1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements an idiom recognizer that transforms simple loops into a
10 // non-loop form.  In cases that this kicks in, it can be a significant
11 // performance win.
12 //
13 // If compiling for code size we avoid idiom recognition if the resulting
14 // code could be larger than the code for the original loop. One way this could
15 // happen is if the loop is not removable after idiom recognition due to the
16 // presence of non-idiom instructions. The initial implementation of the
17 // heuristics applies to idioms in multi-block loops.
18 //
19 //===----------------------------------------------------------------------===//
20 //
21 // TODO List:
22 //
23 // Future loop memory idioms to recognize:
24 //   memcmp, memmove, strlen, etc.
25 // Future floating point idioms to recognize in -ffast-math mode:
26 //   fpowi
27 // Future integer operation idioms to recognize:
28 //   ctpop
29 //
30 // Beware that isel's default lowering for ctpop is highly inefficient for
31 // i64 and larger types when i64 is legal and the value has few bits set.  It
32 // would be good to enhance isel to emit a loop for ctpop in this case.
33 //
34 // This could recognize common matrix multiplies and dot product idioms and
35 // replace them with calls to BLAS (if linked in??).
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
40 #include "llvm/ADT/APInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/MapVector.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/ADT/StringRef.h"
49 #include "llvm/Analysis/AliasAnalysis.h"
50 #include "llvm/Analysis/CmpInstAnalysis.h"
51 #include "llvm/Analysis/LoopAccessAnalysis.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Analysis/MemoryLocation.h"
55 #include "llvm/Analysis/MemorySSA.h"
56 #include "llvm/Analysis/MemorySSAUpdater.h"
57 #include "llvm/Analysis/MustExecute.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ScalarEvolution.h"
60 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/GlobalValue.h"
73 #include "llvm/IR/GlobalVariable.h"
74 #include "llvm/IR/IRBuilder.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/IntrinsicInst.h"
79 #include "llvm/IR/Intrinsics.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PassManager.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/IR/ValueHandle.h"
88 #include "llvm/InitializePasses.h"
89 #include "llvm/Pass.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/InstructionCost.h"
94 #include "llvm/Support/raw_ostream.h"
95 #include "llvm/Transforms/Scalar.h"
96 #include "llvm/Transforms/Utils/BuildLibCalls.h"
97 #include "llvm/Transforms/Utils/Local.h"
98 #include "llvm/Transforms/Utils/LoopUtils.h"
99 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
100 #include <algorithm>
101 #include <cassert>
102 #include <cstdint>
103 #include <utility>
104 #include <vector>
105 
106 using namespace llvm;
107 
108 #define DEBUG_TYPE "loop-idiom"
109 
110 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
111 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
112 STATISTIC(
113     NumShiftUntilBitTest,
114     "Number of uncountable loops recognized as 'shift until bitttest' idiom");
115 
116 bool DisableLIRP::All;
117 static cl::opt<bool, true>
118     DisableLIRPAll("disable-" DEBUG_TYPE "-all",
119                    cl::desc("Options to disable Loop Idiom Recognize Pass."),
120                    cl::location(DisableLIRP::All), cl::init(false),
121                    cl::ReallyHidden);
122 
123 bool DisableLIRP::Memset;
124 static cl::opt<bool, true>
125     DisableLIRPMemset("disable-" DEBUG_TYPE "-memset",
126                       cl::desc("Proceed with loop idiom recognize pass, but do "
127                                "not convert loop(s) to memset."),
128                       cl::location(DisableLIRP::Memset), cl::init(false),
129                       cl::ReallyHidden);
130 
131 bool DisableLIRP::Memcpy;
132 static cl::opt<bool, true>
133     DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy",
134                       cl::desc("Proceed with loop idiom recognize pass, but do "
135                                "not convert loop(s) to memcpy."),
136                       cl::location(DisableLIRP::Memcpy), cl::init(false),
137                       cl::ReallyHidden);
138 
139 static cl::opt<bool> UseLIRCodeSizeHeurs(
140     "use-lir-code-size-heurs",
141     cl::desc("Use loop idiom recognition code size heuristics when compiling"
142              "with -Os/-Oz"),
143     cl::init(true), cl::Hidden);
144 
145 namespace {
146 
147 class LoopIdiomRecognize {
148   Loop *CurLoop = nullptr;
149   AliasAnalysis *AA;
150   DominatorTree *DT;
151   LoopInfo *LI;
152   ScalarEvolution *SE;
153   TargetLibraryInfo *TLI;
154   const TargetTransformInfo *TTI;
155   const DataLayout *DL;
156   OptimizationRemarkEmitter &ORE;
157   bool ApplyCodeSizeHeuristics;
158   std::unique_ptr<MemorySSAUpdater> MSSAU;
159 
160 public:
161   explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
162                               LoopInfo *LI, ScalarEvolution *SE,
163                               TargetLibraryInfo *TLI,
164                               const TargetTransformInfo *TTI, MemorySSA *MSSA,
165                               const DataLayout *DL,
166                               OptimizationRemarkEmitter &ORE)
167       : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {
168     if (MSSA)
169       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
170   }
171 
172   bool runOnLoop(Loop *L);
173 
174 private:
175   using StoreList = SmallVector<StoreInst *, 8>;
176   using StoreListMap = MapVector<Value *, StoreList>;
177 
178   StoreListMap StoreRefsForMemset;
179   StoreListMap StoreRefsForMemsetPattern;
180   StoreList StoreRefsForMemcpy;
181   bool HasMemset;
182   bool HasMemsetPattern;
183   bool HasMemcpy;
184 
185   /// Return code for isLegalStore()
186   enum LegalStoreKind {
187     None = 0,
188     Memset,
189     MemsetPattern,
190     Memcpy,
191     UnorderedAtomicMemcpy,
192     DontUse // Dummy retval never to be used. Allows catching errors in retval
193             // handling.
194   };
195 
196   /// \name Countable Loop Idiom Handling
197   /// @{
198 
199   bool runOnCountableLoop();
200   bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
201                       SmallVectorImpl<BasicBlock *> &ExitBlocks);
202 
203   void collectStores(BasicBlock *BB);
204   LegalStoreKind isLegalStore(StoreInst *SI);
205   enum class ForMemset { No, Yes };
206   bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
207                          ForMemset For);
208   bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
209 
210   bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
211                                MaybeAlign StoreAlignment, Value *StoredVal,
212                                Instruction *TheStore,
213                                SmallPtrSetImpl<Instruction *> &Stores,
214                                const SCEVAddRecExpr *Ev, const SCEV *BECount,
215                                bool NegStride, bool IsLoopMemset = false);
216   bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
217   bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
218                                  bool IsLoopMemset = false);
219 
220   /// @}
221   /// \name Noncountable Loop Idiom Handling
222   /// @{
223 
224   bool runOnNoncountableLoop();
225 
226   bool recognizePopcount();
227   void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
228                                PHINode *CntPhi, Value *Var);
229   bool recognizeAndInsertFFS();  /// Find First Set: ctlz or cttz
230   void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
231                                 Instruction *CntInst, PHINode *CntPhi,
232                                 Value *Var, Instruction *DefX,
233                                 const DebugLoc &DL, bool ZeroCheck,
234                                 bool IsCntPhiUsedOutsideLoop);
235 
236   bool recognizeShiftUntilBitTest();
237 
238   /// @}
239 };
240 
241 class LoopIdiomRecognizeLegacyPass : public LoopPass {
242 public:
243   static char ID;
244 
245   explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
246     initializeLoopIdiomRecognizeLegacyPassPass(
247         *PassRegistry::getPassRegistry());
248   }
249 
250   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
251     if (DisableLIRP::All)
252       return false;
253 
254     if (skipLoop(L))
255       return false;
256 
257     AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
258     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
259     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
260     ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
261     TargetLibraryInfo *TLI =
262         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
263             *L->getHeader()->getParent());
264     const TargetTransformInfo *TTI =
265         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
266             *L->getHeader()->getParent());
267     const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
268     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
269     MemorySSA *MSSA = nullptr;
270     if (MSSAAnalysis)
271       MSSA = &MSSAAnalysis->getMSSA();
272 
273     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
274     // pass.  Function analyses need to be preserved across loop transformations
275     // but ORE cannot be preserved (see comment before the pass definition).
276     OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
277 
278     LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE);
279     return LIR.runOnLoop(L);
280   }
281 
282   /// This transformation requires natural loop information & requires that
283   /// loop preheaders be inserted into the CFG.
284   void getAnalysisUsage(AnalysisUsage &AU) const override {
285     AU.addRequired<TargetLibraryInfoWrapperPass>();
286     AU.addRequired<TargetTransformInfoWrapperPass>();
287     AU.addPreserved<MemorySSAWrapperPass>();
288     getLoopAnalysisUsage(AU);
289   }
290 };
291 
292 } // end anonymous namespace
293 
294 char LoopIdiomRecognizeLegacyPass::ID = 0;
295 
296 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
297                                               LoopStandardAnalysisResults &AR,
298                                               LPMUpdater &) {
299   if (DisableLIRP::All)
300     return PreservedAnalyses::all();
301 
302   const auto *DL = &L.getHeader()->getModule()->getDataLayout();
303 
304   // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
305   // pass.  Function analyses need to be preserved across loop transformations
306   // but ORE cannot be preserved (see comment before the pass definition).
