1 //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements an idiom recognizer that transforms simple loops into a 11 // non-loop form. In cases that this kicks in, it can be a significant 12 // performance win. 13 // 14 //===----------------------------------------------------------------------===// 15 // 16 // TODO List: 17 // 18 // Future loop memory idioms to recognize: 19 // memcmp, memmove, strlen, etc. 20 // Future floating point idioms to recognize in -ffast-math mode: 21 // fpowi 22 // Future integer operation idioms to recognize: 23 // ctpop, ctlz, cttz 24 // 25 // Beware that isel's default lowering for ctpop is highly inefficient for 26 // i64 and larger types when i64 is legal and the value has few bits set. It 27 // would be good to enhance isel to emit a loop for ctpop in this case. 28 // 29 // This could recognize common matrix multiplies and dot product idioms and 30 // replace them with calls to BLAS (if linked in??). 31 // 32 //===----------------------------------------------------------------------===// 33 34 #include "llvm/Transforms/Scalar.h" 35 #include "llvm/ADT/MapVector.h" 36 #include "llvm/ADT/SetVector.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/Analysis/AliasAnalysis.h" 39 #include "llvm/Analysis/BasicAliasAnalysis.h" 40 #include "llvm/Analysis/GlobalsModRef.h" 41 #include "llvm/Analysis/LoopPass.h" 42 #include "llvm/Analysis/LoopAccessAnalysis.h" 43 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 44 #include "llvm/Analysis/ScalarEvolutionExpander.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/IRBuilder.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Utils/BuildLibCalls.h" 57 #include "llvm/Transforms/Utils/Local.h" 58 #include "llvm/Transforms/Utils/LoopUtils.h" 59 using namespace llvm; 60 61 #define DEBUG_TYPE "loop-idiom" 62 63 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 64 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 65 66 namespace { 67 68 class LoopIdiomRecognize : public LoopPass { 69 Loop *CurLoop; 70 AliasAnalysis *AA; 71 DominatorTree *DT; 72 LoopInfo *LI; 73 ScalarEvolution *SE; 74 TargetLibraryInfo *TLI; 75 const TargetTransformInfo *TTI; 76 const DataLayout *DL; 77 78 public: 79 static char ID; 80 explicit LoopIdiomRecognize() : LoopPass(ID) { 81 initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry()); 82 } 83 84 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 85 86 /// This transformation requires natural loop information & requires that 87 /// loop preheaders be inserted into the CFG. 88 /// 89 void getAnalysisUsage(AnalysisUsage &AU) const override { 90 AU.addRequired<TargetLibraryInfoWrapperPass>(); 91 AU.addRequired<TargetTransformInfoWrapperPass>(); 92 getLoopAnalysisUsage(AU); 93 } 94 95 private: 96 typedef SmallVector<StoreInst *, 8> StoreList; 97 typedef MapVector<Value *, StoreList> StoreListMap; 98 StoreListMap StoreRefsForMemset; 99 StoreListMap StoreRefsForMemsetPattern; 100 StoreList StoreRefsForMemcpy; 101 bool HasMemset; 102 bool HasMemsetPattern; 103 bool HasMemcpy; 104 105 /// \name Countable Loop Idiom Handling 106 /// @{ 107 108 bool runOnCountableLoop(); 109 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 110 SmallVectorImpl<BasicBlock *> &ExitBlocks); 111 112 void collectStores(BasicBlock *BB); 113 bool isLegalStore(StoreInst *SI, bool &ForMemset, bool &ForMemsetPattern, 114 bool &ForMemcpy); 115 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, 116 bool ForMemset); 117 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 118 119 bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, 120 unsigned StoreAlignment, Value *StoredVal, 121 Instruction *TheStore, 122 SmallPtrSetImpl<Instruction *> &Stores, 123 const SCEVAddRecExpr *Ev, const SCEV *BECount, 124 bool NegStride); 125 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); 126 127 /// @} 128 /// \name Noncountable Loop Idiom Handling 129 /// @{ 130 131 bool runOnNoncountableLoop(); 132 133 bool recognizePopcount(); 134 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, 135 PHINode *CntPhi, Value *Var); 136 137 /// @} 138 }; 139 140 } // End anonymous namespace. 141 142 char LoopIdiomRecognize::ID = 0; 143 INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms", 144 false, false) 145 INITIALIZE_PASS_DEPENDENCY(LoopPass) 146 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 147 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 148 INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms", 149 false, false) 150 151 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); } 152 153 /// deleteDeadInstruction - Delete this instruction. Before we do, go through 154 /// and zero out all the operands of this instruction. If any of them become 155 /// dead, delete them and the computation tree that feeds them. 156 /// 157 static void deleteDeadInstruction(Instruction *I, 158 const TargetLibraryInfo *TLI) { 159 SmallVector<Value *, 16> Operands(I->value_op_begin(), I->value_op_end()); 160 I->replaceAllUsesWith(UndefValue::get(I->getType())); 161 I->eraseFromParent(); 162 for (Value *Op : Operands) 163 RecursivelyDeleteTriviallyDeadInstructions(Op, TLI); 164 } 165 166 //===----------------------------------------------------------------------===// 167 // 168 // Implementation of LoopIdiomRecognize 169 // 170 //===----------------------------------------------------------------------===// 171 172 bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) { 173 if (skipLoop(L)) 174 return false; 175 176 CurLoop = L; 177 // If the loop could not be converted to canonical form, it must have an 178 // indirectbr in it, just give up. 179 if (!L->getLoopPreheader()) 180 return false; 181 182 // Disable loop idiom recognition if the function's name is a common idiom. 