1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements an idiom recognizer that transforms simple loops into a 10 // non-loop form. In cases that this kicks in, it can be a significant 11 // performance win. 12 // 13 // If compiling for code size we avoid idiom recognition if the resulting 14 // code could be larger than the code for the original loop. One way this could 15 // happen is if the loop is not removable after idiom recognition due to the 16 // presence of non-idiom instructions. The initial implementation of the 17 // heuristics applies to idioms in multi-block loops. 18 // 19 //===----------------------------------------------------------------------===// 20 // 21 // TODO List: 22 // 23 // Future loop memory idioms to recognize: 24 // memcmp, memmove, strlen, etc. 25 // Future floating point idioms to recognize in -ffast-math mode: 26 // fpowi 27 // Future integer operation idioms to recognize: 28 // ctpop 29 // 30 // Beware that isel's default lowering for ctpop is highly inefficient for 31 // i64 and larger types when i64 is legal and the value has few bits set. It 32 // would be good to enhance isel to emit a loop for ctpop in this case. 33 // 34 // This could recognize common matrix multiplies and dot product idioms and 35 // replace them with calls to BLAS (if linked in??). 36 // 37 //===----------------------------------------------------------------------===// 38 39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" 40 #include "llvm/ADT/APInt.h" 41 #include "llvm/ADT/ArrayRef.h" 42 #include "llvm/ADT/DenseMap.h" 43 #include "llvm/ADT/MapVector.h" 44 #include "llvm/ADT/SetVector.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/ADT/StringRef.h" 49 #include "llvm/Analysis/AliasAnalysis.h" 50 #include "llvm/Analysis/CmpInstAnalysis.h" 51 #include "llvm/Analysis/LoopAccessAnalysis.h" 52 #include "llvm/Analysis/LoopInfo.h" 53 #include "llvm/Analysis/LoopPass.h" 54 #include "llvm/Analysis/MemoryLocation.h" 55 #include "llvm/Analysis/MemorySSA.h" 56 #include "llvm/Analysis/MemorySSAUpdater.h" 57 #include "llvm/Analysis/MustExecute.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ScalarEvolution.h" 60 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DebugLoc.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/Dominators.h" 72 #include "llvm/IR/GlobalValue.h" 73 #include "llvm/IR/GlobalVariable.h" 74 #include "llvm/IR/IRBuilder.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/Intrinsics.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PassManager.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/IR/ValueHandle.h" 88 #include "llvm/InitializePasses.h" 89 #include "llvm/Pass.h" 90 #include "llvm/Support/Casting.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/InstructionCost.h" 94 #include "llvm/Support/raw_ostream.h" 95 #include "llvm/Transforms/Scalar.h" 96 #include "llvm/Transforms/Utils/BuildLibCalls.h" 97 #include "llvm/Transforms/Utils/Local.h" 98 #include "llvm/Transforms/Utils/LoopUtils.h" 99 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 100 #include <algorithm> 101 #include <cassert> 102 #include <cstdint> 103 #include <utility> 104 #include <vector> 105 106 using namespace llvm; 107 108 #define DEBUG_TYPE "loop-idiom" 109 110 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 111 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 112 STATISTIC( 113 NumShiftUntilBitTest, 114 "Number of uncountable loops recognized as 'shift until bitttest' idiom"); 115 116 bool DisableLIRP::All; 117 static cl::opt<bool, true> 118 DisableLIRPAll("disable-" DEBUG_TYPE "-all", 119 cl::desc("Options to disable Loop Idiom Recognize Pass."), 120 cl::location(DisableLIRP::All), cl::init(false), 121 cl::ReallyHidden); 122 123 bool DisableLIRP::Memset; 124 static cl::opt<bool, true> 125 DisableLIRPMemset("disable-" DEBUG_TYPE "-memset", 126 cl::desc("Proceed with loop idiom recognize pass, but do " 127 "not convert loop(s) to memset."), 128 cl::location(DisableLIRP::Memset), cl::init(false), 129 cl::ReallyHidden); 130 131 bool DisableLIRP::Memcpy; 132 static cl::opt<bool, true> 133 DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy", 134 cl::desc("Proceed with loop idiom recognize pass, but do " 135 "not convert loop(s) to memcpy."), 136 cl::location(DisableLIRP::Memcpy), cl::init(false), 137 cl::ReallyHidden); 138 139 static cl::opt<bool> UseLIRCodeSizeHeurs( 140 "use-lir-code-size-heurs", 141 cl::desc("Use loop idiom recognition code size heuristics when compiling" 142 "with -Os/-Oz"), 143 cl::init(true), cl::Hidden); 144 145 namespace { 146 147 class LoopIdiomRecognize { 148 Loop *CurLoop = nullptr; 149 AliasAnalysis *AA; 150 DominatorTree *DT; 151 LoopInfo *LI; 152 ScalarEvolution *SE; 153 TargetLibraryInfo *TLI; 154 const TargetTransformInfo *TTI; 155 const DataLayout *DL; 156 OptimizationRemarkEmitter &ORE; 157 bool ApplyCodeSizeHeuristics; 158 std::unique_ptr<MemorySSAUpdater> MSSAU; 159 160 public: 161 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, 162 LoopInfo *LI, ScalarEvolution *SE, 163 TargetLibraryInfo *TLI, 164 const TargetTransformInfo *TTI, MemorySSA *MSSA, 165 const DataLayout *DL, 166 OptimizationRemarkEmitter &ORE) 167 : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) { 168 if (MSSA) 169 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 170 } 171 172 bool runOnLoop(Loop *L); 173 174 private: 175 using StoreList = SmallVector<StoreInst *, 8>; 176 using StoreListMap = MapVector<Value *, StoreList>; 177 178 StoreListMap StoreRefsForMemset; 179 StoreListMap StoreRefsForMemsetPattern; 180 StoreList StoreRefsForMemcpy; 181 bool HasMemset; 182 bool HasMemsetPattern; 183 bool HasMemcpy; 184 185 /// Return code for isLegalStore() 186 enum LegalStoreKind { 187 None = 0, 188 Memset, 189 MemsetPattern, 190 Memcpy, 191 UnorderedAtomicMemcpy, 192 DontUse // Dummy retval never to be used. Allows catching errors in retval 193 // handling. 194 }; 195 196 /// \name Countable Loop Idiom Handling 197 /// @{ 198 199 bool runOnCountableLoop(); 200 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 201 SmallVectorImpl<BasicBlock *> &ExitBlocks); 202 203 void collectStores(BasicBlock *BB); 204 LegalStoreKind isLegalStore(StoreInst *SI); 205 enum class ForMemset { No, Yes }; 206 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, 207 ForMemset For); 208 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 209 210 bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, 211 MaybeAlign StoreAlignment, Value *StoredVal, 212 Instruction *TheStore, 213 SmallPtrSetImpl<Instruction *> &Stores, 214 const SCEVAddRecExpr *Ev, const SCEV *BECount, 215 bool NegStride, bool IsLoopMemset = false); 216 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); 217 bool avoidLIRForMultiBlockLoop(bool IsMemset = false, 218 bool IsLoopMemset = false); 219 220 /// @} 221 /// \name Noncountable Loop Idiom Handling 222 /// @{ 223 224 bool runOnNoncountableLoop(); 225 226 bool recognizePopcount(); 227 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, 228 PHINode *CntPhi, Value *Var); 229 bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz 230 void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, 231 Instruction *CntInst, PHINode *CntPhi, 232 Value *Var, Instruction *DefX, 233 const DebugLoc &DL, bool ZeroCheck, 234 bool IsCntPhiUsedOutsideLoop); 235 236 bool recognizeShiftUntilBitTest(); 237 238 /// @} 239 }; 240 241 class LoopIdiomRecognizeLegacyPass : public LoopPass { 242 public: 243 static char ID; 244 245 explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) { 246 initializeLoopIdiomRecognizeLegacyPassPass( 247 *PassRegistry::getPassRegistry()); 248 } 249 250 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 251 if (DisableLIRP::All) 252 return false; 253 254 if (skipLoop(L)) 255 return false; 256 257 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 258 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 259 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 260 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 261 TargetLibraryInfo *TLI = 262 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 263 *L->getHeader()->getParent()); 264 const TargetTransformInfo *TTI = 265 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 266 *L->getHeader()->getParent()); 267 const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout(); 268 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 269 MemorySSA *MSSA = nullptr; 270 if (MSSAAnalysis) 271 MSSA = &MSSAAnalysis->getMSSA(); 272 273 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 274 // pass. Function analyses need to be preserved across loop transformations 275 // but ORE cannot be preserved (see comment before the pass definition). 276 OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); 277 278 LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE); 279 return LIR.runOnLoop(L); 280 } 281 282 /// This transformation requires natural loop information & requires that 283 /// loop preheaders be inserted into the CFG. 284 void getAnalysisUsage(AnalysisUsage &AU) const override { 285 AU.addRequired<TargetLibraryInfoWrapperPass>(); 286 AU.addRequired<TargetTransformInfoWrapperPass>(); 287 AU.addPreserved<MemorySSAWrapperPass>(); 288 getLoopAnalysisUsage(AU); 289 } 290 }; 291 292 } // end anonymous namespace 293 294 char LoopIdiomRecognizeLegacyPass::ID = 0; 295 296 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, 297 LoopStandardAnalysisResults &AR, 298 LPMUpdater &) { 299 if (DisableLIRP::All) 300 return PreservedAnalyses::all(); 301 302 const auto *DL = &L.getHeader()->getModule()->getDataLayout(); 303 304 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 305 // pass. Function analyses need to be preserved across loop transformations 306 // but ORE cannot be preserved (see comment before the pass definition). 