute the base pointer,
841 // which is just Start - BECount*Size.
842 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
843                                         Type *IntPtr, unsigned StoreSize,
844                                         ScalarEvolution *SE) {
845   const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
846   if (StoreSize != 1)
847     Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
848                            SCEV::FlagNUW);
849   return SE->getMinusSCEV(Start, Index);
850 }
851 
852 /// Compute the number of bytes as a SCEV from the backedge taken count.
853 ///
854 /// This also maps the SCEV into the provided type and tries to handle the
855 /// computation in a way that will fold cleanly.
856 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
857                                unsigned StoreSize, Loop *CurLoop,
858                                const DataLayout *DL, ScalarEvolution *SE) {
859   const SCEV *NumBytesS;
860   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
861   // pointer size if it isn't already.
862   //
863   // If we're going to need to zero extend the BE count, check if we can add
864   // one to it prior to zero extending without overflow. Provided this is safe,
865   // it allows better simplification of the +1.
866   if (DL->getTypeSizeInBits(BECount->getType()) <
867           DL->getTypeSizeInBits(IntPtr) &&
868       SE->isLoopEntryGuardedByCond(
869           CurLoop, ICmpInst::ICMP_NE, BECount,
870           SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
871     NumBytesS = SE->getZeroExtendExpr(
872         SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
873         IntPtr);
874   } else {
875     NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
876                                SE->getOne(IntPtr), SCEV::FlagNUW);
877   }
878 
879   // And scale it based on the store size.
880   if (StoreSize != 1) {
881     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
882                                SCEV::FlagNUW);
883   }
884   return NumBytesS;
885 }
886 
887 /// processLoopStridedStore - We see a strided store of some value.  If we can
888 /// transform this into a memset or memset_pattern in the loop preheader, do so.
889 bool LoopIdiomRecognize::processLoopStridedStore(
890     Value *DestPtr, unsigned StoreSize, MaybeAlign StoreAlignment,
891     Value *StoredVal, Instruction *TheStore,
892     SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
893     const SCEV *BECount, bool NegStride, bool IsLoopMemset) {
894   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
895   Constant *PatternValue = nullptr;
896 
897   if (!SplatValue)
898     PatternValue = getMemSetPatternValue(StoredVal, DL);
899 
900   assert((SplatValue || PatternValue) &&
901          "Expected either splat value or pattern value.");
902 
903   // The trip count of the loop and the base pointer of the addrec SCEV is
904   // guaranteed to be loop invariant, which means that it should dominate the
905   // header.  This allows us to insert code for it in the preheader.
906   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
907   BasicBlock *Preheader = CurLoop->getLoopPreheader();
908   IRBuilder<> Builder(Preheader->getTerminator());
909   SCEVExpander Expander(*SE, *DL, "loop-idiom");
910 
911   Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
912   Type *IntIdxTy = DL->getIndexType(DestPtr->getType());
913 
914   const SCEV *Start = Ev->getStart();
915   // Handle negative strided loops.
916   if (NegStride)
917     Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSize, SE);
918 
919   // TODO: ideally we should still be able to generate memset if SCEV expander
920   // is taught to generate the dependencies at the latest point.
921   if (!isSafeToExpand(Start, *SE))
922     return false;
923 
924   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
925   // this into a memset in the loop preheader now if we want.  However, this
926   // would be unsafe to do if there is anything else in the loop that may read
927   // or write to the aliased location.  Check for any overlap by generating the
928   // base pointer and checking the region.
929   Value *BasePtr =
930       Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
931   if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
932                             StoreSize, *AA, Stores)) {
933     Expander.clear();
934     // If we generated new code for the base pointer, clean up.
935     RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
936     return false;
937   }
938 
939   if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
940     return false;
941 
942   // Okay, everything looks good, insert the memset.
943 
944   const SCEV *NumBytesS =
945       getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE);
946 
947   // TODO: ideally we should still be able to generate memset if SCEV expander
948   // is taught to generate the dependencies at the latest point.
949   if (!isSafeToExpand(NumBytesS, *SE))
950     return false;
951 
952   Value *NumBytes =
953       Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
954 
955   CallInst *NewCall;
956   if (SplatValue) {
957     NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes,
958                                    MaybeAlign(StoreAlignment));
959   } else {
960     // Everything is emitted in default address space
961     Type *Int8PtrTy = DestInt8PtrTy;
962 
963     Module *M = TheStore->getModule();
964     StringRef FuncName = "memset_pattern16";
965     FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
966                                                 Int8PtrTy, Int8PtrTy, IntIdxTy);
967     inferLibFuncAttributes(M, FuncName, *TLI);
968 
969     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
970     // an constant array of 16-bytes.  Plop the value into a mergable global.
