1 //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements an idiom recognizer that transforms simple loops into a
11 // non-loop form.  In cases that this kicks in, it can be a significant
12 // performance win.
13 //
14 //===----------------------------------------------------------------------===//
15 //
16 // TODO List:
17 //
18 // Future loop memory idioms to recognize:
19 //   memcmp, memmove, strlen, etc.
20 // Future floating point idioms to recognize in -ffast-math mode:
21 //   fpowi
22 // Future integer operation idioms to recognize:
23 //   ctpop, ctlz, cttz
24 //
25 // Beware that isel's default lowering for ctpop is highly inefficient for
26 // i64 and larger types when i64 is legal and the value has few bits set.  It
27 // would be good to enhance isel to emit a loop for ctpop in this case.
28 //
29 // This could recognize common matrix multiplies and dot product idioms and
30 // replace them with calls to BLAS (if linked in??).
31 //
32 //===----------------------------------------------------------------------===//
33 
34 #include "llvm/Transforms/Scalar.h"
35 #include "llvm/ADT/MapVector.h"
36 #include "llvm/ADT/SetVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/Analysis/AliasAnalysis.h"
39 #include "llvm/Analysis/BasicAliasAnalysis.h"
40 #include "llvm/Analysis/GlobalsModRef.h"
41 #include "llvm/Analysis/LoopPass.h"
42 #include "llvm/Analysis/LoopAccessAnalysis.h"
43 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
44 #include "llvm/Analysis/ScalarEvolutionExpander.h"
45 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
46 #include "llvm/Analysis/TargetLibraryInfo.h"
47 #include "llvm/Analysis/TargetTransformInfo.h"
48 #include "llvm/Analysis/ValueTracking.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/IRBuilder.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Utils/BuildLibCalls.h"
57 #include "llvm/Transforms/Utils/Local.h"
58 #include "llvm/Transforms/Utils/LoopUtils.h"
59 using namespace llvm;
60 
61 #define DEBUG_TYPE "loop-idiom"
62 
63 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
64 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
65 
66 namespace {
67 
68 class LoopIdiomRecognize : public LoopPass {
69   Loop *CurLoop;
70   AliasAnalysis *AA;
71   DominatorTree *DT;
72   LoopInfo *LI;
73   ScalarEvolution *SE;
74   TargetLibraryInfo *TLI;
75   const TargetTransformInfo *TTI;
76   const DataLayout *DL;
77 
78 public:
79   static char ID;
80   explicit LoopIdiomRecognize() : LoopPass(ID) {
81     initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
82   }
83 
84   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
85 
86   /// This transformation requires natural loop information & requires that
87   /// loop preheaders be inserted into the CFG.
88   ///
89   void getAnalysisUsage(AnalysisUsage &AU) const override {
90     AU.addRequired<TargetLibraryInfoWrapperPass>();
91     AU.addRequired<TargetTransformInfoWrapperPass>();
92     getLoopAnalysisUsage(AU);
93   }
94 
95 private:
96   typedef SmallVector<StoreInst *, 8> StoreList;
97   typedef MapVector<Value *, StoreList> StoreListMap;
98   StoreListMap StoreRefsForMemset;
99   StoreListMap StoreRefsForMemsetPattern;
100   StoreList StoreRefsForMemcpy;
101   bool HasMemset;
102   bool HasMemsetPattern;
103   bool HasMemcpy;
104 
105   /// \name Countable Loop Idiom Handling
106   /// @{
107 
108   bool runOnCountableLoop();
109   bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
110                       SmallVectorImpl<BasicBlock *> &ExitBlocks);
111 
112   void collectStores(BasicBlock *BB);
113   bool isLegalStore(StoreInst *SI, bool &ForMemset, bool &ForMemsetPattern,
114                     bool &ForMemcpy);
115   bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
116                          bool ForMemset);
117   bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
118 
119   bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
120                                unsigned StoreAlignment, Value *StoredVal,
121                                Instruction *TheStore,
122                                SmallPtrSetImpl<Instruction *> &Stores,
123                                const SCEVAddRecExpr *Ev, const SCEV *BECount,
124                                bool NegStride);
125   bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
126 
127   /// @}
128   /// \name Noncountable Loop Idiom Handling
129   /// @{
130 
131   bool runOnNoncountableLoop();
132 
133   bool recognizePopcount();
134   void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
135                                PHINode *CntPhi, Value *Var);
136 
137   /// @}
138 };
139 
140 } // End anonymous namespace.
141 
142 char LoopIdiomRecognize::ID = 0;
143 INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
144                       false, false)
145 INITIALIZE_PASS_DEPENDENCY(LoopPass)
146 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
147 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
148 INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
149                     false, false)
150 
151 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); }
152 
153 /// deleteDeadInstruction - Delete this instruction.  Before we do, go through
154 /// and zero out all the operands of this instruction.  If any of them become
155 /// dead, delete them and the computation tree that feeds them.
