1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements an idiom recognizer that transforms simple loops into a 10 // non-loop form. In cases that this kicks in, it can be a significant 11 // performance win. 12 // 13 // If compiling for code size we avoid idiom recognition if the resulting 14 // code could be larger than the code for the original loop. One way this could 15 // happen is if the loop is not removable after idiom recognition due to the 16 // presence of non-idiom instructions. The initial implementation of the 17 // heuristics applies to idioms in multi-block loops. 18 // 19 //===----------------------------------------------------------------------===// 20 // 21 // TODO List: 22 // 23 // Future loop memory idioms to recognize: 24 // memcmp, memmove, strlen, etc. 25 // Future floating point idioms to recognize in -ffast-math mode: 26 // fpowi 27 // Future integer operation idioms to recognize: 28 // ctpop 29 // 30 // Beware that isel's default lowering for ctpop is highly inefficient for 31 // i64 and larger types when i64 is legal and the value has few bits set. It 32 // would be good to enhance isel to emit a loop for ctpop in this case. 33 // 34 // This could recognize common matrix multiplies and dot product idioms and 35 // replace them with calls to BLAS (if linked in??). 36 // 37 //===----------------------------------------------------------------------===// 38 39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" 40 #include "llvm/ADT/APInt.h" 41 #include "llvm/ADT/ArrayRef.h" 42 #include "llvm/ADT/DenseMap.h" 43 #include "llvm/ADT/MapVector.h" 44 #include "llvm/ADT/SetVector.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/ADT/StringRef.h" 49 #include "llvm/Analysis/AliasAnalysis.h" 50 #include "llvm/Analysis/CmpInstAnalysis.h" 51 #include "llvm/Analysis/LoopAccessAnalysis.h" 52 #include "llvm/Analysis/LoopInfo.h" 53 #include "llvm/Analysis/LoopPass.h" 54 #include "llvm/Analysis/MemoryLocation.h" 55 #include "llvm/Analysis/MemorySSA.h" 56 #include "llvm/Analysis/MemorySSAUpdater.h" 57 #include "llvm/Analysis/MustExecute.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ScalarEvolution.h" 60 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DebugLoc.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/Dominators.h" 72 #include "llvm/IR/GlobalValue.h" 73 #include "llvm/IR/GlobalVariable.h" 74 #include "llvm/IR/IRBuilder.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/Intrinsics.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PassManager.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/IR/ValueHandle.h" 88 #include "llvm/InitializePasses.h" 89 #include "llvm/Pass.h" 90 #include "llvm/Support/Casting.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/InstructionCost.h" 94 #include "llvm/Support/raw_ostream.h" 95 #include "llvm/Transforms/Scalar.h" 96 #include "llvm/Transforms/Utils/BuildLibCalls.h" 97 #include "llvm/Transforms/Utils/Local.h" 98 #include "llvm/Transforms/Utils/LoopUtils.h" 99 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 100 #include <algorithm> 101 #include <cassert> 102 #include <cstdint> 103 #include <utility> 104 #include <vector> 105 106 using namespace llvm; 107 108 #define DEBUG_TYPE "loop-idiom" 109 110 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 111 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 112 STATISTIC( 113 NumShiftUntilBitTest, 114 "Number of uncountable loops recognized as 'shift until bitttest' idiom"); 115 STATISTIC(NumShiftUntilZero, 116 "Number of uncountable loops recognized as 'shift until zero' idiom"); 117 118 bool DisableLIRP::All; 119 static cl::opt<bool, true> 120 DisableLIRPAll("disable-" DEBUG_TYPE "-all", 121 cl::desc("Options to disable Loop Idiom Recognize Pass."), 122 cl::location(DisableLIRP::All), cl::init(false), 123 cl::ReallyHidden); 124 125 bool DisableLIRP::Memset; 126 static cl::opt<bool, true> 127 DisableLIRPMemset("disable-" DEBUG_TYPE "-memset", 128 cl::desc("Proceed with loop idiom recognize pass, but do " 129 "not convert loop(s) to memset."), 130 cl::location(DisableLIRP::Memset), cl::init(false), 131 cl::ReallyHidden); 132 133 bool DisableLIRP::Memcpy; 134 static cl::opt<bool, true> 135 DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy", 136 cl::desc("Proceed with loop idiom recognize pass, but do " 137 "not convert loop(s) to memcpy."), 138 cl::location(DisableLIRP::Memcpy), cl::init(false), 139 cl::ReallyHidden); 140 141 static cl::opt<bool> UseLIRCodeSizeHeurs( 142 "use-lir-code-size-heurs", 143 cl::desc("Use loop idiom recognition code size heuristics when compiling" 144 "with -Os/-Oz"), 145 cl::init(true), cl::Hidden); 146 147 namespace { 148 149 class LoopIdiomRecognize { 150 Loop *CurLoop = nullptr; 151 AliasAnalysis *AA; 152 DominatorTree *DT; 153 LoopInfo *LI; 154 ScalarEvolution *SE; 155 TargetLibraryInfo *TLI; 156 const TargetTransformInfo *TTI; 157 const DataLayout *DL; 158 OptimizationRemarkEmitter &ORE; 159 bool ApplyCodeSizeHeuristics; 160 std::unique_ptr<MemorySSAUpdater> MSSAU; 161 162 public: 163 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, 164 LoopInfo *LI, ScalarEvolution *SE, 165 TargetLibraryInfo *TLI, 166 const TargetTransformInfo *TTI, MemorySSA *MSSA, 167 const DataLayout *DL, 168 OptimizationRemarkEmitter &ORE) 169 : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) { 170 if (MSSA) 171 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 172 } 173 174 bool runOnLoop(Loop *L); 175 176 private: 177 using StoreList = SmallVector<StoreInst *, 8>; 178 using StoreListMap = MapVector<Value *, StoreList>; 179 180 StoreListMap StoreRefsForMemset; 181 StoreListMap StoreRefsForMemsetPattern; 182 StoreList StoreRefsForMemcpy; 183 bool HasMemset; 184 bool HasMemsetPattern; 185 bool HasMemcpy; 186 187 /// Return code for isLegalStore() 188 enum LegalStoreKind { 189 None = 0, 190 Memset, 191 MemsetPattern, 192 Memcpy, 193 UnorderedAtomicMemcpy, 194 DontUse // Dummy retval never to be used. Allows catching errors in retval 195 // handling. 196 }; 197 198 /// \name Countable Loop Idiom Handling 199 /// @{ 200 201 bool runOnCountableLoop(); 202 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 203 SmallVectorImpl<BasicBlock *> &ExitBlocks); 204 205 void collectStores(BasicBlock *BB); 206 LegalStoreKind isLegalStore(StoreInst *SI); 207 enum class ForMemset { No, Yes }; 208 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, 209 ForMemset For); 210 211 template <typename MemInst> 212 bool processLoopMemIntrinsic( 213 BasicBlock *BB, 214 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), 215 const SCEV *BECount); 216 bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount); 217 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 218 219 bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, 220 MaybeAlign StoreAlignment, Value *StoredVal, 221 Instruction *TheStore, 222 SmallPtrSetImpl<Instruction *> &Stores, 223 const SCEVAddRecExpr *Ev, const SCEV *BECount, 224 bool NegStride, bool IsLoopMemset = false); 225 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); 226 bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr, 227 unsigned StoreSize, MaybeAlign StoreAlign, 228 MaybeAlign LoadAlign, Instruction *TheStore, 229 Instruction *TheLoad, 230 const SCEVAddRecExpr *StoreEv, 231 const SCEVAddRecExpr *LoadEv, 232 const SCEV *BECount); 233 bool avoidLIRForMultiBlockLoop(bool IsMemset = false, 234 bool IsLoopMemset = false); 235 236 /// @} 237 /// \name Noncountable Loop Idiom Handling 238 /// @{ 239 240 bool runOnNoncountableLoop(); 241 242 bool recognizePopcount(); 243 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, 244 PHINode *CntPhi, Value *Var); 245 bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz 246 void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, 247 Instruction *CntInst, PHINode *CntPhi, 248 Value *Var, Instruction *DefX, 249 const DebugLoc &DL, bool ZeroCheck, 250 bool IsCntPhiUsedOutsideLoop); 251 252 bool recognizeShiftUntilBitTest(); 253 bool recognizeShiftUntilZero(); 254 255 /// @} 256 }; 257 258 class LoopIdiomRecognizeLegacyPass : public LoopPass { 259 public: 260 static char ID; 261 262 explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) { 263 initializeLoopIdiomRecognizeLegacyPassPass( 264 *PassRegistry::getPassRegistry()); 265 } 266 267 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 268 if (DisableLIRP::All) 269 return false; 270 271 if (skipLoop(L)) 272 return false; 273 274 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 275 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 276 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 277 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 278 TargetLibraryInfo *TLI = 279 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 280 *L->getHeader()->getParent()); 281 const TargetTransformInfo *TTI = 282 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 283 *L->getHeader()->getParent()); 284 const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout(); 285 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 286 MemorySSA *MSSA = nullptr; 287 if (MSSAAnalysis) 288 MSSA = &MSSAAnalysis->getMSSA(); 289 290 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 291 // pass. Function analyses need to be preserved across loop transformations 292 // but ORE cannot be preserved (see comment before the pass definition). 293 OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); 294 295 LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE); 296 return LIR.runOnLoop(L); 297 } 298 299 /// This transformation requires natural loop information & requires that 300 /// loop preheaders be inserted into the CFG. 301 void getAnalysisUsage(AnalysisUsage &AU) const override { 302 AU.addRequired<TargetLibraryInfoWrapperPass>(); 303 AU.addRequired<TargetTransformInfoWrapperPass>(); 304 AU.addPreserved<MemorySSAWrapperPass>(); 305 getLoopAnalysisUsage(AU); 306 } 307 }; 308 309 } // end anonymous namespace 310 311 char LoopIdiomRecognizeLegacyPass::ID = 0; 312 313 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, 314 LoopStandardAnalysisResults &AR, 315 LPMUpdater &) { 316 if (DisableLIRP::All) 317 return PreservedAnalyses::all(); 318 319 const auto *DL = &L.getHeader()->getModule()->getDataLayout(); 320 321 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 322 // pass. Function analyses need to be preserved across loop transformations 323 // but ORE cannot be preserved (see comment before the pass definition). 324 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 325 326 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, 327 AR.MSSA, DL, ORE); 328 if (!LIR.runOnLoop(&L)) 329 return PreservedAnalyses::all(); 330 331 auto PA = getLoopPassPreservedAnalyses(); 332 if (AR.MSSA) 333 PA.preserve<MemorySSAAnalysis>(); 334 return PA; 335 } 336 337 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom", 338 "Recognize loop idioms", false, false) 339 INITIALIZE_PASS_DEPENDENCY(LoopPass) 340 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 341 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 342 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom", 343 "Recognize loop idioms", false, false) 344 345 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); } 346 347 static void deleteDeadInstruction(Instruction *I) { 348 I->replaceAllUsesWith(UndefValue::get(I->getType())); 349 I->eraseFromParent(); 350 } 351 352 //===----------------------------------------------------------------------===// 353 // 354 // Implementation of LoopIdiomRecognize 355 // 356 //===----------------------------------------------------------------------===// 357 358 bool LoopIdiomRecognize::runOnLoop(Loop *L) { 359 CurLoop = L; 360 // If the loop could not be converted to canonical form, it must have an 361 // indirectbr in it, just give up. 362 if (!L->getLoopPreheader()) 363 return false; 364 365 // Disable loop idiom recognition if the function's name is a common idiom. 366 StringRef Name = L->getHeader()->getParent()->getName(); 367 if (Name == "memset" || Name == "memcpy") 368 return false; 369 370 // Determine if code size heuristics need to be applied. 371 ApplyCodeSizeHeuristics = 372 L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs; 373 374 HasMemset = TLI->has(LibFunc_memset); 375 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); 376 HasMemcpy = TLI->has(LibFunc_memcpy); 377 378 if (HasMemset || HasMemsetPattern || HasMemcpy) 379 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 380 return runOnCountableLoop(); 381 382 return runOnNoncountableLoop(); 383 } 384 385 bool LoopIdiomRecognize::runOnCountableLoop() { 386 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 387 assert(!isa<SCEVCouldNotCompute>(BECount) && 388 "runOnCountableLoop() called on a loop without a predictable" 389 "backedge-taken count"); 390 391 // If this loop executes exactly one time, then it should be peeled, not 392 // optimized by this pass. 393 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 394 if (BECst->getAPInt() == 0) 395 return false; 396 397 SmallVector<BasicBlock *, 8> ExitBlocks; 398 CurLoop->getUniqueExitBlocks(ExitBlocks); 399 400 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 401 << CurLoop->getHeader()->getParent()->getName() 402 << "] Countable Loop %" << CurLoop->getHeader()->getName() 403 << "\n"); 404 405 // The following transforms hoist stores/memsets into the loop pre-header. 