1 //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements an idiom recognizer that transforms simple loops into a 11 // non-loop form. In cases that this kicks in, it can be a significant 12 // performance win. 13 // 14 // If compiling for code size we avoid idiom recognition if the resulting 15 // code could be larger than the code for the original loop. One way this could 16 // happen is if the loop is not removable after idiom recognition due to the 17 // presence of non-idiom instructions. The initial implementation of the 18 // heuristics applies to idioms in multi-block loops. 19 // 20 //===----------------------------------------------------------------------===// 21 // 22 // TODO List: 23 // 24 // Future loop memory idioms to recognize: 25 // memcmp, memmove, strlen, etc. 26 // Future floating point idioms to recognize in -ffast-math mode: 27 // fpowi 28 // Future integer operation idioms to recognize: 29 // ctpop, ctlz, cttz 30 // 31 // Beware that isel's default lowering for ctpop is highly inefficient for 32 // i64 and larger types when i64 is legal and the value has few bits set. It 33 // would be good to enhance isel to emit a loop for ctpop in this case. 34 // 35 // This could recognize common matrix multiplies and dot product idioms and 36 // replace them with calls to BLAS (if linked in??). 37 // 38 //===----------------------------------------------------------------------===// 39 40 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" 41 #include "llvm/ADT/MapVector.h" 42 #include "llvm/ADT/SetVector.h" 43 #include "llvm/ADT/Statistic.h" 44 #include "llvm/Analysis/AliasAnalysis.h" 45 #include "llvm/Analysis/BasicAliasAnalysis.h" 46 #include "llvm/Analysis/GlobalsModRef.h" 47 #include "llvm/Analysis/LoopAccessAnalysis.h" 48 #include "llvm/Analysis/LoopPass.h" 49 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 50 #include "llvm/Analysis/ScalarEvolutionExpander.h" 51 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/Analysis/TargetTransformInfo.h" 54 #include "llvm/Analysis/ValueTracking.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Transforms/Scalar.h" 63 #include "llvm/Transforms/Scalar/LoopPassManager.h" 64 #include "llvm/Transforms/Utils/BuildLibCalls.h" 65 #include "llvm/Transforms/Utils/Local.h" 66 #include "llvm/Transforms/Utils/LoopUtils.h" 67 using namespace llvm; 68 69 #define DEBUG_TYPE "loop-idiom" 70 71 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 72 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 73 74 static cl::opt<bool> UseLIRCodeSizeHeurs( 75 "use-lir-code-size-heurs", 76 cl::desc("Use loop idiom recognition code size heuristics when compiling" 77 "with -Os/-Oz"), 78 cl::init(true), cl::Hidden); 79 80 namespace { 81 82 class LoopIdiomRecognize { 83 Loop *CurLoop; 84 AliasAnalysis *AA; 85 DominatorTree *DT; 86 LoopInfo *LI; 87 ScalarEvolution *SE; 88 TargetLibraryInfo *TLI; 89 const TargetTransformInfo *TTI; 90 const DataLayout *DL; 91 bool ApplyCodeSizeHeuristics; 92 93 public: 94 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, 95 LoopInfo *LI, ScalarEvolution *SE, 96 TargetLibraryInfo *TLI, 97 const TargetTransformInfo *TTI, 98 const DataLayout *DL) 99 : CurLoop(nullptr), AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), 100 DL(DL) {} 101 102 bool runOnLoop(Loop *L); 103 104 private: 105 typedef SmallVector<StoreInst *, 8> StoreList; 106 typedef MapVector<Value *, StoreList> StoreListMap; 107 StoreListMap StoreRefsForMemset; 108 StoreListMap StoreRefsForMemsetPattern; 109 StoreList StoreRefsForMemcpy; 110 bool HasMemset; 111 bool HasMemsetPattern; 112 bool HasMemcpy; 113 114 /// \name Countable Loop Idiom Handling 115 /// @{ 116 117 bool runOnCountableLoop(); 118 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 119 SmallVectorImpl<BasicBlock *> &ExitBlocks); 120 121 void collectStores(BasicBlock *BB); 122 bool isLegalStore(StoreInst *SI, bool &ForMemset, bool &ForMemsetPattern, 123 bool &ForMemcpy); 124 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, 125 bool ForMemset); 126 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 127 128 bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, 129 unsigned StoreAlignment, Value *StoredVal, 130 Instruction *TheStore, 131 SmallPtrSetImpl<Instruction *> &Stores, 132 const SCEVAddRecExpr *Ev, const SCEV *BECount, 133 bool NegStride, bool IsLoopMemset = false); 134 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); 135 bool avoidLIRForMultiBlockLoop(bool IsMemset = false, 136 bool IsLoopMemset = false); 137 138 /// @} 139 /// \name Noncountable Loop Idiom Handling 140 /// @{ 141 142 bool runOnNoncountableLoop(); 143 144 bool recognizePopcount(); 145 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, 146 PHINode *CntPhi, Value *Var); 147 148 /// @} 149 }; 150 151 class LoopIdiomRecognizeLegacyPass : public LoopPass { 152 public: 153 static char ID; 154 explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) { 155 initializeLoopIdiomRecognizeLegacyPassPass( 156 *PassRegistry::getPassRegistry()); 157 } 158 159 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 160 if (skipLoop(L)) 161 return false; 162 163 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 164 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 165 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 166 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 167 TargetLibraryInfo *TLI = 168 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 169 const TargetTransformInfo *TTI = 170 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 171 *L->getHeader()->getParent()); 172 const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout(); 173 174 LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL); 175 return LIR.runOnLoop(L); 176 } 177 178 /// This transformation requires natural loop information & requires that 179 /// loop preheaders be inserted into the CFG. 180 /// 181 void getAnalysisUsage(AnalysisUsage &AU) const override { 182 AU.addRequired<TargetLibraryInfoWrapperPass>(); 183 AU.addRequired<TargetTransformInfoWrapperPass>(); 184 getLoopAnalysisUsage(AU); 185 } 186 }; 187 } // End anonymous namespace. 