156 ///
157 static void deleteDeadInstruction(Instruction *I,
158                                   const TargetLibraryInfo *TLI) {
159   SmallVector<Value *, 16> Operands(I->value_op_begin(), I->value_op_end());
160   I->replaceAllUsesWith(UndefValue::get(I->getType()));
161   I->eraseFromParent();
162   for (Value *Op : Operands)
163     RecursivelyDeleteTriviallyDeadInstructions(Op, TLI);
164 }
165 
166 //===----------------------------------------------------------------------===//
167 //
168 //          Implementation of LoopIdiomRecognize
169 //
170 //===----------------------------------------------------------------------===//
171 
172 bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
173   if (skipLoop(L))
174     return false;
175 
176   CurLoop = L;
177   // If the loop could not be converted to canonical form, it must have an
178   // indirectbr in it, just give up.
179   if (!L->getLoopPreheader())
180     return false;
181 
182   // Disable loop idiom recognition if the function's name is a common idiom.
183   StringRef Name = L->getHeader()->getParent()->getName();
184   if (Name == "memset" || Name == "memcpy")
185     return false;
186 
187   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
188   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
189   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
190   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
191   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
192   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
193       *CurLoop->getHeader()->getParent());
194   DL = &CurLoop->getHeader()->getModule()->getDataLayout();
195 
196   HasMemset = TLI->has(LibFunc::memset);
197   HasMemsetPattern = TLI->has(LibFunc::memset_pattern16);
198   HasMemcpy = TLI->has(LibFunc::memcpy);
199 
200   if (HasMemset || HasMemsetPattern || HasMemcpy)
201     if (SE->hasLoopInvariantBackedgeTakenCount(L))
202       return runOnCountableLoop();
203 
204   return runOnNoncountableLoop();
205 }
206 
207 bool LoopIdiomRecognize::runOnCountableLoop() {
208   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
209   assert(!isa<SCEVCouldNotCompute>(BECount) &&
210          "runOnCountableLoop() called on a loop without a predictable"
211          "backedge-taken count");
212 
213   // If this loop executes exactly one time, then it should be peeled, not
214   // optimized by this pass.
215   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
216     if (BECst->getAPInt() == 0)
217       return false;
218 
219   SmallVector<BasicBlock *, 8> ExitBlocks;
220   CurLoop->getUniqueExitBlocks(ExitBlocks);
221 
222   DEBUG(dbgs() << "loop-idiom Scanning: F["
223                << CurLoop->getHeader()->getParent()->getName() << "] Loop %"
224                << CurLoop->getHeader()->getName() << "\n");
225 
226   bool MadeChange = false;
227   // Scan all the blocks in the loop that are not in subloops.
228   for (auto *BB : CurLoop->getBlocks()) {
229     // Ignore blocks in subloops.
230     if (LI->getLoopFor(BB) != CurLoop)
231       continue;
232 
233     MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
234   }
235   return MadeChange;
236 }
237 
238 static unsigned getStoreSizeInBytes(StoreInst *SI, const DataLayout *DL) {
239   uint64_t SizeInBits = DL->getTypeSizeInBits(SI->getValueOperand()->getType());
240   assert(((SizeInBits & 7) || (SizeInBits >> 32) == 0) &&
241          "Don't overflow unsigned.");
242   return (unsigned)SizeInBits >> 3;
243 }
244 
245 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
246   const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
247   return ConstStride->getAPInt();
248 }
249 
250 /// getMemSetPatternValue - If a strided store of the specified value is safe to
251 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
252 /// be passed in.  Otherwise, return null.
253 ///
254 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
255 /// just replicate their input array and then pass on to memset_pattern16.
256 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
257   // If the value isn't a constant, we can't promote it to being in a constant
258   // array.  We could theoretically do a store to an alloca or something, but
259   // that doesn't seem worthwhile.
260   Constant *C = dyn_cast<Constant>(V);
261   if (!C)
262     return nullptr;
263 
264   // Only handle simple values that are a power of two bytes in size.
265   uint64_t Size = DL->getTypeSizeInBits(V->getType());
266   if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
267     return nullptr;
268 
269   // Don't care enough about darwin/ppc to implement this.
270   if (DL->isBigEndian())
271     return nullptr;
272 
273   // Convert to size in bytes.
274   Size /= 8;
275 
276   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
277   // if the top and bottom are the same (e.g. for vectors and large integers).
278   if (Size > 16)
279     return nullptr;
280 
281   // If the constant is exactly 16 bytes, just use it.
282   if (Size == 16)
283     return C;
284 
285   // Otherwise, we'll use an array of the constants.
286   unsigned ArraySize = 16 / Size;
287   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
288   return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
289 }
290 
291 bool LoopIdiomRecognize::isLegalStore(StoreInst *SI, bool &ForMemset,
292                                       bool &ForMemsetPattern, bool &ForMemcpy) {
293   // Don't touch volatile stores.
294   if (!SI->isSimple())
295     return false;
296 
297   // Avoid merging nontemporal stores.
298   if (SI->getMetadata(LLVMContext::MD_nontemporal))
299     return false;
300 
301   Value *StoredVal = SI->getValueOperand();
302   Value *StorePtr = SI->getPointerOperand();
303 
304   // Reject stores that are so large that they overflow an unsigned.
305   uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
306   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
307     return false;
308 
309   // See if the pointer expression is an AddRec like {base,+,1} on the current
310   // loop, which indicates a strided store.  If we have something else, it's a
311   // random store we can't handle.
312   const SCEVAddRecExpr *StoreEv =
313       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
314   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
315     return false;
316 
317   // Check to see if we have a constant stride.