307   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
308 
309   LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI,
310                          AR.MSSA, DL, ORE);
311   if (!LIR.runOnLoop(&L))
312     return PreservedAnalyses::all();
313 
314   auto PA = getLoopPassPreservedAnalyses();
315   if (AR.MSSA)
316     PA.preserve<MemorySSAAnalysis>();
317   return PA;
318 }
319 
320 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
321                       "Recognize loop idioms", false, false)
322 INITIALIZE_PASS_DEPENDENCY(LoopPass)
323 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
324 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
325 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
326                     "Recognize loop idioms", false, false)
327 
328 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
329 
330 static void deleteDeadInstruction(Instruction *I) {
331   I->replaceAllUsesWith(UndefValue::get(I->getType()));
332   I->eraseFromParent();
333 }
334 
335 //===----------------------------------------------------------------------===//
336 //
337 //          Implementation of LoopIdiomRecognize
338 //
339 //===----------------------------------------------------------------------===//
340 
341 bool LoopIdiomRecognize::runOnLoop(Loop *L) {
342   CurLoop = L;
343   // If the loop could not be converted to canonical form, it must have an
344   // indirectbr in it, just give up.
345   if (!L->getLoopPreheader())
346     return false;
347 
348   // Disable loop idiom recognition if the function's name is a common idiom.
349   StringRef Name = L->getHeader()->getParent()->getName();
350   if (Name == "memset" || Name == "memcpy")
351     return false;
352 
353   // Determine if code size heuristics need to be applied.
354   ApplyCodeSizeHeuristics =
355       L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
356 
357   HasMemset = TLI->has(LibFunc_memset);
358   HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
359   HasMemcpy = TLI->has(LibFunc_memcpy);
360 
361   if (HasMemset || HasMemsetPattern || HasMemcpy)
362     if (SE->hasLoopInvariantBackedgeTakenCount(L))
363       return runOnCountableLoop();
364 
365   return runOnNoncountableLoop();
366 }
367 
368 bool LoopIdiomRecognize::runOnCountableLoop() {
369   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
370   assert(!isa<SCEVCouldNotCompute>(BECount) &&
371          "runOnCountableLoop() called on a loop without a predictable"
372          "backedge-taken count");
373 
374   // If this loop executes exactly one time, then it should be peeled, not
375   // optimized by this pass.
376   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
377     if (BECst->getAPInt() == 0)
378       return false;
379 
380   SmallVector<BasicBlock *, 8> ExitBlocks;
381   CurLoop->getUniqueExitBlocks(ExitBlocks);
382 
383   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
384                     << CurLoop->getHeader()->getParent()->getName()
385                     << "] Countable Loop %" << CurLoop->getHeader()->getName()
386                     << "\n");
387 
388   // The following transforms hoist stores/memsets into the loop pre-header.
389   // Give up if the loop has instructions that may throw.
390   SimpleLoopSafetyInfo SafetyInfo;
391   SafetyInfo.computeLoopSafetyInfo(CurLoop);
392   if (SafetyInfo.anyBlockMayThrow())
393     return false;
394 
395   bool MadeChange = false;
396 
397   // Scan all the blocks in the loop that are not in subloops.
398   for (auto *BB : CurLoop->getBlocks()) {
399     // Ignore blocks in subloops.
400     if (LI->getLoopFor(BB) != CurLoop)
401       continue;
402 
403     MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
404   }
405   return MadeChange;
406 }
407 
408 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
409   const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
410   return ConstStride->getAPInt();
411 }
412 
413 /// getMemSetPatternValue - If a strided store of the specified value is safe to
414 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
415 /// be passed in.  Otherwise, return null.
416 ///
417 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
418 /// just replicate their input array and then pass on to memset_pattern16.
419 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
420   // FIXME: This could check for UndefValue because it can be merged into any
421   // other valid pattern.
422 
423   // If the value isn't a constant, we can't promote it to being in a constant
424   // array.  We could theoretically do a store to an alloca or something, but
425   // that doesn't seem worthwhile.
426   Constant *C = dyn_cast<Constant>(V);
427   if (!C)
428     return nullptr;
429 
430   // Only handle simple values that are a power of two bytes in size.
431   uint64_t Size = DL->getTypeSizeInBits(V->getType());
432   if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
433     return nullptr;
434 
435   // Don't care enough about darwin/ppc to implement this.
436   if (DL->isBigEndian())
437     return nullptr;
438 
439   // Convert to size in bytes.
440   Size /= 8;
441 
442   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
443   // if the top and bottom are the same (e.g. for vectors and large integers).
444   if (Size > 16)
445     return nullptr;
446 
447   // If the constant is exactly 16 bytes, just use it.
448   if (Size == 16)
449     return C;
450 
451   // Otherwise, we'll use an array of the constants.
452   unsigned ArraySize = 16 / Size;
453   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
454   return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
455 }
456 
457 LoopIdiomRecognize::LegalStoreKind
458 LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
459   // Don't touch volatile stores.
460   if (SI->isVolatile())
461     return LegalStoreKind::None;
462   // We only want simple or unordered-atomic stores.
463   if (!SI->isUnordered())
464     return LegalStoreKind::None;
465 
466   // Avoid merging nontemporal stores.
467   if (SI->getMetadata(LLVMContext::MD_nontemporal))
468     return LegalStoreKind::None;
469 
470   Value *StoredVal = SI->getValueOperand();
471   Value *StorePtr = SI->getPointerOperand();
472 
473   // Don't convert stores of non-integral pointer types to memsets (which stores
474   // integers).
475   if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
476     return LegalStoreKind::None;
477 
478   // Reject stores that are so large that they overflow an unsigned.
479   // When storing out scalable vectors we bail out for now, since the code
480   // below currently only works for constant strides.
481   TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
482   if (SizeInBits.isScalable() || (SizeInBits.getFixedSize() & 7) ||
483       (SizeInBits.getFixedSize() >> 32) != 0)
484     return LegalStoreKind::None;
485 
486   // See if the pointer expression is an AddRec like {base,+,1} on the current
487   // loop, which indicates a strided store.  If we have something else, it's a
488   // random store we can't handle.
489   const SCEVAddRecExpr *StoreEv =
490       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
491   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
492     return LegalStoreKind::None;
493 
494   // Check to see if we have a constant stride.
495   if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
496     return LegalStoreKind::None;
497 
498   // See if the store can be turned into a memset.
499 
500   // If the stored value is a byte-wise value (like i32 -1), then it may be
501   // turned into a memset of i8 -1, assuming that all the consecutive bytes
502   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
503   // but it can be turned into memset_pattern if the target supports it.
504   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
505   Constant *PatternValue = nullptr;
506 
507   // Note: memset and memset_pattern on unordered-atomic is yet not supported
508   bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
509 
510   // If we're allowed to form a memset, and the stored value would be
511   // acceptable for memset, use it.
512   if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset &&
513       // Verify that the stored value is loop invariant.  If not, we can't
514       // promote the memset.
515       CurLoop->isLoopInvariant(SplatValue)) {
516     // It looks like we can use SplatValue.
517     return LegalStoreKind::Memset;
518   } else if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset &&
519              // Don't create memset_pattern16s with address spaces.
520              StorePtr->getType()->getPointerAddressSpace() == 0 &&
521              (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
522     // It looks like we can use PatternValue!
523     return LegalStoreKind::MemsetPattern;
524   }
525 
526   // Otherwise, see if the store can be turned into a memcpy.
527   if (HasMemcpy && !DisableLIRP::Memcpy) {
528     // Check to see if the stride matches the size of the store.  If so, then we
529     // know that every byte is touched in the loop.
530     APInt Stride = getStoreStride(StoreEv);
531     unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
532     if (StoreSize != Stride && StoreSize != -Stride)
533       return LegalStoreKind::None;
534 
535     // The store must be feeding a non-volatile load.
536     LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
537 
538     // Only allow non-volatile loads
539     if (!LI || LI->isVolatile())
540       return LegalStoreKind::None;
541     // Only allow simple or unordered-atomic loads
542     if (!LI->isUnordered())
543       return LegalStoreKind::None;
544 
545     // See if the pointer expression is an AddRec like {base,+,1} on the current
546     // loop, which indicates a strided load.  If we have something else, it's a
547     // random load we can't handle.
548     const SCEVAddRecExpr *LoadEv =
549         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
550     if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
551       return LegalStoreKind::None;
552 
553     // The store and load must share the same stride.
554     if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
555       return LegalStoreKind::None;
556 
557     // Success.  This store can be converted into a memcpy.
558     UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
559     return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
560                            : LegalStoreKind::Memcpy;
561   }
562   // This store can't be transformed into a memset/memcpy.
563   return LegalStoreKind::None;
564 }
565 
566 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
567   StoreRefsForMemset.clear();
568   StoreRefsForMemsetPattern.clear();
569   StoreRefsForMemcpy.clear();
570   for (Instruction &I : *BB) {
571     StoreInst *SI = dyn_cast<StoreInst>(&I);
572     if (!SI)
573       continue;
574 
575     // Make sure this is a strided store with a constant stride.
576     switch (isLegalStore(SI)) {
577     case LegalStoreKind::None:
578       // Nothing to do
579       break;
580     case LegalStoreKind::Memset: {
581       // Find the base pointer.
582       Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
583       StoreRefsForMemset[Ptr].push_back(SI);
584     } break;
585     case LegalStoreKind::MemsetPattern: {
586       // Find the base pointer.
587       Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
588       StoreRefsForMemsetPattern[Ptr].push_back(SI);
589     } break;
590     case LegalStoreKind::Memcpy:
591     case LegalStoreKind::UnorderedAtomicMemcpy:
592       StoreRefsForMemcpy.push_back(SI);
593       break;
594     default:
595       assert(false && "unhandled return value");
596       break;
597     }
598   }
599 }
600 
601 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
602 /// with the specified backedge count.  This block is known to be in the current
603 /// loop and not in any subloops.