406 // Give up if the loop has instructions that may throw. 407 SimpleLoopSafetyInfo SafetyInfo; 408 SafetyInfo.computeLoopSafetyInfo(CurLoop); 409 if (SafetyInfo.anyBlockMayThrow()) 410 return false; 411 412 bool MadeChange = false; 413 414 // Scan all the blocks in the loop that are not in subloops. 415 for (auto *BB : CurLoop->getBlocks()) { 416 // Ignore blocks in subloops. 417 if (LI->getLoopFor(BB) != CurLoop) 418 continue; 419 420 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); 421 } 422 return MadeChange; 423 } 424 425 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { 426 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); 427 return ConstStride->getAPInt(); 428 } 429 430 /// getMemSetPatternValue - If a strided store of the specified value is safe to 431 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 432 /// be passed in. Otherwise, return null. 433 /// 434 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 435 /// just replicate their input array and then pass on to memset_pattern16. 436 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { 437 // FIXME: This could check for UndefValue because it can be merged into any 438 // other valid pattern. 439 440 // If the value isn't a constant, we can't promote it to being in a constant 441 // array. We could theoretically do a store to an alloca or something, but 442 // that doesn't seem worthwhile. 443 Constant *C = dyn_cast<Constant>(V); 444 if (!C) 445 return nullptr; 446 447 // Only handle simple values that are a power of two bytes in size. 448 uint64_t Size = DL->getTypeSizeInBits(V->getType()); 449 if (Size == 0 || (Size & 7) || (Size & (Size - 1))) 450 return nullptr; 451 452 // Don't care enough about darwin/ppc to implement this. 453 if (DL->isBigEndian()) 454 return nullptr; 455 456 // Convert to size in bytes. 457 Size /= 8; 458 459 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 460 // if the top and bottom are the same (e.g. for vectors and large integers). 461 if (Size > 16) 462 return nullptr; 463 464 // If the constant is exactly 16 bytes, just use it. 465 if (Size == 16) 466 return C; 467 468 // Otherwise, we'll use an array of the constants. 469 unsigned ArraySize = 16 / Size; 470 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 471 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); 472 } 473 474 LoopIdiomRecognize::LegalStoreKind 475 LoopIdiomRecognize::isLegalStore(StoreInst *SI) { 476 // Don't touch volatile stores. 477 if (SI->isVolatile()) 478 return LegalStoreKind::None; 479 // We only want simple or unordered-atomic stores. 480 if (!SI->isUnordered()) 481 return LegalStoreKind::None; 482 483 // Avoid merging nontemporal stores. 484 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 485 return LegalStoreKind::None; 486 487 Value *StoredVal = SI->getValueOperand(); 488 Value *StorePtr = SI->getPointerOperand(); 489 490 // Don't convert stores of non-integral pointer types to memsets (which stores 491 // integers). 492 if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 493 return LegalStoreKind::None; 494 495 // Reject stores that are so large that they overflow an unsigned. 496 // When storing out scalable vectors we bail out for now, since the code 497 // below currently only works for constant strides. 498 TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); 499 if (SizeInBits.isScalable() || (SizeInBits.getFixedSize() & 7) || 500 (SizeInBits.getFixedSize() >> 32) != 0) 501 return LegalStoreKind::None; 502 503 // See if the pointer expression is an AddRec like {base,+,1} on the current 504 // loop, which indicates a strided store. If we have something else, it's a 505 // random store we can't handle. 506 const SCEVAddRecExpr *StoreEv = 507 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 508 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 509 return LegalStoreKind::None; 510 511 // Check to see if we have a constant stride. 512 if (!isa<SCEVConstant>(StoreEv->getOperand(1))) 513 return LegalStoreKind::None; 514 515 // See if the store can be turned into a memset. 516 517 // If the stored value is a byte-wise value (like i32 -1), then it may be 518 // turned into a memset of i8 -1, assuming that all the consecutive bytes 519 // are stored. A store of i32 0x01020304 can never be turned into a memset, 520 // but it can be turned into memset_pattern if the target supports it. 521 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 522 523 // Note: memset and memset_pattern on unordered-atomic is yet not supported 524 bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); 525 526 // If we're allowed to form a memset, and the stored value would be 527 // acceptable for memset, use it. 528 if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset && 529 // Verify that the stored value is loop invariant. If not, we can't 530 // promote the memset. 531 CurLoop->isLoopInvariant(SplatValue)) { 532 // It looks like we can use SplatValue. 533 return LegalStoreKind::Memset; 534 } 535 if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset && 536 // Don't create memset_pattern16s with address spaces. 537 StorePtr->getType()->getPointerAddressSpace() == 0 && 538 getMemSetPatternValue(StoredVal, DL)) { 539 // It looks like we can use PatternValue! 540 return LegalStoreKind::MemsetPattern; 541 } 542 543 // Otherwise, see if the store can be turned into a memcpy. 544 if (HasMemcpy && !DisableLIRP::Memcpy) { 545 // Check to see if the stride matches the size of the store. If so, then we 546 // know that every byte is touched in the loop. 547 APInt Stride = getStoreStride(StoreEv); 548 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 549 if (StoreSize != Stride && StoreSize != -Stride) 550 return LegalStoreKind::None; 551 552 // The store must be feeding a non-volatile load. 553 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); 554 555 // Only allow non-volatile loads 556 if (!LI || LI->isVolatile()) 557 return LegalStoreKind::None; 558 // Only allow simple or unordered-atomic loads 559 if (!LI->isUnordered()) 560 return LegalStoreKind::None; 561 562 // See if the pointer expression is an AddRec like {base,+,1} on the current 563 // loop, which indicates a strided load. If we have something else, it's a 564 // random load we can't handle. 565 const SCEVAddRecExpr *LoadEv = 566 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 567 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 568 return LegalStoreKind::None; 569 570 // The store and load must share the same stride. 571 if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) 572 return LegalStoreKind::None; 573 574 // Success. This store can be converted into a memcpy. 575 UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); 576 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy 577 : LegalStoreKind::Memcpy; 578 } 579 // This store can't be transformed into a memset/memcpy. 580 return LegalStoreKind::None; 581 } 582 583 void LoopIdiomRecognize::collectStores(BasicBlock *BB) { 584 StoreRefsForMemset.clear(); 585 StoreRefsForMemsetPattern.clear(); 586 StoreRefsForMemcpy.clear(); 587 for (Instruction &I : *BB) { 588 StoreInst *SI = dyn_cast<StoreInst>(&I); 589 if (!SI) 590 continue; 591 592 // Make sure this is a strided store with a constant stride. 593 switch (isLegalStore(SI)) { 594 case LegalStoreKind::None: 595 // Nothing to do 596 break; 597 case LegalStoreKind::Memset: { 598 // Find the base pointer. 599 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 600 StoreRefsForMemset[Ptr].push_back(SI); 601 } break; 602 case LegalStoreKind::MemsetPattern: { 603 // Find the base pointer. 604 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 605 StoreRefsForMemsetPattern[Ptr].push_back(SI); 606 } break; 607 case LegalStoreKind::Memcpy: 608 case LegalStoreKind::UnorderedAtomicMemcpy: 609 StoreRefsForMemcpy.push_back(SI); 610 break; 611 default: 612 assert(false && "unhandled return value"); 613 break; 614 } 615 } 616 } 617 618 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 619 /// with the specified backedge count. This block is known to be in the current 620 /// loop and not in any subloops. 621 bool LoopIdiomRecognize::runOnLoopBlock( 622 BasicBlock *BB, const SCEV *BECount, 623 SmallVectorImpl<BasicBlock *> &ExitBlocks) { 624 // We can only promote stores in this block if they are unconditionally 625 // executed in the loop. For a block to be unconditionally executed, it has 626 // to dominate all the exit blocks of the loop. Verify this now. 627 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 628 if (!DT->dominates(BB, ExitBlocks[i])) 629 return false; 630 631 bool MadeChange = false; 632 // Look for store instructions, which may be optimized to memset/memcpy. 633 collectStores(BB); 634 635 // Look for a single store or sets of stores with a common base, which can be 636 // optimized into a memset (memset_pattern). The latter most commonly happens 637 // with structs and handunrolled loops. 638 for (auto &SL : StoreRefsForMemset) 639 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); 640 641 for (auto &SL : StoreRefsForMemsetPattern) 642 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); 643 644 // Optimize the store into a memcpy, if it feeds an similarly strided load. 645 for (auto &SI : StoreRefsForMemcpy) 646 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); 647 648 MadeChange |= processLoopMemIntrinsic<MemCpyInst>( 649 BB, &LoopIdiomRecognize::processLoopMemCpy, BECount); 650 MadeChange |= processLoopMemIntrinsic<MemSetInst>( 651 BB, &LoopIdiomRecognize::processLoopMemSet, BECount); 652 653 return MadeChange; 654 } 655 656 /// See if this store(s) can be promoted to a memset. 657 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, 658 const SCEV *BECount, ForMemset For) { 659 // Try to find consecutive stores that can be transformed into memsets. 660 SetVector<StoreInst *> Heads, Tails; 661 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 662 663 // Do a quadratic search on all of the given stores and find 664 // all of the pairs of stores that follow each other. 665 SmallVector<unsigned, 16> IndexQueue; 666 for (unsigned i = 0, e = SL.size(); i < e; ++i) { 667 assert(SL[i]->isSimple() && "Expected only non-volatile stores."); 668 669 Value *FirstStoredVal = SL[i]->getValueOperand(); 670 Value *FirstStorePtr = SL[i]->getPointerOperand(); 671 const SCEVAddRecExpr *FirstStoreEv = 672 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); 673 APInt FirstStride = getStoreStride(FirstStoreEv); 674 unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); 675 676 // See if we can optimize just this store in isolation. 677 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { 678 Heads.insert(SL[i]); 679 continue; 680 } 681 682 Value *FirstSplatValue = nullptr; 683 Constant *FirstPatternValue = nullptr; 684 685 if (For == ForMemset::Yes) 686 FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL); 687 else 688 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); 689 690 assert((FirstSplatValue || FirstPatternValue) && 691 "Expected either splat value or pattern value."); 692 693 IndexQueue.clear(); 694 // If a store has multiple consecutive store candidates, search Stores 695 // array according to the sequence: from i+1 to e, then from i-1 to 0. 696 // This is because usually pairing with immediate succeeding or preceding 697 // candidate create the best chance to find memset opportunity. 