307 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 308 309 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, 310 AR.MSSA, DL, ORE); 311 if (!LIR.runOnLoop(&L)) 312 return PreservedAnalyses::all(); 313 314 auto PA = getLoopPassPreservedAnalyses(); 315 if (AR.MSSA) 316 PA.preserve<MemorySSAAnalysis>(); 317 return PA; 318 } 319 320 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom", 321 "Recognize loop idioms", false, false) 322 INITIALIZE_PASS_DEPENDENCY(LoopPass) 323 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 324 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 325 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom", 326 "Recognize loop idioms", false, false) 327 328 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); } 329 330 static void deleteDeadInstruction(Instruction *I) { 331 I->replaceAllUsesWith(UndefValue::get(I->getType())); 332 I->eraseFromParent(); 333 } 334 335 //===----------------------------------------------------------------------===// 336 // 337 // Implementation of LoopIdiomRecognize 338 // 339 //===----------------------------------------------------------------------===// 340 341 bool LoopIdiomRecognize::runOnLoop(Loop *L) { 342 CurLoop = L; 343 // If the loop could not be converted to canonical form, it must have an 344 // indirectbr in it, just give up. 345 if (!L->getLoopPreheader()) 346 return false; 347 348 // Disable loop idiom recognition if the function's name is a common idiom. 349 StringRef Name = L->getHeader()->getParent()->getName(); 350 if (Name == "memset" || Name == "memcpy") 351 return false; 352 353 // Determine if code size heuristics need to be applied. 354 ApplyCodeSizeHeuristics = 355 L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs; 356 357 HasMemset = TLI->has(LibFunc_memset); 358 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); 359 HasMemcpy = TLI->has(LibFunc_memcpy); 360 361 if (HasMemset || HasMemsetPattern || HasMemcpy) 362 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 363 return runOnCountableLoop(); 364 365 return runOnNoncountableLoop(); 366 } 367 368 bool LoopIdiomRecognize::runOnCountableLoop() { 369 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 370 assert(!isa<SCEVCouldNotCompute>(BECount) && 371 "runOnCountableLoop() called on a loop without a predictable" 372 "backedge-taken count"); 373 374 // If this loop executes exactly one time, then it should be peeled, not 375 // optimized by this pass. 376 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 377 if (BECst->getAPInt() == 0) 378 return false; 379 380 SmallVector<BasicBlock *, 8> ExitBlocks; 381 CurLoop->getUniqueExitBlocks(ExitBlocks); 382 383 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 384 << CurLoop->getHeader()->getParent()->getName() 385 << "] Countable Loop %" << CurLoop->getHeader()->getName() 386 << "\n"); 387 388 // The following transforms hoist stores/memsets into the loop pre-header. 389 // Give up if the loop has instructions that may throw. 390 SimpleLoopSafetyInfo SafetyInfo; 391 SafetyInfo.computeLoopSafetyInfo(CurLoop); 392 if (SafetyInfo.anyBlockMayThrow()) 393 return false; 394 395 bool MadeChange = false; 396 397 // Scan all the blocks in the loop that are not in subloops. 398 for (auto *BB : CurLoop->getBlocks()) { 399 // Ignore blocks in subloops. 400 if (LI->getLoopFor(BB) != CurLoop) 401 continue; 402 403 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); 404 } 405 return MadeChange; 406 } 407 408 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { 409 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); 410 return ConstStride->getAPInt(); 411 } 412 413 /// getMemSetPatternValue - If a strided store of the specified value is safe to 414 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 415 /// be passed in. Otherwise, return null. 416 /// 417 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 418 /// just replicate their input array and then pass on to memset_pattern16. 419 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { 420 // FIXME: This could check for UndefValue because it can be merged into any 421 // other valid pattern. 422 423 // If the value isn't a constant, we can't promote it to being in a constant 424 // array. We could theoretically do a store to an alloca or something, but 425 // that doesn't seem worthwhile. 426 Constant *C = dyn_cast<Constant>(V); 427 if (!C) 428 return nullptr; 429 430 // Only handle simple values that are a power of two bytes in size. 431 uint64_t Size = DL->getTypeSizeInBits(V->getType()); 432 if (Size == 0 || (Size & 7) || (Size & (Size - 1))) 433 return nullptr; 434 435 // Don't care enough about darwin/ppc to implement this. 436 if (DL->isBigEndian()) 437 return nullptr; 438 439 // Convert to size in bytes. 440 Size /= 8; 441 442 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 443 // if the top and bottom are the same (e.g. for vectors and large integers). 444 if (Size > 16) 445 return nullptr; 446 447 // If the constant is exactly 16 bytes, just use it. 448 if (Size == 16) 449 return C; 450 451 // Otherwise, we'll use an array of the constants. 452 unsigned ArraySize = 16 / Size; 453 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 454 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); 455 } 456 457 LoopIdiomRecognize::LegalStoreKind 458 LoopIdiomRecognize::isLegalStore(StoreInst *SI) { 459 // Don't touch volatile stores. 460 if (SI->isVolatile()) 461 return LegalStoreKind::None; 462 // We only want simple or unordered-atomic stores. 463 if (!SI->isUnordered()) 464 return LegalStoreKind::None; 465 466 // Avoid merging nontemporal stores. 467 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 468 return LegalStoreKind::None; 469 470 Value *StoredVal = SI->getValueOperand(); 471 Value *StorePtr = SI->getPointerOperand(); 472 473 // Don't convert stores of non-integral pointer types to memsets (which stores 474 // integers). 475 if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 476 return LegalStoreKind::None; 477 478 // Reject stores that are so large that they overflow an unsigned. 479 // When storing out scalable vectors we bail out for now, since the code 480 // below currently only works for constant strides. 481 TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); 482 if (SizeInBits.isScalable() || (SizeInBits.getFixedSize() & 7) || 483 (SizeInBits.getFixedSize() >> 32) != 0) 484 return LegalStoreKind::None; 485 486 // See if the pointer expression is an AddRec like {base,+,1} on the current 487 // loop, which indicates a strided store. If we have something else, it's a 488 // random store we can't handle. 489 const SCEVAddRecExpr *StoreEv = 490 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 491 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 492 return LegalStoreKind::None; 493 494 // Check to see if we have a constant stride. 495 if (!isa<SCEVConstant>(StoreEv->getOperand(1))) 496 return LegalStoreKind::None; 497 498 // See if the store can be turned into a memset. 499 500 // If the stored value is a byte-wise value (like i32 -1), then it may be 501 // turned into a memset of i8 -1, assuming that all the consecutive bytes 502 // are stored. A store of i32 0x01020304 can never be turned into a memset, 503 // but it can be turned into memset_pattern if the target supports it. 504 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 505 Constant *PatternValue = nullptr; 506 507 // Note: memset and memset_pattern on unordered-atomic is yet not supported 508 bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); 509 510 // If we're allowed to form a memset, and the stored value would be 511 // acceptable for memset, use it. 512 if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset && 513 // Verify that the stored value is loop invariant. If not, we can't 514 // promote the memset. 515 CurLoop->isLoopInvariant(SplatValue)) { 516 // It looks like we can use SplatValue. 517 return LegalStoreKind::Memset; 518 } else if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset && 519 // Don't create memset_pattern16s with address spaces. 520 StorePtr->getType()->getPointerAddressSpace() == 0 && 521 (PatternValue = getMemSetPatternValue(StoredVal, DL))) { 522 // It looks like we can use PatternValue! 523 return LegalStoreKind::MemsetPattern; 524 } 525 526 // Otherwise, see if the store can be turned into a memcpy. 527 if (HasMemcpy && !DisableLIRP::Memcpy) { 528 // Check to see if the stride matches the size of the store. If so, then we 529 // know that every byte is touched in the loop. 530 APInt Stride = getStoreStride(StoreEv); 531 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 532 if (StoreSize != Stride && StoreSize != -Stride) 533 return LegalStoreKind::None; 534 535 // The store must be feeding a non-volatile load. 536 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); 537 538 // Only allow non-volatile loads 539 if (!LI || LI->isVolatile()) 540 return LegalStoreKind::None; 541 // Only allow simple or unordered-atomic loads 542 if (!LI->isUnordered()) 543 return LegalStoreKind::None; 544 545 // See if the pointer expression is an AddRec like {base,+,1} on the current 546 // loop, which indicates a strided load. If we have something else, it's a 547 // random load we can't handle. 548 const SCEVAddRecExpr *LoadEv = 549 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 550 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 551 return LegalStoreKind::None; 552 553 // The store and load must share the same stride. 554 if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) 555 return LegalStoreKind::None; 556 557 // Success. This store can be converted into a memcpy. 558 UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); 559 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy 560 : LegalStoreKind::Memcpy; 561 } 562 // This store can't be transformed into a memset/memcpy. 563 return LegalStoreKind::None; 564 } 565 566 void LoopIdiomRecognize::collectStores(BasicBlock *BB) { 567 StoreRefsForMemset.clear(); 568 StoreRefsForMemsetPattern.clear(); 569 StoreRefsForMemcpy.clear(); 570 for (Instruction &I : *BB) { 571 StoreInst *SI = dyn_cast<StoreInst>(&I); 572 if (!SI) 573 continue; 574 575 // Make sure this is a strided store with a constant stride. 576 switch (isLegalStore(SI)) { 577 case LegalStoreKind::None: 578 // Nothing to do 579 break; 580 case LegalStoreKind::Memset: { 581 // Find the base pointer. 582 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 583 StoreRefsForMemset[Ptr].push_back(SI); 584 } break; 585 case LegalStoreKind::MemsetPattern: { 586 // Find the base pointer. 587 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 588 StoreRefsForMemsetPattern[Ptr].push_back(SI); 589 } break; 590 case LegalStoreKind::Memcpy: 591 case LegalStoreKind::UnorderedAtomicMemcpy: 592 StoreRefsForMemcpy.push_back(SI); 593 break; 594 default: 595 assert(false && "unhandled return value"); 596 break; 597 } 598 } 599 } 600 601 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 602 /// with the specified backedge count. This block is known to be in the current 603 /// loop and not in any subloops. 