604 bool LoopIdiomRecognize::runOnLoopBlock(
605     BasicBlock *BB, const SCEV *BECount,
606     SmallVectorImpl<BasicBlock *> &ExitBlocks) {
607   // We can only promote stores in this block if they are unconditionally
608   // executed in the loop.  For a block to be unconditionally executed, it has
609   // to dominate all the exit blocks of the loop.  Verify this now.
610   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
611     if (!DT->dominates(BB, ExitBlocks[i]))
612       return false;
613 
614   bool MadeChange = false;
615   // Look for store instructions, which may be optimized to memset/memcpy.
616   collectStores(BB);
617 
618   // Look for a single store or sets of stores with a common base, which can be
619   // optimized into a memset (memset_pattern).  The latter most commonly happens
620   // with structs and handunrolled loops.
621   for (auto &SL : StoreRefsForMemset)
622     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
623 
624   for (auto &SL : StoreRefsForMemsetPattern)
625     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
626 
627   // Optimize the store into a memcpy, if it feeds an similarly strided load.
628   for (auto &SI : StoreRefsForMemcpy)
629     MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
630 
631   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
632     Instruction *Inst = &*I++;
633     // Look for memset instructions, which may be optimized to a larger memset.
634     if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
635       WeakTrackingVH InstPtr(&*I);
636       if (!processLoopMemSet(MSI, BECount))
637         continue;
638       MadeChange = true;
639 
640       // If processing the memset invalidated our iterator, start over from the
641       // top of the block.
642       if (!InstPtr)
643         I = BB->begin();
644       continue;
645     }
646   }
647 
648   return MadeChange;
649 }
650 
651 /// See if this store(s) can be promoted to a memset.
652 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
653                                            const SCEV *BECount, ForMemset For) {
654   // Try to find consecutive stores that can be transformed into memsets.
655   SetVector<StoreInst *> Heads, Tails;
656   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
657 
658   // Do a quadratic search on all of the given stores and find
659   // all of the pairs of stores that follow each other.
660   SmallVector<unsigned, 16> IndexQueue;
661   for (unsigned i = 0, e = SL.size(); i < e; ++i) {
662     assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
663 
664     Value *FirstStoredVal = SL[i]->getValueOperand();
665     Value *FirstStorePtr = SL[i]->getPointerOperand();
666     const SCEVAddRecExpr *FirstStoreEv =
667         cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
668     APInt FirstStride = getStoreStride(FirstStoreEv);
669     unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
670 
671     // See if we can optimize just this store in isolation.
672     if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
673       Heads.insert(SL[i]);
674       continue;
675     }
676 
677     Value *FirstSplatValue = nullptr;
678     Constant *FirstPatternValue = nullptr;
679 
680     if (For == ForMemset::Yes)
681       FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
682     else
683       FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
684 
685     assert((FirstSplatValue || FirstPatternValue) &&
686            "Expected either splat value or pattern value.");
687 
688     IndexQueue.clear();
689     // If a store has multiple consecutive store candidates, search Stores
690     // array according to the sequence: from i+1 to e, then from i-1 to 0.
691     // This is because usually pairing with immediate succeeding or preceding
692     // candidate create the best chance to find memset opportunity.
693     unsigned j = 0;
694     for (j = i + 1; j < e; ++j)
695       IndexQueue.push_back(j);
696     for (j = i; j > 0; --j)
697       IndexQueue.push_back(j - 1);
698 
699     for (auto &k : IndexQueue) {
700       assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
701       Value *SecondStorePtr = SL[k]->getPointerOperand();
702       const SCEVAddRecExpr *SecondStoreEv =
703           cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
704       APInt SecondStride = getStoreStride(SecondStoreEv);
705 
706       if (FirstStride != SecondStride)
707         continue;
708 
709       Value *SecondStoredVal = SL[k]->getValueOperand();
710       Value *SecondSplatValue = nullptr;
711       Constant *SecondPatternValue = nullptr;
712 
713       if (For == ForMemset::Yes)
714         SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
715       else
716         SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
717 
718       assert((SecondSplatValue || SecondPatternValue) &&
719              "Expected either splat value or pattern value.");
720 
721       if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
722         if (For == ForMemset::Yes) {
723           if (isa<UndefValue>(FirstSplatValue))
724             FirstSplatValue = SecondSplatValue;
725           if (FirstSplatValue != SecondSplatValue)
726             continue;
727         } else {
728           if (isa<UndefValue>(FirstPatternValue))
729             FirstPatternValue = SecondPatternValue;
730           if (FirstPatternValue != SecondPatternValue)
731             continue;
732         }
733         Tails.insert(SL[k]);
734         Heads.insert(SL[i]);
735         ConsecutiveChain[SL[i]] = SL[k];
736         break;
737       }
738     }
739   }
740 
741   // We may run into multiple chains that merge into a single chain. We mark the
742   // stores that we transformed so that we don't visit the same store twice.
743   SmallPtrSet<Value *, 16> TransformedStores;
744   bool Changed = false;
745 
746   // For stores that start but don't end a link in the chain:
747   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
748        it != e; ++it) {
749     if (Tails.count(*it))
750       continue;
751 
752     // We found a store instr that starts a chain. Now follow the chain and try
753     // to transform it.
754     SmallPtrSet<Instruction *, 8> AdjacentStores;
755     StoreInst *I = *it;
756 
757     StoreInst *HeadStore = I;
758     unsigned StoreSize = 0;
759 
760     // Collect the chain into a list.
761     while (Tails.count(I) || Heads.count(I)) {
762       if (TransformedStores.count(I))
763         break;
764       AdjacentStores.insert(I);
765 
766       StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
767       // Move to the next value in the chain.
768       I = ConsecutiveChain[I];
769     }
770 
771     Value *StoredVal = HeadStore->getValueOperand();
772     Value *StorePtr = HeadStore->getPointerOperand();
773     const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
774     APInt Stride = getStoreStride(StoreEv);
775 
776     // Check to see if the stride matches the size of the stores.  If so, then
777     // we know that every byte is touched in the loop.
778     if (StoreSize != Stride && StoreSize != -Stride)
779       continue;
780 
781     bool NegStride = StoreSize == -Stride;
782 
783     if (processLoopStridedStore(StorePtr, StoreSize,
784                                 MaybeAlign(HeadStore->getAlignment()),
785                                 StoredVal, HeadStore, AdjacentStores, StoreEv,
786                                 BECount, NegStride)) {
787       TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
788       Changed = true;
789     }
790   }
791 
792   return Changed;
793 }
794 
795 /// processLoopMemSet - See if this memset can be promoted to a large memset.
796 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
797                                            const SCEV *BECount) {
798   // We can only handle non-volatile memsets with a constant size.
799   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
800     return false;
801 
802   // If we're not allowed to hack on memset, we fail.
803   if (!HasMemset)
804     return false;
805 
806   Value *Pointer = MSI->getDest();
807 
808   // See if the pointer expression is an AddRec like {base,+,1} on the current
809   // loop, which indicates a strided store.  If we have something else, it's a
810   // random store we can't handle.
811   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
812   if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
813     return false;
814 
815   // Reject memsets that are so large that they overflow an unsigned.
816   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
817   if ((SizeInBytes >> 32) != 0)
818     return false;
819 
820   // Check to see if the stride matches the size of the memset.  If so, then we
821   // know that every byte is touched in the loop.
822   const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
823   if (!ConstStride)
824     return false;
825 
826   APInt Stride = ConstStride->getAPInt();
827   if (SizeInBytes != Stride && SizeInBytes != -Stride)
828     return false;
829 
830   // Verify that the memset value is loop invariant.  If not, we can't promote
831   // the memset.
832   Value *SplatValue = MSI->getValue();
833   if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
834     return false;
835 
836   SmallPtrSet<Instruction *, 1> MSIs;
837   MSIs.insert(MSI);
838   bool NegStride = SizeInBytes == -Stride;
839   return processLoopStridedStore(
840       Pointer, (unsigned)SizeInBytes, MaybeAlign(MSI->getDestAlignment()),
841       SplatValue, MSI, MSIs, Ev, BECount, NegStride, /*IsLoopMemset=*/true);
842 }
843 
844 /// mayLoopAccessLocation - Return true if the specified loop might access the
845 /// specified pointer location, which is a loop-strided access.  The 'Access'
846 /// argument specifies what the verboten forms of access are (read or write).
847 static bool
848 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
849                       const SCEV *BECount, unsigned StoreSize,
850                       AliasAnalysis &AA,
851                       SmallPtrSetImpl<Instruction *> &IgnoredStores) {
852   // Get the location that may be stored across the loop.  Since the access is
853   // strided positively through memory, we say that the modified location starts
854   // at the pointer and has infinite size.
855   LocationSize AccessSize = LocationSize::afterPointer();
856 
857   // If the loop iterates a fixed number of times, we can refine the access size
858   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
859   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
860     AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
861                                        StoreSize);
862 
863   // TODO: For this to be really effective, we have to dive into the pointer
864   // operand in the store.  Store to &A[i] of 100 will always return may alias
865   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
866   // which will then no-alias a store to &A[100].
867   MemoryLocation StoreLoc(Ptr, AccessSize);
868 
869   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
870        ++BI)
871     for (Instruction &I : **BI)
872       if (IgnoredStores.count(&I) == 0 &&
873           isModOrRefSet(
874               intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
875         return true;
876 
877   return false;
878 }
879 
880 // If we have a negative stride, Start refers to the end of the memory location
881 // we're trying to memset.  Therefore, we need to recompute the base pointer,
882 // which is just Start - BECount*Size.