698 unsigned j = 0; 699 for (j = i + 1; j < e; ++j) 700 IndexQueue.push_back(j); 701 for (j = i; j > 0; --j) 702 IndexQueue.push_back(j - 1); 703 704 for (auto &k : IndexQueue) { 705 assert(SL[k]->isSimple() && "Expected only non-volatile stores."); 706 Value *SecondStorePtr = SL[k]->getPointerOperand(); 707 const SCEVAddRecExpr *SecondStoreEv = 708 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); 709 APInt SecondStride = getStoreStride(SecondStoreEv); 710 711 if (FirstStride != SecondStride) 712 continue; 713 714 Value *SecondStoredVal = SL[k]->getValueOperand(); 715 Value *SecondSplatValue = nullptr; 716 Constant *SecondPatternValue = nullptr; 717 718 if (For == ForMemset::Yes) 719 SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL); 720 else 721 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); 722 723 assert((SecondSplatValue || SecondPatternValue) && 724 "Expected either splat value or pattern value."); 725 726 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { 727 if (For == ForMemset::Yes) { 728 if (isa<UndefValue>(FirstSplatValue)) 729 FirstSplatValue = SecondSplatValue; 730 if (FirstSplatValue != SecondSplatValue) 731 continue; 732 } else { 733 if (isa<UndefValue>(FirstPatternValue)) 734 FirstPatternValue = SecondPatternValue; 735 if (FirstPatternValue != SecondPatternValue) 736 continue; 737 } 738 Tails.insert(SL[k]); 739 Heads.insert(SL[i]); 740 ConsecutiveChain[SL[i]] = SL[k]; 741 break; 742 } 743 } 744 } 745 746 // We may run into multiple chains that merge into a single chain. We mark the 747 // stores that we transformed so that we don't visit the same store twice. 748 SmallPtrSet<Value *, 16> TransformedStores; 749 bool Changed = false; 750 751 // For stores that start but don't end a link in the chain: 752 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 753 it != e; ++it) { 754 if (Tails.count(*it)) 755 continue; 756 757 // We found a store instr that starts a chain. Now follow the chain and try 758 // to transform it. 759 SmallPtrSet<Instruction *, 8> AdjacentStores; 760 StoreInst *I = *it; 761 762 StoreInst *HeadStore = I; 763 unsigned StoreSize = 0; 764 765 // Collect the chain into a list. 766 while (Tails.count(I) || Heads.count(I)) { 767 if (TransformedStores.count(I)) 768 break; 769 AdjacentStores.insert(I); 770 771 StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); 772 // Move to the next value in the chain. 773 I = ConsecutiveChain[I]; 774 } 775 776 Value *StoredVal = HeadStore->getValueOperand(); 777 Value *StorePtr = HeadStore->getPointerOperand(); 778 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 779 APInt Stride = getStoreStride(StoreEv); 780 781 // Check to see if the stride matches the size of the stores. If so, then 782 // we know that every byte is touched in the loop. 783 if (StoreSize != Stride && StoreSize != -Stride) 784 continue; 785 786 bool NegStride = StoreSize == -Stride; 787 788 if (processLoopStridedStore(StorePtr, StoreSize, 789 MaybeAlign(HeadStore->getAlignment()), 790 StoredVal, HeadStore, AdjacentStores, StoreEv, 791 BECount, NegStride)) { 792 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); 793 Changed = true; 794 } 795 } 796 797 return Changed; 798 } 799 800 /// processLoopMemIntrinsic - Template function for calling different processor 801 /// functions based on mem instrinsic type. 802 template <typename MemInst> 803 bool LoopIdiomRecognize::processLoopMemIntrinsic( 804 BasicBlock *BB, 805 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), 806 const SCEV *BECount) { 807 bool MadeChange = false; 808 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 809 Instruction *Inst = &*I++; 810 // Look for memory instructions, which may be optimized to a larger one. 811 if (MemInst *MI = dyn_cast<MemInst>(Inst)) { 812 WeakTrackingVH InstPtr(&*I); 813 if (!(this->*Processor)(MI, BECount)) 814 continue; 815 MadeChange = true; 816 817 // If processing the instruction invalidated our iterator, start over from 818 // the top of the block. 819 if (!InstPtr) 820 I = BB->begin(); 821 } 822 } 823 return MadeChange; 824 } 825 826 /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy 827 bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI, 828 const SCEV *BECount) { 829 // We can only handle non-volatile memcpys with a constant size. 830 if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength())) 831 return false; 832 833 // If we're not allowed to hack on memcpy, we fail. 834 if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy) 835 return false; 836 837 Value *Dest = MCI->getDest(); 838 Value *Source = MCI->getSource(); 839 if (!Dest || !Source) 840 return false; 841 842 // See if the load and store pointer expressions are AddRec like {base,+,1} on 843 // the current loop, which indicates a strided load and store. If we have 844 // something else, it's a random load or store we can't handle. 845 const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest)); 846 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 847 return false; 848 const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source)); 849 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 850 return false; 851 852 // Reject memcpys that are so large that they overflow an unsigned. 853 uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue(); 854 if ((SizeInBytes >> 32) != 0) 855 return false; 856 857 // Check if the stride matches the size of the memcpy. If so, then we know 858 // that every byte is touched in the loop. 859 const SCEVConstant *StoreStride = 860 dyn_cast<SCEVConstant>(StoreEv->getOperand(1)); 861 const SCEVConstant *LoadStride = 862 dyn_cast<SCEVConstant>(LoadEv->getOperand(1)); 863 if (!StoreStride || !LoadStride) 864 return false; 865 866 APInt StoreStrideValue = StoreStride->getAPInt(); 867 APInt LoadStrideValue = LoadStride->getAPInt(); 868 // Huge stride value - give up 869 if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64) 870 return false; 871 872 if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) { 873 ORE.emit([&]() { 874 return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI) 875 << ore::NV("Inst", "memcpy") << " in " 876 << ore::NV("Function", MCI->getFunction()) 877 << " function will not be hoised: " 878 << ore::NV("Reason", "memcpy size is not equal to stride"); 879 }); 880 return false; 881 } 882 883 int64_t StoreStrideInt = StoreStrideValue.getSExtValue(); 884 int64_t LoadStrideInt = LoadStrideValue.getSExtValue(); 885 // Check if the load stride matches the store stride. 886 if (StoreStrideInt != LoadStrideInt) 887 return false; 888 889 return processLoopStoreOfLoopLoad(Dest, Source, (unsigned)SizeInBytes, 890 MCI->getDestAlign(), MCI->getSourceAlign(), 891 MCI, MCI, StoreEv, LoadEv, BECount); 892 } 893 894 /// processLoopMemSet - See if this memset can be promoted to a large memset. 895 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, 896 const SCEV *BECount) { 897 // We can only handle non-volatile memsets with a constant size. 898 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) 899 return false; 900 901 // If we're not allowed to hack on memset, we fail. 902 if (!HasMemset || DisableLIRP::Memset) 903 return false; 904 905 Value *Pointer = MSI->getDest(); 906 907 // See if the pointer expression is an AddRec like {base,+,1} on the current 908 // loop, which indicates a strided store. If we have something else, it's a 909 // random store we can't handle. 910 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 911 if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine()) 912 return false; 913 914 // Reject memsets that are so large that they overflow an unsigned. 915 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 916 if ((SizeInBytes >> 32) != 0) 917 return false; 918 919 // Check to see if the stride matches the size of the memset. If so, then we 920 // know that every byte is touched in the loop. 921 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 922 if (!ConstStride) 923 return false; 924 925 APInt Stride = ConstStride->getAPInt(); 926 if (SizeInBytes != Stride && SizeInBytes != -Stride) 927 return false; 928 929 // Verify that the memset value is loop invariant. If not, we can't promote 930 // the memset. 931 Value *SplatValue = MSI->getValue(); 932 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) 933 return false; 934 935 SmallPtrSet<Instruction *, 1> MSIs; 936 MSIs.insert(MSI); 937 bool NegStride = SizeInBytes == -Stride; 938 return processLoopStridedStore( 939 Pointer, (unsigned)SizeInBytes, MaybeAlign(MSI->getDestAlignment()), 940 SplatValue, MSI, MSIs, Ev, BECount, NegStride, /*IsLoopMemset=*/true); 941 } 942 943 /// mayLoopAccessLocation - Return true if the specified loop might access the 944 /// specified pointer location, which is a loop-strided access. The 'Access' 945 /// argument specifies what the verboten forms of access are (read or write). 946 static bool 947 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, 948 const SCEV *BECount, unsigned StoreSize, 949 AliasAnalysis &AA, 950 SmallPtrSetImpl<Instruction *> &IgnoredStores) { 951 // Get the location that may be stored across the loop. Since the access is 952 // strided positively through memory, we say that the modified location starts 953 // at the pointer and has infinite size. 954 LocationSize AccessSize = LocationSize::afterPointer(); 955 956 // If the loop iterates a fixed number of times, we can refine the access size 957 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 958 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 959 AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) * 960 StoreSize); 961 962 // TODO: For this to be really effective, we have to dive into the pointer 963 // operand in the store. Store to &A[i] of 100 will always return may alias 964 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 965 // which will then no-alias a store to &A[100]. 966 MemoryLocation StoreLoc(Ptr, AccessSize); 967 968 for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; 969 ++BI) 970 for (Instruction &I : **BI) 971 if (IgnoredStores.count(&I) == 0 && 972 isModOrRefSet( 973 intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))) 974 return true; 975 976 return false; 977 } 978 979 // If we have a negative stride, Start refers to the end of the memory location 980 // we're trying to memset. Therefore, we need to recompute the base pointer, 981 // which is just Start - BECount*Size. 982 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, 983 Type *IntPtr, unsigned StoreSize, 984 ScalarEvolution *SE) { 985 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); 986 if (StoreSize != 1) 987 Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize), 988 SCEV::FlagNUW); 989 return SE->getMinusSCEV(Start, Index); 990 } 991 992 /// Compute the number of bytes as a SCEV from the backedge taken count. 993 /// 994 /// This also maps the SCEV into the provided type and tries to handle the 995 /// computation in a way that will fold cleanly. 996 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, 997 unsigned StoreSize, Loop *CurLoop, 998 const DataLayout *DL, ScalarEvolution *SE) { 999 const SCEV *NumBytesS; 1000 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to 1001 // pointer size if it isn't already. 1002 // 1003 // If we're going to need to zero extend the BE count, check if we can add 1004 // one to it prior to zero extending without overflow. Provided this is safe, 1005 // it allows better simplification of the +1. 1006 if (DL->getTypeSizeInBits(BECount->getType()).getFixedSize() < 1007 DL->getTypeSizeInBits(IntPtr).getFixedSize() && 1008 SE->isLoopEntryGuardedByCond( 1009 CurLoop, ICmpInst::ICMP_NE, BECount, 1010 SE->getNegativeSCEV(SE->getOne(BECount->getType())))) { 1011 NumBytesS = SE->getZeroExtendExpr( 1012 SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW), 1013 IntPtr); 1014 } else { 1015 NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr), 1016 SE->getOne(IntPtr), SCEV::FlagNUW); 1017 } 1018 1019 // And scale it based on the store size. 1020 if (StoreSize != 1) { 1021 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), 1022 SCEV::FlagNUW); 1023 } 1024 return NumBytesS; 1025 } 1026 1027 /// processLoopStridedStore - We see a strided store of some value. If we can 1028 /// transform this into a memset or memset_pattern in the loop preheader, do so. 1029 bool LoopIdiomRecognize::processLoopStridedStore( 1030 Value *DestPtr, unsigned StoreSize, MaybeAlign StoreAlignment, 1031 Value *StoredVal, Instruction *TheStore, 1032 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, 1033 const SCEV *BECount, bool NegStride, bool IsLoopMemset) { 1034 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 1035 Constant *PatternValue = nullptr; 1036 1037 if (!SplatValue) 1038 PatternValue = getMemSetPatternValue(StoredVal, DL); 1039 1040 assert((SplatValue || PatternValue) && 1041 "Expected either splat value or pattern value."); 1042 1043 // The trip count of the loop and the base pointer of the addrec SCEV is 1044 // guaranteed to be loop invariant, which means that it should dominate the 1045 // header. This allows us to insert code for it in the preheader. 1046 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); 1047 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1048 IRBuilder<> Builder(Preheader->getTerminator()); 1049 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1050 SCEVExpanderCleaner ExpCleaner(Expander, *DT); 1051 1052 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); 1053 Type *IntIdxTy = DL->getIndexType(DestPtr->getType()); 1054 1055 bool Changed = false; 1056 const SCEV *Start = Ev->getStart(); 1057 // Handle negative strided loops. 