604 bool LoopIdiomRecognize::runOnLoopBlock( 605 BasicBlock *BB, const SCEV *BECount, 606 SmallVectorImpl<BasicBlock *> &ExitBlocks) { 607 // We can only promote stores in this block if they are unconditionally 608 // executed in the loop. For a block to be unconditionally executed, it has 609 // to dominate all the exit blocks of the loop. Verify this now. 610 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 611 if (!DT->dominates(BB, ExitBlocks[i])) 612 return false; 613 614 bool MadeChange = false; 615 // Look for store instructions, which may be optimized to memset/memcpy. 616 collectStores(BB); 617 618 // Look for a single store or sets of stores with a common base, which can be 619 // optimized into a memset (memset_pattern). The latter most commonly happens 620 // with structs and handunrolled loops. 621 for (auto &SL : StoreRefsForMemset) 622 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); 623 624 for (auto &SL : StoreRefsForMemsetPattern) 625 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); 626 627 // Optimize the store into a memcpy, if it feeds an similarly strided load. 628 for (auto &SI : StoreRefsForMemcpy) 629 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); 630 631 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 632 Instruction *Inst = &*I++; 633 // Look for memset instructions, which may be optimized to a larger memset. 634 if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) { 635 WeakTrackingVH InstPtr(&*I); 636 if (!processLoopMemSet(MSI, BECount)) 637 continue; 638 MadeChange = true; 639 640 // If processing the memset invalidated our iterator, start over from the 641 // top of the block. 642 if (!InstPtr) 643 I = BB->begin(); 644 continue; 645 } 646 } 647 648 return MadeChange; 649 } 650 651 /// See if this store(s) can be promoted to a memset. 652 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, 653 const SCEV *BECount, ForMemset For) { 654 // Try to find consecutive stores that can be transformed into memsets. 655 SetVector<StoreInst *> Heads, Tails; 656 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 657 658 // Do a quadratic search on all of the given stores and find 659 // all of the pairs of stores that follow each other. 660 SmallVector<unsigned, 16> IndexQueue; 661 for (unsigned i = 0, e = SL.size(); i < e; ++i) { 662 assert(SL[i]->isSimple() && "Expected only non-volatile stores."); 663 664 Value *FirstStoredVal = SL[i]->getValueOperand(); 665 Value *FirstStorePtr = SL[i]->getPointerOperand(); 666 const SCEVAddRecExpr *FirstStoreEv = 667 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); 668 APInt FirstStride = getStoreStride(FirstStoreEv); 669 unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); 670 671 // See if we can optimize just this store in isolation. 672 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { 673 Heads.insert(SL[i]); 674 continue; 675 } 676 677 Value *FirstSplatValue = nullptr; 678 Constant *FirstPatternValue = nullptr; 679 680 if (For == ForMemset::Yes) 681 FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL); 682 else 683 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); 684 685 assert((FirstSplatValue || FirstPatternValue) && 686 "Expected either splat value or pattern value."); 687 688 IndexQueue.clear(); 689 // If a store has multiple consecutive store candidates, search Stores 690 // array according to the sequence: from i+1 to e, then from i-1 to 0. 691 // This is because usually pairing with immediate succeeding or preceding 692 // candidate create the best chance to find memset opportunity. 693 unsigned j = 0; 694 for (j = i + 1; j < e; ++j) 695 IndexQueue.push_back(j); 696 for (j = i; j > 0; --j) 697 IndexQueue.push_back(j - 1); 698 699 for (auto &k : IndexQueue) { 700 assert(SL[k]->isSimple() && "Expected only non-volatile stores."); 701 Value *SecondStorePtr = SL[k]->getPointerOperand(); 702 const SCEVAddRecExpr *SecondStoreEv = 703 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); 704 APInt SecondStride = getStoreStride(SecondStoreEv); 705 706 if (FirstStride != SecondStride) 707 continue; 708 709 Value *SecondStoredVal = SL[k]->getValueOperand(); 710 Value *SecondSplatValue = nullptr; 711 Constant *SecondPatternValue = nullptr; 712 713 if (For == ForMemset::Yes) 714 SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL); 715 else 716 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); 717 718 assert((SecondSplatValue || SecondPatternValue) && 719 "Expected either splat value or pattern value."); 720 721 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { 722 if (For == ForMemset::Yes) { 723 if (isa<UndefValue>(FirstSplatValue)) 724 FirstSplatValue = SecondSplatValue; 725 if (FirstSplatValue != SecondSplatValue) 726 continue; 727 } else { 728 if (isa<UndefValue>(FirstPatternValue)) 729 FirstPatternValue = SecondPatternValue; 730 if (FirstPatternValue != SecondPatternValue) 731 continue; 732 } 733 Tails.insert(SL[k]); 734 Heads.insert(SL[i]); 735 ConsecutiveChain[SL[i]] = SL[k]; 736 break; 737 } 738 } 739 } 740 741 // We may run into multiple chains that merge into a single chain. We mark the 742 // stores that we transformed so that we don't visit the same store twice. 743 SmallPtrSet<Value *, 16> TransformedStores; 744 bool Changed = false; 745 746 // For stores that start but don't end a link in the chain: 747 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 748 it != e; ++it) { 749 if (Tails.count(*it)) 750 continue; 751 752 // We found a store instr that starts a chain. Now follow the chain and try 753 // to transform it. 754 SmallPtrSet<Instruction *, 8> AdjacentStores; 755 StoreInst *I = *it; 756 757 StoreInst *HeadStore = I; 758 unsigned StoreSize = 0; 759 760 // Collect the chain into a list. 761 while (Tails.count(I) || Heads.count(I)) { 762 if (TransformedStores.count(I)) 763 break; 764 AdjacentStores.insert(I); 765 766 StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); 767 // Move to the next value in the chain. 768 I = ConsecutiveChain[I]; 769 } 770 771 Value *StoredVal = HeadStore->getValueOperand(); 772 Value *StorePtr = HeadStore->getPointerOperand(); 773 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 774 APInt Stride = getStoreStride(StoreEv); 775 776 // Check to see if the stride matches the size of the stores. If so, then 777 // we know that every byte is touched in the loop. 778 if (StoreSize != Stride && StoreSize != -Stride) 779 continue; 780 781 bool NegStride = StoreSize == -Stride; 782 783 if (processLoopStridedStore(StorePtr, StoreSize, 784 MaybeAlign(HeadStore->getAlignment()), 785 StoredVal, HeadStore, AdjacentStores, StoreEv, 786 BECount, NegStride)) { 787 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); 788 Changed = true; 789 } 790 } 791 792 return Changed; 793 } 794 795 /// processLoopMemSet - See if this memset can be promoted to a large memset. 796 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, 797 const SCEV *BECount) { 798 // We can only handle non-volatile memsets with a constant size. 799 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) 800 return false; 801 802 // If we're not allowed to hack on memset, we fail. 803 if (!HasMemset) 804 return false; 805 806 Value *Pointer = MSI->getDest(); 807 808 // See if the pointer expression is an AddRec like {base,+,1} on the current 809 // loop, which indicates a strided store. If we have something else, it's a 810 // random store we can't handle. 811 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 812 if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine()) 813 return false; 814 815 // Reject memsets that are so large that they overflow an unsigned. 816 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 817 if ((SizeInBytes >> 32) != 0) 818 return false; 819 820 // Check to see if the stride matches the size of the memset. If so, then we 821 // know that every byte is touched in the loop. 822 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 823 if (!ConstStride) 824 return false; 825 826 APInt Stride = ConstStride->getAPInt(); 827 if (SizeInBytes != Stride && SizeInBytes != -Stride) 828 return false; 829 830 // Verify that the memset value is loop invariant. If not, we can't promote 831 // the memset. 832 Value *SplatValue = MSI->getValue(); 833 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) 834 return false; 835 836 SmallPtrSet<Instruction *, 1> MSIs; 837 MSIs.insert(MSI); 838 bool NegStride = SizeInBytes == -Stride; 839 return processLoopStridedStore( 840 Pointer, (unsigned)SizeInBytes, MaybeAlign(MSI->getDestAlignment()), 841 SplatValue, MSI, MSIs, Ev, BECount, NegStride, /*IsLoopMemset=*/true); 842 } 843 844 /// mayLoopAccessLocation - Return true if the specified loop might access the 845 /// specified pointer location, which is a loop-strided access. The 'Access' 846 /// argument specifies what the verboten forms of access are (read or write). 847 static bool 848 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, 849 const SCEV *BECount, unsigned StoreSize, 850 AliasAnalysis &AA, 851 SmallPtrSetImpl<Instruction *> &IgnoredStores) { 852 // Get the location that may be stored across the loop. Since the access is 853 // strided positively through memory, we say that the modified location starts 854 // at the pointer and has infinite size. 855 LocationSize AccessSize = LocationSize::afterPointer(); 856 857 // If the loop iterates a fixed number of times, we can refine the access size 858 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 859 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 860 AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) * 861 StoreSize); 862 863 // TODO: For this to be really effective, we have to dive into the pointer 864 // operand in the store. Store to &A[i] of 100 will always return may alias 865 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 866 // which will then no-alias a store to &A[100]. 