971     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
972                                             GlobalValue::PrivateLinkage,
973                                             PatternValue, ".memset_pattern");
974     GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
975     GV->setAlignment(Align(16));
976     Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
977     NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
978   }
979   NewCall->setDebugLoc(TheStore->getDebugLoc());
980 
981   if (MSSAU) {
982     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
983         NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
984     MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
985   }
986 
987   LLVM_DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
988                     << "    from store to: " << *Ev << " at: " << *TheStore
989                     << "\n");
990 
991   ORE.emit([&]() {
992     return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore",
993                               NewCall->getDebugLoc(), Preheader)
994            << "Transformed loop-strided store into a call to "
995            << ore::NV("NewFunction", NewCall->getCalledFunction())
996            << "() function";
997   });
998 
999   // Okay, the memset has been formed.  Zap the original store and anything that
1000   // feeds into it.
1001   for (auto *I : Stores) {
1002     if (MSSAU)
1003       MSSAU->removeMemoryAccess(I, true);
1004     deleteDeadInstruction(I);
1005   }
1006   if (MSSAU && VerifyMemorySSA)
1007     MSSAU->getMemorySSA()->verifyMemorySSA();
1008   ++NumMemSet;
1009   return true;
1010 }
1011 
1012 /// If the stored value is a strided load in the same loop with the same stride
1013 /// this may be transformable into a memcpy.  This kicks in for stuff like
1014 /// for (i) A[i] = B[i];
1015 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
1016                                                     const SCEV *BECount) {
1017   assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
1018 
1019   Value *StorePtr = SI->getPointerOperand();
1020   const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1021   APInt Stride = getStoreStride(StoreEv);
1022   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1023   bool NegStride = StoreSize == -Stride;
1024 
1025   // The store must be feeding a non-volatile load.
1026   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1027   assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
1028 
1029   // See if the pointer expression is an AddRec like {base,+,1} on the current
1030   // loop, which indicates a strided load.  If we have something else, it's a
1031   // random load we can't handle.
1032   const SCEVAddRecExpr *LoadEv =
1033       cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
1034 
1035   // The trip count of the loop and the base pointer of the addrec SCEV is
1036   // guaranteed to be loop invariant, which means that it should dominate the
1037   // header.  This allows us to insert code for it in the preheader.
1038   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1039   IRBuilder<> Builder(Preheader->getTerminator());
1040   SCEVExpander Expander(*SE, *DL, "loop-idiom");
1041 
1042   const SCEV *StrStart = StoreEv->getStart();
1043   unsigned StrAS = SI->getPointerAddressSpace();
1044   Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS));
1045 
1046   // Handle negative strided loops.
1047   if (NegStride)
1048     StrStart = getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSize, SE);
1049 
1050   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
1051   // this into a memcpy in the loop preheader now if we want.  However, this
1052   // would be unsafe to do if there is anything else in the loop that may read
1053   // or write the memory region we're storing to.  This includes the load that
1054   // feeds the stores.  Check for an alias by generating the base address and
1055   // checking everything.
1056   Value *StoreBasePtr = Expander.expandCodeFor(
1057       StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
1058 
1059   SmallPtrSet<Instruction *, 1> Stores;
1060   Stores.insert(SI);
1061   if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1062                             StoreSize, *AA, Stores)) {
1063     Expander.clear();
1064     // If we generated new code for the base pointer, clean up.
1065     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
1066     return false;
1067   }
1068 
1069   const SCEV *LdStart = LoadEv->getStart();
1070   unsigned LdAS = LI->getPointerAddressSpace();
1071 
1072   // Handle negative strided loops.
1073   if (NegStride)
1074     LdStart = getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSize, SE);
1075 
1076   // For a memcpy, we have to make sure that the input array is not being
1077   // mutated by the loop.
1078   Value *LoadBasePtr = Expander.expandCodeFor(
1079       LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
1080 
1081   if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
1082                             StoreSize, *AA, Stores)) {
1083     Expander.clear();
1084     // If we generated new code for the base pointer, clean up.
1085     RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
1086     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
1087     return false;
1088   }
1089 
1090   if (avoidLIRForMultiBlockLoop())
1091     return false;
1092 
1093   // Okay, everything is safe, we can transform this!