1058 if (NegStride) 1059 Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSize, SE); 1060 1061 // TODO: ideally we should still be able to generate memset if SCEV expander 1062 // is taught to generate the dependencies at the latest point. 1063 if (!isSafeToExpand(Start, *SE)) 1064 return Changed; 1065 1066 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 1067 // this into a memset in the loop preheader now if we want. However, this 1068 // would be unsafe to do if there is anything else in the loop that may read 1069 // or write to the aliased location. Check for any overlap by generating the 1070 // base pointer and checking the region. 1071 Value *BasePtr = 1072 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); 1073 1074 // From here on out, conservatively report to the pass manager that we've 1075 // changed the IR, even if we later clean up these added instructions. There 1076 // may be structural differences e.g. in the order of use lists not accounted 1077 // for in just a textual dump of the IR. This is written as a variable, even 1078 // though statically all the places this dominates could be replaced with 1079 // 'true', with the hope that anyone trying to be clever / "more precise" with 1080 // the return value will read this comment, and leave them alone. 1081 Changed = true; 1082 1083 if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1084 StoreSize, *AA, Stores)) 1085 return Changed; 1086 1087 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) 1088 return Changed; 1089 1090 // Okay, everything looks good, insert the memset. 1091 1092 const SCEV *NumBytesS = 1093 getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE); 1094 1095 // TODO: ideally we should still be able to generate memset if SCEV expander 1096 // is taught to generate the dependencies at the latest point. 1097 if (!isSafeToExpand(NumBytesS, *SE)) 1098 return Changed; 1099 1100 Value *NumBytes = 1101 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1102 1103 CallInst *NewCall; 1104 if (SplatValue) { 1105 NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, 1106 MaybeAlign(StoreAlignment)); 1107 } else { 1108 // Everything is emitted in default address space 1109 Type *Int8PtrTy = DestInt8PtrTy; 1110 1111 Module *M = TheStore->getModule(); 1112 StringRef FuncName = "memset_pattern16"; 1113 FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(), 1114 Int8PtrTy, Int8PtrTy, IntIdxTy); 1115 inferLibFuncAttributes(M, FuncName, *TLI); 1116 1117 // Otherwise we should form a memset_pattern16. PatternValue is known to be 1118 // an constant array of 16-bytes. Plop the value into a mergable global. 1119 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 1120 GlobalValue::PrivateLinkage, 1121 PatternValue, ".memset_pattern"); 1122 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. 1123 GV->setAlignment(Align(16)); 1124 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); 1125 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); 1126 } 1127 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1128 1129 if (MSSAU) { 1130 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1131 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1132 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1133 } 1134 1135 LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 1136 << " from store to: " << *Ev << " at: " << *TheStore 1137 << "\n"); 1138 1139 ORE.emit([&]() { 1140 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore", 1141 NewCall->getDebugLoc(), Preheader) 1142 << "Transformed loop-strided store in " 1143 << ore::NV("Function", TheStore->getFunction()) 1144 << " function into a call to " 1145 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1146 << "() intrinsic"; 1147 }); 1148 1149 // Okay, the memset has been formed. Zap the original store and anything that 1150 // feeds into it. 1151 for (auto *I : Stores) { 1152 if (MSSAU) 1153 MSSAU->removeMemoryAccess(I, true); 1154 deleteDeadInstruction(I); 1155 } 1156 if (MSSAU && VerifyMemorySSA) 1157 MSSAU->getMemorySSA()->verifyMemorySSA(); 1158 ++NumMemSet; 1159 ExpCleaner.markResultUsed(); 1160 return true; 1161 } 1162 1163 /// If the stored value is a strided load in the same loop with the same stride 1164 /// this may be transformable into a memcpy. This kicks in for stuff like 1165 /// for (i) A[i] = B[i]; 1166 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, 1167 const SCEV *BECount) { 1168 assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); 1169 1170 Value *StorePtr = SI->getPointerOperand(); 1171 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 1172 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 1173 1174 // The store must be feeding a non-volatile load. 1175 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 1176 assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); 1177 1178 // See if the pointer expression is an AddRec like {base,+,1} on the current 1179 // loop, which indicates a strided load. If we have something else, it's a 1180 // random load we can't handle. 1181 Value *LoadPtr = LI->getPointerOperand(); 1182 const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr)); 1183 return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSize, 1184 SI->getAlign(), LI->getAlign(), SI, LI, 1185 StoreEv, LoadEv, BECount); 1186 } 1187 1188 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad( 1189 Value *DestPtr, Value *SourcePtr, unsigned StoreSize, MaybeAlign StoreAlign, 1190 MaybeAlign LoadAlign, Instruction *TheStore, Instruction *TheLoad, 1191 const SCEVAddRecExpr *StoreEv, const SCEVAddRecExpr *LoadEv, 1192 const SCEV *BECount) { 1193 1194 // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to 1195 // conservatively bail here, since otherwise we may have to transform 1196 // llvm.memcpy.inline into llvm.memcpy which is illegal. 1197 if (isa<MemCpyInlineInst>(TheStore)) 1198 return false; 1199 1200 // The trip count of the loop and the base pointer of the addrec SCEV is 1201 // guaranteed to be loop invariant, which means that it should dominate the 1202 // header. This allows us to insert code for it in the preheader. 1203 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1204 IRBuilder<> Builder(Preheader->getTerminator()); 1205 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1206 1207 SCEVExpanderCleaner ExpCleaner(Expander, *DT); 1208 1209 bool Changed = false; 1210 const SCEV *StrStart = StoreEv->getStart(); 1211 unsigned StrAS = DestPtr->getType()->getPointerAddressSpace(); 1212 Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS)); 1213 1214 APInt Stride = getStoreStride(StoreEv); 1215 bool NegStride = StoreSize == -Stride; 1216 1217 // Handle negative strided loops. 1218 if (NegStride) 1219 StrStart = getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSize, SE); 1220 1221 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 1222 // this into a memcpy in the loop preheader now if we want. However, this 1223 // would be unsafe to do if there is anything else in the loop that may read 1224 // or write the memory region we're storing to. This includes the load that 1225 // feeds the stores. Check for an alias by generating the base address and 1226 // checking everything. 1227 Value *StoreBasePtr = Expander.expandCodeFor( 1228 StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); 1229 1230 // From here on out, conservatively report to the pass manager that we've 1231 // changed the IR, even if we later clean up these added instructions. There 1232 // may be structural differences e.g. in the order of use lists not accounted 1233 // for in just a textual dump of the IR. This is written as a variable, even 1234 // though statically all the places this dominates could be replaced with 1235 // 'true', with the hope that anyone trying to be clever / "more precise" with 1236 // the return value will read this comment, and leave them alone. 1237 Changed = true; 1238 1239 SmallPtrSet<Instruction *, 1> Stores; 1240 Stores.insert(TheStore); 1241 1242 bool IsMemCpy = isa<MemCpyInst>(TheStore); 1243 const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store"; 1244 1245 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1246 StoreSize, *AA, Stores)) { 1247 ORE.emit([&]() { 1248 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore", 1249 TheStore) 1250 << ore::NV("Inst", InstRemark) << " in " 1251 << ore::NV("Function", TheStore->getFunction()) 1252 << " function will not be hoisted: " 1253 << ore::NV("Reason", "The loop may access store location"); 1254 }); 1255 return Changed; 1256 } 1257 1258 const SCEV *LdStart = LoadEv->getStart(); 1259 unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace(); 1260 1261 // Handle negative strided loops. 1262 if (NegStride) 1263 LdStart = getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSize, SE); 1264 1265 // For a memcpy, we have to make sure that the input array is not being 1266 // mutated by the loop. 1267 Value *LoadBasePtr = Expander.expandCodeFor( 1268 LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); 1269 1270 // If the store is a memcpy instruction, we must check if it will write to 1271 // the load memory locations. So remove it from the ignored stores. 1272 if (IsMemCpy) 1273 Stores.erase(TheStore); 1274 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, 1275 StoreSize, *AA, Stores)) { 1276 ORE.emit([&]() { 1277 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad", TheLoad) 1278 << ore::NV("Inst", InstRemark) << " in " 1279 << ore::NV("Function", TheStore->getFunction()) 1280 << " function will not be hoisted: " 1281 << ore::NV("Reason", "The loop may access load location"); 1282 }); 1283 return Changed; 1284 } 1285 1286 if (avoidLIRForMultiBlockLoop()) 1287 return Changed; 1288 1289 // Okay, everything is safe, we can transform this! 1290 1291 const SCEV *NumBytesS = 1292 getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE); 1293 1294 Value *NumBytes = 1295 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1296 1297 CallInst *NewCall = nullptr; 1298 // Check whether to generate an unordered atomic memcpy: 1299 // If the load or store are atomic, then they must necessarily be unordered 1300 // by previous checks. 1301 if (!TheStore->isAtomic() && !TheLoad->isAtomic()) 1302 NewCall = Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr, 1303 LoadAlign, NumBytes); 1304 else { 1305 // We cannot allow unaligned ops for unordered load/store, so reject 1306 // anything where the alignment isn't at least the element size. 1307 assert((StoreAlign.hasValue() && LoadAlign.hasValue()) && 1308 "Expect unordered load/store to have align."); 1309 if (StoreAlign.getValue() < StoreSize || LoadAlign.getValue() < StoreSize) 1310 return Changed; 1311 1312 // If the element.atomic memcpy is not lowered into explicit 1313 // loads/stores later, then it will be lowered into an element-size 1314 // specific lib call. If the lib call doesn't exist for our store size, then 1315 // we shouldn't generate the memcpy. 1316 if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) 1317 return Changed; 1318 1319 // Create the call. 1320 // Note that unordered atomic loads/stores are *required* by the spec to 1321 // have an alignment but non-atomic loads/stores may not. 1322 NewCall = Builder.CreateElementUnorderedAtomicMemCpy( 1323 StoreBasePtr, StoreAlign.getValue(), LoadBasePtr, LoadAlign.getValue(), 1324 NumBytes, StoreSize); 1325 } 1326 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1327 1328 if (MSSAU) { 1329 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1330 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1331 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1332 } 1333 1334 LLVM_DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" 1335 << " from load ptr=" << *LoadEv << " at: " << *TheLoad 1336 << "\n" 1337 << " from store ptr=" << *StoreEv << " at: " << *TheStore 1338 << "\n"); 1339 1340 ORE.emit([&]() { 1341 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad", 1342 NewCall->getDebugLoc(), Preheader) 1343 << "Formed a call to " 1344 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1345 << "() intrinsic from " << ore::NV("Inst", InstRemark) 1346 << " instruction in " << ore::NV("Function", TheStore->getFunction()) 1347 << " function"; 1348 }); 1349 1350 // Okay, the memcpy has been formed. Zap the original store and anything that 1351 // feeds into it. 1352 if (MSSAU) 1353 MSSAU->removeMemoryAccess(TheStore, true); 1354 deleteDeadInstruction(TheStore); 1355 if (MSSAU && VerifyMemorySSA) 1356 MSSAU->getMemorySSA()->verifyMemorySSA(); 1357 ++NumMemCpy; 1358 ExpCleaner.markResultUsed(); 1359 return true; 1360 } 1361 1362 // When compiling for codesize we avoid idiom recognition for a multi-block loop 1363 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. 