867 MemoryLocation StoreLoc(Ptr, AccessSize); 868 869 for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; 870 ++BI) 871 for (Instruction &I : **BI) 872 if (IgnoredStores.count(&I) == 0 && 873 isModOrRefSet( 874 intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))) 875 return true; 876 877 return false; 878 } 879 880 // If we have a negative stride, Start refers to the end of the memory location 881 // we're trying to memset. Therefore, we need to recompute the base pointer, 882 // which is just Start - BECount*Size. 883 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, 884 Type *IntPtr, unsigned StoreSize, 885 ScalarEvolution *SE) { 886 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); 887 if (StoreSize != 1) 888 Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize), 889 SCEV::FlagNUW); 890 return SE->getMinusSCEV(Start, Index); 891 } 892 893 /// Compute the number of bytes as a SCEV from the backedge taken count. 894 /// 895 /// This also maps the SCEV into the provided type and tries to handle the 896 /// computation in a way that will fold cleanly. 897 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, 898 unsigned StoreSize, Loop *CurLoop, 899 const DataLayout *DL, ScalarEvolution *SE) { 900 const SCEV *NumBytesS; 901 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to 902 // pointer size if it isn't already. 903 // 904 // If we're going to need to zero extend the BE count, check if we can add 905 // one to it prior to zero extending without overflow. Provided this is safe, 906 // it allows better simplification of the +1. 907 if (DL->getTypeSizeInBits(BECount->getType()).getFixedSize() < 908 DL->getTypeSizeInBits(IntPtr).getFixedSize() && 909 SE->isLoopEntryGuardedByCond( 910 CurLoop, ICmpInst::ICMP_NE, BECount, 911 SE->getNegativeSCEV(SE->getOne(BECount->getType())))) { 912 NumBytesS = SE->getZeroExtendExpr( 913 SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW), 914 IntPtr); 915 } else { 916 NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr), 917 SE->getOne(IntPtr), SCEV::FlagNUW); 918 } 919 920 // And scale it based on the store size. 921 if (StoreSize != 1) { 922 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), 923 SCEV::FlagNUW); 924 } 925 return NumBytesS; 926 } 927 928 /// processLoopStridedStore - We see a strided store of some value. If we can 929 /// transform this into a memset or memset_pattern in the loop preheader, do so. 930 bool LoopIdiomRecognize::processLoopStridedStore( 931 Value *DestPtr, unsigned StoreSize, MaybeAlign StoreAlignment, 932 Value *StoredVal, Instruction *TheStore, 933 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, 934 const SCEV *BECount, bool NegStride, bool IsLoopMemset) { 935 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 936 Constant *PatternValue = nullptr; 937 938 if (!SplatValue) 939 PatternValue = getMemSetPatternValue(StoredVal, DL); 940 941 assert((SplatValue || PatternValue) && 942 "Expected either splat value or pattern value."); 943 944 // The trip count of the loop and the base pointer of the addrec SCEV is 945 // guaranteed to be loop invariant, which means that it should dominate the 946 // header. This allows us to insert code for it in the preheader. 947 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); 948 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 949 IRBuilder<> Builder(Preheader->getTerminator()); 950 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 951 SCEVExpanderCleaner ExpCleaner(Expander, *DT); 952 953 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); 954 Type *IntIdxTy = DL->getIndexType(DestPtr->getType()); 955 956 bool Changed = false; 957 const SCEV *Start = Ev->getStart(); 958 // Handle negative strided loops. 959 if (NegStride) 960 Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSize, SE); 961 962 // TODO: ideally we should still be able to generate memset if SCEV expander 963 // is taught to generate the dependencies at the latest point. 964 if (!isSafeToExpand(Start, *SE)) 965 return Changed; 966 967 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 968 // this into a memset in the loop preheader now if we want. However, this 969 // would be unsafe to do if there is anything else in the loop that may read 970 // or write to the aliased location. Check for any overlap by generating the 971 // base pointer and checking the region. 972 Value *BasePtr = 973 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); 974 975 // From here on out, conservatively report to the pass manager that we've 976 // changed the IR, even if we later clean up these added instructions. There 977 // may be structural differences e.g. in the order of use lists not accounted 978 // for in just a textual dump of the IR. This is written as a variable, even 979 // though statically all the places this dominates could be replaced with 980 // 'true', with the hope that anyone trying to be clever / "more precise" with 981 // the return value will read this comment, and leave them alone. 982 Changed = true; 983 984 if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, 985 StoreSize, *AA, Stores)) 986 return Changed; 987 988 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) 989 return Changed; 990 991 // Okay, everything looks good, insert the memset. 992 993 const SCEV *NumBytesS = 994 getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE); 995 996 // TODO: ideally we should still be able to generate memset if SCEV expander 997 // is taught to generate the dependencies at the latest point. 998 if (!isSafeToExpand(NumBytesS, *SE)) 999 return Changed; 1000 1001 Value *NumBytes = 1002 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1003 1004 CallInst *NewCall; 1005 if (SplatValue) { 1006 NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, 1007 MaybeAlign(StoreAlignment)); 1008 } else { 1009 // Everything is emitted in default address space 1010 Type *Int8PtrTy = DestInt8PtrTy; 1011 1012 Module *M = TheStore->getModule(); 1013 StringRef FuncName = "memset_pattern16"; 1014 FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(), 1015 Int8PtrTy, Int8PtrTy, IntIdxTy); 1016 inferLibFuncAttributes(M, FuncName, *TLI); 1017 1018 // Otherwise we should form a memset_pattern16. PatternValue is known to be 1019 // an constant array of 16-bytes. Plop the value into a mergable global. 1020 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 1021 GlobalValue::PrivateLinkage, 1022 PatternValue, ".memset_pattern"); 1023 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. 1024 GV->setAlignment(Align(16)); 1025 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); 1026 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); 1027 } 1028 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1029 1030 if (MSSAU) { 1031 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1032 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1033 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1034 } 1035 1036 LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 1037 << " from store to: " << *Ev << " at: " << *TheStore 1038 << "\n"); 1039 1040 ORE.emit([&]() { 1041 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore", 1042 NewCall->getDebugLoc(), Preheader) 1043 << "Transformed loop-strided store into a call to " 1044 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1045 << "() function"; 1046 }); 1047 1048 // Okay, the memset has been formed. Zap the original store and anything that 1049 // feeds into it. 1050 for (auto *I : Stores) { 1051 if (MSSAU) 1052 MSSAU->removeMemoryAccess(I, true); 1053 deleteDeadInstruction(I); 1054 } 1055 if (MSSAU && VerifyMemorySSA) 1056 MSSAU->getMemorySSA()->verifyMemorySSA(); 1057 ++NumMemSet; 1058 ExpCleaner.markResultUsed(); 1059 return true; 1060 } 1061 1062 /// If the stored value is a strided load in the same loop with the same stride 1063 /// this may be transformable into a memcpy. This kicks in for stuff like 1064 /// for (i) A[i] = B[i]; 1065 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, 1066 const SCEV *BECount) { 1067 assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); 1068 1069 Value *StorePtr = SI->getPointerOperand(); 1070 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 1071 APInt Stride = getStoreStride(StoreEv); 1072 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 1073 bool NegStride = StoreSize == -Stride; 1074 1075 // The store must be feeding a non-volatile load. 1076 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 1077 assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); 1078 1079 // See if the pointer expression is an AddRec like {base,+,1} on the current 1080 // loop, which indicates a strided load. If we have something else, it's a 1081 // random load we can't handle. 1082 const SCEVAddRecExpr *LoadEv = 1083 cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 1084 1085 // The trip count of the loop and the base pointer of the addrec SCEV is 1086 // guaranteed to be loop invariant, which means that it should dominate the 1087 // header. This allows us to insert code for it in the preheader. 1088 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1089 IRBuilder<> Builder(Preheader->getTerminator()); 1090 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1091 1092 SCEVExpanderCleaner ExpCleaner(Expander, *DT); 1093 1094 bool Changed = false; 1095 const SCEV *StrStart = StoreEv->getStart(); 1096 unsigned StrAS = SI->getPointerAddressSpace(); 1097 Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS)); 1098 1099 // Handle negative strided loops. 1100 if (NegStride) 1101 StrStart = getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSize, SE); 1102 1103 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 1104 // this into a memcpy in the loop preheader now if we want. However, this 1105 // would be unsafe to do if there is anything else in the loop that may read 1106 // or write the memory region we're storing to. This includes the load that 1107 // feeds the stores. Check for an alias by generating the base address and 1108 // checking everything. 1109 Value *StoreBasePtr = Expander.expandCodeFor( 1110 StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); 1111 1112 // From here on out, conservatively report to the pass manager that we've 1113 // changed the IR, even if we later clean up these added instructions. There 1114 // may be structural differences e.g. in the order of use lists not accounted 1115 // for in just a textual dump of the IR. This is written as a variable, even 1116 // though statically all the places this dominates could be replaced with 1117 // 'true', with the hope that anyone trying to be clever / "more precise" with 1118 // the return value will read this comment, and leave them alone. 