188 189 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, 190 LoopStandardAnalysisResults &AR, 191 LPMUpdater &) { 192 const auto *DL = &L.getHeader()->getModule()->getDataLayout(); 193 194 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL); 195 if (!LIR.runOnLoop(&L)) 196 return PreservedAnalyses::all(); 197 198 return getLoopPassPreservedAnalyses(); 199 } 200 201 char LoopIdiomRecognizeLegacyPass::ID = 0; 202 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom", 203 "Recognize loop idioms", false, false) 204 INITIALIZE_PASS_DEPENDENCY(LoopPass) 205 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 206 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 207 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom", 208 "Recognize loop idioms", false, false) 209 210 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); } 211 212 static void deleteDeadInstruction(Instruction *I) { 213 I->replaceAllUsesWith(UndefValue::get(I->getType())); 214 I->eraseFromParent(); 215 } 216 217 //===----------------------------------------------------------------------===// 218 // 219 // Implementation of LoopIdiomRecognize 220 // 221 //===----------------------------------------------------------------------===// 222 223 bool LoopIdiomRecognize::runOnLoop(Loop *L) { 224 CurLoop = L; 225 // If the loop could not be converted to canonical form, it must have an 226 // indirectbr in it, just give up. 227 if (!L->getLoopPreheader()) 228 return false; 229 230 // Disable loop idiom recognition if the function's name is a common idiom. 231 StringRef Name = L->getHeader()->getParent()->getName(); 232 if (Name == "memset" || Name == "memcpy") 233 return false; 234 235 // Determine if code size heuristics need to be applied. 236 ApplyCodeSizeHeuristics = 237 L->getHeader()->getParent()->optForSize() && UseLIRCodeSizeHeurs; 238 239 HasMemset = TLI->has(LibFunc_memset); 240 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); 241 HasMemcpy = TLI->has(LibFunc_memcpy); 242 243 if (HasMemset || HasMemsetPattern || HasMemcpy) 244 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 245 return runOnCountableLoop(); 246 247 return runOnNoncountableLoop(); 248 } 249 250 bool LoopIdiomRecognize::runOnCountableLoop() { 251 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 252 assert(!isa<SCEVCouldNotCompute>(BECount) && 253 "runOnCountableLoop() called on a loop without a predictable" 254 "backedge-taken count"); 255 256 // If this loop executes exactly one time, then it should be peeled, not 257 // optimized by this pass. 258 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 259 if (BECst->getAPInt() == 0) 260 return false; 261 262 SmallVector<BasicBlock *, 8> ExitBlocks; 263 CurLoop->getUniqueExitBlocks(ExitBlocks); 264 265 DEBUG(dbgs() << "loop-idiom Scanning: F[" 266 << CurLoop->getHeader()->getParent()->getName() << "] Loop %" 267 << CurLoop->getHeader()->getName() << "\n"); 268 269 bool MadeChange = false; 270 271 // The following transforms hoist stores/memsets into the loop pre-header. 272 // Give up if the loop has instructions may throw. 273 LoopSafetyInfo SafetyInfo; 274 computeLoopSafetyInfo(&SafetyInfo, CurLoop); 275 if (SafetyInfo.MayThrow) 276 return MadeChange; 277 278 // Scan all the blocks in the loop that are not in subloops. 279 for (auto *BB : CurLoop->getBlocks()) { 280 // Ignore blocks in subloops. 281 if (LI->getLoopFor(BB) != CurLoop) 282 continue; 283 284 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); 285 } 286 return MadeChange; 287 } 288 289 static unsigned getStoreSizeInBytes(StoreInst *SI, const DataLayout *DL) { 290 uint64_t SizeInBits = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 291 assert(((SizeInBits & 7) || (SizeInBits >> 32) == 0) && 292 "Don't overflow unsigned."); 293 return (unsigned)SizeInBits >> 3; 294 } 295 296 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { 297 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); 298 return ConstStride->getAPInt(); 299 } 300 301 /// getMemSetPatternValue - If a strided store of the specified value is safe to 302 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 303 /// be passed in. Otherwise, return null. 304 /// 305 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 306 /// just replicate their input array and then pass on to memset_pattern16. 307 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { 308 // If the value isn't a constant, we can't promote it to being in a constant 309 // array. We could theoretically do a store to an alloca or something, but 310 // that doesn't seem worthwhile. 311 Constant *C = dyn_cast<Constant>(V); 312 if (!C) 313 return nullptr; 314 315 // Only handle simple values that are a power of two bytes in size. 316 uint64_t Size = DL->getTypeSizeInBits(V->getType()); 317 if (Size == 0 || (Size & 7) || (Size & (Size - 1))) 318 return nullptr; 319 320 // Don't care enough about darwin/ppc to implement this. 321 if (DL->isBigEndian()) 322 return nullptr; 323 324 // Convert to size in bytes. 325 Size /= 8; 326 327 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 328 // if the top and bottom are the same (e.g. for vectors and large integers). 329 if (Size > 16) 330 return nullptr; 331 332 // If the constant is exactly 16 bytes, just use it. 333 if (Size == 16) 334 return C; 335 336 // Otherwise, we'll use an array of the constants. 337 unsigned ArraySize = 16 / Size; 338 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 339 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); 340 } 341 342 bool LoopIdiomRecognize::isLegalStore(StoreInst *SI, bool &ForMemset, 343 bool &ForMemsetPattern, bool &ForMemcpy) { 344 // Don't touch volatile stores. 345 if (!SI->isSimple()) 346 return false; 347 348 // Avoid merging nontemporal stores. 