1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements an idiom recognizer that transforms simple loops into a 11 // non-loop form. In cases that this kicks in, it can be a significant 12 // performance win. 13 // 14 // If compiling for code size we avoid idiom recognition if the resulting 15 // code could be larger than the code for the original loop. One way this could 16 // happen is if the loop is not removable after idiom recognition due to the 17 // presence of non-idiom instructions. The initial implementation of the 18 // heuristics applies to idioms in multi-block loops. 19 // 20 //===----------------------------------------------------------------------===// 21 // 22 // TODO List: 23 // 24 // Future loop memory idioms to recognize: 25 // memcmp, memmove, strlen, etc. 26 // Future floating point idioms to recognize in -ffast-math mode: 27 // fpowi 28 // Future integer operation idioms to recognize: 29 // ctpop, ctlz, cttz 30 // 31 // Beware that isel's default lowering for ctpop is highly inefficient for 32 // i64 and larger types when i64 is legal and the value has few bits set. It 33 // would be good to enhance isel to emit a loop for ctpop in this case. 34 // 35 // This could recognize common matrix multiplies and dot product idioms and 36 // replace them with calls to BLAS (if linked in??). 37 // 38 //===----------------------------------------------------------------------===// 39 40 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" 41 #include "llvm/ADT/APInt.h" 42 #include "llvm/ADT/ArrayRef.h" 43 #include "llvm/ADT/DenseMap.h" 44 #include "llvm/ADT/MapVector.h" 45 #include "llvm/ADT/SetVector.h" 46 #include "llvm/ADT/SmallPtrSet.h" 47 #include "llvm/ADT/SmallVector.h" 48 #include "llvm/ADT/Statistic.h" 49 #include "llvm/ADT/StringRef.h" 50 #include "llvm/Analysis/AliasAnalysis.h" 51 #include "llvm/Analysis/LoopAccessAnalysis.h" 52 #include "llvm/Analysis/LoopInfo.h" 53 #include "llvm/Analysis/LoopPass.h" 54 #include "llvm/Analysis/MemoryLocation.h" 55 #include "llvm/Analysis/ScalarEvolution.h" 56 #include "llvm/Analysis/ScalarEvolutionExpander.h" 57 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 58 #include "llvm/Analysis/TargetLibraryInfo.h" 59 #include "llvm/Analysis/TargetTransformInfo.h" 60 #include "llvm/Analysis/ValueTracking.h" 61 #include "llvm/IR/Attributes.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugLoc.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Dominators.h" 69 #include "llvm/IR/GlobalValue.h" 70 #include "llvm/IR/GlobalVariable.h" 71 #include "llvm/IR/IRBuilder.h" 72 #include "llvm/IR/InstrTypes.h" 73 #include "llvm/IR/Instruction.h" 74 #include "llvm/IR/Instructions.h" 75 #include "llvm/IR/IntrinsicInst.h" 76 #include "llvm/IR/Intrinsics.h" 77 #include "llvm/IR/LLVMContext.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/PassManager.h" 80 #include "llvm/IR/Type.h" 81 #include "llvm/IR/User.h" 82 #include "llvm/IR/Value.h" 83 #include "llvm/IR/ValueHandle.h" 84 #include "llvm/Pass.h" 85 #include "llvm/Support/Casting.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Scalar.h" 90 #include "llvm/Transforms/Utils/BuildLibCalls.h" 91 #include "llvm/Transforms/Utils/Local.h" 92 #include "llvm/Transforms/Utils/LoopUtils.h" 93 #include <algorithm> 94 #include <cassert> 95 #include <cstdint> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 101 #define DEBUG_TYPE "loop-idiom" 102 103 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 104 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 105 106 static cl::opt<bool> UseLIRCodeSizeHeurs( 107 "use-lir-code-size-heurs", 108 cl::desc("Use loop idiom recognition code size heuristics when compiling" 109 "with -Os/-Oz"), 110 cl::init(true), cl::Hidden); 111 112 namespace { 113 114 class LoopIdiomRecognize { 115 Loop *CurLoop = nullptr; 116 AliasAnalysis *AA; 117 DominatorTree *DT; 118 LoopInfo *LI; 119 ScalarEvolution *SE; 120 TargetLibraryInfo *TLI; 121 const TargetTransformInfo *TTI; 122 const DataLayout *DL; 123 bool ApplyCodeSizeHeuristics; 124 125 public: 126 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, 127 LoopInfo *LI, ScalarEvolution *SE, 128 TargetLibraryInfo *TLI, 129 const TargetTransformInfo *TTI, 130 const DataLayout *DL) 131 : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL) {} 132 133 bool runOnLoop(Loop *L); 134 135 private: 136 using StoreList = SmallVector<StoreInst *, 8>; 137 using StoreListMap = MapVector<Value *, StoreList>; 138 139 StoreListMap StoreRefsForMemset; 140 StoreListMap StoreRefsForMemsetPattern; 141 StoreList StoreRefsForMemcpy; 142 bool HasMemset; 143 bool HasMemsetPattern; 144 bool HasMemcpy; 145 146 /// Return code for isLegalStore() 147 enum LegalStoreKind { 148 None = 0, 149 Memset, 150 MemsetPattern, 151 Memcpy, 152 UnorderedAtomicMemcpy, 153 DontUse // Dummy retval never to be used. Allows catching errors in retval 154 // handling. 155 }; 156 157 /// \name Countable Loop Idiom Handling 158 /// @{ 159 160 bool runOnCountableLoop(); 161 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 162 SmallVectorImpl<BasicBlock *> &ExitBlocks); 163 164 void collectStores(BasicBlock *BB); 165 LegalStoreKind isLegalStore(StoreInst *SI); 166 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, 167 bool ForMemset); 168 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 169 170 bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, 171 unsigned StoreAlignment, Value *StoredVal, 172 Instruction *TheStore, 173 SmallPtrSetImpl<Instruction *> &Stores, 174 const SCEVAddRecExpr *Ev, const SCEV *BECount, 175 bool NegStride, bool IsLoopMemset = false); 176 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); 177 bool avoidLIRForMultiBlockLoop(bool IsMemset = false, 178 bool IsLoopMemset = false); 179 180 /// @} 181 /// \name Noncountable Loop Idiom Handling 182 /// @{ 183 184 bool runOnNoncountableLoop(); 185 186 bool recognizePopcount(); 187 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, 188 PHINode *CntPhi, Value *Var); 189 bool recognizeAndInsertCTLZ(); 190 void transformLoopToCountable(BasicBlock *PreCondBB, Instruction *CntInst, 191 PHINode *CntPhi, Value *Var, const DebugLoc DL, 192 bool ZeroCheck, bool IsCntPhiUsedOutsideLoop); 193 194 /// @} 195 }; 196 197 class LoopIdiomRecognizeLegacyPass : public LoopPass { 198 public: 199 