1094 
1095   const SCEV *NumBytesS =
1096       getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE);
1097 
1098   Value *NumBytes =
1099       Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1100 
1101   CallInst *NewCall = nullptr;
1102   // Check whether to generate an unordered atomic memcpy:
1103   //  If the load or store are atomic, then they must necessarily be unordered
1104   //  by previous checks.
1105   if (!SI->isAtomic() && !LI->isAtomic())
1106     NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlign(), LoadBasePtr,
1107                                    LI->getAlign(), NumBytes);
1108   else {
1109     // We cannot allow unaligned ops for unordered load/store, so reject
1110     // anything where the alignment isn't at least the element size.
1111     const MaybeAlign StoreAlign = SI->getAlign();
1112     const MaybeAlign LoadAlign = LI->getAlign();
1113     if (StoreAlign == None || LoadAlign == None)
1114       return false;
1115     if (*StoreAlign < StoreSize || *LoadAlign < StoreSize)
1116       return false;
1117 
1118     // If the element.atomic memcpy is not lowered into explicit
1119     // loads/stores later, then it will be lowered into an element-size
1120     // specific lib call. If the lib call doesn't exist for our store size, then
1121     // we shouldn't generate the memcpy.
1122     if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1123       return false;
1124 
1125     // Create the call.
1126     // Note that unordered atomic loads/stores are *required* by the spec to
1127     // have an alignment but non-atomic loads/stores may not.
1128     NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1129         StoreBasePtr, *StoreAlign, LoadBasePtr, *LoadAlign, NumBytes,
1130         StoreSize);
1131   }
1132   NewCall->setDebugLoc(SI->getDebugLoc());
1133 
1134   if (MSSAU) {
1135     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1136         NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1137     MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1138   }
1139 
1140   LLVM_DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
1141                     << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
1142                     << "    from store ptr=" << *StoreEv << " at: " << *SI
1143                     << "\n");
1144 
1145   ORE.emit([&]() {
1146     return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
1147                               NewCall->getDebugLoc(), Preheader)
1148            << "Formed a call to "
1149            << ore::NV("NewFunction", NewCall->getCalledFunction())
1150            << "() function";
1151   });
1152 
1153   // Okay, the memcpy has been formed.  Zap the original store and anything that
1154   // feeds into it.
1155   if (MSSAU)
1156     MSSAU->removeMemoryAccess(SI, true);
1157   deleteDeadInstruction(SI);
1158   if (MSSAU && VerifyMemorySSA)
1159     MSSAU->getMemorySSA()->verifyMemorySSA();
1160   ++NumMemCpy;
1161   return true;
1162 }
1163 
1164 // When compiling for codesize we avoid idiom recognition for a multi-block loop
1165 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1166 //
1167 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1168                                                    bool IsLoopMemset) {
1169   if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1170     if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) {
1171       LLVM_DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName()
1172                         << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
1173                         << " avoided: multi-block top-level loop\n");
1174       return true;
1175     }
1176   }
1177 
1178   return false;
1179 }
1180 
1181 bool LoopIdiomRecognize::runOnNoncountableLoop() {
1182   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
1183                     << CurLoop->getHeader()->getParent()->getName()
1184                     << "] Noncountable Loop %"
1185                     << CurLoop->getHeader()->getName() << "\n");
1186 
1187   return recognizePopcount() || recognizeAndInsertFFS();
1188 }
1189 
1190 /// Check if the given conditional branch is based on the comparison between
1191 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
1192 /// true), the control yields to the loop entry. If the branch matches the
1193 /// behavior, the variable involved in the comparison is returned. This function
1194 /// will be called to see if the precondition and postcondition of the loop are
1195 /// in desirable form.
1196 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
1197                              bool JmpOnZero = false) {
1198   if (!BI || !BI->isConditional())
1199     return nullptr;
1200 
1201   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1202   if (!Cond)
1203     return nullptr;
1204 
1205   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1206   if (!CmpZero || !CmpZero->isZero())
1207     return nullptr;
1208 
1209   BasicBlock *TrueSucc = BI->getSuccessor(0);
1210   BasicBlock *FalseSucc = BI->getSuccessor(1);
1211   if (JmpOnZero)
1212     std::swap(TrueSucc, FalseSucc);
1213 
1214   ICmpInst::Predicate Pred = Cond->getPredicate();
1215   if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
1216       (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
1217     return Cond->getOperand(0);
1218 
1219   return nullptr;
1220 }
1221 
1222 // Check if the recurrence variable `VarX` is in the right form to create
1223 // the idiom. Returns the value coerced to a PHINode if so.