318   if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
319     return false;
320 
321   // See if the store can be turned into a memset.
322 
323   // If the stored value is a byte-wise value (like i32 -1), then it may be
324   // turned into a memset of i8 -1, assuming that all the consecutive bytes
325   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
326   // but it can be turned into memset_pattern if the target supports it.
327   Value *SplatValue = isBytewiseValue(StoredVal);
328   Constant *PatternValue = nullptr;
329 
330   // If we're allowed to form a memset, and the stored value would be
331   // acceptable for memset, use it.
332   if (HasMemset && SplatValue &&
333       // Verify that the stored value is loop invariant.  If not, we can't
334       // promote the memset.
335       CurLoop->isLoopInvariant(SplatValue)) {
336     // It looks like we can use SplatValue.
337     ForMemset = true;
338     return true;
339   } else if (HasMemsetPattern &&
340              // Don't create memset_pattern16s with address spaces.
341              StorePtr->getType()->getPointerAddressSpace() == 0 &&
342              (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
343     // It looks like we can use PatternValue!
344     ForMemsetPattern = true;
345     return true;
346   }
347 
348   // Otherwise, see if the store can be turned into a memcpy.
349   if (HasMemcpy) {
350     // Check to see if the stride matches the size of the store.  If so, then we
351     // know that every byte is touched in the loop.
352     APInt Stride = getStoreStride(StoreEv);
353     unsigned StoreSize = getStoreSizeInBytes(SI, DL);
354     if (StoreSize != Stride && StoreSize != -Stride)
355       return false;
356 
357     // The store must be feeding a non-volatile load.
358     LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
359     if (!LI || !LI->isSimple())
360       return false;
361 
362     // See if the pointer expression is an AddRec like {base,+,1} on the current
363     // loop, which indicates a strided load.  If we have something else, it's a
364     // random load we can't handle.
365     const SCEVAddRecExpr *LoadEv =
366         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
367     if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
368       return false;
369 
370     // The store and load must share the same stride.
371     if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
372       return false;
373 
374     // Success.  This store can be converted into a memcpy.
375     ForMemcpy = true;
376     return true;
377   }
378   // This store can't be transformed into a memset/memcpy.
379   return false;
380 }
381 
382 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
383   StoreRefsForMemset.clear();
384   StoreRefsForMemsetPattern.clear();
385   StoreRefsForMemcpy.clear();
386   for (Instruction &I : *BB) {
387     StoreInst *SI = dyn_cast<StoreInst>(&I);
388     if (!SI)
389       continue;
390 
391     bool ForMemset = false;
392     bool ForMemsetPattern = false;
393     bool ForMemcpy = false;
394     // Make sure this is a strided store with a constant stride.
395     if (!isLegalStore(SI, ForMemset, ForMemsetPattern, ForMemcpy))
396       continue;
397 
398     // Save the store locations.
399     if (ForMemset) {
400       // Find the base pointer.
401       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
402       StoreRefsForMemset[Ptr].push_back(SI);
403     } else if (ForMemsetPattern) {
404       // Find the base pointer.
405       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
406       StoreRefsForMemsetPattern[Ptr].push_back(SI);
407     } else if (ForMemcpy)
408       StoreRefsForMemcpy.push_back(SI);
409   }
410 }
411 
412 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
413 /// with the specified backedge count.  This block is known to be in the current
414 /// loop and not in any subloops.
415 bool LoopIdiomRecognize::runOnLoopBlock(
416     BasicBlock *BB, const SCEV *BECount,
417     SmallVectorImpl<BasicBlock *> &ExitBlocks) {
418   // We can only promote stores in this block if they are unconditionally
419   // executed in the loop.  For a block to be unconditionally executed, it has
420   // to dominate all the exit blocks of the loop.  Verify this now.
421   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
422     if (!DT->dominates(BB, ExitBlocks[i]))
423       return false;
424 
425   bool MadeChange = false;
426   // Look for store instructions, which may be optimized to memset/memcpy.
427   collectStores(BB);
428 
429   // Look for a single store or sets of stores with a common base, which can be
430   // optimized into a memset (memset_pattern).  The latter most commonly happens
431   // with structs and handunrolled loops.
432   for (auto &SL : StoreRefsForMemset)
433     MadeChange |= processLoopStores(SL.second, BECount, true);
434 
435   for (auto &SL : StoreRefsForMemsetPattern)
436     MadeChange |= processLoopStores(SL.second, BECount, false);
437 
438   // Optimize the store into a memcpy, if it feeds an similarly strided load.
439   for (auto &SI : StoreRefsForMemcpy)
440     MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
441 
442   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
443     Instruction *Inst = &*I++;
444     // Look for memset instructions, which may be optimized to a larger memset.
445     if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
446       WeakVH InstPtr(&*I);
447       if (!processLoopMemSet(MSI, BECount))
448         continue;
449       MadeChange = true;
450 
451       // If processing the memset invalidated our iterator, start over from the
452       // top of the block.
453       if (!InstPtr)
454         I = BB->begin();
455       continue;
456     }
457   }
458 
459   return MadeChange;
460 }
461 
462 /// processLoopStores - See if this store(s) can be promoted to a memset.