static char ID; 200 201 explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) { 202 initializeLoopIdiomRecognizeLegacyPassPass( 203 *PassRegistry::getPassRegistry()); 204 } 205 206 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 207 if (skipLoop(L)) 208 return false; 209 210 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 211 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 212 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 213 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 214 TargetLibraryInfo *TLI = 215 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 216 const TargetTransformInfo *TTI = 217 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 218 *L->getHeader()->getParent()); 219 const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout(); 220 221 LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL); 222 return LIR.runOnLoop(L); 223 } 224 225 /// This transformation requires natural loop information & requires that 226 /// loop preheaders be inserted into the CFG. 227 void getAnalysisUsage(AnalysisUsage &AU) const override { 228 AU.addRequired<TargetLibraryInfoWrapperPass>(); 229 AU.addRequired<TargetTransformInfoWrapperPass>(); 230 getLoopAnalysisUsage(AU); 231 } 232 }; 233 234 } // end anonymous namespace 235 236 char LoopIdiomRecognizeLegacyPass::ID = 0; 237 238 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, 239 LoopStandardAnalysisResults &AR, 240 LPMUpdater &) { 241 const auto *DL = &L.getHeader()->getModule()->getDataLayout(); 242 243 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL); 244 if (!LIR.runOnLoop(&L)) 245 return PreservedAnalyses::all(); 246 247 return getLoopPassPreservedAnalyses(); 248 } 249 250 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom", 251 "Recognize loop idioms", false, false) 252 INITIALIZE_PASS_DEPENDENCY(LoopPass) 253 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 254 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 255 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom", 256 "Recognize loop idioms", false, false) 257 258 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); } 259 260 static void deleteDeadInstruction(Instruction *I) { 261 I->replaceAllUsesWith(UndefValue::get(I->getType())); 262 I->eraseFromParent(); 263 } 264 265 //===----------------------------------------------------------------------===// 266 // 267 // Implementation of LoopIdiomRecognize 268 // 269 //===----------------------------------------------------------------------===// 270 271 bool LoopIdiomRecognize::runOnLoop(Loop *L) { 272 CurLoop = L; 273 // If the loop could not be converted to canonical form, it must have an 274 // indirectbr in it, just give up. 275 if (!L->getLoopPreheader()) 276 return false; 277 278 // Disable loop idiom recognition if the function's name is a common idiom. 279 StringRef Name = L->getHeader()->getParent()->getName(); 280 if (Name == "memset" || Name == "memcpy") 281 return false; 282 283 // Determine if code size heuristics need to be applied. 284 ApplyCodeSizeHeuristics = 285 L->getHeader()->getParent()->optForSize() && UseLIRCodeSizeHeurs; 286 287 HasMemset = TLI->has(LibFunc_memset); 288 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); 289 HasMemcpy = TLI->has(LibFunc_memcpy); 290 291 if (HasMemset || HasMemsetPattern || HasMemcpy) 292 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 293 return runOnCountableLoop(); 294 295 return runOnNoncountableLoop(); 296 } 297 298 bool LoopIdiomRecognize::runOnCountableLoop() { 299 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 300 assert(!isa<SCEVCouldNotCompute>(BECount) && 301 "runOnCountableLoop() called on a loop without a predictable" 302 "backedge-taken count"); 303 304 // If this loop executes exactly one time, then it should be peeled, not 305 // optimized by this pass. 306 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 307 if (BECst->getAPInt() == 0) 308 return false; 309 310 SmallVector<BasicBlock *, 8> ExitBlocks; 311 CurLoop->getUniqueExitBlocks(ExitBlocks); 312 313 DEBUG(dbgs() << "loop-idiom Scanning: F[" 314 << CurLoop->getHeader()->getParent()->getName() << "] Loop %" 315 << CurLoop->getHeader()->getName() << "\n"); 316 317 bool MadeChange = false; 318 319 // The following transforms hoist stores/memsets into the loop pre-header. 320 // Give up if the loop has instructions may throw. 321 LoopSafetyInfo SafetyInfo; 322 computeLoopSafetyInfo(&SafetyInfo, CurLoop); 323 if (SafetyInfo.MayThrow) 324 return MadeChange; 325 326 // Scan all the blocks in the loop that are not in subloops. 327 for (auto *BB : CurLoop->getBlocks()) { 328 // Ignore blocks in subloops. 329 if (LI->getLoopFor(BB) != CurLoop) 330 continue; 331 332 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); 333 } 334 return MadeChange; 335 } 336 337 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { 338 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); 339 return ConstStride->getAPInt(); 340 } 341 342 /// getMemSetPatternValue - If a strided store of the specified value is safe to 343 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 344 /// be passed in. Otherwise, return null. 345 /// 346 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 347 /// just replicate their input array and then pass on to memset_pattern16. 348 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { 349 // If the value isn't a constant, we can't promote it to being in a constant 350 // array. We could theoretically do a store to an alloca or something, but 351 // that doesn't seem worthwhile. 352 Constant *C = dyn_cast<Constant>(V); 353 if (!C) 354 return nullptr; 355 356 // Only handle simple values that are a power of two bytes in size. 357 uint64_t Size = DL->getTypeSizeInBits(V->getType()); 358 if (Size == 0 || (Size & 7) || (Size & (Size - 1))) 359 return nullptr; 360 361 // Don't care enough about darwin/ppc to implement this. 362 if (DL->isBigEndian()) 363 return nullptr; 364 365 // Convert to size in bytes. 366 Size /= 8; 367 368 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 369 // if the top and bottom are the same (e.g. for vectors and large integers). 370 if (Size > 16) 371 return nullptr; 372 373 // If the constant is exactly 16 bytes, just use it. 374 if (Size == 16) 375 return C; 376 377 // Otherwise, we'll use an array of the constants. 