883 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
884                                         Type *IntPtr, unsigned StoreSize,
885                                         ScalarEvolution *SE) {
886   const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
887   if (StoreSize != 1)
888     Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
889                            SCEV::FlagNUW);
890   return SE->getMinusSCEV(Start, Index);
891 }
892 
893 /// Compute the number of bytes as a SCEV from the backedge taken count.
894 ///
895 /// This also maps the SCEV into the provided type and tries to handle the
896 /// computation in a way that will fold cleanly.
897 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
898                                unsigned StoreSize, Loop *CurLoop,
899                                const DataLayout *DL, ScalarEvolution *SE) {
900   const SCEV *NumBytesS;
901   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
902   // pointer size if it isn't already.
903   //
904   // If we're going to need to zero extend the BE count, check if we can add
905   // one to it prior to zero extending without overflow. Provided this is safe,
906   // it allows better simplification of the +1.
907   if (DL->getTypeSizeInBits(BECount->getType()).getFixedSize() <
908           DL->getTypeSizeInBits(IntPtr).getFixedSize() &&
909       SE->isLoopEntryGuardedByCond(
910           CurLoop, ICmpInst::ICMP_NE, BECount,
911           SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
912     NumBytesS = SE->getZeroExtendExpr(
913         SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
914         IntPtr);
915   } else {
916     NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
917                                SE->getOne(IntPtr), SCEV::FlagNUW);
918   }
919 
920   // And scale it based on the store size.
921   if (StoreSize != 1) {
922     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
923                                SCEV::FlagNUW);
924   }
925   return NumBytesS;
926 }
927 
928 /// processLoopStridedStore - We see a strided store of some value.  If we can
929 /// transform this into a memset or memset_pattern in the loop preheader, do so.
930 bool LoopIdiomRecognize::processLoopStridedStore(
931     Value *DestPtr, unsigned StoreSize, MaybeAlign StoreAlignment,
932     Value *StoredVal, Instruction *TheStore,
933     SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
934     const SCEV *BECount, bool NegStride, bool IsLoopMemset) {
935   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
936   Constant *PatternValue = nullptr;
937 
938   if (!SplatValue)
939     PatternValue = getMemSetPatternValue(StoredVal, DL);
940 
941   assert((SplatValue || PatternValue) &&
942          "Expected either splat value or pattern value.");
943 
944   // The trip count of the loop and the base pointer of the addrec SCEV is
945   // guaranteed to be loop invariant, which means that it should dominate the
946   // header.  This allows us to insert code for it in the preheader.
947   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
948   BasicBlock *Preheader = CurLoop->getLoopPreheader();
949   IRBuilder<> Builder(Preheader->getTerminator());
950   SCEVExpander Expander(*SE, *DL, "loop-idiom");
951   SCEVExpanderCleaner ExpCleaner(Expander, *DT);
952 
953   Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
954   Type *IntIdxTy = DL->getIndexType(DestPtr->getType());
955 
956   bool Changed = false;
957   const SCEV *Start = Ev->getStart();
958   // Handle negative strided loops.
959   if (NegStride)
960     Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSize, SE);
961 
962   // TODO: ideally we should still be able to generate memset if SCEV expander
963   // is taught to generate the dependencies at the latest point.
964   if (!isSafeToExpand(Start, *SE))
965     return Changed;
966 
967   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
968   // this into a memset in the loop preheader now if we want.  However, this
969   // would be unsafe to do if there is anything else in the loop that may read
970   // or write to the aliased location.  Check for any overlap by generating the
971   // base pointer and checking the region.
972   Value *BasePtr =
973       Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
974 
975   // From here on out, conservatively report to the pass manager that we've
976   // changed the IR, even if we later clean up these added instructions. There
977   // may be structural differences e.g. in the order of use lists not accounted
978   // for in just a textual dump of the IR. This is written as a variable, even
979   // though statically all the places this dominates could be replaced with
980   // 'true', with the hope that anyone trying to be clever / "more precise" with
981   // the return value will read this comment, and leave them alone.
982   Changed = true;
983 
984   if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
985                             StoreSize, *AA, Stores))
986     return Changed;
987 
988   if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
989     return Changed;
990 
991   // Okay, everything looks good, insert the memset.
992 
993   const SCEV *NumBytesS =
994       getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE);
995 
996   // TODO: ideally we should still be able to generate memset if SCEV expander
997   // is taught to generate the dependencies at the latest point.
998   if (!isSafeToExpand(NumBytesS, *SE))
999     return Changed;
1000 
1001   Value *NumBytes =
1002       Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1003 
1004   CallInst *NewCall;
1005   if (SplatValue) {
1006     NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes,
1007                                    MaybeAlign(StoreAlignment));
1008   } else {
1009     // Everything is emitted in default address space
1010     Type *Int8PtrTy = DestInt8PtrTy;
1011 
1012     Module *M = TheStore->getModule();
1013     StringRef FuncName = "memset_pattern16";
1014     FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
1015                                                 Int8PtrTy, Int8PtrTy, IntIdxTy);
1016     inferLibFuncAttributes(M, FuncName, *TLI);
1017 
1018     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
1019     // an constant array of 16-bytes.  Plop the value into a mergable global.
1020     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
1021                                             GlobalValue::PrivateLinkage,
1022                                             PatternValue, ".memset_pattern");
1023     GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
1024     GV->setAlignment(Align(16));
1025     Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
1026     NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
1027   }
1028   NewCall->setDebugLoc(TheStore->getDebugLoc());
1029 
1030   if (MSSAU) {
1031     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1032         NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1033     MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1034   }
1035 
1036   LLVM_DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
1037                     << "    from store to: " << *Ev << " at: " << *TheStore
1038                     << "\n");
1039 
1040   ORE.emit([&]() {
1041     return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore",
1042                               NewCall->getDebugLoc(), Preheader)
1043            << "Transformed loop-strided store into a call to "
1044            << ore::NV("NewFunction", NewCall->getCalledFunction())
1045            << "() function";
1046   });
1047 
1048   // Okay, the memset has been formed.  Zap the original store and anything that
1049   // feeds into it.
1050   for (auto *I : Stores) {
1051     if (MSSAU)
1052       MSSAU->removeMemoryAccess(I, true);
1053     deleteDeadInstruction(I);
1054   }
1055   if (MSSAU && VerifyMemorySSA)
1056     MSSAU->getMemorySSA()->verifyMemorySSA();
1057   ++NumMemSet;
1058   ExpCleaner.markResultUsed();
1059   return true;
1060 }
1061 
1062 /// If the stored value is a strided load in the same loop with the same stride
1063 /// this may be transformable into a memcpy.  This kicks in for stuff like
1064 /// for (i) A[i] = B[i];
1065 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
1066                                                     const SCEV *BECount) {
1067   assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
1068 
1069   Value *StorePtr = SI->getPointerOperand();
1070   const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1071   APInt Stride = getStoreStride(StoreEv);
1072   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1073   bool NegStride = StoreSize == -Stride;
1074 
1075   // The store must be feeding a non-volatile load.
1076   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1077   assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
1078 
1079   // See if the pointer expression is an AddRec like {base,+,1} on the current
1080   // loop, which indicates a strided load.  If we have something else, it's a
1081   // random load we can't handle.
1082   const SCEVAddRecExpr *LoadEv =
1083       cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
1084 
1085   // The trip count of the loop and the base pointer of the addrec SCEV is
1086   // guaranteed to be loop invariant, which means that it should dominate the
1087   // header.  This allows us to insert code for it in the preheader.
1088   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1089   IRBuilder<> Builder(Preheader->getTerminator());
1090   SCEVExpander Expander(*SE, *DL, "loop-idiom");
1091 
1092   SCEVExpanderCleaner ExpCleaner(Expander, *DT);
1093 
1094   bool Changed = false;
1095   const SCEV *StrStart = StoreEv->getStart();
1096   unsigned StrAS = SI->getPointerAddressSpace();
1097   Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS));
1098 
1099   // Handle negative strided loops.
1100   if (NegStride)
1101     StrStart = getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSize, SE);
1102 
1103   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
1104   // this into a memcpy in the loop preheader now if we want.  However, this
1105   // would be unsafe to do if there is anything else in the loop that may read
1106   // or write the memory region we're storing to.  This includes the load that
1107   // feeds the stores.  Check for an alias by generating the base address and
1108   // checking everything.
1109   Value *StoreBasePtr = Expander.expandCodeFor(
1110       StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
1111 
1112   // From here on out, conservatively report to the pass manager that we've
1113   // changed the IR, even if we later clean up these added instructions. There
1114   // may be structural differences e.g. in the order of use lists not accounted
1115   // for in just a textual dump of the IR. This is written as a variable, even
1116   // though statically all the places this dominates could be replaced with
1117   // 'true', with the hope that anyone trying to be clever / "more precise" with
1118   // the return value will read this comment, and leave them alone.
1119   Changed = true;
1120 
1121   SmallPtrSet<Instruction *, 1> Stores;
1122   Stores.insert(SI);
1123   if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1124                             StoreSize, *AA, Stores))
1125     return Changed;
1126 
1127   const SCEV *LdStart = LoadEv->getStart();
1128   unsigned LdAS = LI->getPointerAddressSpace();
1129 
1130   // Handle negative strided loops.
1131   if (NegStride)
1132     LdStart = getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSize, SE);
1133 
1134   // For a memcpy, we have to make sure that the input array is not being
1135   // mutated by the loop.
1136   Value *LoadBasePtr = Expander.expandCodeFor(
1137       LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
1138 
1139   if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
1140                             StoreSize, *AA, Stores))
1141     return Changed;
1142 
1143   if (avoidLIRForMultiBlockLoop())
1144     return Changed;
1145 
1146   // Okay, everything is safe, we can transform this!