349 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 350 return false; 351 352 Value *StoredVal = SI->getValueOperand(); 353 Value *StorePtr = SI->getPointerOperand(); 354 355 // Reject stores that are so large that they overflow an unsigned. 356 uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); 357 if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) 358 return false; 359 360 // See if the pointer expression is an AddRec like {base,+,1} on the current 361 // loop, which indicates a strided store. If we have something else, it's a 362 // random store we can't handle. 363 const SCEVAddRecExpr *StoreEv = 364 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 365 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 366 return false; 367 368 // Check to see if we have a constant stride. 369 if (!isa<SCEVConstant>(StoreEv->getOperand(1))) 370 return false; 371 372 // See if the store can be turned into a memset. 373 374 // If the stored value is a byte-wise value (like i32 -1), then it may be 375 // turned into a memset of i8 -1, assuming that all the consecutive bytes 376 // are stored. A store of i32 0x01020304 can never be turned into a memset, 377 // but it can be turned into memset_pattern if the target supports it. 378 Value *SplatValue = isBytewiseValue(StoredVal); 379 Constant *PatternValue = nullptr; 380 381 // If we're allowed to form a memset, and the stored value would be 382 // acceptable for memset, use it. 383 if (HasMemset && SplatValue && 384 // Verify that the stored value is loop invariant. If not, we can't 385 // promote the memset. 386 CurLoop->isLoopInvariant(SplatValue)) { 387 // It looks like we can use SplatValue. 388 ForMemset = true; 389 return true; 390 } else if (HasMemsetPattern && 391 // Don't create memset_pattern16s with address spaces. 392 StorePtr->getType()->getPointerAddressSpace() == 0 && 393 (PatternValue = getMemSetPatternValue(StoredVal, DL))) { 394 // It looks like we can use PatternValue! 395 ForMemsetPattern = true; 396 return true; 397 } 398 399 // Otherwise, see if the store can be turned into a memcpy. 400 if (HasMemcpy) { 401 // Check to see if the stride matches the size of the store. If so, then we 402 // know that every byte is touched in the loop. 403 APInt Stride = getStoreStride(StoreEv); 404 unsigned StoreSize = getStoreSizeInBytes(SI, DL); 405 if (StoreSize != Stride && StoreSize != -Stride) 406 return false; 407 408 // The store must be feeding a non-volatile load. 409 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); 410 if (!LI || !LI->isSimple()) 411 return false; 412 413 // See if the pointer expression is an AddRec like {base,+,1} on the current 414 // loop, which indicates a strided load. If we have something else, it's a 415 // random load we can't handle. 416 const SCEVAddRecExpr *LoadEv = 417 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 418 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 419 return false; 420 421 // The store and load must share the same stride. 422 if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) 423 return false; 424 425 // Success. This store can be converted into a memcpy. 426 ForMemcpy = true; 427 return true; 428 } 429 // This store can't be transformed into a memset/memcpy. 430 return false; 431 } 432 433 void LoopIdiomRecognize::collectStores(BasicBlock *BB) { 434 StoreRefsForMemset.clear(); 435 StoreRefsForMemsetPattern.clear(); 436 StoreRefsForMemcpy.clear(); 437 for (Instruction &I : *BB) { 438 StoreInst *SI = dyn_cast<StoreInst>(&I); 439 if (!SI) 440 continue; 441 442 bool ForMemset = false; 443 bool ForMemsetPattern = false; 444 bool ForMemcpy = false; 445 // Make sure this is a strided store with a constant stride. 446 if (!isLegalStore(SI, ForMemset, ForMemsetPattern, ForMemcpy)) 447 continue; 448 449 // Save the store locations. 450 if (ForMemset) { 451 // Find the base pointer. 452 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); 453 StoreRefsForMemset[Ptr].push_back(SI); 454 } else if (ForMemsetPattern) { 455 // Find the base pointer. 456 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); 457 StoreRefsForMemsetPattern[Ptr].push_back(SI); 458 } else if (ForMemcpy) 459 StoreRefsForMemcpy.push_back(SI); 460 } 461 } 462 463 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 464 /// with the specified backedge count. This block is known to be in the current 465 /// loop and not in any subloops. 466 bool LoopIdiomRecognize::runOnLoopBlock( 467 BasicBlock *BB, const SCEV *BECount, 468 SmallVectorImpl<BasicBlock *> &ExitBlocks) { 469 // We can only promote stores in this block if they are unconditionally 470 // executed in the loop. For a block to be unconditionally executed, it has 471 // to dominate all the exit blocks of the loop. Verify this now. 472 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 473 if (!DT->dominates(BB, ExitBlocks[i])) 474 return false; 475 476 bool MadeChange = false; 477 // Look for store instructions, which may be optimized to memset/memcpy. 478 collectStores(BB); 479 480 // Look for a single store or sets of stores with a common base, which can be 481 // optimized into a memset (memset_pattern). The latter most commonly happens 482 // with structs and handunrolled loops. 483 for (auto &SL : StoreRefsForMemset) 484 MadeChange |= processLoopStores(SL.second, BECount, true); 485 486 for (auto &SL : StoreRefsForMemsetPattern) 487 MadeChange |= processLoopStores(SL.second, BECount, false); 488 489 // Optimize the store into a memcpy, if it feeds an similarly strided load. 490 for (auto &SI : StoreRefsForMemcpy) 491 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); 492 493 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 494 Instruction *Inst = &*I++; 495 // Look for memset instructions, which may be optimized to a larger memset. 