378 unsigned ArraySize = 16 / Size; 379 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 380 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); 381 } 382 383 LoopIdiomRecognize::LegalStoreKind 384 LoopIdiomRecognize::isLegalStore(StoreInst *SI) { 385 // Don't touch volatile stores. 386 if (SI->isVolatile()) 387 return LegalStoreKind::None; 388 // We only want simple or unordered-atomic stores. 389 if (!SI->isUnordered()) 390 return LegalStoreKind::None; 391 392 // Don't convert stores of non-integral pointer types to memsets (which stores 393 // integers). 394 if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType())) 395 return LegalStoreKind::None; 396 397 // Avoid merging nontemporal stores. 398 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 399 return LegalStoreKind::None; 400 401 Value *StoredVal = SI->getValueOperand(); 402 Value *StorePtr = SI->getPointerOperand(); 403 404 // Reject stores that are so large that they overflow an unsigned. 405 uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); 406 if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) 407 return LegalStoreKind::None; 408 409 // See if the pointer expression is an AddRec like {base,+,1} on the current 410 // loop, which indicates a strided store. If we have something else, it's a 411 // random store we can't handle. 412 const SCEVAddRecExpr *StoreEv = 413 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 414 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 415 return LegalStoreKind::None; 416 417 // Check to see if we have a constant stride. 418 if (!isa<SCEVConstant>(StoreEv->getOperand(1))) 419 return LegalStoreKind::None; 420 421 // See if the store can be turned into a memset. 422 423 // If the stored value is a byte-wise value (like i32 -1), then it may be 424 // turned into a memset of i8 -1, assuming that all the consecutive bytes 425 // are stored. A store of i32 0x01020304 can never be turned into a memset, 426 // but it can be turned into memset_pattern if the target supports it. 427 Value *SplatValue = isBytewiseValue(StoredVal); 428 Constant *PatternValue = nullptr; 429 430 // Note: memset and memset_pattern on unordered-atomic is yet not supported 431 bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); 432 433 // If we're allowed to form a memset, and the stored value would be 434 // acceptable for memset, use it. 435 if (!UnorderedAtomic && HasMemset && SplatValue && 436 // Verify that the stored value is loop invariant. If not, we can't 437 // promote the memset. 438 CurLoop->isLoopInvariant(SplatValue)) { 439 // It looks like we can use SplatValue. 440 return LegalStoreKind::Memset; 441 } else if (!UnorderedAtomic && HasMemsetPattern && 442 // Don't create memset_pattern16s with address spaces. 443 StorePtr->getType()->getPointerAddressSpace() == 0 && 444 (PatternValue = getMemSetPatternValue(StoredVal, DL))) { 445 // It looks like we can use PatternValue! 446 return LegalStoreKind::MemsetPattern; 447 } 448 449 // Otherwise, see if the store can be turned into a memcpy. 450 if (HasMemcpy) { 451 // Check to see if the stride matches the size of the store. If so, then we 452 // know that every byte is touched in the loop. 453 APInt Stride = getStoreStride(StoreEv); 454 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 455 if (StoreSize != Stride && StoreSize != -Stride) 456 return LegalStoreKind::None; 457 458 // The store must be feeding a non-volatile load. 459 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); 460 461 // Only allow non-volatile loads 462 if (!LI || LI->isVolatile()) 463 return LegalStoreKind::None; 464 // Only allow simple or unordered-atomic loads 465 if (!LI->isUnordered()) 466 return LegalStoreKind::None; 467 468 // See if the pointer expression is an AddRec like {base,+,1} on the current 469 // loop, which indicates a strided load. If we have something else, it's a 470 // random load we can't handle. 471 const SCEVAddRecExpr *LoadEv = 472 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 473 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 474 return LegalStoreKind::None; 475 476 // The store and load must share the same stride. 477 if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) 478 return LegalStoreKind::None; 479 480 // Success. This store can be converted into a memcpy. 481 UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); 482 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy 483 : LegalStoreKind::Memcpy; 484 } 485 // This store can't be transformed into a memset/memcpy. 486 return LegalStoreKind::None; 487 } 488 489 void LoopIdiomRecognize::collectStores(BasicBlock *BB) { 490 StoreRefsForMemset.clear(); 491 StoreRefsForMemsetPattern.clear(); 492 StoreRefsForMemcpy.clear(); 493 for (Instruction &I : *BB) { 494 StoreInst *SI = dyn_cast<StoreInst>(&I); 495 if (!SI) 496 continue; 497 498 // Make sure this is a strided store with a constant stride. 499 switch (isLegalStore(SI)) { 500 case LegalStoreKind::None: 501 // Nothing to do 502 break; 503 case LegalStoreKind::Memset: { 504 // Find the base pointer. 505 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); 506 StoreRefsForMemset[Ptr].push_back(SI); 507 } break; 508 case LegalStoreKind::MemsetPattern: { 509 // Find the base pointer. 510 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); 511 StoreRefsForMemsetPattern[Ptr].push_back(SI); 512 } break; 513 case LegalStoreKind::Memcpy: 514 case LegalStoreKind::UnorderedAtomicMemcpy: 515 StoreRefsForMemcpy.push_back(SI); 516 break; 517 default: 518 assert(false && "unhandled return value"); 519 break; 520 } 521 } 522 } 523 524 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 525 /// with the specified backedge count. This block is known to be in the current 526 /// loop and not in any subloops. 527 bool LoopIdiomRecognize::runOnLoopBlock( 528 BasicBlock *BB, const SCEV *BECount, 529 SmallVectorImpl<BasicBlock *> &ExitBlocks) { 530 // We can only promote stores in this block if they are unconditionally 531 // executed in the loop. For a block to be unconditionally executed, it has 532 // to dominate all the exit blocks of the loop. Verify this now. 533 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 534 if (!DT->dominates(BB, ExitBlocks[i])) 535 return false; 536 537 bool MadeChange = false; 538 // Look for store instructions, which may be optimized to memset/memcpy. 