463 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
464                                            const SCEV *BECount,
465                                            bool ForMemset) {
466   // Try to find consecutive stores that can be transformed into memsets.
467   SetVector<StoreInst *> Heads, Tails;
468   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
469 
470   // Do a quadratic search on all of the given stores and find
471   // all of the pairs of stores that follow each other.
472   SmallVector<unsigned, 16> IndexQueue;
473   for (unsigned i = 0, e = SL.size(); i < e; ++i) {
474     assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
475 
476     Value *FirstStoredVal = SL[i]->getValueOperand();
477     Value *FirstStorePtr = SL[i]->getPointerOperand();
478     const SCEVAddRecExpr *FirstStoreEv =
479         cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
480     APInt FirstStride = getStoreStride(FirstStoreEv);
481     unsigned FirstStoreSize = getStoreSizeInBytes(SL[i], DL);
482 
483     // See if we can optimize just this store in isolation.
484     if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
485       Heads.insert(SL[i]);
486       continue;
487     }
488 
489     Value *FirstSplatValue = nullptr;
490     Constant *FirstPatternValue = nullptr;
491 
492     if (ForMemset)
493       FirstSplatValue = isBytewiseValue(FirstStoredVal);
494     else
495       FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
496 
497     assert((FirstSplatValue || FirstPatternValue) &&
498            "Expected either splat value or pattern value.");
499 
500     IndexQueue.clear();
501     // If a store has multiple consecutive store candidates, search Stores
502     // array according to the sequence: from i+1 to e, then from i-1 to 0.
503     // This is because usually pairing with immediate succeeding or preceding
504     // candidate create the best chance to find memset opportunity.
505     unsigned j = 0;
506     for (j = i + 1; j < e; ++j)
507       IndexQueue.push_back(j);
508     for (j = i; j > 0; --j)
509       IndexQueue.push_back(j - 1);
510 
511     for (auto &k : IndexQueue) {
512       assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
513       Value *SecondStorePtr = SL[k]->getPointerOperand();
514       const SCEVAddRecExpr *SecondStoreEv =
515           cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
516       APInt SecondStride = getStoreStride(SecondStoreEv);
517 
518       if (FirstStride != SecondStride)
519         continue;
520 
521       Value *SecondStoredVal = SL[k]->getValueOperand();
522       Value *SecondSplatValue = nullptr;
523       Constant *SecondPatternValue = nullptr;
524 
525       if (ForMemset)
526         SecondSplatValue = isBytewiseValue(SecondStoredVal);
527       else
528         SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
529 
530       assert((SecondSplatValue || SecondPatternValue) &&
531              "Expected either splat value or pattern value.");
532 
533       if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
534         if (ForMemset) {
535           if (FirstSplatValue != SecondSplatValue)
536             continue;
537         } else {
538           if (FirstPatternValue != SecondPatternValue)
539             continue;
540         }
541         Tails.insert(SL[k]);
542         Heads.insert(SL[i]);
543         ConsecutiveChain[SL[i]] = SL[k];
544         break;
545       }
546     }
547   }
548 
549   // We may run into multiple chains that merge into a single chain. We mark the
550   // stores that we transformed so that we don't visit the same store twice.
551   SmallPtrSet<Value *, 16> TransformedStores;
552   bool Changed = false;
553 
554   // For stores that start but don't end a link in the chain:
555   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
556        it != e; ++it) {
557     if (Tails.count(*it))
558       continue;
559 
560     // We found a store instr that starts a chain. Now follow the chain and try
561     // to transform it.
562     SmallPtrSet<Instruction *, 8> AdjacentStores;
563     StoreInst *I = *it;
564 
565     StoreInst *HeadStore = I;
566     unsigned StoreSize = 0;
567 
568     // Collect the chain into a list.
569     while (Tails.count(I) || Heads.count(I)) {
570       if (TransformedStores.count(I))
571         break;
572       AdjacentStores.insert(I);
573 
574       StoreSize += getStoreSizeInBytes(I, DL);
575       // Move to the next value in the chain.
576       I = ConsecutiveChain[I];
577     }
578 
579     Value *StoredVal = HeadStore->getValueOperand();
580     Value *StorePtr = HeadStore->getPointerOperand();
581     const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
582     APInt Stride = getStoreStride(StoreEv);
583 
584     // Check to see if the stride matches the size of the stores.  If so, then
585     // we know that every byte is touched in the loop.
586     if (StoreSize != Stride && StoreSize != -Stride)
587       continue;
588 
589     bool NegStride = StoreSize == -Stride;
590 
591     if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(),
592                                 StoredVal, HeadStore, AdjacentStores, StoreEv,
593                                 BECount, NegStride)) {
594       TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
595       Changed = true;
596     }
597   }
598 
599   return Changed;
600 }
601 
602 /// processLoopMemSet - See if this memset can be promoted to a large memset.
603 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
604                                            const SCEV *BECount) {
605   // We can only handle non-volatile memsets with a constant size.
606   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
607     return false;
608 
609   // If we're not allowed to hack on memset, we fail.
610   if (!HasMemset)
611     return false;
612 
613   Value *Pointer = MSI->getDest();
614 
615   // See if the pointer expression is an AddRec like {base,+,1} on the current
616   // loop, which indicates a strided store.  If we have something else, it's a
617   // random store we can't handle.