1224 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1225                                  BasicBlock *LoopEntry) {
1226   auto *PhiX = dyn_cast<PHINode>(VarX);
1227   if (PhiX && PhiX->getParent() == LoopEntry &&
1228       (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1229     return PhiX;
1230   return nullptr;
1231 }
1232 
1233 /// Return true iff the idiom is detected in the loop.
1234 ///
1235 /// Additionally:
1236 /// 1) \p CntInst is set to the instruction counting the population bit.
1237 /// 2) \p CntPhi is set to the corresponding phi node.
1238 /// 3) \p Var is set to the value whose population bits are being counted.
1239 ///
1240 /// The core idiom we are trying to detect is:
1241 /// \code
1242 ///    if (x0 != 0)
1243 ///      goto loop-exit // the precondition of the loop
1244 ///    cnt0 = init-val;
1245 ///    do {
1246 ///       x1 = phi (x0, x2);
1247 ///       cnt1 = phi(cnt0, cnt2);
1248 ///
1249 ///       cnt2 = cnt1 + 1;
1250 ///        ...
1251 ///       x2 = x1 & (x1 - 1);
1252 ///        ...
1253 ///    } while(x != 0);
1254 ///
1255 /// loop-exit:
1256 /// \endcode
1257 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1258                                 Instruction *&CntInst, PHINode *&CntPhi,
1259                                 Value *&Var) {
1260   // step 1: Check to see if the look-back branch match this pattern:
1261   //    "if (a!=0) goto loop-entry".
1262   BasicBlock *LoopEntry;
1263   Instruction *DefX2, *CountInst;
1264   Value *VarX1, *VarX0;
1265   PHINode *PhiX, *CountPhi;
1266 
1267   DefX2 = CountInst = nullptr;
1268   VarX1 = VarX0 = nullptr;
1269   PhiX = CountPhi = nullptr;
1270   LoopEntry = *(CurLoop->block_begin());
1271 
1272   // step 1: Check if the loop-back branch is in desirable form.
1273   {
1274     if (Value *T = matchCondition(
1275             dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1276       DefX2 = dyn_cast<Instruction>(T);
1277     else
1278       return false;
1279   }
1280 
1281   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1282   {
1283     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1284       return false;
1285 
1286     BinaryOperator *SubOneOp;
1287 
1288     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1289       VarX1 = DefX2->getOperand(1);
1290     else {
1291       VarX1 = DefX2->getOperand(0);
1292       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1293     }
1294     if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
1295       return false;
1296 
1297     ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
1298     if (!Dec ||
1299         !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1300           (SubOneOp->getOpcode() == Instruction::Add &&
1301            Dec->isMinusOne()))) {
1302       return false;
1303     }
1304   }
1305 
1306   // step 3: Check the recurrence of variable X
1307   PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1308   if (!PhiX)
1309     return false;
1310 
1311   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1312   {
1313     CountInst = nullptr;
1314     for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1315                               IterE = LoopEntry->end();
1316          Iter != IterE; Iter++) {
1317       Instruction *Inst = &*Iter;
1318       if (Inst->getOpcode() != Instruction::Add)
1319         continue;
1320 
1321       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1322       if (!Inc || !Inc->isOne())
1323         continue;
1324 
1325       PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1326       if (!Phi)
1327         continue;
1328 
1329       // Check if the result of the instruction is live of the loop.
1330       bool LiveOutLoop = false;
1331       for (User *U : Inst->users()) {
1332         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1333           LiveOutLoop = true;
1334           break;
1335         }
1336       }
1337 
1338       if (LiveOutLoop) {
1339         CountInst = Inst;
1340         CountPhi = Phi;
1341         break;
1342       }
1343     }
1344 
1345     if (!CountInst)
1346       return false;
1347   }
1348 
1349   // step 5: check if the precondition is in this form:
1350   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1351   {
1352     auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1353     Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1354     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1355       return false;
1356 
1357     CntInst = CountInst;
1358     CntPhi = CountPhi;
1359     Var = T;
1360   }
1361 
1362   return true;
1363 }
1364 
1365 /// Return true if the idiom is detected in the loop.
1366 ///
1367 /// Additionally:
1368 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1369 ///       or nullptr if there is no such.