539 collectStores(BB); 540 541 // Look for a single store or sets of stores with a common base, which can be 542 // optimized into a memset (memset_pattern). The latter most commonly happens 543 // with structs and handunrolled loops. 544 for (auto &SL : StoreRefsForMemset) 545 MadeChange |= processLoopStores(SL.second, BECount, true); 546 547 for (auto &SL : StoreRefsForMemsetPattern) 548 MadeChange |= processLoopStores(SL.second, BECount, false); 549 550 // Optimize the store into a memcpy, if it feeds an similarly strided load. 551 for (auto &SI : StoreRefsForMemcpy) 552 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); 553 554 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 555 Instruction *Inst = &*I++; 556 // Look for memset instructions, which may be optimized to a larger memset. 557 if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) { 558 WeakTrackingVH InstPtr(&*I); 559 if (!processLoopMemSet(MSI, BECount)) 560 continue; 561 MadeChange = true; 562 563 // If processing the memset invalidated our iterator, start over from the 564 // top of the block. 565 if (!InstPtr) 566 I = BB->begin(); 567 continue; 568 } 569 } 570 571 return MadeChange; 572 } 573 574 /// processLoopStores - See if this store(s) can be promoted to a memset. 575 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, 576 const SCEV *BECount, 577 bool ForMemset) { 578 // Try to find consecutive stores that can be transformed into memsets. 579 SetVector<StoreInst *> Heads, Tails; 580 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 581 582 // Do a quadratic search on all of the given stores and find 583 // all of the pairs of stores that follow each other. 584 SmallVector<unsigned, 16> IndexQueue; 585 for (unsigned i = 0, e = SL.size(); i < e; ++i) { 586 assert(SL[i]->isSimple() && "Expected only non-volatile stores."); 587 588 Value *FirstStoredVal = SL[i]->getValueOperand(); 589 Value *FirstStorePtr = SL[i]->getPointerOperand(); 590 const SCEVAddRecExpr *FirstStoreEv = 591 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); 592 APInt FirstStride = getStoreStride(FirstStoreEv); 593 unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); 594 595 // See if we can optimize just this store in isolation. 596 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { 597 Heads.insert(SL[i]); 598 continue; 599 } 600 601 Value *FirstSplatValue = nullptr; 602 Constant *FirstPatternValue = nullptr; 603 604 if (ForMemset) 605 FirstSplatValue = isBytewiseValue(FirstStoredVal); 606 else 607 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); 608 609 assert((FirstSplatValue || FirstPatternValue) && 610 "Expected either splat value or pattern value."); 611 612 IndexQueue.clear(); 613 // If a store has multiple consecutive store candidates, search Stores 614 // array according to the sequence: from i+1 to e, then from i-1 to 0. 615 // This is because usually pairing with immediate succeeding or preceding 616 // candidate create the best chance to find memset opportunity. 617 unsigned j = 0; 618 for (j = i + 1; j < e; ++j) 619 IndexQueue.push_back(j); 620 for (j = i; j > 0; --j) 621 IndexQueue.push_back(j - 1); 622 623 for (auto &k : IndexQueue) { 624 assert(SL[k]->isSimple() && "Expected only non-volatile stores."); 625 Value *SecondStorePtr = SL[k]->getPointerOperand(); 626 const SCEVAddRecExpr *SecondStoreEv = 627 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); 628 APInt SecondStride = getStoreStride(SecondStoreEv); 629 630 if (FirstStride != SecondStride) 631 continue; 632 633 Value *SecondStoredVal = SL[k]->getValueOperand(); 634 Value *SecondSplatValue = nullptr; 635 Constant *SecondPatternValue = nullptr; 636 637 if (ForMemset) 638 SecondSplatValue = isBytewiseValue(SecondStoredVal); 639 else 640 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); 641 642 assert((SecondSplatValue || SecondPatternValue) && 643 "Expected either splat value or pattern value."); 644 645 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { 646 if (ForMemset) { 647 if (FirstSplatValue != SecondSplatValue) 648 continue; 649 } else { 650 if (FirstPatternValue != SecondPatternValue) 651 continue; 652 } 653 Tails.insert(SL[k]); 654 Heads.insert(SL[i]); 655 ConsecutiveChain[SL[i]] = SL[k]; 656 break; 657 } 658 } 659 } 660 661 // We may run into multiple chains that merge into a single chain. We mark the 662 // stores that we transformed so that we don't visit the same store twice. 663 SmallPtrSet<Value *, 16> TransformedStores; 664 bool Changed = false; 665 666 // For stores that start but don't end a link in the chain: 667 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 668 it != e; ++it) { 669 if (Tails.count(*it)) 670 continue; 671 672 // We found a store instr that starts a chain. Now follow the chain and try 673 // to transform it. 674 SmallPtrSet<Instruction *, 8> AdjacentStores; 675 StoreInst *I = *it; 676 677 StoreInst *HeadStore = I; 678 unsigned StoreSize = 0; 679 680 // Collect the chain into a list. 681 while (Tails.count(I) || Heads.count(I)) { 682 if (TransformedStores.count(I)) 683 break; 684 AdjacentStores.insert(I); 685 686 StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); 687 // Move to the next value in the chain. 688 I = ConsecutiveChain[I]; 689 } 690 691 Value *StoredVal = HeadStore->getValueOperand(); 692 Value *StorePtr = HeadStore->getPointerOperand(); 693 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 694 APInt Stride = getStoreStride(StoreEv); 695 696 // Check to see if the stride matches the size of the stores. If so, then 697 // we know that every byte is touched in the loop. 698 if (StoreSize != Stride && StoreSize != -Stride) 699 continue; 700 701 bool NegStride = StoreSize == -Stride; 702 703 if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(), 704 StoredVal, HeadStore, AdjacentStores, StoreEv, 705 BECount, NegStride)) { 706 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); 707 Changed = true; 708 } 709 } 710 711 return Changed; 712 } 713 714 /// processLoopMemSet - See if this memset can be promoted to a large memset. 