618   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
619   if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
620     return false;
621 
622   // Reject memsets that are so large that they overflow an unsigned.
623   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
624   if ((SizeInBytes >> 32) != 0)
625     return false;
626 
627   // Check to see if the stride matches the size of the memset.  If so, then we
628   // know that every byte is touched in the loop.
629   const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
630   if (!ConstStride)
631     return false;
632 
633   APInt Stride = ConstStride->getAPInt();
634   if (SizeInBytes != Stride && SizeInBytes != -Stride)
635     return false;
636 
637   // Verify that the memset value is loop invariant.  If not, we can't promote
638   // the memset.
639   Value *SplatValue = MSI->getValue();
640   if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
641     return false;
642 
643   SmallPtrSet<Instruction *, 1> MSIs;
644   MSIs.insert(MSI);
645   bool NegStride = SizeInBytes == -Stride;
646   return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
647                                  MSI->getAlignment(), SplatValue, MSI, MSIs, Ev,
648                                  BECount, NegStride);
649 }
650 
651 /// mayLoopAccessLocation - Return true if the specified loop might access the
652 /// specified pointer location, which is a loop-strided access.  The 'Access'
653 /// argument specifies what the verboten forms of access are (read or write).
654 static bool
655 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
656                       const SCEV *BECount, unsigned StoreSize,
657                       AliasAnalysis &AA,
658                       SmallPtrSetImpl<Instruction *> &IgnoredStores) {
659   // Get the location that may be stored across the loop.  Since the access is
660   // strided positively through memory, we say that the modified location starts
661   // at the pointer and has infinite size.
662   uint64_t AccessSize = MemoryLocation::UnknownSize;
663 
664   // If the loop iterates a fixed number of times, we can refine the access size
665   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
666   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
667     AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize;
668 
669   // TODO: For this to be really effective, we have to dive into the pointer
670   // operand in the store.  Store to &A[i] of 100 will always return may alias
671   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
672   // which will then no-alias a store to &A[100].
673   MemoryLocation StoreLoc(Ptr, AccessSize);
674 
675   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
676        ++BI)
677     for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I)
678       if (IgnoredStores.count(&*I) == 0 &&
679           (AA.getModRefInfo(&*I, StoreLoc) & Access))
680         return true;
681 
682   return false;
683 }
684 
685 // If we have a negative stride, Start refers to the end of the memory location
686 // we're trying to memset.  Therefore, we need to recompute the base pointer,
687 // which is just Start - BECount*Size.
688 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
689                                         Type *IntPtr, unsigned StoreSize,
690                                         ScalarEvolution *SE) {
691   const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
692   if (StoreSize != 1)
693     Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
694                            SCEV::FlagNUW);
695   return SE->getMinusSCEV(Start, Index);
696 }
697 
698 /// processLoopStridedStore - We see a strided store of some value.  If we can
699 /// transform this into a memset or memset_pattern in the loop preheader, do so.
700 bool LoopIdiomRecognize::processLoopStridedStore(
701     Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment,
702     Value *StoredVal, Instruction *TheStore,
703     SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
704     const SCEV *BECount, bool NegStride) {
705   Value *SplatValue = isBytewiseValue(StoredVal);
706   Constant *PatternValue = nullptr;
707 
708   if (!SplatValue)
709     PatternValue = getMemSetPatternValue(StoredVal, DL);
710 
711   assert((SplatValue || PatternValue) &&
712          "Expected either splat value or pattern value.");
713 
714   // The trip count of the loop and the base pointer of the addrec SCEV is
715   // guaranteed to be loop invariant, which means that it should dominate the
716   // header.  This allows us to insert code for it in the preheader.
717   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
718   BasicBlock *Preheader = CurLoop->getLoopPreheader();
719   IRBuilder<> Builder(Preheader->getTerminator());
720   SCEVExpander Expander(*SE, *DL, "loop-idiom");
721 
722   Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
723   Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS);
724 
725   const SCEV *Start = Ev->getStart();
726   // Handle negative strided loops.
727   if (NegStride)
728     Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE);
729 
730   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
731   // this into a memset in the loop preheader now if we want.  However, this
732   // would be unsafe to do if there is anything else in the loop that may read
733   // or write to the aliased location.  Check for any overlap by generating the
734   // base pointer and checking the region.
735   Value *BasePtr =
736       Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
737   if (mayLoopAccessLocation(BasePtr, MRI_ModRef, CurLoop, BECount, StoreSize,
738                             *AA, Stores)) {
739     Expander.clear();
740     // If we generated new code for the base pointer, clean up.
741     RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
742     return false;
743   }
744 
745   // Okay, everything looks good, insert the memset.
746 
747   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
748   // pointer size if it isn't already.
749   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
750 
751   const SCEV *NumBytesS =
752       SE->getAddExpr(BECount, SE->getOne(IntPtr), SCEV::FlagNUW);
753   if (StoreSize != 1) {
754     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
755                                SCEV::FlagNUW);
756   }
757 
758   Value *NumBytes =
759       Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
760 
761   CallInst *NewCall;
762   if (SplatValue) {
763     NewCall =
764         Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment);
765   } else {
766     // Everything is emitted in default address space
767     Type *Int8PtrTy = DestInt8PtrTy;
768 
769     Module *M = TheStore->getModule();
770     Value *MSP =
771         M->getOrInsertFunction("memset_pattern16", Builder.getVoidTy(),
772                                Int8PtrTy, Int8PtrTy, IntPtr, (void *)nullptr);
773     inferLibFuncAttributes(*M->getFunction("memset_pattern16"), *TLI);
774 
775     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
776     // an constant array of 16-bytes.  Plop the value into a mergable global.