1119 Changed = true; 1120 1121 SmallPtrSet<Instruction *, 1> Stores; 1122 Stores.insert(SI); 1123 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1124 StoreSize, *AA, Stores)) 1125 return Changed; 1126 1127 const SCEV *LdStart = LoadEv->getStart(); 1128 unsigned LdAS = LI->getPointerAddressSpace(); 1129 1130 // Handle negative strided loops. 1131 if (NegStride) 1132 LdStart = getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSize, SE); 1133 1134 // For a memcpy, we have to make sure that the input array is not being 1135 // mutated by the loop. 1136 Value *LoadBasePtr = Expander.expandCodeFor( 1137 LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); 1138 1139 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, 1140 StoreSize, *AA, Stores)) 1141 return Changed; 1142 1143 if (avoidLIRForMultiBlockLoop()) 1144 return Changed; 1145 1146 // Okay, everything is safe, we can transform this! 1147 1148 const SCEV *NumBytesS = 1149 getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE); 1150 1151 Value *NumBytes = 1152 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1153 1154 CallInst *NewCall = nullptr; 1155 // Check whether to generate an unordered atomic memcpy: 1156 // If the load or store are atomic, then they must necessarily be unordered 1157 // by previous checks. 1158 if (!SI->isAtomic() && !LI->isAtomic()) 1159 NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlign(), LoadBasePtr, 1160 LI->getAlign(), NumBytes); 1161 else { 1162 // We cannot allow unaligned ops for unordered load/store, so reject 1163 // anything where the alignment isn't at least the element size. 1164 const Align StoreAlign = SI->getAlign(); 1165 const Align LoadAlign = LI->getAlign(); 1166 if (StoreAlign < StoreSize || LoadAlign < StoreSize) 1167 return Changed; 1168 1169 // If the element.atomic memcpy is not lowered into explicit 1170 // loads/stores later, then it will be lowered into an element-size 1171 // specific lib call. If the lib call doesn't exist for our store size, then 1172 // we shouldn't generate the memcpy. 1173 if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) 1174 return Changed; 1175 1176 // Create the call. 1177 // Note that unordered atomic loads/stores are *required* by the spec to 1178 // have an alignment but non-atomic loads/stores may not. 1179 NewCall = Builder.CreateElementUnorderedAtomicMemCpy( 1180 StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes, 1181 StoreSize); 1182 } 1183 NewCall->setDebugLoc(SI->getDebugLoc()); 1184 1185 if (MSSAU) { 1186 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1187 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1188 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1189 } 1190 1191 LLVM_DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" 1192 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" 1193 << " from store ptr=" << *StoreEv << " at: " << *SI 1194 << "\n"); 1195 1196 ORE.emit([&]() { 1197 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad", 1198 NewCall->getDebugLoc(), Preheader) 1199 << "Formed a call to " 1200 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1201 << "() function"; 1202 }); 1203 1204 // Okay, the memcpy has been formed. Zap the original store and anything that 1205 // feeds into it. 1206 if (MSSAU) 1207 MSSAU->removeMemoryAccess(SI, true); 1208 deleteDeadInstruction(SI); 1209 if (MSSAU && VerifyMemorySSA) 1210 MSSAU->getMemorySSA()->verifyMemorySSA(); 1211 ++NumMemCpy; 1212 ExpCleaner.markResultUsed(); 1213 return true; 1214 } 1215 1216 // When compiling for codesize we avoid idiom recognition for a multi-block loop 1217 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. 1218 // 1219 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, 1220 bool IsLoopMemset) { 1221 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { 1222 if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) { 1223 LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() 1224 << " : LIR " << (IsMemset ? "Memset" : "Memcpy") 1225 << " avoided: multi-block top-level loop\n"); 1226 return true; 1227 } 1228 } 1229 1230 return false; 1231 } 1232 1233 bool LoopIdiomRecognize::runOnNoncountableLoop() { 1234 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 1235 << CurLoop->getHeader()->getParent()->getName() 1236 << "] Noncountable Loop %" 1237 << CurLoop->getHeader()->getName() << "\n"); 1238 1239 return recognizePopcount() || recognizeAndInsertFFS() || 1240 recognizeShiftUntilBitTest(); 1241 } 1242 1243 /// Check if the given conditional branch is based on the comparison between 1244 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is 1245 /// true), the control yields to the loop entry. If the branch matches the 1246 /// behavior, the variable involved in the comparison is returned. This function 1247 /// will be called to see if the precondition and postcondition of the loop are 1248 /// in desirable form. 1249 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, 1250 bool JmpOnZero = false) { 1251 if (!BI || !BI->isConditional()) 1252 return nullptr; 1253 1254 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1255 if (!Cond) 1256 return nullptr; 1257 1258 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 1259 if (!CmpZero || !CmpZero->isZero()) 1260 return nullptr; 1261 1262 BasicBlock *TrueSucc = BI->getSuccessor(0); 1263 BasicBlock *FalseSucc = BI->getSuccessor(1); 1264 if (JmpOnZero) 1265 std::swap(TrueSucc, FalseSucc); 1266 1267 ICmpInst::Predicate Pred = Cond->getPredicate(); 1268 if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || 1269 (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) 1270 return Cond->getOperand(0); 1271 1272 return nullptr; 1273 } 1274 1275 // Check if the recurrence variable `VarX` is in the right form to create 1276 // the idiom. Returns the value coerced to a PHINode if so. 1277 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, 1278 BasicBlock *LoopEntry) { 1279 auto *PhiX = dyn_cast<PHINode>(VarX); 1280 if (PhiX && PhiX->getParent() == LoopEntry && 1281 (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) 1282 return PhiX; 1283 return nullptr; 1284 } 1285 1286 /// Return true iff the idiom is detected in the loop. 1287 /// 1288 /// Additionally: 1289 /// 1) \p CntInst is set to the instruction counting the population bit. 1290 /// 2) \p CntPhi is set to the corresponding phi node. 1291 /// 3) \p Var is set to the value whose population bits are being counted. 1292 /// 1293 /// The core idiom we are trying to detect is: 1294 /// \code 1295 /// if (x0 != 0) 1296 /// goto loop-exit // the precondition of the loop 1297 /// cnt0 = init-val; 1298 /// do { 1299 /// x1 = phi (x0, x2); 1300 /// cnt1 = phi(cnt0, cnt2); 1301 /// 1302 /// cnt2 = cnt1 + 1; 1303 /// ... 1304 /// x2 = x1 & (x1 - 1); 1305 /// ... 1306 /// } while(x != 0); 1307 /// 1308 /// loop-exit: 1309 /// \endcode 1310 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, 1311 Instruction *&CntInst, PHINode *&CntPhi, 1312 Value *&Var) { 1313 // step 1: Check to see if the look-back branch match this pattern: 1314 // "if (a!=0) goto loop-entry". 1315 BasicBlock *LoopEntry; 1316 Instruction *DefX2, *CountInst; 1317 Value *VarX1, *VarX0; 1318 PHINode *PhiX, *CountPhi; 1319 1320 DefX2 = CountInst = nullptr; 1321 VarX1 = VarX0 = nullptr; 1322 PhiX = CountPhi = nullptr; 1323 LoopEntry = *(CurLoop->block_begin()); 1324 1325 // step 1: Check if the loop-back branch is in desirable form. 1326 { 1327 if (Value *T = matchCondition( 1328 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1329 DefX2 = dyn_cast<Instruction>(T); 1330 else 1331 return false; 1332 } 1333 1334 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 1335 { 1336 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 1337 return false; 1338 1339 BinaryOperator *SubOneOp; 1340 1341 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 1342 VarX1 = DefX2->getOperand(1); 1343 else { 1344 VarX1 = DefX2->getOperand(0); 1345 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 1346 } 1347 if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) 1348 return false; 1349 1350 ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); 1351 if (!Dec || 1352 !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || 1353 (SubOneOp->getOpcode() == Instruction::Add && 1354 Dec->isMinusOne()))) { 1355 return false; 1356 } 1357 } 1358 1359 // step 3: Check the recurrence of variable X 1360 PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); 1361 if (!PhiX) 1362 return false; 1363 1364 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 1365 { 1366 CountInst = nullptr; 1367 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1368 IterE = LoopEntry->end(); 1369 Iter != IterE; Iter++) { 1370 Instruction *Inst = &*Iter; 1371 if (Inst->getOpcode() != Instruction::Add) 1372 continue; 1373 1374 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1375 if (!Inc || !Inc->isOne()) 1376 continue; 1377 1378 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); 1379 if (!Phi) 1380 continue; 1381 1382 // Check if the result of the instruction is live of the loop. 1383 bool LiveOutLoop = false; 1384 for (User *U : Inst->users()) { 1385 if ((cast<Instruction>(U))->getParent() != LoopEntry) { 1386 LiveOutLoop = true; 1387 break; 1388 } 1389 } 1390 1391 if (LiveOutLoop) { 1392 CountInst = Inst; 1393 CountPhi = Phi; 1394 break; 1395 } 1396 } 1397 1398 if (!CountInst) 1399 return false; 1400 } 1401 1402 // step 5: check if the precondition is in this form: 1403 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 1404 { 1405 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1406 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); 1407 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 1408 return false; 1409 1410 CntInst = CountInst; 1411 CntPhi = CountPhi; 1412 Var = T; 1413 } 1414 1415 return true; 1416 } 1417 1418 /// Return true if the idiom is detected in the loop. 1419 /// 1420 /// Additionally: 1421 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) 1422 /// or nullptr if there is no such. 1423 /// 2) \p CntPhi is set to the corresponding phi node 1424 /// or nullptr if there is no such. 1425 /// 3) \p Var is set to the value whose CTLZ could be used. 1426 /// 4) \p DefX is set to the instruction calculating Loop exit condition. 