715 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, 716 const SCEV *BECount) { 717 // We can only handle non-volatile memsets with a constant size. 718 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) 719 return false; 720 721 // If we're not allowed to hack on memset, we fail. 722 if (!HasMemset) 723 return false; 724 725 Value *Pointer = MSI->getDest(); 726 727 // See if the pointer expression is an AddRec like {base,+,1} on the current 728 // loop, which indicates a strided store. If we have something else, it's a 729 // random store we can't handle. 730 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 731 if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine()) 732 return false; 733 734 // Reject memsets that are so large that they overflow an unsigned. 735 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 736 if ((SizeInBytes >> 32) != 0) 737 return false; 738 739 // Check to see if the stride matches the size of the memset. If so, then we 740 // know that every byte is touched in the loop. 741 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 742 if (!ConstStride) 743 return false; 744 745 APInt Stride = ConstStride->getAPInt(); 746 if (SizeInBytes != Stride && SizeInBytes != -Stride) 747 return false; 748 749 // Verify that the memset value is loop invariant. If not, we can't promote 750 // the memset. 751 Value *SplatValue = MSI->getValue(); 752 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) 753 return false; 754 755 SmallPtrSet<Instruction *, 1> MSIs; 756 MSIs.insert(MSI); 757 bool NegStride = SizeInBytes == -Stride; 758 return processLoopStridedStore(Pointer, (unsigned)SizeInBytes, 759 MSI->getAlignment(), SplatValue, MSI, MSIs, Ev, 760 BECount, NegStride, /*IsLoopMemset=*/true); 761 } 762 763 /// mayLoopAccessLocation - Return true if the specified loop might access the 764 /// specified pointer location, which is a loop-strided access. The 'Access' 765 /// argument specifies what the verboten forms of access are (read or write). 766 static bool 767 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, 768 const SCEV *BECount, unsigned StoreSize, 769 AliasAnalysis &AA, 770 SmallPtrSetImpl<Instruction *> &IgnoredStores) { 771 // Get the location that may be stored across the loop. Since the access is 772 // strided positively through memory, we say that the modified location starts 773 // at the pointer and has infinite size. 774 uint64_t AccessSize = MemoryLocation::UnknownSize; 775 776 // If the loop iterates a fixed number of times, we can refine the access size 777 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 778 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 779 AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize; 780 781 // TODO: For this to be really effective, we have to dive into the pointer 782 // operand in the store. Store to &A[i] of 100 will always return may alias 783 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 784 // which will then no-alias a store to &A[100]. 785 MemoryLocation StoreLoc(Ptr, AccessSize); 786 787 for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; 788 ++BI) 789 for (Instruction &I : **BI) 790 if (IgnoredStores.count(&I) == 0 && 791 isModOrRefSet( 792 intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))) 793 return true; 794 795 return false; 796 } 797 798 // If we have a negative stride, Start refers to the end of the memory location 799 // we're trying to memset. Therefore, we need to recompute the base pointer, 800 // which is just Start - BECount*Size. 801 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, 802 Type *IntPtr, unsigned StoreSize, 803 ScalarEvolution *SE) { 804 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); 805 if (StoreSize != 1) 806 Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize), 807 SCEV::FlagNUW); 808 return SE->getMinusSCEV(Start, Index); 809 } 810 811 /// Compute the number of bytes as a SCEV from the backedge taken count. 812 /// 813 /// This also maps the SCEV into the provided type and tries to handle the 814 /// computation in a way that will fold cleanly. 815 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, 816 unsigned StoreSize, Loop *CurLoop, 817 const DataLayout *DL, ScalarEvolution *SE) { 818 const SCEV *NumBytesS; 819 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to 820 // pointer size if it isn't already. 821 // 822 // If we're going to need to zero extend the BE count, check if we can add 823 // one to it prior to zero extending without overflow. Provided this is safe, 824 // it allows better simplification of the +1. 825 if (DL->getTypeSizeInBits(BECount->getType()) < 826 DL->getTypeSizeInBits(IntPtr) && 827 SE->isLoopEntryGuardedByCond( 828 CurLoop, ICmpInst::ICMP_NE, BECount, 829 SE->getNegativeSCEV(SE->getOne(BECount->getType())))) { 830 NumBytesS = SE->getZeroExtendExpr( 831 SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW), 832 IntPtr); 833 } else { 834 NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr), 835 SE->getOne(IntPtr), SCEV::FlagNUW); 836 } 837 838 // And scale it based on the store size. 839 if (StoreSize != 1) { 840 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), 841 SCEV::FlagNUW); 842 } 843 return NumBytesS; 844 } 845 846 /// processLoopStridedStore - We see a strided store of some value. If we can 847 /// transform this into a memset or memset_pattern in the loop preheader, do so. 848 bool LoopIdiomRecognize::processLoopStridedStore( 849 Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment, 850 Value *StoredVal, Instruction *TheStore, 851 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, 852 const SCEV *BECount, bool NegStride, bool IsLoopMemset) { 853 Value *SplatValue = isBytewiseValue(StoredVal); 854 Constant *PatternValue = nullptr; 855 856 if (!SplatValue) 857 PatternValue = getMemSetPatternValue(StoredVal, DL); 858 859 assert((SplatValue || PatternValue) && 860 "Expected either splat value or pattern value."); 861 862 // The trip count of the loop and the base pointer of the addrec SCEV is 863 // guaranteed to be loop invariant, which means that it should dominate the 864 // header. This allows us to insert code for it in the preheader. 865 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); 866 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 867 IRBuilder<> Builder(Preheader->getTerminator()); 868 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 869 870 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); 871 Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS); 872 873 const SCEV *Start = Ev->getStart(); 874 // Handle negative strided loops. 