1364 // 1365 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, 1366 bool IsLoopMemset) { 1367 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { 1368 if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) { 1369 LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() 1370 << " : LIR " << (IsMemset ? "Memset" : "Memcpy") 1371 << " avoided: multi-block top-level loop\n"); 1372 return true; 1373 } 1374 } 1375 1376 return false; 1377 } 1378 1379 bool LoopIdiomRecognize::runOnNoncountableLoop() { 1380 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 1381 << CurLoop->getHeader()->getParent()->getName() 1382 << "] Noncountable Loop %" 1383 << CurLoop->getHeader()->getName() << "\n"); 1384 1385 return recognizePopcount() || recognizeAndInsertFFS() || 1386 recognizeShiftUntilBitTest() || recognizeShiftUntilZero(); 1387 } 1388 1389 /// Check if the given conditional branch is based on the comparison between 1390 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is 1391 /// true), the control yields to the loop entry. If the branch matches the 1392 /// behavior, the variable involved in the comparison is returned. This function 1393 /// will be called to see if the precondition and postcondition of the loop are 1394 /// in desirable form. 1395 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, 1396 bool JmpOnZero = false) { 1397 if (!BI || !BI->isConditional()) 1398 return nullptr; 1399 1400 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1401 if (!Cond) 1402 return nullptr; 1403 1404 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 1405 if (!CmpZero || !CmpZero->isZero()) 1406 return nullptr; 1407 1408 BasicBlock *TrueSucc = BI->getSuccessor(0); 1409 BasicBlock *FalseSucc = BI->getSuccessor(1); 1410 if (JmpOnZero) 1411 std::swap(TrueSucc, FalseSucc); 1412 1413 ICmpInst::Predicate Pred = Cond->getPredicate(); 1414 if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || 1415 (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) 1416 return Cond->getOperand(0); 1417 1418 return nullptr; 1419 } 1420 1421 // Check if the recurrence variable `VarX` is in the right form to create 1422 // the idiom. Returns the value coerced to a PHINode if so. 1423 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, 1424 BasicBlock *LoopEntry) { 1425 auto *PhiX = dyn_cast<PHINode>(VarX); 1426 if (PhiX && PhiX->getParent() == LoopEntry && 1427 (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) 1428 return PhiX; 1429 return nullptr; 1430 } 1431 1432 /// Return true iff the idiom is detected in the loop. 1433 /// 1434 /// Additionally: 1435 /// 1) \p CntInst is set to the instruction counting the population bit. 1436 /// 2) \p CntPhi is set to the corresponding phi node. 1437 /// 3) \p Var is set to the value whose population bits are being counted. 1438 /// 1439 /// The core idiom we are trying to detect is: 1440 /// \code 1441 /// if (x0 != 0) 1442 /// goto loop-exit // the precondition of the loop 1443 /// cnt0 = init-val; 1444 /// do { 1445 /// x1 = phi (x0, x2); 1446 /// cnt1 = phi(cnt0, cnt2); 1447 /// 1448 /// cnt2 = cnt1 + 1; 1449 /// ... 1450 /// x2 = x1 & (x1 - 1); 1451 /// ... 1452 /// } while(x != 0); 1453 /// 1454 /// loop-exit: 1455 /// \endcode 1456 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, 1457 Instruction *&CntInst, PHINode *&CntPhi, 1458 Value *&Var) { 1459 // step 1: Check to see if the look-back branch match this pattern: 1460 // "if (a!=0) goto loop-entry". 1461 BasicBlock *LoopEntry; 1462 Instruction *DefX2, *CountInst; 1463 Value *VarX1, *VarX0; 1464 PHINode *PhiX, *CountPhi; 1465 1466 DefX2 = CountInst = nullptr; 1467 VarX1 = VarX0 = nullptr; 1468 PhiX = CountPhi = nullptr; 1469 LoopEntry = *(CurLoop->block_begin()); 1470 1471 // step 1: Check if the loop-back branch is in desirable form. 1472 { 1473 if (Value *T = matchCondition( 1474 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1475 DefX2 = dyn_cast<Instruction>(T); 1476 else 1477 return false; 1478 } 1479 1480 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 1481 { 1482 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 1483 return false; 1484 1485 BinaryOperator *SubOneOp; 1486 1487 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 1488 VarX1 = DefX2->getOperand(1); 1489 else { 1490 VarX1 = DefX2->getOperand(0); 1491 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 1492 } 1493 if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) 1494 return false; 1495 1496 ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); 1497 if (!Dec || 1498 !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || 1499 (SubOneOp->getOpcode() == Instruction::Add && 1500 Dec->isMinusOne()))) { 1501 return false; 1502 } 1503 } 1504 1505 // step 3: Check the recurrence of variable X 1506 PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); 1507 if (!PhiX) 1508 return false; 1509 1510 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 1511 { 1512 CountInst = nullptr; 1513 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1514 IterE = LoopEntry->end(); 1515 Iter != IterE; Iter++) { 1516 Instruction *Inst = &*Iter; 1517 if (Inst->getOpcode() != Instruction::Add) 1518 continue; 1519 1520 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1521 if (!Inc || !Inc->isOne()) 1522 continue; 1523 1524 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); 1525 if (!Phi) 1526 continue; 1527 1528 // Check if the result of the instruction is live of the loop. 1529 bool LiveOutLoop = false; 1530 for (User *U : Inst->users()) { 1531 if ((cast<Instruction>(U))->getParent() != LoopEntry) { 1532 LiveOutLoop = true; 1533 break; 1534 } 1535 } 1536 1537 if (LiveOutLoop) { 1538 CountInst = Inst; 1539 CountPhi = Phi; 1540 break; 1541 } 1542 } 1543 1544 if (!CountInst) 1545 return false; 1546 } 1547 1548 // step 5: check if the precondition is in this form: 1549 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 1550 { 1551 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1552 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); 1553 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 1554 return false; 1555 1556 CntInst = CountInst; 1557 CntPhi = CountPhi; 1558 Var = T; 1559 } 1560 1561 return true; 1562 } 1563 1564 /// Return true if the idiom is detected in the loop. 1565 /// 1566 /// Additionally: 1567 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) 1568 /// or nullptr if there is no such. 1569 /// 2) \p CntPhi is set to the corresponding phi node 1570 /// or nullptr if there is no such. 1571 /// 3) \p Var is set to the value whose CTLZ could be used. 1572 /// 4) \p DefX is set to the instruction calculating Loop exit condition. 1573 /// 1574 /// The core idiom we are trying to detect is: 1575 /// \code 1576 /// if (x0 == 0) 1577 /// goto loop-exit // the precondition of the loop 1578 /// cnt0 = init-val; 1579 /// do { 1580 /// x = phi (x0, x.next); //PhiX 1581 /// cnt = phi(cnt0, cnt.next); 1582 /// 1583 /// cnt.next = cnt + 1; 1584 /// ... 1585 /// x.next = x >> 1; // DefX 1586 /// ... 1587 /// } while(x.next != 0); 1588 /// 1589 /// loop-exit: 1590 /// \endcode 1591 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, 1592 Intrinsic::ID &IntrinID, Value *&InitX, 1593 Instruction *&CntInst, PHINode *&CntPhi, 1594 Instruction *&DefX) { 1595 BasicBlock *LoopEntry; 1596 Value *VarX = nullptr; 1597 1598 DefX = nullptr; 1599 CntInst = nullptr; 1600 CntPhi = nullptr; 1601 LoopEntry = *(CurLoop->block_begin()); 1602 1603 // step 1: Check if the loop-back branch is in desirable form. 1604 if (Value *T = matchCondition( 1605 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1606 DefX = dyn_cast<Instruction>(T); 1607 else 1608 return false; 1609 1610 // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" 1611 if (!DefX || !DefX->isShift()) 1612 return false; 1613 IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : 1614 Intrinsic::ctlz; 1615 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); 1616 if (!Shft || !Shft->isOne()) 1617 return false; 1618 VarX = DefX->getOperand(0); 1619 1620 // step 3: Check the recurrence of variable X 1621 PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); 1622 if (!PhiX) 1623 return false; 1624 1625 InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 1626 1627 // Make sure the initial value can't be negative otherwise the ashr in the 1628 // loop might never reach zero which would make the loop infinite. 1629 if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL)) 1630 return false; 1631 1632 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 1633 // or cnt.next = cnt + -1. 1634 // TODO: We can skip the step. If loop trip count is known (CTLZ), 1635 // then all uses of "cnt.next" could be optimized to the trip count 1636 // plus "cnt0". Currently it is not optimized. 1637 // This step could be used to detect POPCNT instruction: 1638 // cnt.next = cnt + (x.next & 1) 1639 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1640 IterE = LoopEntry->end(); 1641 Iter != IterE; Iter++) { 1642 Instruction *Inst = &*Iter; 1643 if (Inst->getOpcode() != Instruction::Add) 1644 continue; 1645 1646 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1647 if (!Inc || (!Inc->isOne() && !Inc->isMinusOne())) 1648 continue; 1649 1650 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); 1651 if (!Phi) 1652 continue; 1653 1654 CntInst = Inst; 1655 CntPhi = Phi; 1656 break; 1657 } 1658 if (!CntInst) 1659 return false; 1660 1661 return true; 1662 } 1663 1664 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop 1665 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new 1666 /// trip count returns true; otherwise, returns false. 1667 bool LoopIdiomRecognize::recognizeAndInsertFFS() { 1668 // Give up if the loop has multiple blocks or multiple backedges. 1669 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1670 return false; 1671 1672 Intrinsic::ID IntrinID; 1673 Value *InitX; 1674 Instruction *DefX = nullptr; 1675 PHINode *CntPhi = nullptr; 1676 Instruction *CntInst = nullptr; 1677 // Help decide if transformation is profitable. For ShiftUntilZero idiom, 1678 // this is always 6. 1679 size_t IdiomCanonicalSize = 6; 1680 1681 if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, 1682 CntInst, CntPhi, DefX)) 1683 return false; 1684 1685 bool IsCntPhiUsedOutsideLoop = false; 1686 for (User *U : CntPhi->users()) 1687 if (!CurLoop->contains(cast<Instruction>(U))) { 1688 IsCntPhiUsedOutsideLoop = true; 1689 break; 1690 } 1691 bool IsCntInstUsedOutsideLoop = false; 1692 for (User *U : CntInst->users()) 1693 if (!CurLoop->contains(cast<Instruction>(U))) { 1694 IsCntInstUsedOutsideLoop = true; 1695 break; 1696 } 1697 // If both CntInst and CntPhi are used outside the loop the profitability 1698 // is questionable. 1699 if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) 1700 return false; 1701 1702 // For some CPUs result of CTLZ(X) intrinsic is undefined 1703 // when X is 0. If we can not guarantee X != 0, we need to check this 1704 // when expand. 1705 bool ZeroCheck = false; 1706 // It is safe to assume Preheader exist as it was checked in 1707 // parent function RunOnLoop. 1708 BasicBlock *PH = CurLoop->getLoopPreheader(); 1709 1710 // If we are using the count instruction outside the loop, make sure we 1711 // have a zero check as a precondition. Without the check the loop would run 1712 // one iteration for before any check of the input value. This means 0 and 1 1713 // would have identical behavior in the original loop and thus 1714 if (!IsCntPhiUsedOutsideLoop) { 1715 auto *PreCondBB = PH->getSinglePredecessor(); 1716 if (!PreCondBB) 1717 return false; 1718 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1719 if (!PreCondBI) 1720 return false; 1721 if (matchCondition(PreCondBI, PH) != InitX) 1722 return false; 1723 ZeroCheck = true; 1724 } 1725 1726 // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always 1727 // profitable if we delete the loop. 1728 1729 // the loop has only 6 instructions: 1730 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] 1731 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] 1732 // %shr = ashr %n.addr.0, 1 1733 // %tobool = icmp eq %shr, 0 1734 // %inc = add nsw %i.0, 1 1735 // br i1 %tobool 1736 1737 const Value *Args[] = {InitX, 1738 ConstantInt::getBool(InitX->getContext(), ZeroCheck)}; 1739 1740 // @llvm.dbg doesn't count as they have no semantic effect. 