183 StringRef Name = L->getHeader()->getParent()->getName(); 184 if (Name == "memset" || Name == "memcpy") 185 return false; 186 187 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 188 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 189 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 190 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 191 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 192 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 193 *CurLoop->getHeader()->getParent()); 194 DL = &CurLoop->getHeader()->getModule()->getDataLayout(); 195 196 HasMemset = TLI->has(LibFunc::memset); 197 HasMemsetPattern = TLI->has(LibFunc::memset_pattern16); 198 HasMemcpy = TLI->has(LibFunc::memcpy); 199 200 if (HasMemset || HasMemsetPattern || HasMemcpy) 201 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 202 return runOnCountableLoop(); 203 204 return runOnNoncountableLoop(); 205 } 206 207 bool LoopIdiomRecognize::runOnCountableLoop() { 208 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 209 assert(!isa<SCEVCouldNotCompute>(BECount) && 210 "runOnCountableLoop() called on a loop without a predictable" 211 "backedge-taken count"); 212 213 // If this loop executes exactly one time, then it should be peeled, not 214 // optimized by this pass. 215 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 216 if (BECst->getAPInt() == 0) 217 return false; 218 219 SmallVector<BasicBlock *, 8> ExitBlocks; 220 CurLoop->getUniqueExitBlocks(ExitBlocks); 221 222 DEBUG(dbgs() << "loop-idiom Scanning: F[" 223 << CurLoop->getHeader()->getParent()->getName() << "] Loop %" 224 << CurLoop->getHeader()->getName() << "\n"); 225 226 bool MadeChange = false; 227 // Scan all the blocks in the loop that are not in subloops. 228 for (auto *BB : CurLoop->getBlocks()) { 229 // Ignore blocks in subloops. 230 if (LI->getLoopFor(BB) != CurLoop) 231 continue; 232 233 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); 234 } 235 return MadeChange; 236 } 237 238 static unsigned getStoreSizeInBytes(StoreInst *SI, const DataLayout *DL) { 239 uint64_t SizeInBits = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 240 assert(((SizeInBits & 7) || (SizeInBits >> 32) == 0) && 241 "Don't overflow unsigned."); 242 return (unsigned)SizeInBits >> 3; 243 } 244 245 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { 246 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); 247 return ConstStride->getAPInt(); 248 } 249 250 /// getMemSetPatternValue - If a strided store of the specified value is safe to 251 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 252 /// be passed in. Otherwise, return null. 253 /// 254 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 255 /// just replicate their input array and then pass on to memset_pattern16. 256 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { 257 // If the value isn't a constant, we can't promote it to being in a constant 258 // array. We could theoretically do a store to an alloca or something, but 259 // that doesn't seem worthwhile. 260 Constant *C = dyn_cast<Constant>(V); 261 if (!C) 262 return nullptr; 263 264 // Only handle simple values that are a power of two bytes in size. 265 uint64_t Size = DL->getTypeSizeInBits(V->getType()); 266 if (Size == 0 || (Size & 7) || (Size & (Size - 1))) 267 return nullptr; 268 269 // Don't care enough about darwin/ppc to implement this. 270 if (DL->isBigEndian()) 271 return nullptr; 272 273 // Convert to size in bytes. 274 Size /= 8; 275 276 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 277 // if the top and bottom are the same (e.g. for vectors and large integers). 278 if (Size > 16) 279 return nullptr; 280 281 // If the constant is exactly 16 bytes, just use it. 282 if (Size == 16) 283 return C; 284 285 // Otherwise, we'll use an array of the constants. 286 unsigned ArraySize = 16 / Size; 287 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 288 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); 289 } 290 291 bool LoopIdiomRecognize::isLegalStore(StoreInst *SI, bool &ForMemset, 292 bool &ForMemsetPattern, bool &ForMemcpy) { 293 // Don't touch volatile stores. 294 if (!SI->isSimple()) 295 return false; 296 297 // Avoid merging nontemporal stores. 298 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 299 return false; 300 301 Value *StoredVal = SI->getValueOperand(); 302 Value *StorePtr = SI->getPointerOperand(); 303 304 // Reject stores that are so large that they overflow an unsigned. 305 uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); 306 if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) 307 return false; 308 309 // See if the pointer expression is an AddRec like {base,+,1} on the current 310 // loop, which indicates a strided store. If we have something else, it's a 311 // random store we can't handle. 312 const SCEVAddRecExpr *StoreEv = 313 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 314 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 315 return false; 316 317 // Check to see if we have a constant stride. 318 if (!isa<SCEVConstant>(StoreEv->getOperand(1))) 319 return false; 320 321 // See if the store can be turned into a memset. 