496 if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) { 497 WeakVH InstPtr(&*I); 498 if (!processLoopMemSet(MSI, BECount)) 499 continue; 500 MadeChange = true; 501 502 // If processing the memset invalidated our iterator, start over from the 503 // top of the block. 504 if (!InstPtr) 505 I = BB->begin(); 506 continue; 507 } 508 } 509 510 return MadeChange; 511 } 512 513 /// processLoopStores - See if this store(s) can be promoted to a memset. 514 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, 515 const SCEV *BECount, 516 bool ForMemset) { 517 // Try to find consecutive stores that can be transformed into memsets. 518 SetVector<StoreInst *> Heads, Tails; 519 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 520 521 // Do a quadratic search on all of the given stores and find 522 // all of the pairs of stores that follow each other. 523 SmallVector<unsigned, 16> IndexQueue; 524 for (unsigned i = 0, e = SL.size(); i < e; ++i) { 525 assert(SL[i]->isSimple() && "Expected only non-volatile stores."); 526 527 Value *FirstStoredVal = SL[i]->getValueOperand(); 528 Value *FirstStorePtr = SL[i]->getPointerOperand(); 529 const SCEVAddRecExpr *FirstStoreEv = 530 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); 531 APInt FirstStride = getStoreStride(FirstStoreEv); 532 unsigned FirstStoreSize = getStoreSizeInBytes(SL[i], DL); 533 534 // See if we can optimize just this store in isolation. 535 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { 536 Heads.insert(SL[i]); 537 continue; 538 } 539 540 Value *FirstSplatValue = nullptr; 541 Constant *FirstPatternValue = nullptr; 542 543 if (ForMemset) 544 FirstSplatValue = isBytewiseValue(FirstStoredVal); 545 else 546 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); 547 548 assert((FirstSplatValue || FirstPatternValue) && 549 "Expected either splat value or pattern value."); 550 551 IndexQueue.clear(); 552 // If a store has multiple consecutive store candidates, search Stores 553 // array according to the sequence: from i+1 to e, then from i-1 to 0. 554 // This is because usually pairing with immediate succeeding or preceding 555 // candidate create the best chance to find memset opportunity. 556 unsigned j = 0; 557 for (j = i + 1; j < e; ++j) 558 IndexQueue.push_back(j); 559 for (j = i; j > 0; --j) 560 IndexQueue.push_back(j - 1); 561 562 for (auto &k : IndexQueue) { 563 assert(SL[k]->isSimple() && "Expected only non-volatile stores."); 564 Value *SecondStorePtr = SL[k]->getPointerOperand(); 565 const SCEVAddRecExpr *SecondStoreEv = 566 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); 567 APInt SecondStride = getStoreStride(SecondStoreEv); 568 569 if (FirstStride != SecondStride) 570 continue; 571 572 Value *SecondStoredVal = SL[k]->getValueOperand(); 573 Value *SecondSplatValue = nullptr; 574 Constant *SecondPatternValue = nullptr; 575 576 if (ForMemset) 577 SecondSplatValue = isBytewiseValue(SecondStoredVal); 578 else 579 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); 580 581 assert((SecondSplatValue || SecondPatternValue) && 582 "Expected either splat value or pattern value."); 583 584 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { 585 if (ForMemset) { 586 if (FirstSplatValue != SecondSplatValue) 587 continue; 588 } else { 589 if (FirstPatternValue != SecondPatternValue) 590 continue; 591 } 592 Tails.insert(SL[k]); 593 Heads.insert(SL[i]); 594 ConsecutiveChain[SL[i]] = SL[k]; 595 break; 596 } 597 } 598 } 599 600 // We may run into multiple chains that merge into a single chain. We mark the 601 // stores that we transformed so that we don't visit the same store twice. 602 SmallPtrSet<Value *, 16> TransformedStores; 603 bool Changed = false; 604 605 // For stores that start but don't end a link in the chain: 606 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 607 it != e; ++it) { 608 if (Tails.count(*it)) 609 continue; 610 611 // We found a store instr that starts a chain. Now follow the chain and try 612 // to transform it. 613 SmallPtrSet<Instruction *, 8> AdjacentStores; 614 StoreInst *I = *it; 615 616 StoreInst *HeadStore = I; 617 unsigned StoreSize = 0; 618 619 // Collect the chain into a list. 620 while (Tails.count(I) || Heads.count(I)) { 621 if (TransformedStores.count(I)) 622 break; 623 AdjacentStores.insert(I); 624 625 StoreSize += getStoreSizeInBytes(I, DL); 626 // Move to the next value in the chain. 627 I = ConsecutiveChain[I]; 628 } 629 630 Value *StoredVal = HeadStore->getValueOperand(); 631 Value *StorePtr = HeadStore->getPointerOperand(); 632 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 633 APInt Stride = getStoreStride(StoreEv); 634 635 // Check to see if the stride matches the size of the stores. If so, then 636 // we know that every byte is touched in the loop. 637 if (StoreSize != Stride && StoreSize != -Stride) 638 continue; 639 640 bool NegStride = StoreSize == -Stride; 641 642 if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(), 643 StoredVal, HeadStore, AdjacentStores, StoreEv, 644 BECount, NegStride)) { 645 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); 646 Changed = true; 647 } 648 } 649 650 return Changed; 651 } 652 653 /// processLoopMemSet - See if this memset can be promoted to a large memset. 654 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, 655 const SCEV *BECount) { 656 // We can only handle non-volatile memsets with a constant size. 657 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) 658 return false; 659 660 // If we're not allowed to hack on memset, we fail. 661 if (!HasMemset) 662 return false; 663 664 Value *Pointer = MSI->getDest(); 665 666 // See if the pointer expression is an AddRec like {base,+,1} on the current 667 // loop, which indicates a strided store. If we have something else, it's a 668 // random store we can't handle. 669 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 670 if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine()) 671 return false; 672 673 // Reject memsets that are so large that they overflow an unsigned. 