1147 
1148   const SCEV *NumBytesS =
1149       getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE);
1150 
1151   Value *NumBytes =
1152       Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1153 
1154   CallInst *NewCall = nullptr;
1155   // Check whether to generate an unordered atomic memcpy:
1156   //  If the load or store are atomic, then they must necessarily be unordered
1157   //  by previous checks.
1158   if (!SI->isAtomic() && !LI->isAtomic())
1159     NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlign(), LoadBasePtr,
1160                                    LI->getAlign(), NumBytes);
1161   else {
1162     // We cannot allow unaligned ops for unordered load/store, so reject
1163     // anything where the alignment isn't at least the element size.
1164     const Align StoreAlign = SI->getAlign();
1165     const Align LoadAlign = LI->getAlign();
1166     if (StoreAlign < StoreSize || LoadAlign < StoreSize)
1167       return Changed;
1168 
1169     // If the element.atomic memcpy is not lowered into explicit
1170     // loads/stores later, then it will be lowered into an element-size
1171     // specific lib call. If the lib call doesn't exist for our store size, then
1172     // we shouldn't generate the memcpy.
1173     if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1174       return Changed;
1175 
1176     // Create the call.
1177     // Note that unordered atomic loads/stores are *required* by the spec to
1178     // have an alignment but non-atomic loads/stores may not.
1179     NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1180         StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes,
1181         StoreSize);
1182   }
1183   NewCall->setDebugLoc(SI->getDebugLoc());
1184 
1185   if (MSSAU) {
1186     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1187         NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1188     MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1189   }
1190 
1191   LLVM_DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
1192                     << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
1193                     << "    from store ptr=" << *StoreEv << " at: " << *SI
1194                     << "\n");
1195 
1196   ORE.emit([&]() {
1197     return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
1198                               NewCall->getDebugLoc(), Preheader)
1199            << "Formed a call to "
1200            << ore::NV("NewFunction", NewCall->getCalledFunction())
1201            << "() function";
1202   });
1203 
1204   // Okay, the memcpy has been formed.  Zap the original store and anything that
1205   // feeds into it.
1206   if (MSSAU)
1207     MSSAU->removeMemoryAccess(SI, true);
1208   deleteDeadInstruction(SI);
1209   if (MSSAU && VerifyMemorySSA)
1210     MSSAU->getMemorySSA()->verifyMemorySSA();
1211   ++NumMemCpy;
1212   ExpCleaner.markResultUsed();
1213   return true;
1214 }
1215 
1216 // When compiling for codesize we avoid idiom recognition for a multi-block loop
1217 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1218 //
1219 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1220                                                    bool IsLoopMemset) {
1221   if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1222     if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) {
1223       LLVM_DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName()
1224                         << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
1225                         << " avoided: multi-block top-level loop\n");
1226       return true;
1227     }
1228   }
1229 
1230   return false;
1231 }
1232 
1233 bool LoopIdiomRecognize::runOnNoncountableLoop() {
1234   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
1235                     << CurLoop->getHeader()->getParent()->getName()
1236                     << "] Noncountable Loop %"
1237                     << CurLoop->getHeader()->getName() << "\n");
1238 
1239   return recognizePopcount() || recognizeAndInsertFFS() ||
1240          recognizeShiftUntilBitTest();
1241 }
1242 
1243 /// Check if the given conditional branch is based on the comparison between
1244 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
1245 /// true), the control yields to the loop entry. If the branch matches the
1246 /// behavior, the variable involved in the comparison is returned. This function
1247 /// will be called to see if the precondition and postcondition of the loop are
1248 /// in desirable form.
1249 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
1250                              bool JmpOnZero = false) {
1251   if (!BI || !BI->isConditional())
1252     return nullptr;
1253 
1254   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1255   if (!Cond)
1256     return nullptr;
1257 
1258   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1259   if (!CmpZero || !CmpZero->isZero())
1260     return nullptr;
1261 
1262   BasicBlock *TrueSucc = BI->getSuccessor(0);
1263   BasicBlock *FalseSucc = BI->getSuccessor(1);
1264   if (JmpOnZero)
1265     std::swap(TrueSucc, FalseSucc);
1266 
1267   ICmpInst::Predicate Pred = Cond->getPredicate();
1268   if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
1269       (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
1270     return Cond->getOperand(0);
1271 
1272   return nullptr;
1273 }
1274 
1275 // Check if the recurrence variable `VarX` is in the right form to create
1276 // the idiom. Returns the value coerced to a PHINode if so.
1277 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1278                                  BasicBlock *LoopEntry) {
1279   auto *PhiX = dyn_cast<PHINode>(VarX);
1280   if (PhiX && PhiX->getParent() == LoopEntry &&
1281       (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1282     return PhiX;
1283   return nullptr;
1284 }
1285 
1286 /// Return true iff the idiom is detected in the loop.
1287 ///
1288 /// Additionally:
1289 /// 1) \p CntInst is set to the instruction counting the population bit.
1290 /// 2) \p CntPhi is set to the corresponding phi node.
1291 /// 3) \p Var is set to the value whose population bits are being counted.
1292 ///
1293 /// The core idiom we are trying to detect is:
1294 /// \code
1295 ///    if (x0 != 0)
1296 ///      goto loop-exit // the precondition of the loop
1297 ///    cnt0 = init-val;
1298 ///    do {
1299 ///       x1 = phi (x0, x2);
1300 ///       cnt1 = phi(cnt0, cnt2);
1301 ///
1302 ///       cnt2 = cnt1 + 1;
1303 ///        ...
1304 ///       x2 = x1 & (x1 - 1);
1305 ///        ...
1306 ///    } while(x != 0);
1307 ///
1308 /// loop-exit:
1309 /// \endcode
1310 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1311                                 Instruction *&CntInst, PHINode *&CntPhi,
1312                                 Value *&Var) {
1313   // step 1: Check to see if the look-back branch match this pattern:
1314   //    "if (a!=0) goto loop-entry".
1315   BasicBlock *LoopEntry;
1316   Instruction *DefX2, *CountInst;
1317   Value *VarX1, *VarX0;
1318   PHINode *PhiX, *CountPhi;
1319 
1320   DefX2 = CountInst = nullptr;
1321   VarX1 = VarX0 = nullptr;
1322   PhiX = CountPhi = nullptr;
1323   LoopEntry = *(CurLoop->block_begin());
1324 
1325   // step 1: Check if the loop-back branch is in desirable form.
1326   {
1327     if (Value *T = matchCondition(
1328             dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1329       DefX2 = dyn_cast<Instruction>(T);
1330     else
1331       return false;
1332   }
1333 
1334   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1335   {
1336     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1337       return false;
1338 
1339     BinaryOperator *SubOneOp;
1340 
1341     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1342       VarX1 = DefX2->getOperand(1);
1343     else {
1344       VarX1 = DefX2->getOperand(0);
1345       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1346     }
1347     if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
1348       return false;
1349 
1350     ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
1351     if (!Dec ||
1352         !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1353           (SubOneOp->getOpcode() == Instruction::Add &&
1354            Dec->isMinusOne()))) {
1355       return false;
1356     }
1357   }
1358 
1359   // step 3: Check the recurrence of variable X
1360   PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1361   if (!PhiX)
1362     return false;
1363 
1364   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1365   {
1366     CountInst = nullptr;
1367     for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1368                               IterE = LoopEntry->end();
1369          Iter != IterE; Iter++) {
1370       Instruction *Inst = &*Iter;
1371       if (Inst->getOpcode() != Instruction::Add)
1372         continue;
1373 
1374       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1375       if (!Inc || !Inc->isOne())
1376         continue;
1377 
1378       PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1379       if (!Phi)
1380         continue;
1381 
1382       // Check if the result of the instruction is live of the loop.
1383       bool LiveOutLoop = false;
1384       for (User *U : Inst->users()) {
1385         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1386           LiveOutLoop = true;
1387           break;
1388         }
1389       }
1390 
1391       if (LiveOutLoop) {
1392         CountInst = Inst;
1393         CountPhi = Phi;
1394         break;
1395       }
1396     }
1397 
1398     if (!CountInst)
1399       return false;
1400   }
1401 
1402   // step 5: check if the precondition is in this form:
1403   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1404   {
1405     auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1406     Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1407     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1408       return false;
1409 
1410     CntInst = CountInst;
1411     CntPhi = CountPhi;
1412     Var = T;
1413   }
1414 
1415   return true;
1416 }
1417 
1418 /// Return true if the idiom is detected in the loop.
1419 ///
1420 /// Additionally:
1421 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1422 ///       or nullptr if there is no such.
1423 /// 2) \p CntPhi is set to the corresponding phi node
1424 ///       or nullptr if there is no such.
1425 /// 3) \p Var is set to the value whose CTLZ could be used.
1426 /// 4) \p DefX is set to the instruction calculating Loop exit condition.
1427 ///
1428 /// The core idiom we are trying to detect is:
1429 /// \code
1430 ///    if (x0 == 0)
1431 ///      goto loop-exit // the precondition of the loop
1432 ///    cnt0 = init-val;
1433 ///    do {
1434 ///       x = phi (x0, x.next);   //PhiX
1435 ///       cnt = phi(cnt0, cnt.next);
1436 ///
1437 ///       cnt.next = cnt + 1;
1438 ///        ...
1439 ///       x.next = x >> 1;   // DefX
1440 ///        ...