1741 auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug(); 1742 uint32_t HeaderSize = 1743 std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end()); 1744 1745 IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args); 1746 InstructionCost Cost = 1747 TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency); 1748 if (HeaderSize != IdiomCanonicalSize && 1749 Cost > TargetTransformInfo::TCC_Basic) 1750 return false; 1751 1752 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, 1753 DefX->getDebugLoc(), ZeroCheck, 1754 IsCntPhiUsedOutsideLoop); 1755 return true; 1756 } 1757 1758 /// Recognizes a population count idiom in a non-countable loop. 1759 /// 1760 /// If detected, transforms the relevant code to issue the popcount intrinsic 1761 /// function call, and returns true; otherwise, returns false. 1762 bool LoopIdiomRecognize::recognizePopcount() { 1763 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 1764 return false; 1765 1766 // Counting population are usually conducted by few arithmetic instructions. 1767 // Such instructions can be easily "absorbed" by vacant slots in a 1768 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 1769 // in a compact loop. 1770 1771 // Give up if the loop has multiple blocks or multiple backedges. 1772 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1773 return false; 1774 1775 BasicBlock *LoopBody = *(CurLoop->block_begin()); 1776 if (LoopBody->size() >= 20) { 1777 // The loop is too big, bail out. 1778 return false; 1779 } 1780 1781 // It should have a preheader containing nothing but an unconditional branch. 1782 BasicBlock *PH = CurLoop->getLoopPreheader(); 1783 if (!PH || &PH->front() != PH->getTerminator()) 1784 return false; 1785 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); 1786 if (!EntryBI || EntryBI->isConditional()) 1787 return false; 1788 1789 // It should have a precondition block where the generated popcount intrinsic 1790 // function can be inserted. 1791 auto *PreCondBB = PH->getSinglePredecessor(); 1792 if (!PreCondBB) 1793 return false; 1794 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1795 if (!PreCondBI || PreCondBI->isUnconditional()) 1796 return false; 1797 1798 Instruction *CntInst; 1799 PHINode *CntPhi; 1800 Value *Val; 1801 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) 1802 return false; 1803 1804 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); 1805 return true; 1806 } 1807 1808 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1809 const DebugLoc &DL) { 1810 Value *Ops[] = {Val}; 1811 Type *Tys[] = {Val->getType()}; 1812 1813 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1814 Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); 1815 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1816 CI->setDebugLoc(DL); 1817 1818 return CI; 1819 } 1820 1821 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1822 const DebugLoc &DL, bool ZeroCheck, 1823 Intrinsic::ID IID) { 1824 Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)}; 1825 Type *Tys[] = {Val->getType()}; 1826 1827 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1828 Function *Func = Intrinsic::getDeclaration(M, IID, Tys); 1829 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1830 CI->setDebugLoc(DL); 1831 1832 return CI; 1833 } 1834 1835 /// Transform the following loop (Using CTLZ, CTTZ is similar): 1836 /// loop: 1837 /// CntPhi = PHI [Cnt0, CntInst] 1838 /// PhiX = PHI [InitX, DefX] 1839 /// CntInst = CntPhi + 1 1840 /// DefX = PhiX >> 1 1841 /// LOOP_BODY 1842 /// Br: loop if (DefX != 0) 1843 /// Use(CntPhi) or Use(CntInst) 1844 /// 1845 /// Into: 1846 /// If CntPhi used outside the loop: 1847 /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) 1848 /// Count = CountPrev + 1 1849 /// else 1850 /// Count = BitWidth(InitX) - CTLZ(InitX) 1851 /// loop: 1852 /// CntPhi = PHI [Cnt0, CntInst] 1853 /// PhiX = PHI [InitX, DefX] 1854 /// PhiCount = PHI [Count, Dec] 1855 /// CntInst = CntPhi + 1 1856 /// DefX = PhiX >> 1 1857 /// Dec = PhiCount - 1 1858 /// LOOP_BODY 1859 /// Br: loop if (Dec != 0) 1860 /// Use(CountPrev + Cnt0) // Use(CntPhi) 1861 /// or 1862 /// Use(Count + Cnt0) // Use(CntInst) 1863 /// 1864 /// If LOOP_BODY is empty the loop will be deleted. 1865 /// If CntInst and DefX are not used in LOOP_BODY they will be removed. 1866 void LoopIdiomRecognize::transformLoopToCountable( 1867 Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst, 1868 PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, 1869 bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) { 1870 BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); 1871 1872 // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block 1873 IRBuilder<> Builder(PreheaderBr); 1874 Builder.SetCurrentDebugLocation(DL); 1875 1876 // If there are no uses of CntPhi crate: 1877 // Count = BitWidth - CTLZ(InitX); 1878 // NewCount = Count; 1879 // If there are uses of CntPhi create: 1880 // NewCount = BitWidth - CTLZ(InitX >> 1); 1881 // Count = NewCount + 1; 1882 Value *InitXNext; 1883 if (IsCntPhiUsedOutsideLoop) { 1884 if (DefX->getOpcode() == Instruction::AShr) 1885 InitXNext = Builder.CreateAShr(InitX, 1); 1886 else if (DefX->getOpcode() == Instruction::LShr) 1887 InitXNext = Builder.CreateLShr(InitX, 1); 1888 else if (DefX->getOpcode() == Instruction::Shl) // cttz 1889 InitXNext = Builder.CreateShl(InitX, 1); 1890 else 1891 llvm_unreachable("Unexpected opcode!"); 1892 } else 1893 InitXNext = InitX; 1894 Value *Count = 1895 createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID); 1896 Type *CountTy = Count->getType(); 1897 Count = Builder.CreateSub( 1898 ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count); 1899 Value *NewCount = Count; 1900 if (IsCntPhiUsedOutsideLoop) 1901 Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1)); 1902 1903 NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType()); 1904 1905 Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); 1906 if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) { 1907 // If the counter was being incremented in the loop, add NewCount to the 1908 // counter's initial value, but only if the initial value is not zero. 1909 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 1910 if (!InitConst || !InitConst->isZero()) 1911 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 1912 } else { 1913 // If the count was being decremented in the loop, subtract NewCount from 1914 // the counter's initial value. 1915 NewCount = Builder.CreateSub(CntInitVal, NewCount); 1916 } 1917 1918 // Step 2: Insert new IV and loop condition: 1919 // loop: 1920 // ... 1921 // PhiCount = PHI [Count, Dec] 1922 // ... 1923 // Dec = PhiCount - 1 1924 // ... 1925 // Br: loop if (Dec != 0) 1926 BasicBlock *Body = *(CurLoop->block_begin()); 1927 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 1928 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 1929 1930 PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi", &Body->front()); 1931 1932 Builder.SetInsertPoint(LbCond); 1933 Instruction *TcDec = cast<Instruction>(Builder.CreateSub( 1934 TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true)); 1935 1936 TcPhi->addIncoming(Count, Preheader); 1937 TcPhi->addIncoming(TcDec, Body); 1938 1939 CmpInst::Predicate Pred = 1940 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 1941 LbCond->setPredicate(Pred); 1942 LbCond->setOperand(0, TcDec); 1943 LbCond->setOperand(1, ConstantInt::get(CountTy, 0)); 1944 1945 // Step 3: All the references to the original counter outside 1946 // the loop are replaced with the NewCount 1947 if (IsCntPhiUsedOutsideLoop) 1948 CntPhi->replaceUsesOutsideBlock(NewCount, Body); 1949 else 1950 CntInst->replaceUsesOutsideBlock(NewCount, Body); 1951 1952 // step 4: Forget the "non-computable" trip-count SCEV associated with the 1953 // loop. The loop would otherwise not be deleted even if it becomes empty. 1954 SE->forgetLoop(CurLoop); 1955 } 1956 1957 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, 1958 Instruction *CntInst, 1959 PHINode *CntPhi, Value *Var) { 1960 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 1961 auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); 1962 const DebugLoc &DL = CntInst->getDebugLoc(); 1963 1964 // Assuming before transformation, the loop is following: 1965 // if (x) // the precondition 1966 // do { cnt++; x &= x - 1; } while(x); 1967 1968 // Step 1: Insert the ctpop instruction at the end of the precondition block 1969 IRBuilder<> Builder(PreCondBr); 1970 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 1971 { 1972 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 1973 NewCount = PopCntZext = 1974 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 1975 1976 if (NewCount != PopCnt) 1977 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1978 1979 // TripCnt is exactly the number of iterations the loop has 1980 TripCnt = NewCount; 1981 1982 // If the population counter's initial value is not zero, insert Add Inst. 1983 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 1984 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 1985 if (!InitConst || !InitConst->isZero()) { 1986 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 1987 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1988 } 1989 } 1990 1991 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to 1992 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic 1993 // function would be partial dead code, and downstream passes will drag 1994 // it back from the precondition block to the preheader. 1995 { 1996 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 1997 1998 Value *Opnd0 = PopCntZext; 1999 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 2000 if (PreCond->getOperand(0) != Var) 2001 std::swap(Opnd0, Opnd1); 2002 2003 ICmpInst *NewPreCond = cast<ICmpInst>( 2004 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 2005 PreCondBr->setCondition(NewPreCond); 2006 2007 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); 2008 } 2009 2010 // Step 3: Note that the population count is exactly the trip count of the 2011 // loop in question, which enable us to convert the loop from noncountable 2012 // loop into a countable one. The benefit is twofold: 2013 // 2014 // - If the loop only counts population, the entire loop becomes dead after 2015 // the transformation. It is a lot easier to prove a countable loop dead 2016 // than to prove a noncountable one. (In some C dialects, an infinite loop 2017 // isn't dead even if it computes nothing useful. In general, DCE needs 2018 // to prove a noncountable loop finite before safely delete it.) 2019 // 2020 // - If the loop also performs something else, it remains alive. 2021 // Since it is transformed to countable form, it can be aggressively 2022 // optimized by some optimizations which are in general not applicable 2023 // to a noncountable loop. 2024 // 2025 // After this step, this loop (conceptually) would look like following: 2026 // newcnt = __builtin_ctpop(x); 2027 // t = newcnt; 2028 // if (x) 2029 // do { cnt++; x &= x-1; t--) } while (t > 0); 2030 BasicBlock *Body = *(CurLoop->block_begin()); 2031 { 2032 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 2033 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 2034 Type *Ty = TripCnt->getType(); 2035 2036 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 2037 2038 Builder.SetInsertPoint(LbCond); 2039 Instruction *TcDec = cast<Instruction>( 2040 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 2041 "tcdec", false, true)); 2042 2043 TcPhi->addIncoming(TripCnt, PreHead); 2044 TcPhi->addIncoming(TcDec, Body); 2045 2046 CmpInst::Predicate Pred = 2047 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 2048 LbCond->setPredicate(Pred); 2049 LbCond->setOperand(0, TcDec); 2050 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 2051 } 2052 2053 // Step 4: All the references to the original population counter outside 2054 // the loop are replaced with the NewCount -- the value returned from 2055 // __builtin_ctpop(). 2056 CntInst->replaceUsesOutsideBlock(NewCount, Body); 2057 2058 // step 5: Forget the "non-computable" trip-count SCEV associated with the 2059 // loop. The loop would otherwise not be deleted even if it becomes empty. 2060 SE->forgetLoop(CurLoop); 2061 } 2062 2063 /// Match loop-invariant value. 2064 template <typename SubPattern_t> struct match_LoopInvariant { 2065 SubPattern_t SubPattern; 2066 const Loop *L; 2067 2068 match_LoopInvariant(const SubPattern_t &SP, const Loop *L) 2069 : SubPattern(SP), L(L) {} 2070 2071 template <typename ITy> bool match(ITy *V) { 2072 return L->isLoopInvariant(V) && SubPattern.match(V); 2073 } 2074 }; 2075 2076 /// Matches if the value is loop-invariant. 2077 template <typename Ty> 2078 inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) { 2079 return match_LoopInvariant<Ty>(M, L); 2080 } 2081 2082 /// Return true if the idiom is detected in the loop. 2083 /// 2084 /// The core idiom we are trying to detect is: 2085 /// \code 2086 /// entry: 2087 /// <...