1427 /// 1428 /// The core idiom we are trying to detect is: 1429 /// \code 1430 /// if (x0 == 0) 1431 /// goto loop-exit // the precondition of the loop 1432 /// cnt0 = init-val; 1433 /// do { 1434 /// x = phi (x0, x.next); //PhiX 1435 /// cnt = phi(cnt0, cnt.next); 1436 /// 1437 /// cnt.next = cnt + 1; 1438 /// ... 1439 /// x.next = x >> 1; // DefX 1440 /// ... 1441 /// } while(x.next != 0); 1442 /// 1443 /// loop-exit: 1444 /// \endcode 1445 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, 1446 Intrinsic::ID &IntrinID, Value *&InitX, 1447 Instruction *&CntInst, PHINode *&CntPhi, 1448 Instruction *&DefX) { 1449 BasicBlock *LoopEntry; 1450 Value *VarX = nullptr; 1451 1452 DefX = nullptr; 1453 CntInst = nullptr; 1454 CntPhi = nullptr; 1455 LoopEntry = *(CurLoop->block_begin()); 1456 1457 // step 1: Check if the loop-back branch is in desirable form. 1458 if (Value *T = matchCondition( 1459 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1460 DefX = dyn_cast<Instruction>(T); 1461 else 1462 return false; 1463 1464 // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" 1465 if (!DefX || !DefX->isShift()) 1466 return false; 1467 IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : 1468 Intrinsic::ctlz; 1469 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); 1470 if (!Shft || !Shft->isOne()) 1471 return false; 1472 VarX = DefX->getOperand(0); 1473 1474 // step 3: Check the recurrence of variable X 1475 PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); 1476 if (!PhiX) 1477 return false; 1478 1479 InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 1480 1481 // Make sure the initial value can't be negative otherwise the ashr in the 1482 // loop might never reach zero which would make the loop infinite. 1483 if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL)) 1484 return false; 1485 1486 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 1487 // or cnt.next = cnt + -1. 1488 // TODO: We can skip the step. If loop trip count is known (CTLZ), 1489 // then all uses of "cnt.next" could be optimized to the trip count 1490 // plus "cnt0". Currently it is not optimized. 1491 // This step could be used to detect POPCNT instruction: 1492 // cnt.next = cnt + (x.next & 1) 1493 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1494 IterE = LoopEntry->end(); 1495 Iter != IterE; Iter++) { 1496 Instruction *Inst = &*Iter; 1497 if (Inst->getOpcode() != Instruction::Add) 1498 continue; 1499 1500 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1501 if (!Inc || (!Inc->isOne() && !Inc->isMinusOne())) 1502 continue; 1503 1504 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); 1505 if (!Phi) 1506 continue; 1507 1508 CntInst = Inst; 1509 CntPhi = Phi; 1510 break; 1511 } 1512 if (!CntInst) 1513 return false; 1514 1515 return true; 1516 } 1517 1518 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop 1519 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new 1520 /// trip count returns true; otherwise, returns false. 1521 bool LoopIdiomRecognize::recognizeAndInsertFFS() { 1522 // Give up if the loop has multiple blocks or multiple backedges. 1523 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1524 return false; 1525 1526 Intrinsic::ID IntrinID; 1527 Value *InitX; 1528 Instruction *DefX = nullptr; 1529 PHINode *CntPhi = nullptr; 1530 Instruction *CntInst = nullptr; 1531 // Help decide if transformation is profitable. For ShiftUntilZero idiom, 1532 // this is always 6. 1533 size_t IdiomCanonicalSize = 6; 1534 1535 if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, 1536 CntInst, CntPhi, DefX)) 1537 return false; 1538 1539 bool IsCntPhiUsedOutsideLoop = false; 1540 for (User *U : CntPhi->users()) 1541 if (!CurLoop->contains(cast<Instruction>(U))) { 1542 IsCntPhiUsedOutsideLoop = true; 1543 break; 1544 } 1545 bool IsCntInstUsedOutsideLoop = false; 1546 for (User *U : CntInst->users()) 1547 if (!CurLoop->contains(cast<Instruction>(U))) { 1548 IsCntInstUsedOutsideLoop = true; 1549 break; 1550 } 1551 // If both CntInst and CntPhi are used outside the loop the profitability 1552 // is questionable. 1553 if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) 1554 return false; 1555 1556 // For some CPUs result of CTLZ(X) intrinsic is undefined 1557 // when X is 0. If we can not guarantee X != 0, we need to check this 1558 // when expand. 1559 bool ZeroCheck = false; 1560 // It is safe to assume Preheader exist as it was checked in 1561 // parent function RunOnLoop. 1562 BasicBlock *PH = CurLoop->getLoopPreheader(); 1563 1564 // If we are using the count instruction outside the loop, make sure we 1565 // have a zero check as a precondition. Without the check the loop would run 1566 // one iteration for before any check of the input value. This means 0 and 1 1567 // would have identical behavior in the original loop and thus 1568 if (!IsCntPhiUsedOutsideLoop) { 1569 auto *PreCondBB = PH->getSinglePredecessor(); 1570 if (!PreCondBB) 1571 return false; 1572 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1573 if (!PreCondBI) 1574 return false; 1575 if (matchCondition(PreCondBI, PH) != InitX) 1576 return false; 1577 ZeroCheck = true; 1578 } 1579 1580 // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always 1581 // profitable if we delete the loop. 1582 1583 // the loop has only 6 instructions: 1584 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] 1585 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] 1586 // %shr = ashr %n.addr.0, 1 1587 // %tobool = icmp eq %shr, 0 1588 // %inc = add nsw %i.0, 1 1589 // br i1 %tobool 1590 1591 const Value *Args[] = {InitX, 1592 ConstantInt::getBool(InitX->getContext(), ZeroCheck)}; 1593 1594 // @llvm.dbg doesn't count as they have no semantic effect. 1595 auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug(); 1596 uint32_t HeaderSize = 1597 std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end()); 1598 1599 IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args); 1600 InstructionCost Cost = 1601 TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency); 1602 if (HeaderSize != IdiomCanonicalSize && 1603 Cost > TargetTransformInfo::TCC_Basic) 1604 return false; 1605 1606 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, 1607 DefX->getDebugLoc(), ZeroCheck, 1608 IsCntPhiUsedOutsideLoop); 1609 return true; 1610 } 1611 1612 /// Recognizes a population count idiom in a non-countable loop. 1613 /// 1614 /// If detected, transforms the relevant code to issue the popcount intrinsic 1615 /// function call, and returns true; otherwise, returns false. 1616 bool LoopIdiomRecognize::recognizePopcount() { 1617 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 1618 return false; 1619 1620 // Counting population are usually conducted by few arithmetic instructions. 1621 // Such instructions can be easily "absorbed" by vacant slots in a 1622 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 1623 // in a compact loop. 1624 1625 // Give up if the loop has multiple blocks or multiple backedges. 1626 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1627 return false; 1628 1629 BasicBlock *LoopBody = *(CurLoop->block_begin()); 1630 if (LoopBody->size() >= 20) { 1631 // The loop is too big, bail out. 1632 return false; 1633 } 1634 1635 // It should have a preheader containing nothing but an unconditional branch. 1636 BasicBlock *PH = CurLoop->getLoopPreheader(); 1637 if (!PH || &PH->front() != PH->getTerminator()) 1638 return false; 1639 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); 1640 if (!EntryBI || EntryBI->isConditional()) 1641 return false; 1642 1643 // It should have a precondition block where the generated popcount intrinsic 1644 // function can be inserted. 1645 auto *PreCondBB = PH->getSinglePredecessor(); 1646 if (!PreCondBB) 1647 return false; 1648 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1649 if (!PreCondBI || PreCondBI->isUnconditional()) 1650 return false; 1651 1652 Instruction *CntInst; 1653 PHINode *CntPhi; 1654 Value *Val; 1655 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) 1656 return false; 1657 1658 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); 1659 return true; 1660 } 1661 1662 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1663 const DebugLoc &DL) { 1664 Value *Ops[] = {Val}; 1665 Type *Tys[] = {Val->getType()}; 1666 1667 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1668 Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); 1669 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1670 CI->setDebugLoc(DL); 1671 1672 return CI; 1673 } 1674 1675 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1676 const DebugLoc &DL, bool ZeroCheck, 1677 Intrinsic::ID IID) { 1678 Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)}; 1679 Type *Tys[] = {Val->getType()}; 1680 1681 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1682 Function *Func = Intrinsic::getDeclaration(M, IID, Tys); 1683 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1684 CI->setDebugLoc(DL); 1685 1686 return CI; 1687 } 1688 1689 /// Transform the following loop (Using CTLZ, CTTZ is similar): 1690 /// loop: 1691 /// CntPhi = PHI [Cnt0, CntInst] 1692 /// PhiX = PHI [InitX, DefX] 1693 /// CntInst = CntPhi + 1 1694 /// DefX = PhiX >> 1 1695 /// LOOP_BODY 1696 /// Br: loop if (DefX != 0) 1697 /// Use(CntPhi) or Use(CntInst) 1698 /// 1699 /// Into: 1700 /// If CntPhi used outside the loop: 1701 /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) 1702 /// Count = CountPrev + 1 1703 /// else 1704 /// Count = BitWidth(InitX) - CTLZ(InitX) 1705 /// loop: 1706 /// CntPhi = PHI [Cnt0, CntInst] 1707 /// PhiX = PHI [InitX, DefX] 1708 /// PhiCount = PHI [Count, Dec] 1709 /// CntInst = CntPhi + 1 1710 /// DefX = PhiX >> 1 1711 /// Dec = PhiCount - 1 1712 /// LOOP_BODY 1713 /// Br: loop if (Dec != 0) 1714 /// Use(CountPrev + Cnt0) // Use(CntPhi) 1715 /// or 1716 /// Use(Count + Cnt0) // Use(CntInst) 1717 /// 1718 /// If LOOP_BODY is empty the loop will be deleted. 1719 /// If CntInst and DefX are not used in LOOP_BODY they will be removed. 