1370 /// 2) \p CntPhi is set to the corresponding phi node
1371 ///       or nullptr if there is no such.
1372 /// 3) \p Var is set to the value whose CTLZ could be used.
1373 /// 4) \p DefX is set to the instruction calculating Loop exit condition.
1374 ///
1375 /// The core idiom we are trying to detect is:
1376 /// \code
1377 ///    if (x0 == 0)
1378 ///      goto loop-exit // the precondition of the loop
1379 ///    cnt0 = init-val;
1380 ///    do {
1381 ///       x = phi (x0, x.next);   //PhiX
1382 ///       cnt = phi(cnt0, cnt.next);
1383 ///
1384 ///       cnt.next = cnt + 1;
1385 ///        ...
1386 ///       x.next = x >> 1;   // DefX
1387 ///        ...
1388 ///    } while(x.next != 0);
1389 ///
1390 /// loop-exit:
1391 /// \endcode
1392 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
1393                                       Intrinsic::ID &IntrinID, Value *&InitX,
1394                                       Instruction *&CntInst, PHINode *&CntPhi,
1395                                       Instruction *&DefX) {
1396   BasicBlock *LoopEntry;
1397   Value *VarX = nullptr;
1398 
1399   DefX = nullptr;
1400   CntInst = nullptr;
1401   CntPhi = nullptr;
1402   LoopEntry = *(CurLoop->block_begin());
1403 
1404   // step 1: Check if the loop-back branch is in desirable form.
1405   if (Value *T = matchCondition(
1406           dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1407     DefX = dyn_cast<Instruction>(T);
1408   else
1409     return false;
1410 
1411   // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
1412   if (!DefX || !DefX->isShift())
1413     return false;
1414   IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
1415                                                      Intrinsic::ctlz;
1416   ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1417   if (!Shft || !Shft->isOne())
1418     return false;
1419   VarX = DefX->getOperand(0);
1420 
1421   // step 3: Check the recurrence of variable X
1422   PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1423   if (!PhiX)
1424     return false;
1425 
1426   InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
1427 
1428   // Make sure the initial value can't be negative otherwise the ashr in the
1429   // loop might never reach zero which would make the loop infinite.
1430   if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
1431     return false;
1432 
1433   // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1434   // TODO: We can skip the step. If loop trip count is known (CTLZ),
1435   //       then all uses of "cnt.next" could be optimized to the trip count
1436   //       plus "cnt0". Currently it is not optimized.
1437   //       This step could be used to detect POPCNT instruction:
1438   //       cnt.next = cnt + (x.next & 1)
1439   for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1440                             IterE = LoopEntry->end();
1441        Iter != IterE; Iter++) {
1442     Instruction *Inst = &*Iter;
1443     if (Inst->getOpcode() != Instruction::Add)
1444       continue;
1445 
1446     ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1447     if (!Inc || !Inc->isOne())
1448       continue;
1449 
1450     PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1451     if (!Phi)
1452       continue;
1453 
1454     CntInst = Inst;
1455     CntPhi = Phi;
1456     break;
1457   }
1458   if (!CntInst)
1459     return false;
1460 
1461   return true;
1462 }
1463 
1464 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
1465 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
1466 /// trip count returns true; otherwise, returns false.
1467 bool LoopIdiomRecognize::recognizeAndInsertFFS() {
1468   // Give up if the loop has multiple blocks or multiple backedges.
1469   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1470     return false;
1471 
1472   Intrinsic::ID IntrinID;
1473   Value *InitX;
1474   Instruction *DefX = nullptr;
1475   PHINode *CntPhi = nullptr;
1476   Instruction *CntInst = nullptr;
1477   // Help decide if transformation is profitable. For ShiftUntilZero idiom,
1478   // this is always 6.
1479   size_t IdiomCanonicalSize = 6;
1480 
1481   if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
1482                                  CntInst, CntPhi, DefX))
1483     return false;
1484 
1485   bool IsCntPhiUsedOutsideLoop = false;
1486   for (User *U : CntPhi->users())
1487     if (!CurLoop->contains(cast<Instruction>(U))) {
1488       IsCntPhiUsedOutsideLoop = true;
1489       break;
1490     }
1491   bool IsCntInstUsedOutsideLoop = false;
1492   for (User *U : CntInst->users())
1493     if (!CurLoop->contains(cast<Instruction>(U))) {
1494       IsCntInstUsedOutsideLoop = true;
1495       break;
1496     }
1497   // If both CntInst and CntPhi are used outside the loop the profitability
1498   // is questionable.