875 if (NegStride) 876 Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE); 877 878 // TODO: ideally we should still be able to generate memset if SCEV expander 879 // is taught to generate the dependencies at the latest point. 880 if (!isSafeToExpand(Start, *SE)) 881 return false; 882 883 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 884 // this into a memset in the loop preheader now if we want. However, this 885 // would be unsafe to do if there is anything else in the loop that may read 886 // or write to the aliased location. Check for any overlap by generating the 887 // base pointer and checking the region. 888 Value *BasePtr = 889 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); 890 if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, 891 StoreSize, *AA, Stores)) { 892 Expander.clear(); 893 // If we generated new code for the base pointer, clean up. 894 RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI); 895 return false; 896 } 897 898 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) 899 return false; 900 901 // Okay, everything looks good, insert the memset. 902 903 const SCEV *NumBytesS = 904 getNumBytes(BECount, IntPtr, StoreSize, CurLoop, DL, SE); 905 906 // TODO: ideally we should still be able to generate memset if SCEV expander 907 // is taught to generate the dependencies at the latest point. 908 if (!isSafeToExpand(NumBytesS, *SE)) 909 return false; 910 911 Value *NumBytes = 912 Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); 913 914 CallInst *NewCall; 915 if (SplatValue) { 916 NewCall = 917 Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment); 918 } else { 919 // Everything is emitted in default address space 920 Type *Int8PtrTy = DestInt8PtrTy; 921 922 Module *M = TheStore->getModule(); 923 Value *MSP = 924 M->getOrInsertFunction("memset_pattern16", Builder.getVoidTy(), 925 Int8PtrTy, Int8PtrTy, IntPtr); 926 inferLibFuncAttributes(*M->getFunction("memset_pattern16"), *TLI); 927 928 // Otherwise we should form a memset_pattern16. PatternValue is known to be 929 // an constant array of 16-bytes. Plop the value into a mergable global. 930 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 931 GlobalValue::PrivateLinkage, 932 PatternValue, ".memset_pattern"); 933 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. 934 GV->setAlignment(16); 935 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); 936 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); 937 } 938 939 DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 940 << " from store to: " << *Ev << " at: " << *TheStore << "\n"); 941 NewCall->setDebugLoc(TheStore->getDebugLoc()); 942 943 // Okay, the memset has been formed. Zap the original store and anything that 944 // feeds into it. 945 for (auto *I : Stores) 946 deleteDeadInstruction(I); 947 ++NumMemSet; 948 return true; 949 } 950 951 /// If the stored value is a strided load in the same loop with the same stride 952 /// this may be transformable into a memcpy. This kicks in for stuff like 953 /// for (i) A[i] = B[i]; 954 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, 955 const SCEV *BECount) { 956 assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); 957 958 Value *StorePtr = SI->getPointerOperand(); 959 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 960 APInt Stride = getStoreStride(StoreEv); 961 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 962 bool NegStride = StoreSize == -Stride; 963 964 // The store must be feeding a non-volatile load. 965 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 966 assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); 967 968 // See if the pointer expression is an AddRec like {base,+,1} on the current 969 // loop, which indicates a strided load. If we have something else, it's a 970 // random load we can't handle. 971 const SCEVAddRecExpr *LoadEv = 972 cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 973 974 // The trip count of the loop and the base pointer of the addrec SCEV is 975 // guaranteed to be loop invariant, which means that it should dominate the 976 // header. This allows us to insert code for it in the preheader. 977 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 978 IRBuilder<> Builder(Preheader->getTerminator()); 979 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 980 981 const SCEV *StrStart = StoreEv->getStart(); 982 unsigned StrAS = SI->getPointerAddressSpace(); 983 Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS); 984 985 // Handle negative strided loops. 986 if (NegStride) 987 StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE); 988 989 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 990 // this into a memcpy in the loop preheader now if we want. However, this 991 // would be unsafe to do if there is anything else in the loop that may read 992 // or write the memory region we're storing to. This includes the load that 993 // feeds the stores. Check for an alias by generating the base address and 994 // checking everything. 995 Value *StoreBasePtr = Expander.expandCodeFor( 996 StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); 997 998 SmallPtrSet<Instruction *, 1> Stores; 999 Stores.insert(SI); 1000 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1001 StoreSize, *AA, Stores)) { 1002 Expander.clear(); 1003 // If we generated new code for the base pointer, clean up. 1004 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); 1005 return false; 1006 } 1007 1008 const SCEV *LdStart = LoadEv->getStart(); 1009 unsigned LdAS = LI->getPointerAddressSpace(); 1010 1011 // Handle negative strided loops. 