674 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 675 if ((SizeInBytes >> 32) != 0) 676 return false; 677 678 // Check to see if the stride matches the size of the memset. If so, then we 679 // know that every byte is touched in the loop. 680 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 681 if (!ConstStride) 682 return false; 683 684 APInt Stride = ConstStride->getAPInt(); 685 if (SizeInBytes != Stride && SizeInBytes != -Stride) 686 return false; 687 688 // Verify that the memset value is loop invariant. If not, we can't promote 689 // the memset. 690 Value *SplatValue = MSI->getValue(); 691 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) 692 return false; 693 694 SmallPtrSet<Instruction *, 1> MSIs; 695 MSIs.insert(MSI); 696 bool NegStride = SizeInBytes == -Stride; 697 return processLoopStridedStore(Pointer, (unsigned)SizeInBytes, 698 MSI->getAlignment(), SplatValue, MSI, MSIs, Ev, 699 BECount, NegStride, /*IsLoopMemset=*/true); 700 } 701 702 /// mayLoopAccessLocation - Return true if the specified loop might access the 703 /// specified pointer location, which is a loop-strided access. The 'Access' 704 /// argument specifies what the verboten forms of access are (read or write). 705 static bool 706 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, 707 const SCEV *BECount, unsigned StoreSize, 708 AliasAnalysis &AA, 709 SmallPtrSetImpl<Instruction *> &IgnoredStores) { 710 // Get the location that may be stored across the loop. Since the access is 711 // strided positively through memory, we say that the modified location starts 712 // at the pointer and has infinite size. 713 uint64_t AccessSize = MemoryLocation::UnknownSize; 714 715 // If the loop iterates a fixed number of times, we can refine the access size 716 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 717 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 718 AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize; 719 720 // TODO: For this to be really effective, we have to dive into the pointer 721 // operand in the store. Store to &A[i] of 100 will always return may alias 722 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 723 // which will then no-alias a store to &A[100]. 724 MemoryLocation StoreLoc(Ptr, AccessSize); 725 726 for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; 727 ++BI) 728 for (Instruction &I : **BI) 729 if (IgnoredStores.count(&I) == 0 && 730 (AA.getModRefInfo(&I, StoreLoc) & Access)) 731 return true; 732 733 return false; 734 } 735 736 // If we have a negative stride, Start refers to the end of the memory location 737 // we're trying to memset. Therefore, we need to recompute the base pointer, 738 // which is just Start - BECount*Size. 739 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, 740 Type *IntPtr, unsigned StoreSize, 741 ScalarEvolution *SE) { 742 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); 743 if (StoreSize != 1) 744 Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize), 745 SCEV::FlagNUW); 746 return SE->getMinusSCEV(Start, Index); 747 } 748 749 /// processLoopStridedStore - We see a strided store of some value. If we can 750 /// transform this into a memset or memset_pattern in the loop preheader, do so. 751 bool LoopIdiomRecognize::processLoopStridedStore( 752 Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment, 753 Value *StoredVal, Instruction *TheStore, 754 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, 755 const SCEV *BECount, bool NegStride, bool IsLoopMemset) { 756 Value *SplatValue = isBytewiseValue(StoredVal); 757 Constant *PatternValue = nullptr; 758 759 if (!SplatValue) 760 PatternValue = getMemSetPatternValue(StoredVal, DL); 761 762 assert((SplatValue || PatternValue) && 763 "Expected either splat value or pattern value."); 764 765 // The trip count of the loop and the base pointer of the addrec SCEV is 766 // guaranteed to be loop invariant, which means that it should dominate the 767 // header. This allows us to insert code for it in the preheader. 768 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); 769 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 770 IRBuilder<> Builder(Preheader->getTerminator()); 771 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 772 773 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); 774 Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS); 775 776 const SCEV *Start = Ev->getStart(); 777 // Handle negative strided loops. 778 if (NegStride) 779 Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE); 780 781 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 782 // this into a memset in the loop preheader now if we want. However, this 783 // would be unsafe to do if there is anything else in the loop that may read 784 // or write to the aliased location. Check for any overlap by generating the 785 // base pointer and checking the region. 786 Value *BasePtr = 787 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); 788 if (mayLoopAccessLocation(BasePtr, MRI_ModRef, CurLoop, BECount, StoreSize, 789 *AA, Stores)) { 790 Expander.clear(); 791 // If we generated new code for the base pointer, clean up. 792 RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI); 793 return false; 794 } 795 796 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) 797 return false; 798 799 // Okay, everything looks good, insert the memset. 800 801 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to 802 // pointer size if it isn't already. 803 BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr); 804 805 const SCEV *NumBytesS = 806 SE->getAddExpr(BECount, SE->getOne(IntPtr), SCEV::FlagNUW); 807 if (StoreSize != 1) { 808 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), 809 SCEV::FlagNUW); 810 } 811 812 Value *NumBytes = 813 Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); 814 815 CallInst *NewCall; 816 if (SplatValue) { 817 NewCall = 818 Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment); 819 } else { 820 // Everything is emitted in default address space 821 Type *Int8PtrTy = DestInt8PtrTy; 822 823 Module *M = TheStore->getModule(); 824 Value *MSP = 825 M->getOrInsertFunction("memset_pattern16", Builder.getVoidTy(), 826 Int8PtrTy, Int8PtrTy, IntPtr, (void *)nullptr); 827 inferLibFuncAttributes(*M->getFunction("memset_pattern16"), *TLI); 828 829 // Otherwise we should form a memset_pattern16. PatternValue is known to be 830 // an constant array of 16-bytes. Plop the value into a mergable global. 