322 323 // If the stored value is a byte-wise value (like i32 -1), then it may be 324 // turned into a memset of i8 -1, assuming that all the consecutive bytes 325 // are stored. A store of i32 0x01020304 can never be turned into a memset, 326 // but it can be turned into memset_pattern if the target supports it. 327 Value *SplatValue = isBytewiseValue(StoredVal); 328 Constant *PatternValue = nullptr; 329 330 // If we're allowed to form a memset, and the stored value would be 331 // acceptable for memset, use it. 332 if (HasMemset && SplatValue && 333 // Verify that the stored value is loop invariant. If not, we can't 334 // promote the memset. 335 CurLoop->isLoopInvariant(SplatValue)) { 336 // It looks like we can use SplatValue. 337 ForMemset = true; 338 return true; 339 } else if (HasMemsetPattern && 340 // Don't create memset_pattern16s with address spaces. 341 StorePtr->getType()->getPointerAddressSpace() == 0 && 342 (PatternValue = getMemSetPatternValue(StoredVal, DL))) { 343 // It looks like we can use PatternValue! 344 ForMemsetPattern = true; 345 return true; 346 } 347 348 // Otherwise, see if the store can be turned into a memcpy. 349 if (HasMemcpy) { 350 // Check to see if the stride matches the size of the store. If so, then we 351 // know that every byte is touched in the loop. 352 APInt Stride = getStoreStride(StoreEv); 353 unsigned StoreSize = getStoreSizeInBytes(SI, DL); 354 if (StoreSize != Stride && StoreSize != -Stride) 355 return false; 356 357 // The store must be feeding a non-volatile load. 358 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); 359 if (!LI || !LI->isSimple()) 360 return false; 361 362 // See if the pointer expression is an AddRec like {base,+,1} on the current 363 // loop, which indicates a strided load. If we have something else, it's a 364 // random load we can't handle. 365 const SCEVAddRecExpr *LoadEv = 366 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 367 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 368 return false; 369 370 // The store and load must share the same stride. 371 if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) 372 return false; 373 374 // Success. This store can be converted into a memcpy. 375 ForMemcpy = true; 376 return true; 377 } 378 // This store can't be transformed into a memset/memcpy. 379 return false; 380 } 381 382 void LoopIdiomRecognize::collectStores(BasicBlock *BB) { 383 StoreRefsForMemset.clear(); 384 StoreRefsForMemsetPattern.clear(); 385 StoreRefsForMemcpy.clear(); 386 for (Instruction &I : *BB) { 387 StoreInst *SI = dyn_cast<StoreInst>(&I); 388 if (!SI) 389 continue; 390 391 bool ForMemset = false; 392 bool ForMemsetPattern = false; 393 bool ForMemcpy = false; 394 // Make sure this is a strided store with a constant stride. 395 if (!isLegalStore(SI, ForMemset, ForMemsetPattern, ForMemcpy)) 396 continue; 397 398 // Save the store locations. 399 if (ForMemset) { 400 // Find the base pointer. 401 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); 402 StoreRefsForMemset[Ptr].push_back(SI); 403 } else if (ForMemsetPattern) { 404 // Find the base pointer. 405 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); 406 StoreRefsForMemsetPattern[Ptr].push_back(SI); 407 } else if (ForMemcpy) 408 StoreRefsForMemcpy.push_back(SI); 409 } 410 } 411 412 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 413 /// with the specified backedge count. This block is known to be in the current 414 /// loop and not in any subloops. 415 bool LoopIdiomRecognize::runOnLoopBlock( 416 BasicBlock *BB, const SCEV *BECount, 417 SmallVectorImpl<BasicBlock *> &ExitBlocks) { 418 // We can only promote stores in this block if they are unconditionally 419 // executed in the loop. For a block to be unconditionally executed, it has 420 // to dominate all the exit blocks of the loop. Verify this now. 421 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 422 if (!DT->dominates(BB, ExitBlocks[i])) 423 return false; 424 425 bool MadeChange = false; 426 // Look for store instructions, which may be optimized to memset/memcpy. 427 collectStores(BB); 428 429 // Look for a single store or sets of stores with a common base, which can be 430 // optimized into a memset (memset_pattern). The latter most commonly happens 431 // with structs and handunrolled loops. 432 for (auto &SL : StoreRefsForMemset) 433 MadeChange |= processLoopStores(SL.second, BECount, true); 434 435 for (auto &SL : StoreRefsForMemsetPattern) 436 MadeChange |= processLoopStores(SL.second, BECount, false); 437 438 // Optimize the store into a memcpy, if it feeds an similarly strided load. 439 for (auto &SI : StoreRefsForMemcpy) 440 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); 441 442 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 443 Instruction *Inst = &*I++; 444 // Look for memset instructions, which may be optimized to a larger memset. 445 if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) { 446 WeakVH InstPtr(&*I); 447 if (!processLoopMemSet(MSI, BECount)) 448 continue; 449 MadeChange = true; 450 451 // If processing the memset invalidated our iterator, start over from the 452 // top of the block. 453 if (!InstPtr) 454 I = BB->begin(); 455 continue; 456 } 457 } 458 459 return MadeChange; 460 } 461 462 /// processLoopStores - See if this store(s) can be promoted to a memset. 463 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, 464 const SCEV *BECount, 465 bool ForMemset) { 466 // Try to find consecutive stores that can be transformed into memsets. 467 SetVector<StoreInst *> Heads, Tails; 468 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 469 470 // Do a quadratic search on all of the given stores and find 471 // all of the pairs of stores that follow each other. 