1720 void LoopIdiomRecognize::transformLoopToCountable( 1721 Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst, 1722 PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, 1723 bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) { 1724 BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); 1725 1726 // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block 1727 IRBuilder<> Builder(PreheaderBr); 1728 Builder.SetCurrentDebugLocation(DL); 1729 1730 // If there are no uses of CntPhi crate: 1731 // Count = BitWidth - CTLZ(InitX); 1732 // NewCount = Count; 1733 // If there are uses of CntPhi create: 1734 // NewCount = BitWidth - CTLZ(InitX >> 1); 1735 // Count = NewCount + 1; 1736 Value *InitXNext; 1737 if (IsCntPhiUsedOutsideLoop) { 1738 if (DefX->getOpcode() == Instruction::AShr) 1739 InitXNext = Builder.CreateAShr(InitX, 1); 1740 else if (DefX->getOpcode() == Instruction::LShr) 1741 InitXNext = Builder.CreateLShr(InitX, 1); 1742 else if (DefX->getOpcode() == Instruction::Shl) // cttz 1743 InitXNext = Builder.CreateShl(InitX, 1); 1744 else 1745 llvm_unreachable("Unexpected opcode!"); 1746 } else 1747 InitXNext = InitX; 1748 Value *Count = 1749 createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID); 1750 Type *CountTy = Count->getType(); 1751 Count = Builder.CreateSub( 1752 ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count); 1753 Value *NewCount = Count; 1754 if (IsCntPhiUsedOutsideLoop) 1755 Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1)); 1756 1757 NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType()); 1758 1759 Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); 1760 if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) { 1761 // If the counter was being incremented in the loop, add NewCount to the 1762 // counter's initial value, but only if the initial value is not zero. 1763 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 1764 if (!InitConst || !InitConst->isZero()) 1765 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 1766 } else { 1767 // If the count was being decremented in the loop, subtract NewCount from 1768 // the counter's initial value. 1769 NewCount = Builder.CreateSub(CntInitVal, NewCount); 1770 } 1771 1772 // Step 2: Insert new IV and loop condition: 1773 // loop: 1774 // ... 1775 // PhiCount = PHI [Count, Dec] 1776 // ... 1777 // Dec = PhiCount - 1 1778 // ... 1779 // Br: loop if (Dec != 0) 1780 BasicBlock *Body = *(CurLoop->block_begin()); 1781 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 1782 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 1783 1784 PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi", &Body->front()); 1785 1786 Builder.SetInsertPoint(LbCond); 1787 Instruction *TcDec = cast<Instruction>(Builder.CreateSub( 1788 TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true)); 1789 1790 TcPhi->addIncoming(Count, Preheader); 1791 TcPhi->addIncoming(TcDec, Body); 1792 1793 CmpInst::Predicate Pred = 1794 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 1795 LbCond->setPredicate(Pred); 1796 LbCond->setOperand(0, TcDec); 1797 LbCond->setOperand(1, ConstantInt::get(CountTy, 0)); 1798 1799 // Step 3: All the references to the original counter outside 1800 // the loop are replaced with the NewCount 1801 if (IsCntPhiUsedOutsideLoop) 1802 CntPhi->replaceUsesOutsideBlock(NewCount, Body); 1803 else 1804 CntInst->replaceUsesOutsideBlock(NewCount, Body); 1805 1806 // step 4: Forget the "non-computable" trip-count SCEV associated with the 1807 // loop. The loop would otherwise not be deleted even if it becomes empty. 1808 SE->forgetLoop(CurLoop); 1809 } 1810 1811 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, 1812 Instruction *CntInst, 1813 PHINode *CntPhi, Value *Var) { 1814 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 1815 auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); 1816 const DebugLoc &DL = CntInst->getDebugLoc(); 1817 1818 // Assuming before transformation, the loop is following: 1819 // if (x) // the precondition 1820 // do { cnt++; x &= x - 1; } while(x); 1821 1822 // Step 1: Insert the ctpop instruction at the end of the precondition block 1823 IRBuilder<> Builder(PreCondBr); 1824 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 1825 { 1826 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 1827 NewCount = PopCntZext = 1828 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 1829 1830 if (NewCount != PopCnt) 1831 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1832 1833 // TripCnt is exactly the number of iterations the loop has 1834 TripCnt = NewCount; 1835 1836 // If the population counter's initial value is not zero, insert Add Inst. 1837 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 1838 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 1839 if (!InitConst || !InitConst->isZero()) { 1840 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 1841 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1842 } 1843 } 1844 1845 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to 1846 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic 1847 // function would be partial dead code, and downstream passes will drag 1848 // it back from the precondition block to the preheader. 1849 { 1850 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 1851 1852 Value *Opnd0 = PopCntZext; 1853 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 1854 if (PreCond->getOperand(0) != Var) 1855 std::swap(Opnd0, Opnd1); 1856 1857 ICmpInst *NewPreCond = cast<ICmpInst>( 1858 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 1859 PreCondBr->setCondition(NewPreCond); 1860 1861 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); 1862 } 1863 1864 // Step 3: Note that the population count is exactly the trip count of the 1865 // loop in question, which enable us to convert the loop from noncountable 1866 // loop into a countable one. The benefit is twofold: 1867 // 1868 // - If the loop only counts population, the entire loop becomes dead after 1869 // the transformation. It is a lot easier to prove a countable loop dead 1870 // than to prove a noncountable one. (In some C dialects, an infinite loop 1871 // isn't dead even if it computes nothing useful. In general, DCE needs 1872 // to prove a noncountable loop finite before safely delete it.) 1873 // 1874 // - If the loop also performs something else, it remains alive. 1875 // Since it is transformed to countable form, it can be aggressively 1876 // optimized by some optimizations which are in general not applicable 1877 // to a noncountable loop. 1878 // 1879 // After this step, this loop (conceptually) would look like following: 1880 // newcnt = __builtin_ctpop(x); 1881 // t = newcnt; 1882 // if (x) 1883 // do { cnt++; x &= x-1; t--) } while (t > 0); 1884 BasicBlock *Body = *(CurLoop->block_begin()); 1885 { 1886 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 1887 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 1888 Type *Ty = TripCnt->getType(); 1889 1890 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 1891 1892 Builder.SetInsertPoint(LbCond); 1893 Instruction *TcDec = cast<Instruction>( 1894 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 1895 "tcdec", false, true)); 1896 1897 TcPhi->addIncoming(TripCnt, PreHead); 1898 TcPhi->addIncoming(TcDec, Body); 1899 1900 CmpInst::Predicate Pred = 1901 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 1902 LbCond->setPredicate(Pred); 1903 LbCond->setOperand(0, TcDec); 1904 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 1905 } 1906 1907 // Step 4: All the references to the original population counter outside 1908 // the loop are replaced with the NewCount -- the value returned from 1909 // __builtin_ctpop(). 1910 CntInst->replaceUsesOutsideBlock(NewCount, Body); 1911 1912 // step 5: Forget the "non-computable" trip-count SCEV associated with the 1913 // loop. The loop would otherwise not be deleted even if it becomes empty. 1914 SE->forgetLoop(CurLoop); 1915 } 1916 1917 /// Match loop-invariant value. 1918 template <typename SubPattern_t> struct match_LoopInvariant { 1919 SubPattern_t SubPattern; 1920 const Loop *L; 1921 1922 match_LoopInvariant(const SubPattern_t &SP, const Loop *L) 1923 : SubPattern(SP), L(L) {} 1924 1925 template <typename ITy> bool match(ITy *V) { 1926 return L->isLoopInvariant(V) && SubPattern.match(V); 1927 } 1928 }; 1929 1930 /// Matches if the value is loop-invariant. 1931 template <typename Ty> 1932 inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) { 1933 return match_LoopInvariant<Ty>(M, L); 1934 } 1935 1936 /// Return true if the idiom is detected in the loop. 1937 /// 1938 /// The core idiom we are trying to detect is: 1939 /// \code 1940 /// entry: 1941 /// <...> 1942 /// %bitmask = shl i32 1, %bitpos 1943 /// br label %loop 1944 /// 1945 /// loop: 1946 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] 1947 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask 1948 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 1949 /// %x.next = shl i32 %x.curr, 1 1950 /// <...> 1951 /// br i1 %x.curr.isbitunset, label %loop, label %end 1952 /// 1953 /// end: 1954 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 1955 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 1956 /// <...> 1957 /// \endcode 1958 static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX, 1959 Value *&BitMask, Value *&BitPos, 1960 Value *&CurrX, Instruction *&NextX) { 1961 LLVM_DEBUG(dbgs() << DEBUG_TYPE 1962 " Performing shift-until-bittest idiom detection.\n"); 1963 1964 // Give up if the loop has multiple blocks or multiple backedges. 1965 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { 1966 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); 1967 return false; 1968 } 1969 1970 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 1971 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 1972 assert(LoopPreheaderBB && "There is always a loop preheader."); 1973 1974 using namespace PatternMatch; 1975 1976 // Step 1: Check if the loop backedge is in desirable form. 1977 1978 ICmpInst::Predicate Pred; 1979 Value *CmpLHS, *CmpRHS; 1980 BasicBlock *TrueBB, *FalseBB; 1981 if (!match(LoopHeaderBB->getTerminator(), 1982 m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)), 1983 m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) { 1984 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); 1985 return false; 1986 } 1987 1988 // Step 2: Check if the backedge's condition is in desirable form. 1989 1990 auto MatchVariableBitMask = [&]() { 1991 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && 1992 match(CmpLHS, 1993 m_c_And(m_Value(CurrX), 1994 m_CombineAnd( 1995 m_Value(BitMask), 1996 m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)), 1997 CurLoop)))); 1998 }; 1999 auto MatchConstantBitMask = [&]() { 2000 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && 2001 match(CmpLHS, m_And(m_Value(CurrX), 2002 m_CombineAnd(m_Value(BitMask), m_Power2()))) && 2003 (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask))); 2004 }; 2005 auto MatchDecomposableConstantBitMask = [&]() { 2006 APInt Mask; 2007 return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) && 2008 ICmpInst::isEquality(Pred) && Mask.isPowerOf2() && 2009 (BitMask = ConstantInt::get(CurrX->getType(), Mask)) && 2010 (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2())); 2011 }; 2012 2013 if (!MatchVariableBitMask() && !MatchConstantBitMask() && 2014 !MatchDecomposableConstantBitMask()) { 2015 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n"); 2016 return false; 2017 } 2018 2019 // Step 3: Check if the recurrence is in desirable form. 2020 auto *CurrXPN = dyn_cast<PHINode>(CurrX); 2021 if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) { 2022 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); 2023 return false; 2024 } 2025 2026 BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB); 2027 NextX = 2028 dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB)); 2029 2030 if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) { 2031 // FIXME: support right-shift? 