1499   if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
1500     return false;
1501 
1502   // For some CPUs result of CTLZ(X) intrinsic is undefined
1503   // when X is 0. If we can not guarantee X != 0, we need to check this
1504   // when expand.
1505   bool ZeroCheck = false;
1506   // It is safe to assume Preheader exist as it was checked in
1507   // parent function RunOnLoop.
1508   BasicBlock *PH = CurLoop->getLoopPreheader();
1509 
1510   // If we are using the count instruction outside the loop, make sure we
1511   // have a zero check as a precondition. Without the check the loop would run
1512   // one iteration for before any check of the input value. This means 0 and 1
1513   // would have identical behavior in the original loop and thus
1514   if (!IsCntPhiUsedOutsideLoop) {
1515     auto *PreCondBB = PH->getSinglePredecessor();
1516     if (!PreCondBB)
1517       return false;
1518     auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1519     if (!PreCondBI)
1520       return false;
1521     if (matchCondition(PreCondBI, PH) != InitX)
1522       return false;
1523     ZeroCheck = true;
1524   }
1525 
1526   // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
1527   // profitable if we delete the loop.
1528 
1529   // the loop has only 6 instructions:
1530   //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1531   //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1532   //  %shr = ashr %n.addr.0, 1
1533   //  %tobool = icmp eq %shr, 0
1534   //  %inc = add nsw %i.0, 1
1535   //  br i1 %tobool
1536 
1537   const Value *Args[] =
1538       {InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext())
1539                         : ConstantInt::getFalse(InitX->getContext())};
1540 
1541   // @llvm.dbg doesn't count as they have no semantic effect.
1542   auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
1543   uint32_t HeaderSize =
1544       std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
1545 
1546   if (HeaderSize != IdiomCanonicalSize &&
1547       TTI->getIntrinsicCost(IntrinID, InitX->getType(), Args) >
1548           TargetTransformInfo::TCC_Basic)
1549     return false;
1550 
1551   transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
1552                            DefX->getDebugLoc(), ZeroCheck,
1553                            IsCntPhiUsedOutsideLoop);
1554   return true;
1555 }
1556 
1557 /// Recognizes a population count idiom in a non-countable loop.
1558 ///
1559 /// If detected, transforms the relevant code to issue the popcount intrinsic
1560 /// function call, and returns true; otherwise, returns false.
1561 bool LoopIdiomRecognize::recognizePopcount() {
1562   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1563     return false;
1564 
1565   // Counting population are usually conducted by few arithmetic instructions.
1566   // Such instructions can be easily "absorbed" by vacant slots in a
1567   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1568   // in a compact loop.
1569 
1570   // Give up if the loop has multiple blocks or multiple backedges.
1571   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1572     return false;
1573 
1574   BasicBlock *LoopBody = *(CurLoop->block_begin());
1575   if (LoopBody->size() >= 20) {
1576     // The loop is too big, bail out.
1577     return false;
1578   }
1579 
1580   // It should have a preheader containing nothing but an unconditional branch.
1581   BasicBlock *PH = CurLoop->getLoopPreheader();
1582   if (!PH || &PH->front() != PH->getTerminator())
1583     return false;
1584   auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1585   if (!EntryBI || EntryBI->isConditional())
1586     return false;
1587 
1588   // It should have a precondition block where the generated popcount intrinsic
1589   // function can be inserted.