1441 ///    } while(x.next != 0);
1442 ///
1443 /// loop-exit:
1444 /// \endcode
1445 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
1446                                       Intrinsic::ID &IntrinID, Value *&InitX,
1447                                       Instruction *&CntInst, PHINode *&CntPhi,
1448                                       Instruction *&DefX) {
1449   BasicBlock *LoopEntry;
1450   Value *VarX = nullptr;
1451 
1452   DefX = nullptr;
1453   CntInst = nullptr;
1454   CntPhi = nullptr;
1455   LoopEntry = *(CurLoop->block_begin());
1456 
1457   // step 1: Check if the loop-back branch is in desirable form.
1458   if (Value *T = matchCondition(
1459           dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1460     DefX = dyn_cast<Instruction>(T);
1461   else
1462     return false;
1463 
1464   // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
1465   if (!DefX || !DefX->isShift())
1466     return false;
1467   IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
1468                                                      Intrinsic::ctlz;
1469   ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1470   if (!Shft || !Shft->isOne())
1471     return false;
1472   VarX = DefX->getOperand(0);
1473 
1474   // step 3: Check the recurrence of variable X
1475   PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1476   if (!PhiX)
1477     return false;
1478 
1479   InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
1480 
1481   // Make sure the initial value can't be negative otherwise the ashr in the
1482   // loop might never reach zero which would make the loop infinite.
1483   if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
1484     return false;
1485 
1486   // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1487   //         or cnt.next = cnt + -1.
1488   // TODO: We can skip the step. If loop trip count is known (CTLZ),
1489   //       then all uses of "cnt.next" could be optimized to the trip count
1490   //       plus "cnt0". Currently it is not optimized.
1491   //       This step could be used to detect POPCNT instruction:
1492   //       cnt.next = cnt + (x.next & 1)
1493   for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1494                             IterE = LoopEntry->end();
1495        Iter != IterE; Iter++) {
1496     Instruction *Inst = &*Iter;
1497     if (Inst->getOpcode() != Instruction::Add)
1498       continue;
1499 
1500     ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1501     if (!Inc || (!Inc->isOne() && !Inc->isMinusOne()))
1502       continue;
1503 
1504     PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1505     if (!Phi)
1506       continue;
1507 
1508     CntInst = Inst;
1509     CntPhi = Phi;
1510     break;
1511   }
1512   if (!CntInst)
1513     return false;
1514 
1515   return true;
1516 }
1517 
1518 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
1519 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
1520 /// trip count returns true; otherwise, returns false.
1521 bool LoopIdiomRecognize::recognizeAndInsertFFS() {
1522   // Give up if the loop has multiple blocks or multiple backedges.
1523   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1524     return false;
1525 
1526   Intrinsic::ID IntrinID;
1527   Value *InitX;
1528   Instruction *DefX = nullptr;
1529   PHINode *CntPhi = nullptr;
1530   Instruction *CntInst = nullptr;
1531   // Help decide if transformation is profitable. For ShiftUntilZero idiom,
1532   // this is always 6.
1533   size_t IdiomCanonicalSize = 6;
1534 
1535   if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
1536                                  CntInst, CntPhi, DefX))
1537     return false;
1538 
1539   bool IsCntPhiUsedOutsideLoop = false;
1540   for (User *U : CntPhi->users())
1541     if (!CurLoop->contains(cast<Instruction>(U))) {
1542       IsCntPhiUsedOutsideLoop = true;
1543       break;
1544     }
1545   bool IsCntInstUsedOutsideLoop = false;
1546   for (User *U : CntInst->users())
1547     if (!CurLoop->contains(cast<Instruction>(U))) {
1548       IsCntInstUsedOutsideLoop = true;
1549       break;
1550     }
1551   // If both CntInst and CntPhi are used outside the loop the profitability
1552   // is questionable.
1553   if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
1554     return false;
1555 
1556   // For some CPUs result of CTLZ(X) intrinsic is undefined
1557   // when X is 0. If we can not guarantee X != 0, we need to check this
1558   // when expand.
1559   bool ZeroCheck = false;
1560   // It is safe to assume Preheader exist as it was checked in
1561   // parent function RunOnLoop.
1562   BasicBlock *PH = CurLoop->getLoopPreheader();
1563 
1564   // If we are using the count instruction outside the loop, make sure we
1565   // have a zero check as a precondition. Without the check the loop would run
1566   // one iteration for before any check of the input value. This means 0 and 1
1567   // would have identical behavior in the original loop and thus
1568   if (!IsCntPhiUsedOutsideLoop) {
1569     auto *PreCondBB = PH->getSinglePredecessor();
1570     if (!PreCondBB)
1571       return false;
1572     auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1573     if (!PreCondBI)
1574       return false;
1575     if (matchCondition(PreCondBI, PH) != InitX)
1576       return false;
1577     ZeroCheck = true;
1578   }
1579 
1580   // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
1581   // profitable if we delete the loop.
1582 
1583   // the loop has only 6 instructions:
1584   //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1585   //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1586   //  %shr = ashr %n.addr.0, 1
1587   //  %tobool = icmp eq %shr, 0
1588   //  %inc = add nsw %i.0, 1
1589   //  br i1 %tobool
1590 
1591   const Value *Args[] = {InitX,
1592                          ConstantInt::getBool(InitX->getContext(), ZeroCheck)};
1593 
1594   // @llvm.dbg doesn't count as they have no semantic effect.
1595   auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
1596   uint32_t HeaderSize =
1597       std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
1598 
1599   IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args);
1600   InstructionCost Cost =
1601     TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency);
1602   if (HeaderSize != IdiomCanonicalSize &&
1603       Cost > TargetTransformInfo::TCC_Basic)
1604     return false;
1605 
1606   transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
1607                            DefX->getDebugLoc(), ZeroCheck,
1608                            IsCntPhiUsedOutsideLoop);
1609   return true;
1610 }
1611 
1612 /// Recognizes a population count idiom in a non-countable loop.
1613 ///
1614 /// If detected, transforms the relevant code to issue the popcount intrinsic
1615 /// function call, and returns true; otherwise, returns false.
1616 bool LoopIdiomRecognize::recognizePopcount() {
1617   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1618     return false;
1619 
1620   // Counting population are usually conducted by few arithmetic instructions.
1621   // Such instructions can be easily "absorbed" by vacant slots in a
1622   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1623   // in a compact loop.
1624 
1625   // Give up if the loop has multiple blocks or multiple backedges.
1626   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1627     return false;
1628 
1629   BasicBlock *LoopBody = *(CurLoop->block_begin());
1630   if (LoopBody->size() >= 20) {
1631     // The loop is too big, bail out.
1632     return false;
1633   }
1634 
1635   // It should have a preheader containing nothing but an unconditional branch.
1636   BasicBlock *PH = CurLoop->getLoopPreheader();
1637   if (!PH || &PH->front() != PH->getTerminator())
1638     return false;
1639   auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1640   if (!EntryBI || EntryBI->isConditional())
1641     return false;
1642 
1643   // It should have a precondition block where the generated popcount intrinsic
1644   // function can be inserted.
1645   auto *PreCondBB = PH->getSinglePredecessor();
1646   if (!PreCondBB)
1647     return false;
1648   auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1649   if (!PreCondBI || PreCondBI->isUnconditional())
1650     return false;
1651 
1652   Instruction *CntInst;
1653   PHINode *CntPhi;
1654   Value *Val;
1655   if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1656     return false;
1657 
1658   transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1659   return true;
1660 }
1661 
1662 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1663                                        const DebugLoc &DL) {
1664   Value *Ops[] = {Val};
1665   Type *Tys[] = {Val->getType()};
1666 
1667   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1668   Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1669   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1670   CI->setDebugLoc(DL);
1671 
1672   return CI;
1673 }
1674 
1675 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1676                                     const DebugLoc &DL, bool ZeroCheck,
1677                                     Intrinsic::ID IID) {
1678   Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)};
1679   Type *Tys[] = {Val->getType()};
1680 
1681   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1682   Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
1683   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1684   CI->setDebugLoc(DL);
1685 
1686   return CI;
1687 }
1688 
1689 /// Transform the following loop (Using CTLZ, CTTZ is similar):
1690 /// loop:
1691 ///   CntPhi = PHI [Cnt0, CntInst]
1692 ///   PhiX = PHI [InitX, DefX]
1693 ///   CntInst = CntPhi + 1
1694 ///   DefX = PhiX >> 1
1695 ///   LOOP_BODY
1696 ///   Br: loop if (DefX != 0)
1697 /// Use(CntPhi) or Use(CntInst)
1698 ///
1699 /// Into:
1700 /// If CntPhi used outside the loop:
1701 ///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
1702 ///   Count = CountPrev + 1
1703 /// else
1704 ///   Count = BitWidth(InitX) - CTLZ(InitX)
1705 /// loop:
1706 ///   CntPhi = PHI [Cnt0, CntInst]
1707 ///   PhiX = PHI [InitX, DefX]
1708 ///   PhiCount = PHI [Count, Dec]
1709 ///   CntInst = CntPhi + 1
1710 ///   DefX = PhiX >> 1
1711 ///   Dec = PhiCount - 1
1712 ///   LOOP_BODY
1713 ///   Br: loop if (Dec != 0)
1714 /// Use(CountPrev + Cnt0) // Use(CntPhi)
1715 /// or
1716 /// Use(Count + Cnt0) // Use(CntInst)
1717 ///
1718 /// If LOOP_BODY is empty the loop will be deleted.
1719 /// If CntInst and DefX are not used in LOOP_BODY they will be removed.