472 SmallVector<unsigned, 16> IndexQueue; 473 for (unsigned i = 0, e = SL.size(); i < e; ++i) { 474 assert(SL[i]->isSimple() && "Expected only non-volatile stores."); 475 476 Value *FirstStoredVal = SL[i]->getValueOperand(); 477 Value *FirstStorePtr = SL[i]->getPointerOperand(); 478 const SCEVAddRecExpr *FirstStoreEv = 479 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); 480 APInt FirstStride = getStoreStride(FirstStoreEv); 481 unsigned FirstStoreSize = getStoreSizeInBytes(SL[i], DL); 482 483 // See if we can optimize just this store in isolation. 484 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { 485 Heads.insert(SL[i]); 486 continue; 487 } 488 489 Value *FirstSplatValue = nullptr; 490 Constant *FirstPatternValue = nullptr; 491 492 if (ForMemset) 493 FirstSplatValue = isBytewiseValue(FirstStoredVal); 494 else 495 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); 496 497 assert((FirstSplatValue || FirstPatternValue) && 498 "Expected either splat value or pattern value."); 499 500 IndexQueue.clear(); 501 // If a store has multiple consecutive store candidates, search Stores 502 // array according to the sequence: from i+1 to e, then from i-1 to 0. 503 // This is because usually pairing with immediate succeeding or preceding 504 // candidate create the best chance to find memset opportunity. 505 unsigned j = 0; 506 for (j = i + 1; j < e; ++j) 507 IndexQueue.push_back(j); 508 for (j = i; j > 0; --j) 509 IndexQueue.push_back(j - 1); 510 511 for (auto &k : IndexQueue) { 512 assert(SL[k]->isSimple() && "Expected only non-volatile stores."); 513 Value *SecondStorePtr = SL[k]->getPointerOperand(); 514 const SCEVAddRecExpr *SecondStoreEv = 515 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); 516 APInt SecondStride = getStoreStride(SecondStoreEv); 517 518 if (FirstStride != SecondStride) 519 continue; 520 521 Value *SecondStoredVal = SL[k]->getValueOperand(); 522 Value *SecondSplatValue = nullptr; 523 Constant *SecondPatternValue = nullptr; 524 525 if (ForMemset) 526 SecondSplatValue = isBytewiseValue(SecondStoredVal); 527 else 528 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); 529 530 assert((SecondSplatValue || SecondPatternValue) && 531 "Expected either splat value or pattern value."); 532 533 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { 534 if (ForMemset) { 535 if (FirstSplatValue != SecondSplatValue) 536 continue; 537 } else { 538 if (FirstPatternValue != SecondPatternValue) 539 continue; 540 } 541 Tails.insert(SL[k]); 542 Heads.insert(SL[i]); 543 ConsecutiveChain[SL[i]] = SL[k]; 544 break; 545 } 546 } 547 } 548 549 // We may run into multiple chains that merge into a single chain. We mark the 550 // stores that we transformed so that we don't visit the same store twice. 551 SmallPtrSet<Value *, 16> TransformedStores; 552 bool Changed = false; 553 554 // For stores that start but don't end a link in the chain: 555 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 556 it != e; ++it) { 557 if (Tails.count(*it)) 558 continue; 559 560 // We found a store instr that starts a chain. Now follow the chain and try 561 // to transform it. 562 SmallPtrSet<Instruction *, 8> AdjacentStores; 563 StoreInst *I = *it; 564 565 StoreInst *HeadStore = I; 566 unsigned StoreSize = 0; 567 568 // Collect the chain into a list. 569 while (Tails.count(I) || Heads.count(I)) { 570 if (TransformedStores.count(I)) 571 break; 572 AdjacentStores.insert(I); 573 574 StoreSize += getStoreSizeInBytes(I, DL); 575 // Move to the next value in the chain. 576 I = ConsecutiveChain[I]; 577 } 578 579 Value *StoredVal = HeadStore->getValueOperand(); 580 Value *StorePtr = HeadStore->getPointerOperand(); 581 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 582 APInt Stride = getStoreStride(StoreEv); 583 584 // Check to see if the stride matches the size of the stores. If so, then 585 // we know that every byte is touched in the loop. 586 if (StoreSize != Stride && StoreSize != -Stride) 587 continue; 588 589 bool NegStride = StoreSize == -Stride; 590 591 if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(), 592 StoredVal, HeadStore, AdjacentStores, StoreEv, 593 BECount, NegStride)) { 594 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); 595 Changed = true; 596 } 597 } 598 599 return Changed; 600 } 601 602 /// processLoopMemSet - See if this memset can be promoted to a large memset. 603 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, 604 const SCEV *BECount) { 605 // We can only handle non-volatile memsets with a constant size. 606 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) 607 return false; 608 609 // If we're not allowed to hack on memset, we fail. 610 if (!HasMemset) 611 return false; 612 613 Value *Pointer = MSI->getDest(); 614 615 // See if the pointer expression is an AddRec like {base,+,1} on the current 616 // loop, which indicates a strided store. If we have something else, it's a 617 // random store we can't handle. 618 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 619 if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine()) 620 return false; 621 622 // Reject memsets that are so large that they overflow an unsigned. 623 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 624 if ((SizeInBytes >> 32) != 0) 625 return false; 626 627 // Check to see if the stride matches the size of the memset. If so, then we 628 // know that every byte is touched in the loop. 629 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 630 if (!ConstStride) 631 return false; 632 633 APInt Stride = ConstStride->getAPInt(); 634 if (SizeInBytes != Stride && SizeInBytes != -Stride) 635 return false; 636 637 // Verify that the memset value is loop invariant. If not, we can't promote 638 // the memset. 