777     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
778                                             GlobalValue::PrivateLinkage,
779                                             PatternValue, ".memset_pattern");
780     GV->setUnnamedAddr(true); // Ok to merge these.
781     GV->setAlignment(16);
782     Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
783     NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
784   }
785 
786   DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
787                << "    from store to: " << *Ev << " at: " << *TheStore << "\n");
788   NewCall->setDebugLoc(TheStore->getDebugLoc());
789 
790   // Okay, the memset has been formed.  Zap the original store and anything that
791   // feeds into it.
792   for (auto *I : Stores)
793     deleteDeadInstruction(I, TLI);
794   ++NumMemSet;
795   return true;
796 }
797 
798 /// If the stored value is a strided load in the same loop with the same stride
799 /// this may be transformable into a memcpy.  This kicks in for stuff like
800 ///   for (i) A[i] = B[i];
801 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
802                                                     const SCEV *BECount) {
803   assert(SI->isSimple() && "Expected only non-volatile stores.");
804 
805   Value *StorePtr = SI->getPointerOperand();
806   const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
807   APInt Stride = getStoreStride(StoreEv);
808   unsigned StoreSize = getStoreSizeInBytes(SI, DL);
809   bool NegStride = StoreSize == -Stride;
810 
811   // The store must be feeding a non-volatile load.
812   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
813   assert(LI->isSimple() && "Expected only non-volatile stores.");
814 
815   // See if the pointer expression is an AddRec like {base,+,1} on the current
816   // loop, which indicates a strided load.  If we have something else, it's a
817   // random load we can't handle.
818   const SCEVAddRecExpr *LoadEv =
819       cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
820 
821   // The trip count of the loop and the base pointer of the addrec SCEV is
822   // guaranteed to be loop invariant, which means that it should dominate the
823   // header.  This allows us to insert code for it in the preheader.
824   BasicBlock *Preheader = CurLoop->getLoopPreheader();
825   IRBuilder<> Builder(Preheader->getTerminator());
826   SCEVExpander Expander(*SE, *DL, "loop-idiom");
827 
828   const SCEV *StrStart = StoreEv->getStart();
829   unsigned StrAS = SI->getPointerAddressSpace();
830   Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS);
831 
832   // Handle negative strided loops.
833   if (NegStride)
834     StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE);
835 
836   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
837   // this into a memcpy in the loop preheader now if we want.  However, this
838   // would be unsafe to do if there is anything else in the loop that may read
839   // or write the memory region we're storing to.  This includes the load that
840   // feeds the stores.  Check for an alias by generating the base address and
841   // checking everything.
842   Value *StoreBasePtr = Expander.expandCodeFor(
843       StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
844 
845   SmallPtrSet<Instruction *, 1> Stores;
846   Stores.insert(SI);
847   if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount,
848                             StoreSize, *AA, Stores)) {
849     Expander.clear();
850     // If we generated new code for the base pointer, clean up.
851     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
852     return false;
853   }
854 
855   const SCEV *LdStart = LoadEv->getStart();
856   unsigned LdAS = LI->getPointerAddressSpace();
857 
858   // Handle negative strided loops.
859   if (NegStride)
860     LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE);
861 
862   // For a memcpy, we have to make sure that the input array is not being
863   // mutated by the loop.
864   Value *LoadBasePtr = Expander.expandCodeFor(
865       LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
866 
867   if (mayLoopAccessLocation(LoadBasePtr, MRI_Mod, CurLoop, BECount, StoreSize,
868                             *AA, Stores)) {
869     Expander.clear();
870     // If we generated new code for the base pointer, clean up.
871     RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
872     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
873     return false;
874   }
875 
876   // Okay, everything is safe, we can transform this!
877 
878   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
879   // pointer size if it isn't already.
880   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
881 
882   const SCEV *NumBytesS =
883       SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW);
884   if (StoreSize != 1)
885     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
886                                SCEV::FlagNUW);
887 
888   Value *NumBytes =
889       Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
890 
891   CallInst *NewCall =
892       Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
893                            std::min(SI->getAlignment(), LI->getAlignment()));
894   NewCall->setDebugLoc(SI->getDebugLoc());
895 
896   DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
897                << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
898                << "    from store ptr=" << *StoreEv << " at: " << *SI << "\n");
899 
900   // Okay, the memcpy has been formed.  Zap the original store and anything that
901   // feeds into it.
902   deleteDeadInstruction(SI, TLI);
903   ++NumMemCpy;
904   return true;
905 }
906 
907 bool LoopIdiomRecognize::runOnNoncountableLoop() {
908   return recognizePopcount();
909 }
910 
911 /// Check if the given conditional branch is based on the comparison between
912 /// a variable and zero, and if the variable is non-zero, the control yields to
913 /// the loop entry. If the branch matches the behavior, the variable involved
914 /// in the comparion is returned. This function will be called to see if the
915 /// precondition and postcondition of the loop are in desirable form.