1590   auto *PreCondBB = PH->getSinglePredecessor();
1591   if (!PreCondBB)
1592     return false;
1593   auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1594   if (!PreCondBI || PreCondBI->isUnconditional())
1595     return false;
1596 
1597   Instruction *CntInst;
1598   PHINode *CntPhi;
1599   Value *Val;
1600   if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1601     return false;
1602 
1603   transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1604   return true;
1605 }
1606 
1607 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1608                                        const DebugLoc &DL) {
1609   Value *Ops[] = {Val};
1610   Type *Tys[] = {Val->getType()};
1611 
1612   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1613   Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1614   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1615   CI->setDebugLoc(DL);
1616 
1617   return CI;
1618 }
1619 
1620 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1621                                     const DebugLoc &DL, bool ZeroCheck,
1622                                     Intrinsic::ID IID) {
1623   Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()};
1624   Type *Tys[] = {Val->getType()};
1625 
1626   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1627   Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
1628   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1629   CI->setDebugLoc(DL);
1630 
1631   return CI;
1632 }
1633 
1634 /// Transform the following loop (Using CTLZ, CTTZ is similar):
1635 /// loop:
1636 ///   CntPhi = PHI [Cnt0, CntInst]
1637 ///   PhiX = PHI [InitX, DefX]
1638 ///   CntInst = CntPhi + 1
1639 ///   DefX = PhiX >> 1
1640 ///   LOOP_BODY
1641 ///   Br: loop if (DefX != 0)
1642 /// Use(CntPhi) or Use(CntInst)
1643 ///
1644 /// Into:
1645 /// If CntPhi used outside the loop:
1646 ///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
1647 ///   Count = CountPrev + 1
1648 /// else
1649 ///   Count = BitWidth(InitX) - CTLZ(InitX)
1650 /// loop:
1651 ///   CntPhi = PHI [Cnt0, CntInst]
1652 ///   PhiX = PHI [InitX, DefX]
1653 ///   PhiCount = PHI [Count, Dec]
1654 ///   CntInst = CntPhi + 1
1655 ///   DefX = PhiX >> 1
1656 ///   Dec = PhiCount - 1
1657 ///   LOOP_BODY
1658 ///   Br: loop if (Dec != 0)
1659 /// Use(CountPrev + Cnt0) // Use(CntPhi)
1660 /// or
1661 /// Use(Count + Cnt0) // Use(CntInst)
1662 ///
1663 /// If LOOP_BODY is empty the loop will be deleted.
1664 /// If CntInst and DefX are not used in LOOP_BODY they will be removed.
1665 void LoopIdiomRecognize::transformLoopToCountable(
1666     Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
1667     PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
1668     bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
1669   BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
1670 
1671   // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
1672   IRBuilder<> Builder(PreheaderBr);
1673   Builder.SetCurrentDebugLocation(DL);
1674   Value *FFS, *Count, *CountPrev, *NewCount, *InitXNext;
1675 
1676   //   Count = BitWidth - CTLZ(InitX);
1677   // If there are uses of CntPhi create:
1678   //   CountPrev = BitWidth - CTLZ(InitX >> 1);
1679   if (IsCntPhiUsedOutsideLoop) {
1680     if (DefX->getOpcode() == Instruction::AShr)
1681       InitXNext =
1682           Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1));
1683     else if (DefX->getOpcode() == Instruction::LShr)
1684       InitXNext =
1685           Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1));
1686     else if (DefX->getOpcode() == Instruction::Shl) // cttz
1687       InitXNext =
1688           Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1));
1689     else
1690       llvm_unreachable("Unexpected opcode!");
1691   } else
1692     InitXNext = InitX;
1693   FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
1694   Count = Builder.CreateSub(
1695       ConstantInt::get(FFS->getType(),
1696                        FFS->getType()->getIntegerBitWidth()),
1697       FFS);
1698   if (IsCntPhiUsedOutsideLoop) {
1699     CountPrev = Count;
1700     Count = Builder.CreateAdd(
1701         CountPrev,
1702         ConstantInt::get(CountPrev->getType(), 1));
1703   }
1704 
1705   NewCount = Builder.CreateZExtOrTrunc(
1706                       IsCntPhiUsedOutsideLoop ? CountPrev : Count,
1707                       cast<IntegerType>(CntInst->getType()));
1708 
1709   // If the counter's initial value is not zero, insert Add Inst.
1710   Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
1711   ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1712   if (!InitConst || !InitConst->isZero())
1713     NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1714 
1715   // Step 2: Insert new IV and loop condition:
1716   // loop:
1717   //   ...
1718   //   PhiCount = PHI [Count, Dec]
1719   //   ...
1720   //   Dec = PhiCount - 1
1721   //   ...
1722   //   Br: loop if (Dec != 0)
1723   BasicBlock *Body = *(CurLoop->block_begin());
1724   auto *LbBr = cast<BranchInst>(Body->getTerminator());
1725   ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1726   Type *Ty = Count->getType();
1727 
1728   PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1729 
1730   Builder.SetInsertPoint(LbCond);
1731   Instruction *TcDec = cast<Instruction>(
1732       Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1733                         "tcdec", false, true));
1734 
1735   TcPhi->addIncoming(Count, Preheader);
1736   TcPhi->addIncoming(TcDec, Body);
1737 
1738   CmpInst::Predicate Pred =
1739       (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
1740   LbCond->setPredicate(Pred);
1741   LbCond->setOperand(0, TcDec);
1742   LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1743 
1744   // Step 3: All the references to the original counter outside
1745   //  the loop are replaced with the NewCount
1746   if (IsCntPhiUsedOutsideLoop)
1747     CntPhi->replaceUsesOutsideBlock(NewCount, Body);
1748   else
1749     CntInst->replaceUsesOutsideBlock(NewCount, Body);
1750 
1751   // step 4: Forget the "non-computable" trip-count SCEV associated with the
1752   //   loop. The loop would otherwise not be deleted even if it becomes empty.