1720 void LoopIdiomRecognize::transformLoopToCountable(
1721     Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
1722     PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
1723     bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
1724   BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
1725 
1726   // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
1727   IRBuilder<> Builder(PreheaderBr);
1728   Builder.SetCurrentDebugLocation(DL);
1729 
1730   // If there are no uses of CntPhi crate:
1731   //   Count = BitWidth - CTLZ(InitX);
1732   //   NewCount = Count;
1733   // If there are uses of CntPhi create:
1734   //   NewCount = BitWidth - CTLZ(InitX >> 1);
1735   //   Count = NewCount + 1;
1736   Value *InitXNext;
1737   if (IsCntPhiUsedOutsideLoop) {
1738     if (DefX->getOpcode() == Instruction::AShr)
1739       InitXNext = Builder.CreateAShr(InitX, 1);
1740     else if (DefX->getOpcode() == Instruction::LShr)
1741       InitXNext = Builder.CreateLShr(InitX, 1);
1742     else if (DefX->getOpcode() == Instruction::Shl) // cttz
1743       InitXNext = Builder.CreateShl(InitX, 1);
1744     else
1745       llvm_unreachable("Unexpected opcode!");
1746   } else
1747     InitXNext = InitX;
1748   Value *Count =
1749       createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
1750   Type *CountTy = Count->getType();
1751   Count = Builder.CreateSub(
1752       ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count);
1753   Value *NewCount = Count;
1754   if (IsCntPhiUsedOutsideLoop)
1755     Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1));
1756 
1757   NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType());
1758 
1759   Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
1760   if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) {
1761     // If the counter was being incremented in the loop, add NewCount to the
1762     // counter's initial value, but only if the initial value is not zero.
1763     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1764     if (!InitConst || !InitConst->isZero())
1765       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1766   } else {
1767     // If the count was being decremented in the loop, subtract NewCount from
1768     // the counter's initial value.
1769     NewCount = Builder.CreateSub(CntInitVal, NewCount);
1770   }
1771 
1772   // Step 2: Insert new IV and loop condition:
1773   // loop:
1774   //   ...
1775   //   PhiCount = PHI [Count, Dec]
1776   //   ...
1777   //   Dec = PhiCount - 1
1778   //   ...
1779   //   Br: loop if (Dec != 0)
1780   BasicBlock *Body = *(CurLoop->block_begin());
1781   auto *LbBr = cast<BranchInst>(Body->getTerminator());
1782   ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1783 
1784   PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi", &Body->front());
1785 
1786   Builder.SetInsertPoint(LbCond);
1787   Instruction *TcDec = cast<Instruction>(Builder.CreateSub(
1788       TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true));
1789 
1790   TcPhi->addIncoming(Count, Preheader);
1791   TcPhi->addIncoming(TcDec, Body);
1792 
1793   CmpInst::Predicate Pred =
1794       (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
1795   LbCond->setPredicate(Pred);
1796   LbCond->setOperand(0, TcDec);
1797   LbCond->setOperand(1, ConstantInt::get(CountTy, 0));
1798 
1799   // Step 3: All the references to the original counter outside
1800   //  the loop are replaced with the NewCount
1801   if (IsCntPhiUsedOutsideLoop)
1802     CntPhi->replaceUsesOutsideBlock(NewCount, Body);
1803   else
1804     CntInst->replaceUsesOutsideBlock(NewCount, Body);
1805 
1806   // step 4: Forget the "non-computable" trip-count SCEV associated with the
1807   //   loop. The loop would otherwise not be deleted even if it becomes empty.
1808   SE->forgetLoop(CurLoop);
1809 }
1810 
1811 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
1812                                                  Instruction *CntInst,
1813                                                  PHINode *CntPhi, Value *Var) {
1814   BasicBlock *PreHead = CurLoop->getLoopPreheader();
1815   auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
1816   const DebugLoc &DL = CntInst->getDebugLoc();
1817 
1818   // Assuming before transformation, the loop is following:
1819   //  if (x) // the precondition
1820   //     do { cnt++; x &= x - 1; } while(x);
1821 
1822   // Step 1: Insert the ctpop instruction at the end of the precondition block
1823   IRBuilder<> Builder(PreCondBr);
1824   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
1825   {
1826     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
1827     NewCount = PopCntZext =
1828         Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
1829 
1830     if (NewCount != PopCnt)
1831       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1832 
1833     // TripCnt is exactly the number of iterations the loop has
1834     TripCnt = NewCount;
1835 
1836     // If the population counter's initial value is not zero, insert Add Inst.
1837     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
1838     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1839     if (!InitConst || !InitConst->isZero()) {
1840       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1841       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1842     }
1843   }
1844 
1845   // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
1846   //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
1847   //   function would be partial dead code, and downstream passes will drag
1848   //   it back from the precondition block to the preheader.
1849   {
1850     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
1851 
1852     Value *Opnd0 = PopCntZext;
1853     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
1854     if (PreCond->getOperand(0) != Var)
1855       std::swap(Opnd0, Opnd1);
1856 
1857     ICmpInst *NewPreCond = cast<ICmpInst>(
1858         Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
1859     PreCondBr->setCondition(NewPreCond);
1860 
1861     RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
1862   }
1863 
1864   // Step 3: Note that the population count is exactly the trip count of the
1865   // loop in question, which enable us to convert the loop from noncountable
1866   // loop into a countable one. The benefit is twofold:
1867   //
1868   //  - If the loop only counts population, the entire loop becomes dead after
1869   //    the transformation. It is a lot easier to prove a countable loop dead
1870   //    than to prove a noncountable one. (In some C dialects, an infinite loop
1871   //    isn't dead even if it computes nothing useful. In general, DCE needs
1872   //    to prove a noncountable loop finite before safely delete it.)
1873   //
1874   //  - If the loop also performs something else, it remains alive.
1875   //    Since it is transformed to countable form, it can be aggressively
1876   //    optimized by some optimizations which are in general not applicable
1877   //    to a noncountable loop.
1878   //
1879   // After this step, this loop (conceptually) would look like following:
1880   //   newcnt = __builtin_ctpop(x);
1881   //   t = newcnt;
1882   //   if (x)
1883   //     do { cnt++; x &= x-1; t--) } while (t > 0);
1884   BasicBlock *Body = *(CurLoop->block_begin());
1885   {
1886     auto *LbBr = cast<BranchInst>(Body->getTerminator());
1887     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1888     Type *Ty = TripCnt->getType();
1889 
1890     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1891 
1892     Builder.SetInsertPoint(LbCond);
1893     Instruction *TcDec = cast<Instruction>(
1894         Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1895                           "tcdec", false, true));
1896 
1897     TcPhi->addIncoming(TripCnt, PreHead);
1898     TcPhi->addIncoming(TcDec, Body);
1899 
1900     CmpInst::Predicate Pred =
1901         (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
1902     LbCond->setPredicate(Pred);
1903     LbCond->setOperand(0, TcDec);
1904     LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1905   }
1906 
1907   // Step 4: All the references to the original population counter outside
1908   //  the loop are replaced with the NewCount -- the value returned from
1909   //  __builtin_ctpop().
1910   CntInst->replaceUsesOutsideBlock(NewCount, Body);
1911 
1912   // step 5: Forget the "non-computable" trip-count SCEV associated with the
1913   //   loop. The loop would otherwise not be deleted even if it becomes empty.
1914   SE->forgetLoop(CurLoop);
1915 }
1916 
1917 /// Match loop-invariant value.
1918 template <typename SubPattern_t> struct match_LoopInvariant {
1919   SubPattern_t SubPattern;
1920   const Loop *L;
1921 
1922   match_LoopInvariant(const SubPattern_t &SP, const Loop *L)
1923       : SubPattern(SP), L(L) {}
1924 
1925   template <typename ITy> bool match(ITy *V) {
1926     return L->isLoopInvariant(V) && SubPattern.match(V);
1927   }
1928 };
1929 
1930 /// Matches if the value is loop-invariant.
1931 template <typename Ty>
1932 inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) {
1933   return match_LoopInvariant<Ty>(M, L);
1934 }
1935 
1936 /// Return true if the idiom is detected in the loop.
1937 ///
1938 /// The core idiom we are trying to detect is:
1939 /// \code
1940 ///   entry:
1941 ///     <...>
1942 ///     %bitmask = shl i32 1, %bitpos
1943 ///     br label %loop
1944 ///
1945 ///   loop:
1946 ///     %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
1947 ///     %x.curr.bitmasked = and i32 %x.curr, %bitmask
1948 ///     %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
1949 ///     %x.next = shl i32 %x.curr, 1
1950 ///     <...>
1951 ///     br i1 %x.curr.isbitunset, label %loop, label %end
1952 ///
1953 ///   end:
1954 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
1955 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
1956 ///     <...>
1957 /// \endcode
1958 static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX,
1959                                          Value *&BitMask, Value *&BitPos,
1960                                          Value *&CurrX, Instruction *&NextX) {
1961   LLVM_DEBUG(dbgs() << DEBUG_TYPE
1962              " Performing shift-until-bittest idiom detection.\n");
1963 
1964   // Give up if the loop has multiple blocks or multiple backedges.
1965   if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
1966     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
1967     return false;
1968   }
1969 
1970   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
1971   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
1972   assert(LoopPreheaderBB && "There is always a loop preheader.");
1973 
1974   using namespace PatternMatch;
1975 
1976   // Step 1: Check if the loop backedge is in desirable form.
1977 
1978   ICmpInst::Predicate Pred;
1979   Value *CmpLHS, *CmpRHS;
1980   BasicBlock *TrueBB, *FalseBB;
1981   if (!match(LoopHeaderBB->getTerminator(),
1982              m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)),
1983                   m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) {
1984     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
1985     return false;
1986   }
1987 
1988   // Step 2: Check if the backedge's condition is in desirable form.