> 2088 /// %bitmask = shl i32 1, %bitpos 2089 /// br label %loop 2090 /// 2091 /// loop: 2092 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] 2093 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask 2094 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 2095 /// %x.next = shl i32 %x.curr, 1 2096 /// <...> 2097 /// br i1 %x.curr.isbitunset, label %loop, label %end 2098 /// 2099 /// end: 2100 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2101 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2102 /// <...> 2103 /// \endcode 2104 static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX, 2105 Value *&BitMask, Value *&BitPos, 2106 Value *&CurrX, Instruction *&NextX) { 2107 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2108 " Performing shift-until-bittest idiom detection.\n"); 2109 2110 // Give up if the loop has multiple blocks or multiple backedges. 2111 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { 2112 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); 2113 return false; 2114 } 2115 2116 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2117 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2118 assert(LoopPreheaderBB && "There is always a loop preheader."); 2119 2120 using namespace PatternMatch; 2121 2122 // Step 1: Check if the loop backedge is in desirable form. 2123 2124 ICmpInst::Predicate Pred; 2125 Value *CmpLHS, *CmpRHS; 2126 BasicBlock *TrueBB, *FalseBB; 2127 if (!match(LoopHeaderBB->getTerminator(), 2128 m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)), 2129 m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) { 2130 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); 2131 return false; 2132 } 2133 2134 // Step 2: Check if the backedge's condition is in desirable form. 2135 2136 auto MatchVariableBitMask = [&]() { 2137 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && 2138 match(CmpLHS, 2139 m_c_And(m_Value(CurrX), 2140 m_CombineAnd( 2141 m_Value(BitMask), 2142 m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)), 2143 CurLoop)))); 2144 }; 2145 auto MatchConstantBitMask = [&]() { 2146 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && 2147 match(CmpLHS, m_And(m_Value(CurrX), 2148 m_CombineAnd(m_Value(BitMask), m_Power2()))) && 2149 (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask))); 2150 }; 2151 auto MatchDecomposableConstantBitMask = [&]() { 2152 APInt Mask; 2153 return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) && 2154 ICmpInst::isEquality(Pred) && Mask.isPowerOf2() && 2155 (BitMask = ConstantInt::get(CurrX->getType(), Mask)) && 2156 (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2())); 2157 }; 2158 2159 if (!MatchVariableBitMask() && !MatchConstantBitMask() && 2160 !MatchDecomposableConstantBitMask()) { 2161 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n"); 2162 return false; 2163 } 2164 2165 // Step 3: Check if the recurrence is in desirable form. 2166 auto *CurrXPN = dyn_cast<PHINode>(CurrX); 2167 if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) { 2168 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); 2169 return false; 2170 } 2171 2172 BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB); 2173 NextX = 2174 dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB)); 2175 2176 assert(CurLoop->isLoopInvariant(BaseX) && 2177 "Expected BaseX to be avaliable in the preheader!"); 2178 2179 if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) { 2180 // FIXME: support right-shift? 2181 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); 2182 return false; 2183 } 2184 2185 // Step 4: Check if the backedge's destinations are in desirable form. 2186 2187 assert(ICmpInst::isEquality(Pred) && 2188 "Should only get equality predicates here."); 2189 2190 // cmp-br is commutative, so canonicalize to a single variant. 2191 if (Pred != ICmpInst::Predicate::ICMP_EQ) { 2192 Pred = ICmpInst::getInversePredicate(Pred); 2193 std::swap(TrueBB, FalseBB); 2194 } 2195 2196 // We expect to exit loop when comparison yields false, 2197 // so when it yields true we should branch back to loop header. 2198 if (TrueBB != LoopHeaderBB) { 2199 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); 2200 return false; 2201 } 2202 2203 // Okay, idiom checks out. 2204 return true; 2205 } 2206 2207 /// Look for the following loop: 2208 /// \code 2209 /// entry: 2210 /// <...> 2211 /// %bitmask = shl i32 1, %bitpos 2212 /// br label %loop 2213 /// 2214 /// loop: 2215 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] 2216 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask 2217 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 2218 /// %x.next = shl i32 %x.curr, 1 2219 /// <...> 2220 /// br i1 %x.curr.isbitunset, label %loop, label %end 2221 /// 2222 /// end: 2223 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2224 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2225 /// <...> 2226 /// \endcode 2227 /// 2228 /// And transform it into: 2229 /// \code 2230 /// entry: 2231 /// %bitmask = shl i32 1, %bitpos 2232 /// %lowbitmask = add i32 %bitmask, -1 2233 /// %mask = or i32 %lowbitmask, %bitmask 2234 /// %x.masked = and i32 %x, %mask 2235 /// %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked, 2236 /// i1 true) 2237 /// %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros 2238 /// %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1 2239 /// %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos 2240 /// %tripcount = add i32 %backedgetakencount, 1 2241 /// %x.curr = shl i32 %x, %backedgetakencount 2242 /// %x.next = shl i32 %x, %tripcount 2243 /// br label %loop 2244 /// 2245 /// loop: 2246 /// %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ] 2247 /// %loop.iv.next = add nuw i32 %loop.iv, 1 2248 /// %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount 2249 /// <...> 2250 /// br i1 %loop.ivcheck, label %end, label %loop 2251 /// 2252 /// end: 2253 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2254 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2255 /// <...> 2256 /// \endcode 2257 bool LoopIdiomRecognize::recognizeShiftUntilBitTest() { 2258 bool MadeChange = false; 2259 2260 Value *X, *BitMask, *BitPos, *XCurr; 2261 Instruction *XNext; 2262 if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr, 2263 XNext)) { 2264 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2265 " shift-until-bittest idiom detection failed.\n"); 2266 return MadeChange; 2267 } 2268 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n"); 2269 2270 // Ok, it is the idiom we were looking for, we *could* transform this loop, 2271 // but is it profitable to transform? 2272 2273 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2274 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2275 assert(LoopPreheaderBB && "There is always a loop preheader."); 2276 2277 BasicBlock *SuccessorBB = CurLoop->getExitBlock(); 2278 assert(SuccessorBB && "There is only a single successor."); 2279 2280 IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); 2281 Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc()); 2282 2283 Intrinsic::ID IntrID = Intrinsic::ctlz; 2284 Type *Ty = X->getType(); 2285 unsigned Bitwidth = Ty->getScalarSizeInBits(); 2286 2287 TargetTransformInfo::TargetCostKind CostKind = 2288 TargetTransformInfo::TCK_SizeAndLatency; 2289 2290 // The rewrite is considered to be unprofitable iff and only iff the 2291 // intrinsic/shift we'll use are not cheap. Note that we are okay with *just* 2292 // making the loop countable, even if nothing else changes. 2293 IntrinsicCostAttributes Attrs( 2294 IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getTrue()}); 2295 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); 2296 if (Cost > TargetTransformInfo::TCC_Basic) { 2297 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2298 " Intrinsic is too costly, not beneficial\n"); 2299 return MadeChange; 2300 } 2301 if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) > 2302 TargetTransformInfo::TCC_Basic) { 2303 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n"); 2304 return MadeChange; 2305 } 2306 2307 // Ok, transform appears worthwhile. 2308 MadeChange = true; 2309 2310 // Step 1: Compute the loop trip count. 2311 2312 Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty), 2313 BitPos->getName() + ".lowbitmask"); 2314 Value *Mask = 2315 Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask"); 2316 Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked"); 2317 CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic( 2318 IntrID, Ty, {XMasked, /*is_zero_undef=*/Builder.getTrue()}, 2319 /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros"); 2320 Value *XMaskedNumActiveBits = Builder.CreateSub( 2321 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros, 2322 XMasked->getName() + ".numactivebits", /*HasNUW=*/true, 2323 /*HasNSW=*/Bitwidth != 2); 2324 Value *XMaskedLeadingOnePos = 2325 Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty), 2326 XMasked->getName() + ".leadingonepos", /*HasNUW=*/false, 2327 /*HasNSW=*/Bitwidth > 2); 2328 2329 Value *LoopBackedgeTakenCount = Builder.CreateSub( 2330 BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount", 2331 /*HasNUW=*/true, /*HasNSW=*/true); 2332 // We know loop's backedge-taken count, but what's loop's trip count? 2333 // Note that while NUW is always safe, while NSW is only for bitwidths != 2. 2334 Value *LoopTripCount = 2335 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), 2336 CurLoop->getName() + ".tripcount", /*HasNUW=*/true, 2337 /*HasNSW=*/Bitwidth != 2); 2338 2339 // Step 2: Compute the recurrence's final value without a loop. 2340 2341 // NewX is always safe to compute, because `LoopBackedgeTakenCount` 2342 // will always be smaller than `bitwidth(X)`, i.e. we never get poison. 2343 Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount); 2344 NewX->takeName(XCurr); 2345 if (auto *I = dyn_cast<Instruction>(NewX)) 2346 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); 2347 2348 Value *NewXNext; 2349 // Rewriting XNext is more complicated, however, because `X << LoopTripCount` 2350 // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen 2351 // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know 2352 // that isn't the case, we'll need to emit an alternative, safe IR. 2353 if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() || 2354 PatternMatch::match( 2355 BitPos, PatternMatch::m_SpecificInt_ICMP( 2356 ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(), 2357 Ty->getScalarSizeInBits() - 1)))) 2358 NewXNext = Builder.CreateShl(X, LoopTripCount); 2359 else { 2360 // Otherwise, just additionally shift by one. It's the smallest solution, 2361 // alternatively, we could check that NewX is INT_MIN (or BitPos is ) 2362 // and select 0 instead. 2363 NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1)); 2364 } 2365 2366 NewXNext->takeName(XNext); 2367 if (auto *I = dyn_cast<Instruction>(NewXNext)) 2368 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); 2369 2370 // Step 3: Adjust the successor basic block to recieve the computed 2371 // recurrence's final value instead of the recurrence itself. 2372 2373 XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB); 2374 XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB); 2375 2376 // Step 4: Rewrite the loop into a countable form, with canonical IV. 2377 2378 // The new canonical induction variable. 2379 Builder.SetInsertPoint(&LoopHeaderBB->front()); 2380 auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); 2381 2382 // The induction itself. 2383 // Note that while NUW is always safe, while NSW is only for bitwidths != 2. 2384 Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); 2385 auto *IVNext = 2386 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next", 2387 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 2388 2389 // The loop trip count check. 2390 auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount, 2391 CurLoop->getName() + ".ivcheck"); 2392 Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB); 2393 LoopHeaderBB->getTerminator()->eraseFromParent(); 2394 2395 // Populate the IV PHI. 2396 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); 2397 IV->addIncoming(IVNext, LoopHeaderBB); 2398 2399 // Step 5: Forget the "non-computable" trip-count SCEV associated with the 2400 // loop. The loop would otherwise not be deleted even if it becomes empty. 2401 2402 SE->forgetLoop(CurLoop); 2403 2404 // Other passes will take care of actually deleting the loop if possible. 2405 2406 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n"); 2407 2408 ++NumShiftUntilBitTest; 2409 return MadeChange; 2410 } 2411 2412 /// Return true if the idiom is detected in the loop. 2413 /// 2414 /// The core idiom we are trying to detect is: 2415 /// \code 2416 /// entry: 2417 /// <...> 2418 /// %start = <...