1753   SE->forgetLoop(CurLoop);
1754 }
1755 
1756 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
1757                                                  Instruction *CntInst,
1758                                                  PHINode *CntPhi, Value *Var) {
1759   BasicBlock *PreHead = CurLoop->getLoopPreheader();
1760   auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
1761   const DebugLoc &DL = CntInst->getDebugLoc();
1762 
1763   // Assuming before transformation, the loop is following:
1764   //  if (x) // the precondition
1765   //     do { cnt++; x &= x - 1; } while(x);
1766 
1767   // Step 1: Insert the ctpop instruction at the end of the precondition block
1768   IRBuilder<> Builder(PreCondBr);
1769   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
1770   {
1771     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
1772     NewCount = PopCntZext =
1773         Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
1774 
1775     if (NewCount != PopCnt)
1776       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1777 
1778     // TripCnt is exactly the number of iterations the loop has
1779     TripCnt = NewCount;
1780 
1781     // If the population counter's initial value is not zero, insert Add Inst.
1782     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
1783     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1784     if (!InitConst || !InitConst->isZero()) {
1785       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1786       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1787     }
1788   }
1789 
1790   // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
1791   //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
1792   //   function would be partial dead code, and downstream passes will drag
1793   //   it back from the precondition block to the preheader.
1794   {
1795     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
1796 
1797     Value *Opnd0 = PopCntZext;
1798     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
1799     if (PreCond->getOperand(0) != Var)
1800       std::swap(Opnd0, Opnd1);
1801 
1802     ICmpInst *NewPreCond = cast<ICmpInst>(
1803         Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
1804     PreCondBr->setCondition(NewPreCond);
1805 
1806     RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
1807   }
1808 
1809   // Step 3: Note that the population count is exactly the trip count of the
1810   // loop in question, which enable us to convert the loop from noncountable
1811   // loop into a countable one. The benefit is twofold:
1812   //
1813   //  - If the loop only counts population, the entire loop becomes dead after
1814   //    the transformation. It is a lot easier to prove a countable loop dead
1815   //    than to prove a noncountable one. (In some C dialects, an infinite loop
1816   //    isn't dead even if it computes nothing useful. In general, DCE needs
1817   //    to prove a noncountable loop finite before safely delete it.)
1818   //
1819   //  - If the loop also performs something else, it remains alive.
1820   //    Since it is transformed to countable form, it can be aggressively
1821   //    optimized by some optimizations which are in general not applicable
1822   //    to a noncountable loop.
1823   //
1824   // After this step, this loop (conceptually) would look like following:
1825   //   newcnt = __builtin_ctpop(x);
1826   //   t = newcnt;
1827   //   if (x)
1828   //     do { cnt++; x &= x-1; t--) } while (t > 0);
1829   BasicBlock *Body = *(CurLoop->block_begin());
1830   {
1831     auto *LbBr = cast<BranchInst>(Body->getTerminator());
1832     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1833     Type *Ty = TripCnt->getType();
1834 
1835     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1836 
1837     Builder.SetInsertPoint(LbCond);
1838     Instruction *TcDec = cast<Instruction>(
1839         Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1840                           "tcdec", false, true));
1841 
1842     TcPhi->addIncoming(TripCnt, PreHead);
1843     TcPhi->addIncoming(TcDec, Body);
1844 
1845     CmpInst::Predicate Pred =
1846         (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
1847     LbCond->setPredicate(Pred);
1848     LbCond->setOperand(0, TcDec);
1849     LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1850   }
1851 
1852   // Step 4: All the references to the original population counter outside
1853   //  the loop are replaced with the NewCount -- the value returned from
1854   //  __builtin_ctpop().
1855   CntInst->replaceUsesOutsideBlock(NewCount, Body);
1856 
1857   // step 5: Forget the "non-computable" trip-count SCEV associated with the
1858   //   loop. The loop would otherwise not be deleted even if it becomes empty.
1859   SE->forgetLoop(CurLoop);
1860 }
1861