1989 
1990   auto MatchVariableBitMask = [&]() {
1991     return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
1992            match(CmpLHS,
1993                  m_c_And(m_Value(CurrX),
1994                          m_CombineAnd(
1995                              m_Value(BitMask),
1996                              m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)),
1997                                              CurLoop))));
1998   };
1999   auto MatchConstantBitMask = [&]() {
2000     return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
2001            match(CmpLHS, m_And(m_Value(CurrX),
2002                                m_CombineAnd(m_Value(BitMask), m_Power2()))) &&
2003            (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask)));
2004   };
2005   auto MatchDecomposableConstantBitMask = [&]() {
2006     APInt Mask;
2007     return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) &&
2008            ICmpInst::isEquality(Pred) && Mask.isPowerOf2() &&
2009            (BitMask = ConstantInt::get(CurrX->getType(), Mask)) &&
2010            (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2()));
2011   };
2012 
2013   if (!MatchVariableBitMask() && !MatchConstantBitMask() &&
2014       !MatchDecomposableConstantBitMask()) {
2015     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n");
2016     return false;
2017   }
2018 
2019   // Step 3: Check if the recurrence is in desirable form.
2020   auto *CurrXPN = dyn_cast<PHINode>(CurrX);
2021   if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) {
2022     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
2023     return false;
2024   }
2025 
2026   BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB);
2027   NextX =
2028       dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB));
2029 
2030   if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) {
2031     // FIXME: support right-shift?
2032     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
2033     return false;
2034   }
2035 
2036   // Step 4: Check if the backedge's destinations are in desirable form.
2037 
2038   assert(ICmpInst::isEquality(Pred) &&
2039          "Should only get equality predicates here.");
2040 
2041   // cmp-br is commutative, so canonicalize to a single variant.
2042   if (Pred != ICmpInst::Predicate::ICMP_EQ) {
2043     Pred = ICmpInst::getInversePredicate(Pred);
2044     std::swap(TrueBB, FalseBB);
2045   }
2046 
2047   // We expect to exit loop when comparison yields false,
2048   // so when it yields true we should branch back to loop header.
2049   if (TrueBB != LoopHeaderBB) {
2050     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
2051     return false;
2052   }
2053 
2054   // Okay, idiom checks out.
2055   return true;
2056 }
2057 
2058 /// Look for the following loop:
2059 /// \code
2060 ///   entry:
2061 ///     <...>
2062 ///     %bitmask = shl i32 1, %bitpos
2063 ///     br label %loop
2064 ///
2065 ///   loop:
2066 ///     %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
2067 ///     %x.curr.bitmasked = and i32 %x.curr, %bitmask
2068 ///     %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
2069 ///     %x.next = shl i32 %x.curr, 1
2070 ///     <...>
2071 ///     br i1 %x.curr.isbitunset, label %loop, label %end
2072 ///
2073 ///   end:
2074 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2075 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
2076 ///     <...>
2077 /// \endcode
2078 ///
2079 /// And transform it into:
2080 /// \code
2081 ///   entry:
2082 ///     %bitmask = shl i32 1, %bitpos
2083 ///     %lowbitmask = add i32 %bitmask, -1
2084 ///     %mask = or i32 %lowbitmask, %bitmask
2085 ///     %x.masked = and i32 %x, %mask
2086 ///     %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked,
2087 ///                                                         i1 true)
2088 ///     %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros
2089 ///     %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1
2090 ///     %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos
2091 ///     %tripcount = add i32 %backedgetakencount, 1
2092 ///     %x.curr = shl i32 %x, %backedgetakencount
2093 ///     %x.next = shl i32 %x, %tripcount
2094 ///     br label %loop
2095 ///
2096 ///   loop:
2097 ///     %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ]
2098 ///     %loop.iv.next = add nuw i32 %loop.iv, 1
2099 ///     %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount
2100 ///     <...>
2101 ///     br i1 %loop.ivcheck, label %end, label %loop
2102 ///
2103 ///   end:
2104 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2105 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
2106 ///     <...>
2107 /// \endcode
2108 bool LoopIdiomRecognize::recognizeShiftUntilBitTest() {
2109   bool MadeChange = false;
2110 
2111   Value *X, *BitMask, *BitPos, *XCurr;
2112   Instruction *XNext;
2113   if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr,
2114                                     XNext)) {
2115     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2116                " shift-until-bittest idiom detection failed.\n");
2117     return MadeChange;
2118   }
2119   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n");
2120 
2121   // Ok, it is the idiom we were looking for, we *could* transform this loop,
2122   // but is it profitable to transform?
2123 
2124   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2125   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2126   assert(LoopPreheaderBB && "There is always a loop preheader.");
2127 
2128   BasicBlock *SuccessorBB = CurLoop->getExitBlock();
2129   assert(LoopPreheaderBB && "There is only a single successor.");
2130 
2131   IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
2132   Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc());
2133 
2134   Intrinsic::ID IntrID = Intrinsic::ctlz;
2135   Type *Ty = X->getType();
2136   unsigned Bitwidth = Ty->getScalarSizeInBits();
2137 
2138   TargetTransformInfo::TargetCostKind CostKind =
2139       TargetTransformInfo::TCK_SizeAndLatency;
2140 
2141   // The rewrite is considered to be unprofitable iff and only iff the
2142   // intrinsic/shift we'll use are not cheap. Note that we are okay with *just*
2143   // making the loop countable, even if nothing else changes.
2144   IntrinsicCostAttributes Attrs(
2145       IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getTrue()});
2146   InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
2147   if (Cost > TargetTransformInfo::TCC_Basic) {
2148     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2149                " Intrinsic is too costly, not beneficial\n");
2150     return MadeChange;
2151   }
2152   if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) >
2153       TargetTransformInfo::TCC_Basic) {
2154     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n");
2155     return MadeChange;
2156   }
2157 
2158   // Ok, transform appears worthwhile.
2159   MadeChange = true;
2160 
2161   // Step 1: Compute the loop trip count.
2162 
2163   Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty),
2164                                         BitPos->getName() + ".lowbitmask");
2165   Value *Mask =
2166       Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask");
2167   Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked");
2168   CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic(
2169       IntrID, Ty, {XMasked, /*is_zero_undef=*/Builder.getTrue()},
2170       /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros");
2171   Value *XMaskedNumActiveBits = Builder.CreateSub(
2172       ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros,
2173       XMasked->getName() + ".numactivebits", /*HasNUW=*/true,
2174       /*HasNSW=*/Bitwidth != 2);
2175   Value *XMaskedLeadingOnePos =
2176       Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty),
2177                         XMasked->getName() + ".leadingonepos", /*HasNUW=*/false,
2178                         /*HasNSW=*/Bitwidth > 2);
2179 
2180   Value *LoopBackedgeTakenCount = Builder.CreateSub(
2181       BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount",
2182       /*HasNUW=*/true, /*HasNSW=*/true);
2183   // We know loop's backedge-taken count, but what's loop's trip count?
2184   // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2185   Value *LoopTripCount =
2186       Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
2187                         CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
2188                         /*HasNSW=*/Bitwidth != 2);
2189 
2190   // Step 2: Compute the recurrence's final value without a loop.
2191 
2192   // NewX is always safe to compute, because `LoopBackedgeTakenCount`
2193   // will always be smaller than `bitwidth(X)`, i.e. we never get poison.
2194   Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount);
2195   NewX->takeName(XCurr);
2196   if (auto *I = dyn_cast<Instruction>(NewX))
2197     I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2198 
2199   Value *NewXNext;
2200   // Rewriting XNext is more complicated, however, because `X << LoopTripCount`
2201   // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen
2202   // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know
2203   // that isn't the case, we'll need to emit an alternative, safe IR.
2204   if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() ||
2205       PatternMatch::match(
2206           BitPos, PatternMatch::m_SpecificInt_ICMP(
2207                       ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(),
2208                                                Ty->getScalarSizeInBits() - 1))))
2209     NewXNext = Builder.CreateShl(X, LoopTripCount);
2210   else {
2211     // Otherwise, just additionally shift by one. It's the smallest solution,
2212     // alternatively, we could check that NewX is INT_MIN (or BitPos is )
2213     // and select 0 instead.
2214     NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1));
2215   }
2216 
2217   NewXNext->takeName(XNext);
2218   if (auto *I = dyn_cast<Instruction>(NewXNext))
2219     I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2220 
2221   // Step 3: Adjust the successor basic block to recieve the computed
2222   //         recurrence's final value instead of the recurrence itself.
2223 
2224   XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB);
2225   XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB);
2226 
2227   // Step 4: Rewrite the loop into a countable form, with canonical IV.
2228 
2229   // The new canonical induction variable.
2230   Builder.SetInsertPoint(&LoopHeaderBB->front());
2231   auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
2232 
2233   // The induction itself.
2234   // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2235   Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
2236   auto *IVNext =
2237       Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
2238                         /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
2239 
2240   // The loop trip count check.
2241   auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount,
2242                                        CurLoop->getName() + ".ivcheck");
2243   Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB);
2244   LoopHeaderBB->getTerminator()->eraseFromParent();
2245 
2246   // Populate the IV PHI.
2247   IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
2248   IV->addIncoming(IVNext, LoopHeaderBB);
2249 
2250   // Step 5: Forget the "non-computable" trip-count SCEV associated with the
2251   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2252 
2253   SE->forgetLoop(CurLoop);
2254 
2255   // Other passes will take care of actually deleting the loop if possible.
2256 
2257   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n");
2258 
2259   ++NumShiftUntilBitTest;
2260   return MadeChange;
2261 }
2262