> 2419 /// %extraoffset = <...> 2420 /// <...> 2421 /// br label %for.cond 2422 /// 2423 /// loop: 2424 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] 2425 /// %nbits = add nsw i8 %iv, %extraoffset 2426 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits 2427 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 2428 /// %iv.next = add i8 %iv, 1 2429 /// <...> 2430 /// br i1 %val.shifted.iszero, label %end, label %loop 2431 /// 2432 /// end: 2433 /// %iv.res = phi i8 [ %iv, %loop ] <...> 2434 /// %nbits.res = phi i8 [ %nbits, %loop ] <...> 2435 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> 2436 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> 2437 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> 2438 /// <...> 2439 /// \endcode 2440 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE, 2441 Instruction *&ValShiftedIsZero, 2442 Intrinsic::ID &IntrinID, Instruction *&IV, 2443 Value *&Start, Value *&Val, 2444 const SCEV *&ExtraOffsetExpr, 2445 bool &InvertedCond) { 2446 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2447 " Performing shift-until-zero idiom detection.\n"); 2448 2449 // Give up if the loop has multiple blocks or multiple backedges. 2450 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { 2451 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); 2452 return false; 2453 } 2454 2455 Instruction *ValShifted, *NBits, *IVNext; 2456 Value *ExtraOffset; 2457 2458 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2459 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2460 assert(LoopPreheaderBB && "There is always a loop preheader."); 2461 2462 using namespace PatternMatch; 2463 2464 // Step 1: Check if the loop backedge, condition is in desirable form. 2465 2466 ICmpInst::Predicate Pred; 2467 BasicBlock *TrueBB, *FalseBB; 2468 if (!match(LoopHeaderBB->getTerminator(), 2469 m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB), 2470 m_BasicBlock(FalseBB))) || 2471 !match(ValShiftedIsZero, 2472 m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) || 2473 !ICmpInst::isEquality(Pred)) { 2474 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); 2475 return false; 2476 } 2477 2478 // Step 2: Check if the comparison's operand is in desirable form. 2479 // FIXME: Val could be a one-input PHI node, which we should look past. 2480 if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop), 2481 m_Instruction(NBits)))) { 2482 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n"); 2483 return false; 2484 } 2485 IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz 2486 : Intrinsic::ctlz; 2487 2488 // Step 3: Check if the shift amount is in desirable form. 2489 2490 if (match(NBits, m_c_Add(m_Instruction(IV), 2491 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && 2492 (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap())) 2493 ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset)); 2494 else if (match(NBits, 2495 m_Sub(m_Instruction(IV), 2496 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && 2497 NBits->hasNoSignedWrap()) 2498 ExtraOffsetExpr = SE->getSCEV(ExtraOffset); 2499 else { 2500 IV = NBits; 2501 ExtraOffsetExpr = SE->getZero(NBits->getType()); 2502 } 2503 2504 // Step 4: Check if the recurrence is in desirable form. 2505 auto *IVPN = dyn_cast<PHINode>(IV); 2506 if (!IVPN || IVPN->getParent() != LoopHeaderBB) { 2507 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); 2508 return false; 2509 } 2510 2511 Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB); 2512 IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB)); 2513 2514 if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) { 2515 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); 2516 return false; 2517 } 2518 2519 // Step 4: Check if the backedge's destinations are in desirable form. 2520 2521 assert(ICmpInst::isEquality(Pred) && 2522 "Should only get equality predicates here."); 2523 2524 // cmp-br is commutative, so canonicalize to a single variant. 2525 InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ; 2526 if (InvertedCond) { 2527 Pred = ICmpInst::getInversePredicate(Pred); 2528 std::swap(TrueBB, FalseBB); 2529 } 2530 2531 // We expect to exit loop when comparison yields true, 2532 // so when it yields false we should branch back to loop header. 2533 if (FalseBB != LoopHeaderBB) { 2534 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); 2535 return false; 2536 } 2537 2538 // The new, countable, loop will certainly only run a known number of 2539 // iterations, It won't be infinite. But the old loop might be infinite 2540 // under certain conditions. For logical shifts, the value will become zero 2541 // after at most bitwidth(%Val) loop iterations. However, for arithmetic 2542 // right-shift, iff the sign bit was set, the value will never become zero, 2543 // and the loop may never finish. 2544 if (ValShifted->getOpcode() == Instruction::AShr && 2545 !isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) { 2546 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n"); 2547 return false; 2548 } 2549 2550 // Okay, idiom checks out. 2551 return true; 2552 } 2553 2554 /// Look for the following loop: 2555 /// \code 2556 /// entry: 2557 /// <...> 2558 /// %start = <...> 2559 /// %extraoffset = <...> 2560 /// <...> 2561 /// br label %for.cond 2562 /// 2563 /// loop: 2564 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] 2565 /// %nbits = add nsw i8 %iv, %extraoffset 2566 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits 2567 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 2568 /// %iv.next = add i8 %iv, 1 2569 /// <...> 2570 /// br i1 %val.shifted.iszero, label %end, label %loop 2571 /// 2572 /// end: 2573 /// %iv.res = phi i8 [ %iv, %loop ] <...> 2574 /// %nbits.res = phi i8 [ %nbits, %loop ] <...> 2575 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> 2576 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> 2577 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> 2578 /// <...> 2579 /// \endcode 2580 /// 2581 /// And transform it into: 2582 /// \code 2583 /// entry: 2584 /// <...> 2585 /// %start = <...> 2586 /// %extraoffset = <...> 2587 /// <...> 2588 /// %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0) 2589 /// %val.numactivebits = sub i8 8, %val.numleadingzeros 2590 /// %extraoffset.neg = sub i8 0, %extraoffset 2591 /// %tmp = add i8 %val.numactivebits, %extraoffset.neg 2592 /// %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start) 2593 /// %loop.tripcount = sub i8 %iv.final, %start 2594 /// br label %loop 2595 /// 2596 /// loop: 2597 /// %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ] 2598 /// %loop.iv.next = add i8 %loop.iv, 1 2599 /// %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount 2600 /// %iv = add i8 %loop.iv, %start 2601 /// <...> 2602 /// br i1 %loop.ivcheck, label %end, label %loop 2603 /// 2604 /// end: 2605 /// %iv.res = phi i8 [ %iv.final, %loop ] <...> 2606 /// <...> 2607 /// \endcode 2608 bool LoopIdiomRecognize::recognizeShiftUntilZero() { 2609 bool MadeChange = false; 2610 2611 Instruction *ValShiftedIsZero; 2612 Intrinsic::ID IntrID; 2613 Instruction *IV; 2614 Value *Start, *Val; 2615 const SCEV *ExtraOffsetExpr; 2616 bool InvertedCond; 2617 if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV, 2618 Start, Val, ExtraOffsetExpr, InvertedCond)) { 2619 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2620 " shift-until-zero idiom detection failed.\n"); 2621 return MadeChange; 2622 } 2623 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n"); 2624 2625 // Ok, it is the idiom we were looking for, we *could* transform this loop, 2626 // but is it profitable to transform? 2627 2628 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2629 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2630 assert(LoopPreheaderBB && "There is always a loop preheader."); 2631 2632 BasicBlock *SuccessorBB = CurLoop->getExitBlock(); 2633 assert(SuccessorBB && "There is only a single successor."); 2634 2635 IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); 2636 Builder.SetCurrentDebugLocation(IV->getDebugLoc()); 2637 2638 Type *Ty = Val->getType(); 2639 unsigned Bitwidth = Ty->getScalarSizeInBits(); 2640 2641 TargetTransformInfo::TargetCostKind CostKind = 2642 TargetTransformInfo::TCK_SizeAndLatency; 2643 2644 // The rewrite is considered to be unprofitable iff and only iff the 2645 // intrinsic we'll use are not cheap. Note that we are okay with *just* 2646 // making the loop countable, even if nothing else changes. 2647 IntrinsicCostAttributes Attrs( 2648 IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getFalse()}); 2649 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); 2650 if (Cost > TargetTransformInfo::TCC_Basic) { 2651 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2652 " Intrinsic is too costly, not beneficial\n"); 2653 return MadeChange; 2654 } 2655 2656 // Ok, transform appears worthwhile. 2657 MadeChange = true; 2658 2659 bool OffsetIsZero = false; 2660 if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr)) 2661 OffsetIsZero = ExtraOffsetExprC->isZero(); 2662 2663 // Step 1: Compute the loop's final IV value / trip count. 2664 2665 CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic( 2666 IntrID, Ty, {Val, /*is_zero_undef=*/Builder.getFalse()}, 2667 /*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros"); 2668 Value *ValNumActiveBits = Builder.CreateSub( 2669 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros, 2670 Val->getName() + ".numactivebits", /*HasNUW=*/true, 2671 /*HasNSW=*/Bitwidth != 2); 2672 2673 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 2674 Expander.setInsertPoint(&*Builder.GetInsertPoint()); 2675 Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr); 2676 2677 Value *ValNumActiveBitsOffset = Builder.CreateAdd( 2678 ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset", 2679 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true); 2680 Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, 2681 {ValNumActiveBitsOffset, Start}, 2682 /*FMFSource=*/nullptr, "iv.final"); 2683 2684 auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub( 2685 IVFinal, Start, CurLoop->getName() + ".backedgetakencount", 2686 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true)); 2687 // FIXME: or when the offset was `add nuw` 2688 2689 // We know loop's backedge-taken count, but what's loop's trip count? 2690 Value *LoopTripCount = 2691 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), 2692 CurLoop->getName() + ".tripcount", /*HasNUW=*/true, 2693 /*HasNSW=*/Bitwidth != 2); 2694 2695 // Step 2: Adjust the successor basic block to recieve the original 2696 // induction variable's final value instead of the orig. IV itself. 2697 2698 IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB); 2699 2700 // Step 3: Rewrite the loop into a countable form, with canonical IV. 2701 2702 // The new canonical induction variable. 2703 Builder.SetInsertPoint(&LoopHeaderBB->front()); 2704 auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); 2705 2706 // The induction itself. 2707 Builder.SetInsertPoint(LoopHeaderBB->getFirstNonPHI()); 2708 auto *CIVNext = 2709 Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next", 2710 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 2711 2712 // The loop trip count check. 2713 auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount, 2714 CurLoop->getName() + ".ivcheck"); 2715 auto *NewIVCheck = CIVCheck; 2716 if (InvertedCond) { 2717 NewIVCheck = Builder.CreateNot(CIVCheck); 2718 NewIVCheck->takeName(ValShiftedIsZero); 2719 } 2720 2721 // The original IV, but rebased to be an offset to the CIV. 2722 auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false, 2723 /*HasNSW=*/true); // FIXME: what about NUW? 2724 IVDePHId->takeName(IV); 2725 2726 // The loop terminator. 2727 Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); 2728 Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB); 2729 LoopHeaderBB->getTerminator()->eraseFromParent(); 2730 2731 // Populate the IV PHI. 2732 CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); 2733 CIV->addIncoming(CIVNext, LoopHeaderBB); 2734 2735 // Step 4: Forget the "non-computable" trip-count SCEV associated with the 2736 // loop. The loop would otherwise not be deleted even if it becomes empty. 2737 2738 SE->forgetLoop(CurLoop); 2739 2740 // Step 5: Try to cleanup the loop's body somewhat. 2741 IV->replaceAllUsesWith(IVDePHId); 2742 IV->eraseFromParent(); 2743 2744 ValShiftedIsZero->replaceAllUsesWith(NewIVCheck); 2745 ValShiftedIsZero->eraseFromParent(); 2746 2747 // Other passes will take care of actually deleting the loop if possible. 2748 2749 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n"); 2750 2751 ++NumShiftUntilZero; 2752 return MadeChange; 2753 } 2754