831 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 832 GlobalValue::PrivateLinkage, 833 PatternValue, ".memset_pattern"); 834 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. 835 GV->setAlignment(16); 836 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); 837 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); 838 } 839 840 DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 841 << " from store to: " << *Ev << " at: " << *TheStore << "\n"); 842 NewCall->setDebugLoc(TheStore->getDebugLoc()); 843 844 // Okay, the memset has been formed. Zap the original store and anything that 845 // feeds into it. 846 for (auto *I : Stores) 847 deleteDeadInstruction(I); 848 ++NumMemSet; 849 return true; 850 } 851 852 /// If the stored value is a strided load in the same loop with the same stride 853 /// this may be transformable into a memcpy. This kicks in for stuff like 854 /// for (i) A[i] = B[i]; 855 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, 856 const SCEV *BECount) { 857 assert(SI->isSimple() && "Expected only non-volatile stores."); 858 859 Value *StorePtr = SI->getPointerOperand(); 860 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 861 APInt Stride = getStoreStride(StoreEv); 862 unsigned StoreSize = getStoreSizeInBytes(SI, DL); 863 bool NegStride = StoreSize == -Stride; 864 865 // The store must be feeding a non-volatile load. 866 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 867 assert(LI->isSimple() && "Expected only non-volatile stores."); 868 869 // See if the pointer expression is an AddRec like {base,+,1} on the current 870 // loop, which indicates a strided load. If we have something else, it's a 871 // random load we can't handle. 872 const SCEVAddRecExpr *LoadEv = 873 cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 874 875 // The trip count of the loop and the base pointer of the addrec SCEV is 876 // guaranteed to be loop invariant, which means that it should dominate the 877 // header. This allows us to insert code for it in the preheader. 878 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 879 IRBuilder<> Builder(Preheader->getTerminator()); 880 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 881 882 const SCEV *StrStart = StoreEv->getStart(); 883 unsigned StrAS = SI->getPointerAddressSpace(); 884 Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS); 885 886 // Handle negative strided loops. 887 if (NegStride) 888 StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE); 889 890 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 891 // this into a memcpy in the loop preheader now if we want. However, this 892 // would be unsafe to do if there is anything else in the loop that may read 893 // or write the memory region we're storing to. This includes the load that 894 // feeds the stores. Check for an alias by generating the base address and 895 // checking everything. 896 Value *StoreBasePtr = Expander.expandCodeFor( 897 StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); 898 899 SmallPtrSet<Instruction *, 1> Stores; 900 Stores.insert(SI); 901 if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount, 902 StoreSize, *AA, Stores)) { 903 Expander.clear(); 904 // If we generated new code for the base pointer, clean up. 905 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); 906 return false; 907 } 908 909 const SCEV *LdStart = LoadEv->getStart(); 910 unsigned LdAS = LI->getPointerAddressSpace(); 911 912 // Handle negative strided loops. 913 if (NegStride) 914 LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE); 915 916 // For a memcpy, we have to make sure that the input array is not being 917 // mutated by the loop. 918 Value *LoadBasePtr = Expander.expandCodeFor( 919 LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); 920 921 if (mayLoopAccessLocation(LoadBasePtr, MRI_Mod, CurLoop, BECount, StoreSize, 922 *AA, Stores)) { 923 Expander.clear(); 924 // If we generated new code for the base pointer, clean up. 925 RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI); 926 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); 927 return false; 928 } 929 930 if (avoidLIRForMultiBlockLoop()) 931 return false; 932 933 // Okay, everything is safe, we can transform this! 934 935 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to 936 // pointer size if it isn't already. 937 BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy); 938 939 const SCEV *NumBytesS = 940 SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW); 941 if (StoreSize != 1) 942 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize), 943 SCEV::FlagNUW); 944 945 Value *NumBytes = 946 Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator()); 947 948 CallInst *NewCall = 949 Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes, 950 std::min(SI->getAlignment(), LI->getAlignment())); 951 NewCall->setDebugLoc(SI->getDebugLoc()); 952 953 DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" 954 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" 955 << " from store ptr=" << *StoreEv << " at: " << *SI << "\n"); 956 957 // Okay, the memcpy has been formed. Zap the original store and anything that 958 // feeds into it. 959 deleteDeadInstruction(SI); 960 ++NumMemCpy; 961 return true; 962 } 963 964 // When compiling for codesize we avoid idiom recognition for a multi-block loop 965 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. 