1012 if (NegStride) 1013 LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE); 1014 1015 // For a memcpy, we have to make sure that the input array is not being 1016 // mutated by the loop. 1017 Value *LoadBasePtr = Expander.expandCodeFor( 1018 LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); 1019 1020 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, 1021 StoreSize, *AA, Stores)) { 1022 Expander.clear(); 1023 // If we generated new code for the base pointer, clean up. 1024 RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI); 1025 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); 1026 return false; 1027 } 1028 1029 if (avoidLIRForMultiBlockLoop()) 1030 return false; 1031 1032 // Okay, everything is safe, we can transform this! 1033 1034 const SCEV *NumBytesS = 1035 getNumBytes(BECount, IntPtrTy, StoreSize, CurLoop, DL, SE); 1036 1037 Value *NumBytes = 1038 Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator()); 1039 1040 unsigned Align = std::min(SI->getAlignment(), LI->getAlignment()); 1041 CallInst *NewCall = nullptr; 1042 // Check whether to generate an unordered atomic memcpy: 1043 // If the load or store are atomic, then they must neccessarily be unordered 1044 // by previous checks. 1045 if (!SI->isAtomic() && !LI->isAtomic()) 1046 NewCall = Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes, Align); 1047 else { 1048 // We cannot allow unaligned ops for unordered load/store, so reject 1049 // anything where the alignment isn't at least the element size. 1050 if (Align < StoreSize) 1051 return false; 1052 1053 // If the element.atomic memcpy is not lowered into explicit 1054 // loads/stores later, then it will be lowered into an element-size 1055 // specific lib call. If the lib call doesn't exist for our store size, then 1056 // we shouldn't generate the memcpy. 1057 if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) 1058 return false; 1059 1060 // Create the call. 1061 // Note that unordered atomic loads/stores are *required* by the spec to 1062 // have an alignment but non-atomic loads/stores may not. 1063 NewCall = Builder.CreateElementUnorderedAtomicMemCpy( 1064 StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(), 1065 NumBytes, StoreSize); 1066 } 1067 NewCall->setDebugLoc(SI->getDebugLoc()); 1068 1069 DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" 1070 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" 1071 << " from store ptr=" << *StoreEv << " at: " << *SI << "\n"); 1072 1073 // Okay, the memcpy has been formed. Zap the original store and anything that 1074 // feeds into it. 1075 deleteDeadInstruction(SI); 1076 ++NumMemCpy; 1077 return true; 1078 } 1079 1080 // When compiling for codesize we avoid idiom recognition for a multi-block loop 1081 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. 1082 // 1083 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, 1084 bool IsLoopMemset) { 1085 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { 1086 if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) { 1087 DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() 1088 << " : LIR " << (IsMemset ? "Memset" : "Memcpy") 1089 << " avoided: multi-block top-level loop\n"); 1090 return true; 1091 } 1092 } 1093 1094 return false; 1095 } 1096 1097 bool LoopIdiomRecognize::runOnNoncountableLoop() { 1098 return recognizePopcount() || recognizeAndInsertCTLZ(); 1099 } 1100 1101 /// Check if the given conditional branch is based on the comparison between 1102 /// a variable and zero, and if the variable is non-zero, the control yields to 1103 /// the loop entry. If the branch matches the behavior, the variable involved 1104 /// in the comparison is returned. This function will be called to see if the 1105 /// precondition and postcondition of the loop are in desirable form. 1106 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry) { 1107 if (!BI || !BI->isConditional()) 1108 return nullptr; 1109 1110 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1111 if (!Cond) 1112 return nullptr; 1113 1114 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 1115 if (!CmpZero || !CmpZero->isZero()) 1116 return nullptr; 1117 1118 ICmpInst::Predicate Pred = Cond->getPredicate(); 1119 if ((Pred == ICmpInst::ICMP_NE && BI->getSuccessor(0) == LoopEntry) || 1120 (Pred == ICmpInst::ICMP_EQ && BI->getSuccessor(1) == LoopEntry)) 1121 return Cond->getOperand(0); 1122 1123 return nullptr; 1124 } 1125 1126 // Check if the recurrence variable `VarX` is in the right form to create 1127 // the idiom. Returns the value coerced to a PHINode if so. 1128 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, 1129 BasicBlock *LoopEntry) { 1130 auto *PhiX = dyn_cast<PHINode>(VarX); 1131 if (PhiX && PhiX->getParent() == LoopEntry && 1132 (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) 1133 return PhiX; 1134 return nullptr; 1135 } 1136 1137 /// Return true iff the idiom is detected in the loop. 1138 /// 1139 /// Additionally: 1140 /// 1) \p CntInst is set to the instruction counting the population bit. 1141 /// 2) \p CntPhi is set to the corresponding phi node. 1142 /// 3) \p Var is set to the value whose population bits are being counted. 1143 /// 1144 /// The core idiom we are trying to detect is: 1145 /// \code 1146 /// if (x0 != 0) 1147 /// goto loop-exit // the precondition of the loop 1148 /// cnt0 = init-val; 1149 /// do { 1150 /// x1 = phi (x0, x2); 1151 /// cnt1 = phi(cnt0, cnt2); 1152 /// 1153 /// cnt2 = cnt1 + 1; 1154 /// ... 1155 /// x2 = x1 & (x1 - 1); 1156 /// ... 1157 /// } while(x != 0); 1158 /// 1159 /// loop-exit: 1160 /// \endcode 1161 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, 1162 Instruction *&CntInst, PHINode *&CntPhi, 1163 Value *&Var) { 1164 // step 1: Check to see if the look-back branch match this pattern: 1165 // "if (a!=0) goto loop-entry". 1166 BasicBlock *LoopEntry; 1167 Instruction *DefX2, *CountInst; 1168 Value *VarX1, *VarX0; 1169 PHINode *PhiX, *CountPhi; 1170 1171 DefX2 = CountInst = nullptr; 1172 VarX1 = VarX0 = nullptr; 1173 PhiX = CountPhi = nullptr; 1174 LoopEntry = *(CurLoop->block_begin()); 1175 1176 // step 1: Check if the loop-back branch is in desirable form. 1177 { 1178 if (Value *T = matchCondition( 1179 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1180 DefX2 = dyn_cast<Instruction>(T); 1181 else 1182 return false; 1183 } 1184 1185 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 1186 { 1187 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 1188 return false; 1189 1190 BinaryOperator *SubOneOp; 1191 1192 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 1193 VarX1 = DefX2->getOperand(1); 1194 else { 1195 VarX1 = DefX2->getOperand(0); 1196 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 1197 } 1198 if (!SubOneOp) 1199 return false; 1200 1201 Instruction *SubInst = cast<Instruction>(SubOneOp); 1202 ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1)); 1203 if (!Dec || 1204 !