916 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry) {
917   if (!BI || !BI->isConditional())
918     return nullptr;
919 
920   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
921   if (!Cond)
922     return nullptr;
923 
924   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
925   if (!CmpZero || !CmpZero->isZero())
926     return nullptr;
927 
928   ICmpInst::Predicate Pred = Cond->getPredicate();
929   if ((Pred == ICmpInst::ICMP_NE && BI->getSuccessor(0) == LoopEntry) ||
930       (Pred == ICmpInst::ICMP_EQ && BI->getSuccessor(1) == LoopEntry))
931     return Cond->getOperand(0);
932 
933   return nullptr;
934 }
935 
936 /// Return true iff the idiom is detected in the loop.
937 ///
938 /// Additionally:
939 /// 1) \p CntInst is set to the instruction counting the population bit.
940 /// 2) \p CntPhi is set to the corresponding phi node.
941 /// 3) \p Var is set to the value whose population bits are being counted.
942 ///
943 /// The core idiom we are trying to detect is:
944 /// \code
945 ///    if (x0 != 0)
946 ///      goto loop-exit // the precondition of the loop
947 ///    cnt0 = init-val;
948 ///    do {
949 ///       x1 = phi (x0, x2);
950 ///       cnt1 = phi(cnt0, cnt2);
951 ///
952 ///       cnt2 = cnt1 + 1;
953 ///        ...
954 ///       x2 = x1 & (x1 - 1);
955 ///        ...
956 ///    } while(x != 0);
957 ///
958 /// loop-exit:
959 /// \endcode
960 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
961                                 Instruction *&CntInst, PHINode *&CntPhi,
962                                 Value *&Var) {
963   // step 1: Check to see if the look-back branch match this pattern:
964   //    "if (a!=0) goto loop-entry".
965   BasicBlock *LoopEntry;
966   Instruction *DefX2, *CountInst;
967   Value *VarX1, *VarX0;
968   PHINode *PhiX, *CountPhi;
969 
970   DefX2 = CountInst = nullptr;
971   VarX1 = VarX0 = nullptr;
972   PhiX = CountPhi = nullptr;
973   LoopEntry = *(CurLoop->block_begin());
974 
975   // step 1: Check if the loop-back branch is in desirable form.
976   {
977     if (Value *T = matchCondition(
978             dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
979       DefX2 = dyn_cast<Instruction>(T);
980     else
981       return false;
982   }
983 
984   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
985   {
986     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
987       return false;
988 
989     BinaryOperator *SubOneOp;
990 
991     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
992       VarX1 = DefX2->getOperand(1);
993     else {
994       VarX1 = DefX2->getOperand(0);
995       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
996     }
997     if (!SubOneOp)
998       return false;
999 
1000     Instruction *SubInst = cast<Instruction>(SubOneOp);
1001     ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
1002     if (!Dec ||
1003         !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1004           (SubInst->getOpcode() == Instruction::Add &&
1005            Dec->isAllOnesValue()))) {
1006       return false;
1007     }
1008   }
1009 
1010   // step 3: Check the recurrence of variable X
1011   {
1012     PhiX = dyn_cast<PHINode>(VarX1);
1013     if (!PhiX ||
1014         (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
1015       return false;
1016     }
1017   }
1018 
1019   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1020   {
1021     CountInst = nullptr;
1022     for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1023                               IterE = LoopEntry->end();
1024          Iter != IterE; Iter++) {
1025       Instruction *Inst = &*Iter;
1026       if (Inst->getOpcode() != Instruction::Add)
1027         continue;
1028 
1029       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1030       if (!Inc || !Inc->isOne())
1031         continue;
1032 
1033       PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
1034       if (!Phi || Phi->getParent() != LoopEntry)
1035         continue;
1036 
1037       // Check if the result of the instruction is live of the loop.
1038       bool LiveOutLoop = false;
1039       for (User *U : Inst->users()) {
1040         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1041           LiveOutLoop = true;
1042           break;
1043         }
1044       }
1045 
1046       if (LiveOutLoop) {
1047         CountInst = Inst;
1048         CountPhi = Phi;
1049         break;
1050       }
1051     }
1052 
1053     if (!CountInst)
1054       return false;
1055   }
1056 
1057   // step 5: check if the precondition is in this form:
1058   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1059   {
1060     auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1061     Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1062     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1063       return false;
1064 
1065     CntInst = CountInst;
1066     CntPhi = CountPhi;
1067     Var = T;
1068   }
1069 
1070   return true;
1071 }
1072 
1073 /// Recognizes a population count idiom in a non-countable loop.
1074 ///
1075 /// If detected, transforms the relevant code to issue the popcount intrinsic
1076 /// function call, and returns true; otherwise, returns false.
1077 bool LoopIdiomRecognize::recognizePopcount() {
1078   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1079     return false;
1080 
1081   // Counting population are usually conducted by few arithmetic instructions.
1082   // Such instructions can be easily "absorbed" by vacant slots in a
1083   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1084   // in a compact loop.
1085 
1086   // Give up if the loop has multiple blocks or multiple backedges.