966 // 967 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, 968 bool IsLoopMemset) { 969 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { 970 if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) { 971 DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() 972 << " : LIR " << (IsMemset ? "Memset" : "Memcpy") 973 << " avoided: multi-block top-level loop\n"); 974 return true; 975 } 976 } 977 978 return false; 979 } 980 981 bool LoopIdiomRecognize::runOnNoncountableLoop() { 982 return recognizePopcount(); 983 } 984 985 /// Check if the given conditional branch is based on the comparison between 986 /// a variable and zero, and if the variable is non-zero, the control yields to 987 /// the loop entry. If the branch matches the behavior, the variable involved 988 /// in the comparison is returned. This function will be called to see if the 989 /// precondition and postcondition of the loop are in desirable form. 990 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry) { 991 if (!BI || !BI->isConditional()) 992 return nullptr; 993 994 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 995 if (!Cond) 996 return nullptr; 997 998 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 999 if (!CmpZero || !CmpZero->isZero()) 1000 return nullptr; 1001 1002 ICmpInst::Predicate Pred = Cond->getPredicate(); 1003 if ((Pred == ICmpInst::ICMP_NE && BI->getSuccessor(0) == LoopEntry) || 1004 (Pred == ICmpInst::ICMP_EQ && BI->getSuccessor(1) == LoopEntry)) 1005 return Cond->getOperand(0); 1006 1007 return nullptr; 1008 } 1009 1010 /// Return true iff the idiom is detected in the loop. 1011 /// 1012 /// Additionally: 1013 /// 1) \p CntInst is set to the instruction counting the population bit. 1014 /// 2) \p CntPhi is set to the corresponding phi node. 1015 /// 3) \p Var is set to the value whose population bits are being counted. 1016 /// 1017 /// The core idiom we are trying to detect is: 1018 /// \code 1019 /// if (x0 != 0) 1020 /// goto loop-exit // the precondition of the loop 1021 /// cnt0 = init-val; 1022 /// do { 1023 /// x1 = phi (x0, x2); 1024 /// cnt1 = phi(cnt0, cnt2); 1025 /// 1026 /// cnt2 = cnt1 + 1; 1027 /// ... 1028 /// x2 = x1 & (x1 - 1); 1029 /// ... 1030 /// } while(x != 0); 1031 /// 1032 /// loop-exit: 1033 /// \endcode 1034 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, 1035 Instruction *&CntInst, PHINode *&CntPhi, 1036 Value *&Var) { 1037 // step 1: Check to see if the look-back branch match this pattern: 1038 // "if (a!=0) goto loop-entry". 1039 BasicBlock *LoopEntry; 1040 Instruction *DefX2, *CountInst; 1041 Value *VarX1, *VarX0; 1042 PHINode *PhiX, *CountPhi; 1043 1044 DefX2 = CountInst = nullptr; 1045 VarX1 = VarX0 = nullptr; 1046 PhiX = CountPhi = nullptr; 1047 LoopEntry = *(CurLoop->block_begin()); 1048 1049 // step 1: Check if the loop-back branch is in desirable form. 1050 { 1051 if (Value *T = matchCondition( 1052 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1053 DefX2 = dyn_cast<Instruction>(T); 1054 else 1055 return false; 1056 } 1057 1058 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 1059 { 1060 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 1061 return false; 1062 1063 BinaryOperator *SubOneOp; 1064 1065 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 1066 VarX1 = DefX2->getOperand(1); 1067 else { 1068 VarX1 = DefX2->getOperand(0); 1069 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 1070 } 1071 if (!SubOneOp) 1072 return false; 1073 1074 Instruction *SubInst = cast<Instruction>(SubOneOp); 1075 ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1)); 1076 if (!Dec || 1077 !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) || 1078 (SubInst->getOpcode() == Instruction::Add && 1079 Dec->isAllOnesValue()))) { 1080 return false; 1081 } 1082 } 1083 1084 // step 3: Check the recurrence of variable X 1085 { 1086 PhiX = dyn_cast<PHINode>(VarX1); 1087 if (!PhiX || 1088 (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) { 1089 return false; 1090 } 1091 } 1092 1093 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 1094 { 1095 CountInst = nullptr; 1096 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1097 IterE = LoopEntry->end(); 1098 Iter != IterE; Iter++) { 1099 Instruction *Inst = &*Iter; 1100 if (Inst->getOpcode() != Instruction::Add) 1101 continue; 1102 1103 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1104 if (!Inc || !Inc->isOne()) 1105 continue; 1106 1107 PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0)); 1108 if (!Phi || Phi->getParent() != LoopEntry) 1109 continue; 1110 1111 // Check if the result of the instruction is live of the loop. 1112 bool LiveOutLoop = false; 1113 for (User *U : Inst->users()) { 1114 if ((cast<Instruction>(U))->getParent() != LoopEntry) { 1115 LiveOutLoop = true; 1116 break; 1117 } 1118 } 1119 1120 if (LiveOutLoop) { 1121 CountInst = Inst; 1122 CountPhi = Phi; 1123 break; 1124 } 1125 } 1126 1127 if (!CountInst) 1128 return false; 1129 } 1130 1131 // step 5: check if the precondition is in this form: 1132 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 1133 { 1134 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1135 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); 1136 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 1137 return false; 1138 1139 CntInst = CountInst; 1140 CntPhi = CountPhi; 1141 Var = T; 1142 } 1143 1144 return true; 1145 } 1146 1147 /// Recognizes a population count idiom in a non-countable loop. 1148 /// 1149 /// If detected, transforms the relevant code to issue the popcount intrinsic 1150 /// function call, and returns true; otherwise, returns false. 1151 bool LoopIdiomRecognize::recognizePopcount() { 1152 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 1153 return false; 1154 1155 // Counting population are usually conducted by few arithmetic instructions. 1156 // Such instructions can be easily "absorbed" by vacant slots in a 1157 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 1158 // in a compact loop. 1159 1160 // Give up if the loop has multiple blocks or multiple backedges. 