639 Value *SplatValue = MSI->getValue(); 640 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) 641 return false; 642 643 SmallPtrSet<Instruction *, 1> MSIs; 644 MSIs.insert(MSI); 645 bool NegStride = SizeInBytes == -Stride; 646 return processLoopStridedStore(Pointer, (unsigned)SizeInBytes, 647 MSI->getAlignment(), SplatValue, MSI, MSIs, Ev, 648 BECount, NegStride); 649 } 650 651 /// mayLoopAccessLocation - Return true if the specified loop might access the 652 /// specified pointer location, which is a loop-strided access. The 'Access' 653 /// argument specifies what the verboten forms of access are (read or write). 654 static bool 655 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, 656 const SCEV *BECount, unsigned StoreSize, 657 AliasAnalysis &AA, 658 SmallPtrSetImpl<Instruction *> &IgnoredStores) { 659 // Get the location that may be stored across the loop. Since the access is 660 // strided positively through memory, we say that the modified location starts 661 // at the pointer and has infinite size. 662 uint64_t AccessSize = MemoryLocation::UnknownSize; 663 664 // If the loop iterates a fixed number of times, we can refine the access size 665 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 666 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 667 AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize; 668 669 // TODO: For this to be really effective, we have to dive into the pointer 670 // operand in the store. Store to &A[i] of 100 will always return may alias 671 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 672 // which will then no-alias a store to &A[100]. 673 MemoryLocation StoreLoc(Ptr, AccessSize); 674 675 for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; 676 ++BI) 677 for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) 678 if (IgnoredStores.count(&*I) == 0 && 679 (AA.getModRefInfo(&*I, StoreLoc) & Access)) 680 return true; 681 682 return false; 683 } 684 685 // If we have a negative stride, Start refers to the end of the memory location 686 // we're trying to memset. Therefore, we need to recompute the base pointer, 687 // which is just Start - BECount*Size. 688 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, 689 Type *IntPtr, unsigned StoreSize, 690 ScalarEvolution *SE) { 691 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); 692 if (StoreSize != 1) 693 Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize), 694 SCEV::FlagNUW); 695 return SE->getMinusSCEV(Start, Index); 696 } 697 698 /// processLoopStridedStore - We see a strided store of some value. If we can 699 /// transform this into a memset or memset_pattern in the loop preheader, do so. 700 bool LoopIdiomRecognize::processLoopStridedStore( 701 Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment, 702 Value *StoredVal, Instruction *TheStore, 703 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, 704 const SCEV *BECount, bool NegStride) { 705 Value *SplatValue = isBytewiseValue(StoredVal); 706 Constant *PatternValue = nullptr; 707 708 if (!SplatValue) 709 PatternValue = getMemSetPatternValue(StoredVal, DL); 710 711 assert((SplatValue || PatternValue) && 712 "Expected either splat value or pattern value."); 713 714 // The trip count of the loop and the base pointer of the addrec SCEV is 715 // guaranteed to be loop invariant, which means that it should dominate the 716 // header. This allows us to insert code for it in the preheader. 717 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); 718 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 719 IRBuilder<> Builder(Preheader->getTerminator()); 720 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 721 722 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); 723 Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS); 724 725 const SCEV *Start = Ev->getStart(); 726 // Handle negative strided loops. 727 if (NegStride) 728 Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE); 729 730 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 731 // this into a memset in the loop preheader now if we want. However, this 732 // would be unsafe to do if there is anything else in the loop that may read 733 // or write to the aliased location. Check for any overlap by generating the 734 // base pointer and checking the region. 735 Value *BasePtr = 736 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); 737 if (mayLoopAccessLocation(BasePtr, MRI_ModRef, CurLoop, BECount, StoreSize, 738 *AA, Stores)) { 739 Expander.clear(); 740 // If we generated new code for the base pointer, clean up. 741 RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI); 742 return false; 743 } 744 745 // Okay, everything looks good, insert the memset. 746 747 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to 748 // pointer size if it isn't already. 749 BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr); 750 751 const SCEV *NumBytesS = 752 SE->getAddExpr(BECount, SE->getOne(IntPtr), SCEV::FlagNUW); 753 if (StoreSize != 1) { 754 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), 755 SCEV::FlagNUW); 756 } 757 758 Value *NumBytes = 759 Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); 760 761 CallInst *NewCall; 762 if (SplatValue) { 763 NewCall = 764 Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment); 765 } else { 766 // Everything is emitted in default address space 767 Type *Int8PtrTy = DestInt8PtrTy; 768 769 Module *M = TheStore->getModule(); 770 Value *MSP = 771 M->getOrInsertFunction("memset_pattern16", Builder.getVoidTy(), 772 Int8PtrTy, Int8PtrTy, IntPtr, (void *)nullptr); 773 inferLibFuncAttributes(*M->getFunction("memset_pattern16"), *TLI); 774 775 // Otherwise we should form a memset_pattern16. PatternValue is known to be 776 // an constant array of 16-bytes. Plop the value into a mergable global. 