2032 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); 2033 return false; 2034 } 2035 2036 // Step 4: Check if the backedge's destinations are in desirable form. 2037 2038 assert(ICmpInst::isEquality(Pred) && 2039 "Should only get equality predicates here."); 2040 2041 // cmp-br is commutative, so canonicalize to a single variant. 2042 if (Pred != ICmpInst::Predicate::ICMP_EQ) { 2043 Pred = ICmpInst::getInversePredicate(Pred); 2044 std::swap(TrueBB, FalseBB); 2045 } 2046 2047 // We expect to exit loop when comparison yields false, 2048 // so when it yields true we should branch back to loop header. 2049 if (TrueBB != LoopHeaderBB) { 2050 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); 2051 return false; 2052 } 2053 2054 // Okay, idiom checks out. 2055 return true; 2056 } 2057 2058 /// Look for the following loop: 2059 /// \code 2060 /// entry: 2061 /// <...> 2062 /// %bitmask = shl i32 1, %bitpos 2063 /// br label %loop 2064 /// 2065 /// loop: 2066 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] 2067 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask 2068 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 2069 /// %x.next = shl i32 %x.curr, 1 2070 /// <...> 2071 /// br i1 %x.curr.isbitunset, label %loop, label %end 2072 /// 2073 /// end: 2074 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2075 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2076 /// <...> 2077 /// \endcode 2078 /// 2079 /// And transform it into: 2080 /// \code 2081 /// entry: 2082 /// %bitmask = shl i32 1, %bitpos 2083 /// %lowbitmask = add i32 %bitmask, -1 2084 /// %mask = or i32 %lowbitmask, %bitmask 2085 /// %x.masked = and i32 %x, %mask 2086 /// %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked, 2087 /// i1 true) 2088 /// %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros 2089 /// %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1 2090 /// %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos 2091 /// %tripcount = add i32 %backedgetakencount, 1 2092 /// %x.curr = shl i32 %x, %backedgetakencount 2093 /// %x.next = shl i32 %x, %tripcount 2094 /// br label %loop 2095 /// 2096 /// loop: 2097 /// %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ] 2098 /// %loop.iv.next = add nuw i32 %loop.iv, 1 2099 /// %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount 2100 /// <...> 2101 /// br i1 %loop.ivcheck, label %end, label %loop 2102 /// 2103 /// end: 2104 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2105 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2106 /// <...> 2107 /// \endcode 2108 bool LoopIdiomRecognize::recognizeShiftUntilBitTest() { 2109 bool MadeChange = false; 2110 2111 Value *X, *BitMask, *BitPos, *XCurr; 2112 Instruction *XNext; 2113 if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr, 2114 XNext)) { 2115 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2116 " shift-until-bittest idiom detection failed.\n"); 2117 return MadeChange; 2118 } 2119 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n"); 2120 2121 // Ok, it is the idiom we were looking for, we *could* transform this loop, 2122 // but is it profitable to transform? 2123 2124 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2125 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2126 assert(LoopPreheaderBB && "There is always a loop preheader."); 2127 2128 BasicBlock *SuccessorBB = CurLoop->getExitBlock(); 2129 assert(LoopPreheaderBB && "There is only a single successor."); 2130 2131 IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); 2132 Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc()); 2133 2134 Intrinsic::ID IntrID = Intrinsic::ctlz; 2135 Type *Ty = X->getType(); 2136 unsigned Bitwidth = Ty->getScalarSizeInBits(); 2137 2138 TargetTransformInfo::TargetCostKind CostKind = 2139 TargetTransformInfo::TCK_SizeAndLatency; 2140 2141 // The rewrite is considered to be unprofitable iff and only iff the 2142 // intrinsic/shift we'll use are not cheap. Note that we are okay with *just* 2143 // making the loop countable, even if nothing else changes. 2144 IntrinsicCostAttributes Attrs( 2145 IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getTrue()}); 2146 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); 2147 if (Cost > TargetTransformInfo::TCC_Basic) { 2148 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2149 " Intrinsic is too costly, not beneficial\n"); 2150 return MadeChange; 2151 } 2152 if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) > 2153 TargetTransformInfo::TCC_Basic) { 2154 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n"); 2155 return MadeChange; 2156 } 2157 2158 // Ok, transform appears worthwhile. 2159 MadeChange = true; 2160 2161 // Step 1: Compute the loop trip count. 2162 2163 Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty), 2164 BitPos->getName() + ".lowbitmask"); 2165 Value *Mask = 2166 Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask"); 2167 Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked"); 2168 CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic( 2169 IntrID, Ty, {XMasked, /*is_zero_undef=*/Builder.getTrue()}, 2170 /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros"); 2171 Value *XMaskedNumActiveBits = Builder.CreateSub( 2172 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros, 2173 XMasked->getName() + ".numactivebits", /*HasNUW=*/true, 2174 /*HasNSW=*/Bitwidth != 2); 2175 Value *XMaskedLeadingOnePos = 2176 Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty), 2177 XMasked->getName() + ".leadingonepos", /*HasNUW=*/false, 2178 /*HasNSW=*/Bitwidth > 2); 2179 2180 Value *LoopBackedgeTakenCount = Builder.CreateSub( 2181 BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount", 2182 /*HasNUW=*/true, /*HasNSW=*/true); 2183 // We know loop's backedge-taken count, but what's loop's trip count? 2184 // Note that while NUW is always safe, while NSW is only for bitwidths != 2. 2185 Value *LoopTripCount = 2186 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), 2187 CurLoop->getName() + ".tripcount", /*HasNUW=*/true, 2188 /*HasNSW=*/Bitwidth != 2); 2189 2190 // Step 2: Compute the recurrence's final value without a loop. 2191 2192 // NewX is always safe to compute, because `LoopBackedgeTakenCount` 2193 // will always be smaller than `bitwidth(X)`, i.e. we never get poison. 2194 Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount); 2195 NewX->takeName(XCurr); 2196 if (auto *I = dyn_cast<Instruction>(NewX)) 2197 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); 2198 2199 Value *NewXNext; 2200 // Rewriting XNext is more complicated, however, because `X << LoopTripCount` 2201 // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen 2202 // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know 2203 // that isn't the case, we'll need to emit an alternative, safe IR. 2204 if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() || 2205 PatternMatch::match( 2206 BitPos, PatternMatch::m_SpecificInt_ICMP( 2207 ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(), 2208 Ty->getScalarSizeInBits() - 1)))) 2209 NewXNext = Builder.CreateShl(X, LoopTripCount); 2210 else { 2211 // Otherwise, just additionally shift by one. It's the smallest solution, 2212 // alternatively, we could check that NewX is INT_MIN (or BitPos is ) 2213 // and select 0 instead. 2214 NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1)); 2215 } 2216 2217 NewXNext->takeName(XNext); 2218 if (auto *I = dyn_cast<Instruction>(NewXNext)) 2219 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); 2220 2221 // Step 3: Adjust the successor basic block to recieve the computed 2222 // recurrence's final value instead of the recurrence itself. 2223 2224 XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB); 2225 XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB); 2226 2227 // Step 4: Rewrite the loop into a countable form, with canonical IV. 2228 2229 // The new canonical induction variable. 2230 Builder.SetInsertPoint(&LoopHeaderBB->front()); 2231 auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); 2232 2233 // The induction itself. 2234 // Note that while NUW is always safe, while NSW is only for bitwidths != 2. 2235 Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); 2236 auto *IVNext = 2237 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next", 2238 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 2239 2240 // The loop trip count check. 2241 auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount, 2242 CurLoop->getName() + ".ivcheck"); 2243 Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB); 2244 LoopHeaderBB->getTerminator()->eraseFromParent(); 2245 2246 // Populate the IV PHI. 2247 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); 2248 IV->addIncoming(IVNext, LoopHeaderBB); 2249 2250 // Step 5: Forget the "non-computable" trip-count SCEV associated with the 2251 // loop. The loop would otherwise not be deleted even if it becomes empty. 2252 2253 SE->forgetLoop(CurLoop); 2254 2255 // Other passes will take care of actually deleting the loop if possible. 2256 2257 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n"); 2258 2259 ++NumShiftUntilBitTest; 2260 return MadeChange; 2261 } 2262