1161 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1162 return false; 1163 1164 BasicBlock *LoopBody = *(CurLoop->block_begin()); 1165 if (LoopBody->size() >= 20) { 1166 // The loop is too big, bail out. 1167 return false; 1168 } 1169 1170 // It should have a preheader containing nothing but an unconditional branch. 1171 BasicBlock *PH = CurLoop->getLoopPreheader(); 1172 if (!PH || &PH->front() != PH->getTerminator()) 1173 return false; 1174 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); 1175 if (!EntryBI || EntryBI->isConditional()) 1176 return false; 1177 1178 // It should have a precondition block where the generated popcount instrinsic 1179 // function can be inserted. 1180 auto *PreCondBB = PH->getSinglePredecessor(); 1181 if (!PreCondBB) 1182 return false; 1183 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1184 if (!PreCondBI || PreCondBI->isUnconditional()) 1185 return false; 1186 1187 Instruction *CntInst; 1188 PHINode *CntPhi; 1189 Value *Val; 1190 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) 1191 return false; 1192 1193 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); 1194 return true; 1195 } 1196 1197 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1198 const DebugLoc &DL) { 1199 Value *Ops[] = {Val}; 1200 Type *Tys[] = {Val->getType()}; 1201 1202 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1203 Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); 1204 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1205 CI->setDebugLoc(DL); 1206 1207 return CI; 1208 } 1209 1210 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, 1211 Instruction *CntInst, 1212 PHINode *CntPhi, Value *Var) { 1213 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 1214 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1215 const DebugLoc DL = CntInst->getDebugLoc(); 1216 1217 // Assuming before transformation, the loop is following: 1218 // if (x) // the precondition 1219 // do { cnt++; x &= x - 1; } while(x); 1220 1221 // Step 1: Insert the ctpop instruction at the end of the precondition block 1222 IRBuilder<> Builder(PreCondBr); 1223 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 1224 { 1225 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 1226 NewCount = PopCntZext = 1227 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 1228 1229 if (NewCount != PopCnt) 1230 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1231 1232 // TripCnt is exactly the number of iterations the loop has 1233 TripCnt = NewCount; 1234 1235 // If the population counter's initial value is not zero, insert Add Inst. 1236 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 1237 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 1238 if (!InitConst || !InitConst->isZero()) { 1239 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 1240 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1241 } 1242 } 1243 1244 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to 1245 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic 1246 // function would be partial dead code, and downstream passes will drag 1247 // it back from the precondition block to the preheader. 1248 { 1249 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 1250 1251 Value *Opnd0 = PopCntZext; 1252 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 1253 if (PreCond->getOperand(0) != Var) 1254 std::swap(Opnd0, Opnd1); 1255 1256 ICmpInst *NewPreCond = cast<ICmpInst>( 1257 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 1258 PreCondBr->setCondition(NewPreCond); 1259 1260 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); 1261 } 1262 1263 // Step 3: Note that the population count is exactly the trip count of the 1264 // loop in question, which enable us to to convert the loop from noncountable 1265 // loop into a countable one. The benefit is twofold: 1266 // 1267 // - If the loop only counts population, the entire loop becomes dead after 1268 // the transformation. It is a lot easier to prove a countable loop dead 1269 // than to prove a noncountable one. (In some C dialects, an infinite loop 1270 // isn't dead even if it computes nothing useful. In general, DCE needs 1271 // to prove a noncountable loop finite before safely delete it.) 1272 // 1273 // - If the loop also performs something else, it remains alive. 1274 // Since it is transformed to countable form, it can be aggressively 1275 // optimized by some optimizations which are in general not applicable 1276 // to a noncountable loop. 1277 // 1278 // After this step, this loop (conceptually) would look like following: 1279 // newcnt = __builtin_ctpop(x); 1280 // t = newcnt; 1281 // if (x) 1282 // do { cnt++; x &= x-1; t--) } while (t > 0); 1283 BasicBlock *Body = *(CurLoop->block_begin()); 1284 { 1285 auto *LbBr = dyn_cast<BranchInst>(Body->getTerminator()); 1286 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 1287 Type *Ty = TripCnt->getType(); 1288 1289 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 1290 1291 Builder.SetInsertPoint(LbCond); 1292 Instruction *TcDec = cast<Instruction>( 1293 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 1294 "tcdec", false, true)); 1295 1296 TcPhi->addIncoming(TripCnt, PreHead); 1297 TcPhi->addIncoming(TcDec, Body); 1298 1299 CmpInst::Predicate Pred = 1300 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 1301 LbCond->setPredicate(Pred); 1302 LbCond->setOperand(0, TcDec); 1303 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 1304 } 1305 1306 // Step 4: All the references to the original population counter outside 1307 // the loop are replaced with the NewCount -- the value returned from 1308 // __builtin_ctpop(). 1309 CntInst->replaceUsesOutsideBlock(NewCount, Body); 1310 1311 // step 5: Forget the "non-computable" trip-count SCEV associated with the 1312 // loop. The loop would otherwise not be deleted even if it becomes empty. 1313 SE->forgetLoop(CurLoop); 1314 } 1315