777 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 778 GlobalValue::PrivateLinkage, 779 PatternValue, ".memset_pattern"); 780 GV->setUnnamedAddr(true); // Ok to merge these. 781 GV->setAlignment(16); 782 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); 783 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); 784 } 785 786 DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 787 << " from store to: " << *Ev << " at: " << *TheStore << "\n"); 788 NewCall->setDebugLoc(TheStore->getDebugLoc()); 789 790 // Okay, the memset has been formed. Zap the original store and anything that 791 // feeds into it. 792 for (auto *I : Stores) 793 deleteDeadInstruction(I, TLI); 794 ++NumMemSet; 795 return true; 796 } 797 798 /// If the stored value is a strided load in the same loop with the same stride 799 /// this may be transformable into a memcpy. This kicks in for stuff like 800 /// for (i) A[i] = B[i]; 801 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, 802 const SCEV *BECount) { 803 assert(SI->isSimple() && "Expected only non-volatile stores."); 804 805 Value *StorePtr = SI->getPointerOperand(); 806 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 807 APInt Stride = getStoreStride(StoreEv); 808 unsigned StoreSize = getStoreSizeInBytes(SI, DL); 809 bool NegStride = StoreSize == -Stride; 810 811 // The store must be feeding a non-volatile load. 812 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 813 assert(LI->isSimple() && "Expected only non-volatile stores."); 814 815 // See if the pointer expression is an AddRec like {base,+,1} on the current 816 // loop, which indicates a strided load. If we have something else, it's a 817 // random load we can't handle. 818 const SCEVAddRecExpr *LoadEv = 819 cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 820 821 // The trip count of the loop and the base pointer of the addrec SCEV is 822 // guaranteed to be loop invariant, which means that it should dominate the 823 // header. This allows us to insert code for it in the preheader. 824 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 825 IRBuilder<> Builder(Preheader->getTerminator()); 826 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 827 828 const SCEV *StrStart = StoreEv->getStart(); 829 unsigned StrAS = SI->getPointerAddressSpace(); 830 Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS); 831 832 // Handle negative strided loops. 833 if (NegStride) 834 StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE); 835 836 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 837 // this into a memcpy in the loop preheader now if we want. However, this 838 // would be unsafe to do if there is anything else in the loop that may read 839 // or write the memory region we're storing to. This includes the load that 840 // feeds the stores. Check for an alias by generating the base address and 841 // checking everything. 842 Value *StoreBasePtr = Expander.expandCodeFor( 843 StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); 844 845 SmallPtrSet<Instruction *, 1> Stores; 846 Stores.insert(SI); 847 if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount, 848 StoreSize, *AA, Stores)) { 849 Expander.clear(); 850 // If we generated new code for the base pointer, clean up. 851 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); 852 return false; 853 } 854 855 const SCEV *LdStart = LoadEv->getStart(); 856 unsigned LdAS = LI->getPointerAddressSpace(); 857 858 // Handle negative strided loops. 859 if (NegStride) 860 LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE); 861 862 // For a memcpy, we have to make sure that the input array is not being 863 // mutated by the loop. 864 Value *LoadBasePtr = Expander.expandCodeFor( 865 LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); 866 867 if (mayLoopAccessLocation(LoadBasePtr, MRI_Mod, CurLoop, BECount, StoreSize, 868 *AA, Stores)) { 869 Expander.clear(); 870 // If we generated new code for the base pointer, clean up. 871 RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI); 872 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); 873 return false; 874 } 875 876 // Okay, everything is safe, we can transform this! 877 878 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to 879 // pointer size if it isn't already. 880 BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy); 881 882 const SCEV *NumBytesS = 883 SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW); 884 if (StoreSize != 1) 885 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize), 886 SCEV::FlagNUW); 887 888 Value *NumBytes = 889 Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator()); 890 891 CallInst *NewCall = 892 Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes, 893 std::min(SI->getAlignment(), LI->getAlignment())); 894 NewCall->setDebugLoc(SI->getDebugLoc()); 895 896 DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" 897 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" 898 << " from store ptr=" << *StoreEv << " at: " << *SI << "\n"); 899 900 // Okay, the memcpy has been formed. Zap the original store and anything that 901 // feeds into it. 902 deleteDeadInstruction(SI, TLI); 903 ++NumMemCpy; 904 return true; 905 } 906 907 bool LoopIdiomRecognize::runOnNoncountableLoop() { 908 return recognizePopcount(); 909 } 910 911 /// Check if the given conditional branch is based on the comparison between 912 /// a variable and zero, and if the variable is non-zero, the control yields to 913 /// the