1087   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1088     return false;
1089 
1090   BasicBlock *LoopBody = *(CurLoop->block_begin());
1091   if (LoopBody->size() >= 20) {
1092     // The loop is too big, bail out.
1093     return false;
1094   }
1095 
1096   // It should have a preheader containing nothing but an unconditional branch.
1097   BasicBlock *PH = CurLoop->getLoopPreheader();
1098   if (!PH)
1099     return false;
1100   if (&PH->front() != PH->getTerminator())
1101     return false;
1102   auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1103   if (!EntryBI || EntryBI->isConditional())
1104     return false;
1105 
1106   // It should have a precondition block where the generated popcount instrinsic
1107   // function can be inserted.
1108   auto *PreCondBB = PH->getSinglePredecessor();
1109   if (!PreCondBB)
1110     return false;
1111   auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1112   if (!PreCondBI || PreCondBI->isUnconditional())
1113     return false;
1114 
1115   Instruction *CntInst;
1116   PHINode *CntPhi;
1117   Value *Val;
1118   if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1119     return false;
1120 
1121   transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1122   return true;
1123 }
1124 
1125 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1126                                        DebugLoc DL) {
1127   Value *Ops[] = {Val};
1128   Type *Tys[] = {Val->getType()};
1129 
1130   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1131   Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1132   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1133   CI->setDebugLoc(DL);
1134 
1135   return CI;
1136 }
1137 
1138 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
1139                                                  Instruction *CntInst,
1140                                                  PHINode *CntPhi, Value *Var) {
1141   BasicBlock *PreHead = CurLoop->getLoopPreheader();
1142   auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1143   const DebugLoc DL = CntInst->getDebugLoc();
1144 
1145   // Assuming before transformation, the loop is following:
1146   //  if (x) // the precondition
1147   //     do { cnt++; x &= x - 1; } while(x);
1148 
1149   // Step 1: Insert the ctpop instruction at the end of the precondition block
1150   IRBuilder<> Builder(PreCondBr);
1151   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
1152   {
1153     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
1154     NewCount = PopCntZext =
1155         Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
1156 
1157     if (NewCount != PopCnt)
1158       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1159 
1160     // TripCnt is exactly the number of iterations the loop has
1161     TripCnt = NewCount;
1162 
1163     // If the population counter's initial value is not zero, insert Add Inst.
1164     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
1165     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1166     if (!InitConst || !InitConst->isZero()) {
1167       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1168       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1169     }
1170   }
1171 
1172   // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
1173   //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
1174   //   function would be partial dead code, and downstream passes will drag
1175   //   it back from the precondition block to the preheader.
1176   {
1177     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
1178 
1179     Value *Opnd0 = PopCntZext;
1180     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
1181     if (PreCond->getOperand(0) != Var)
1182       std::swap(Opnd0, Opnd1);
1183 
1184     ICmpInst *NewPreCond = cast<ICmpInst>(
1185         Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
1186     PreCondBr->setCondition(NewPreCond);
1187 
1188     RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
1189   }
1190 
1191   // Step 3: Note that the population count is exactly the trip count of the
1192   // loop in question, which enable us to to convert the loop from noncountable
1193   // loop into a countable one. The benefit is twofold:
1194   //
1195   //  - If the loop only counts population, the entire loop becomes dead after
1196   //    the transformation. It is a lot easier to prove a countable loop dead
1197   //    than to prove a noncountable one. (In some C dialects, an infinite loop
1198   //    isn't dead even if it computes nothing useful. In general, DCE needs
1199   //    to prove a noncountable loop finite before safely delete it.)
1200   //
1201   //  - If the loop also performs something else, it remains alive.
1202   //    Since it is transformed to countable form, it can be aggressively
1203   //    optimized by some optimizations which are in general not applicable
1204   //    to a noncountable loop.
1205   //
1206   // After this step, this loop (conceptually) would look like following:
1207   //   newcnt = __builtin_ctpop(x);
1208   //   t = newcnt;
1209   //   if (x)
1210   //     do { cnt++; x &= x-1; t--) } while (t > 0);
1211   BasicBlock *Body = *(CurLoop->block_begin());
1212   {
1213     auto *LbBr = dyn_cast<BranchInst>(Body->getTerminator());
1214     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1215     Type *Ty = TripCnt->getType();
1216 
1217     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1218 
1219     Builder.SetInsertPoint(LbCond);
1220     Instruction *TcDec = cast<Instruction>(
1221         Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1222                           "tcdec", false, true));
1223 
1224     TcPhi->addIncoming(TripCnt, PreHead);
1225     TcPhi->addIncoming(TcDec, Body);
1226 
1227     CmpInst::Predicate Pred =
1228         (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
1229     LbCond->setPredicate(Pred);
1230     LbCond->setOperand(0, TcDec);
1231     LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1232   }
1233 
1234   // Step 4: All the references to the original population counter outside
1235   //  the loop are replaced with the NewCount -- the value returned from
1236   //  __builtin_ctpop().
1237   CntInst->replaceUsesOutsideBlock(NewCount, Body);
1238 
1239   // step 5: Forget the "non-computable" trip-count SCEV associated with the
1240   //   loop. The loop would otherwise not be deleted even if it becomes empty.
1241   SE->forgetLoop(CurLoop);
1242 }
1243