loop entry. If the branch matches the behavior, the variable involved 914 /// in the comparion is returned. This function will be called to see if the 915 /// precondition and postcondition of the loop are in desirable form. 916 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry) { 917 if (!BI || !BI->isConditional()) 918 return nullptr; 919 920 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 921 if (!Cond) 922 return nullptr; 923 924 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 925 if (!CmpZero || !CmpZero->isZero()) 926 return nullptr; 927 928 ICmpInst::Predicate Pred = Cond->getPredicate(); 929 if ((Pred == ICmpInst::ICMP_NE && BI->getSuccessor(0) == LoopEntry) || 930 (Pred == ICmpInst::ICMP_EQ && BI->getSuccessor(1) == LoopEntry)) 931 return Cond->getOperand(0); 932 933 return nullptr; 934 } 935 936 /// Return true iff the idiom is detected in the loop. 937 /// 938 /// Additionally: 939 /// 1) \p CntInst is set to the instruction counting the population bit. 940 /// 2) \p CntPhi is set to the corresponding phi node. 941 /// 3) \p Var is set to the value whose population bits are being counted. 942 /// 943 /// The core idiom we are trying to detect is: 944 /// \code 945 /// if (x0 != 0) 946 /// goto loop-exit // the precondition of the loop 947 /// cnt0 = init-val; 948 /// do { 949 /// x1 = phi (x0, x2); 950 /// cnt1 = phi(cnt0, cnt2); 951 /// 952 /// cnt2 = cnt1 + 1; 953 /// ... 954 /// x2 = x1 & (x1 - 1); 955 /// ... 956 /// } while(x != 0); 957 /// 958 /// loop-exit: 959 /// \endcode 960 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, 961 Instruction *&CntInst, PHINode *&CntPhi, 962 Value *&Var) { 963 // step 1: Check to see if the look-back branch match this pattern: 964 // "if (a!=0) goto loop-entry". 965 BasicBlock *LoopEntry; 966 Instruction *DefX2, *CountInst; 967 Value *VarX1, *VarX0; 968 PHINode *PhiX, *CountPhi; 969 970 DefX2 = CountInst = nullptr; 971 VarX1 = VarX0 = nullptr; 972 PhiX = CountPhi = nullptr; 973 LoopEntry = *(CurLoop->block_begin()); 974 975 // step 1: Check if the loop-back branch is in desirable form. 976 { 977 if (Value *T = matchCondition( 978 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 979 DefX2 = dyn_cast<Instruction>(T); 980 else 981 return false; 982 } 983 984 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 985 { 986 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 987 return false; 988 989 BinaryOperator *SubOneOp; 990 991 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 992 VarX1 = DefX2->getOperand(1); 993 else { 994 VarX1 = DefX2->getOperand(0); 995 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 996 } 997 if (!SubOneOp) 998 return false; 999 1000 Instruction *SubInst = cast<Instruction>(SubOneOp); 1001 ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1)); 1002 if (!Dec || 1003 !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) || 1004 (SubInst->getOpcode() == Instruction::Add && 1005 Dec->isAllOnesValue()))) { 1006 return false; 1007 } 1008 } 1009 1010 // step 3: Check the recurrence of variable X 1011 { 1012 PhiX = dyn_cast<PHINode>(VarX1); 1013 if (!PhiX || 1014 (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) { 1015 return false; 1016 } 1017 } 1018 1019 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 1020 { 1021 CountInst = nullptr; 1022 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1023 IterE = LoopEntry->end(); 1024 Iter != IterE; Iter++) { 1025 Instruction *Inst = &*Iter; 1026 if (Inst->getOpcode() != Instruction::Add) 1027 continue; 1028 1029 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1030 if (!Inc || !Inc->isOne()) 1031 continue; 1032 1033 PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0)); 1034 if (!Phi || Phi->getParent() != LoopEntry) 1035 continue; 1036 1037 // Check if the result of the instruction is live of the loop. 1038 bool LiveOutLoop = false; 1039 for (User *U : Inst->users()) { 1040 if ((cast<Instruction>(U))->getParent() != LoopEntry) { 1041 LiveOutLoop = true; 1042 break; 1043 } 1044 } 1045 1046 if (LiveOutLoop) { 1047 CountInst = Inst; 1048 CountPhi = Phi; 1049 break; 1050 } 1051 } 1052 1053 if (!CountInst) 1054 return false; 1055 } 1056 1057 // step 5: check if the precondition is in this form: 1058 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 1059 { 1060 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1061 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); 1062 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 1063 return false; 1064 1065 CntInst = CountInst; 1066 CntPhi = CountPhi; 1067 Var = T; 1068 } 1069 1070 return true; 1071 } 1072 1073 /// Recognizes a population count idiom in a non-countable loop. 1074 /// 1075 /// If detected, transforms the relevant code to issue the popcount intrinsic 1076 /// function call, and returns true; otherwise, returns false. 1077 bool LoopIdiomRecognize::recognizePopcount() { 1078 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 1079 return false; 1080 1081 // Counting population are usually conducted by few arithmetic instructions. 1082 // Such instructions can be easily "absorbed" by vacant slots in a 1083 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 1084 // in a compact loop. 1085 1086 // Give up if the loop has multiple blocks or multiple backedges. 1087 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1088 return false; 1089 1090 BasicBlock *LoopBody = *(CurLoop->block_begin()); 1091 if (LoopBody->size() >= 20) { 1092 // The loop is too big, bail out. 1093 return false; 1094 } 1095 1096 // It should have a preheader containing nothing but an unconditional branch. 1097 BasicBlock *PH = CurLoop->getLoopPreheader(); 1098 if (!PH) 1099 return false; 1100 if (&PH->front() != PH->getTerminator()) 1101 return false; 1102 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); 1103 if (!EntryBI || EntryBI->isConditional()) 1104 return false; 1105 1106 // It should have a precondition block where the generated popcount instrinsic 1107 // function can be inserted. 1108 auto *PreCondBB = PH->getSinglePredecessor(); 1109 if (!PreCondBB) 1110 return false; 1111 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1112 if (!PreCondBI || PreCondBI->isUnconditional()) 1113 return false; 1114 1115 Instruction *CntInst; 1116 PHINode *CntPhi; 1117 Value *Val; 1118 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) 1119 return false; 1120 1121 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); 1122 return true; 1123 } 1124 1125 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1126 DebugLoc DL) { 1127 Value *Ops[] = {Val}; 1128 Type *Tys[] = {Val->getType()}; 1129 1130 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1131 Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); 1132 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1133 CI->setDebugLoc(DL); 1134 1135 return CI; 1136 } 1137 1138 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, 1139 Instruction *CntInst, 1140 PHINode *CntPhi, Value *Var) { 1141 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 1142 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1143 const DebugLoc DL = CntInst->getDebugLoc(); 1144 1145 // Assuming before transformation, the loop is following: 1146 // if (x) // the precondition 1147 // do { cnt++; x &= x - 1; } while(x); 1148 1149 // Step 1: Insert the ctpop instruction at the end of the precondition block 1150 IRBuilder<> Builder(PreCondBr); 1151 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 1152 { 1153 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 1154 NewCount = PopCntZext = 1155 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 1156 1157 if (NewCount != PopCnt) 1158 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1159 1160 // TripCnt is exactly the number of iterations the loop has 1161 TripCnt = NewCount; 1162 1163 // If the population counter's initial value is not zero, insert Add Inst. 1164 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 1165 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 1166 if (!InitConst || !InitConst->isZero()) { 1167 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 1168 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1169 } 1170 } 1171 1172 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to 1173 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic 1174 // function would be partial dead code, and downstream passes will drag 1175 // it back from the precondition block to the preheader. 1176 { 1177 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 1178 1179 Value *Opnd0 = PopCntZext; 1180 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 1181 if (PreCond->getOperand(0) != Var) 1182 std::swap(Opnd0, Opnd1); 1183 1184 ICmpInst *NewPreCond = cast<ICmpInst>( 1185 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 1186 PreCondBr->setCondition(NewPreCond); 1187 1188 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); 1189 } 1190 1191 // Step 3: Note that the population count is exactly the trip count of the 1192 // loop in question, which enable us to to convert the loop from noncountable 1193 // loop into a countable one. The benefit is twofold: 1194 // 1195 // - If the loop only counts population, the entire loop becomes dead after 1196 // the transformation. It is a lot easier to prove a countable loop dead 1197 // than to prove a noncountable one. (In some C dialects, an infinite loop 1198 // isn't dead even if it computes nothing useful. In general, DCE needs 1199 // to prove a noncountable loop finite before safely delete it.) 1200 // 1201 // - If the loop also performs something else, it remains alive. 1202 // Since it is transformed to countable form, it can be aggressively 1203 // optimized by some optimizations which are in general not applicable 1204 // to a noncountable loop. 1205 // 1206 // After this step, this loop (conceptually) would look like following: 1207 // newcnt = __builtin_ctpop(x); 1208 // t = newcnt; 1209 // if (x) 1210 // do { cnt++; x &= x-1; t--) } while (t > 0); 1211 BasicBlock *Body = *(CurLoop->block_begin()); 1212 { 1213 auto *LbBr = dyn_cast<BranchInst>(Body->getTerminator()); 1214 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 1215 Type *Ty = TripCnt->getType(); 1216 1217 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 1218 1219 Builder.SetInsertPoint(LbCond); 1220 Instruction *TcDec = cast<Instruction>( 1221 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 1222 "tcdec", false, true)); 1223 1224 TcPhi->addIncoming(TripCnt, PreHead); 1225 TcPhi->addIncoming(TcDec, Body); 1226 1227 CmpInst::Predicate Pred = 1228 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 1229 LbCond->setPredicate(Pred); 1230 LbCond->setOperand(0, TcDec); 1231 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 1232 } 1233 1234 // Step 4: All the references to the original population counter outside 1235 // the loop are replaced with the NewCount -- the value returned from 1236 // __builtin_ctpop(). 1237 CntInst->replaceUsesOutsideBlock(NewCount, Body); 1238 1239 // step 5: Forget the "non-computable" trip-count SCEV associated with the 1240 // loop. The loop would otherwise not be deleted even if it becomes empty. 1241 SE->forgetLoop(CurLoop); 1242 } 1243