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) || 1205 (SubInst->getOpcode() == Instruction::Add && 1206 Dec->isMinusOne()))) { 1207 return false; 1208 } 1209 } 1210 1211 // step 3: Check the recurrence of variable X 1212 PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); 1213 if (!PhiX) 1214 return false; 1215 1216 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 1217 { 1218 CountInst = nullptr; 1219 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1220 IterE = LoopEntry->end(); 1221 Iter != IterE; Iter++) { 1222 Instruction *Inst = &*Iter; 1223 if (Inst->getOpcode() != Instruction::Add) 1224 continue; 1225 1226 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1227 if (!Inc || !Inc->isOne()) 1228 continue; 1229 1230 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); 1231 if (!Phi) 1232 continue; 1233 1234 // Check if the result of the instruction is live of the loop. 1235 bool LiveOutLoop = false; 1236 for (User *U : Inst->users()) { 1237 if ((cast<Instruction>(U))->getParent() != LoopEntry) { 1238 LiveOutLoop = true; 1239 break; 1240 } 1241 } 1242 1243 if (LiveOutLoop) { 1244 CountInst = Inst; 1245 CountPhi = Phi; 1246 break; 1247 } 1248 } 1249 1250 if (!CountInst) 1251 return false; 1252 } 1253 1254 // step 5: check if the precondition is in this form: 1255 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 1256 { 1257 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1258 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); 1259 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 1260 return false; 1261 1262 CntInst = CountInst; 1263 CntPhi = CountPhi; 1264 Var = T; 1265 } 1266 1267 return true; 1268 } 1269 1270 /// Return true if the idiom is detected in the loop. 1271 /// 1272 /// Additionally: 1273 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) 1274 /// or nullptr if there is no such. 1275 /// 2) \p CntPhi is set to the corresponding phi node 1276 /// or nullptr if there is no such. 1277 /// 3) \p Var is set to the value whose CTLZ could be used. 1278 /// 4) \p DefX is set to the instruction calculating Loop exit condition. 1279 /// 1280 /// The core idiom we are trying to detect is: 1281 /// \code 1282 /// if (x0 == 0) 1283 /// goto loop-exit // the precondition of the loop 1284 /// cnt0 = init-val; 1285 /// do { 1286 /// x = phi (x0, x.next); //PhiX 1287 /// cnt = phi(cnt0, cnt.next); 1288 /// 1289 /// cnt.next = cnt + 1; 1290 /// ... 1291 /// x.next = x >> 1; // DefX 1292 /// ... 1293 /// } while(x.next != 0); 1294 /// 1295 /// loop-exit: 1296 /// \endcode 1297 static bool detectCTLZIdiom(Loop *CurLoop, PHINode *&PhiX, 1298 Instruction *&CntInst, PHINode *&CntPhi, 1299 Instruction *&DefX) { 1300 BasicBlock *LoopEntry; 1301 Value *VarX = nullptr; 1302 1303 DefX = nullptr; 1304 PhiX = nullptr; 1305 CntInst = nullptr; 1306 CntPhi = nullptr; 1307 LoopEntry = *(CurLoop->block_begin()); 1308 1309 // step 1: Check if the loop-back branch is in desirable form. 1310 if (Value *T = matchCondition( 1311 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1312 DefX = dyn_cast<Instruction>(T); 1313 else 1314 return false; 1315 1316 // step 2: detect instructions corresponding to "x.next = x >> 1" 1317 if (!DefX || DefX->getOpcode() != Instruction::AShr) 1318 return false; 1319 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); 1320 if (!Shft || !Shft->isOne()) 1321 return false; 1322 VarX = DefX->getOperand(0); 1323 1324 // step 3: Check the recurrence of variable X 1325 PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); 1326 if (!PhiX) 1327 return false; 1328 1329 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 1330 // TODO: We can skip the step. If loop trip count is known (CTLZ), 1331 // then all uses of "cnt.next" could be optimized to the trip count 1332 // plus "cnt0". Currently it is not optimized. 1333 // This step could be used to detect POPCNT instruction: 1334 // cnt.next = cnt + (x.next & 1) 1335 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1336 IterE = LoopEntry->end(); 1337 Iter != IterE; Iter++) { 1338 Instruction *Inst = &*Iter; 1339 if (Inst->getOpcode() != Instruction::Add) 1340 continue; 1341 1342 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1343 if (!Inc || !Inc->isOne()) 1344 continue; 1345 1346 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); 1347 if (!Phi) 1348 continue; 1349 1350 CntInst = Inst; 1351 CntPhi = Phi; 1352 break; 1353 } 1354 if (!CntInst) 1355 return false; 1356 1357 return true; 1358 } 1359 1360 /// Recognize CTLZ idiom in a non-countable loop and convert the loop 1361 /// to countable (with CTLZ trip count). 1362 /// If CTLZ inserted as a new trip count returns true; otherwise, returns false. 1363 bool LoopIdiomRecognize::recognizeAndInsertCTLZ() { 1364 // Give up if the loop has multiple blocks or multiple backedges. 1365 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1366 return false; 1367 1368 Instruction *CntInst, *DefX; 1369 PHINode *CntPhi, *PhiX; 1370 if (!detectCTLZIdiom(CurLoop, PhiX, CntInst, CntPhi, DefX)) 1371 return false; 1372 1373 bool IsCntPhiUsedOutsideLoop = false; 1374 for (User *U : CntPhi->users()) 1375 if (!CurLoop->contains(dyn_cast<Instruction>(U))) { 1376 IsCntPhiUsedOutsideLoop = true; 1377 break; 1378 } 1379 bool IsCntInstUsedOutsideLoop = false; 1380 for (User *U : CntInst->users()) 1381 if (!CurLoop->contains(dyn_cast<Instruction>(U))) { 1382 IsCntInstUsedOutsideLoop = true; 1383 break; 1384 } 1385 // If both CntInst and CntPhi are used outside the loop the profitability 1386 // is questionable. 1387 if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) 1388 return false; 1389 1390 // For some CPUs result of CTLZ(X) intrinsic is undefined 1391 // when X is 0. If we can not guarantee X != 0, we need to check this 1392 // when expand. 1393 bool ZeroCheck = false; 1394 // It is safe to assume Preheader exist as it was checked in 1395 // parent function RunOnLoop. 1396 BasicBlock *PH = CurLoop->getLoopPreheader(); 1397 Value *InitX = PhiX->getIncomingValueForBlock(PH); 1398 // If we check X != 0 before entering the loop we don't need a zero 1399 // check in CTLZ intrinsic, but only if Cnt Phi is not used outside of the 1400 // loop (if it is used we count CTLZ(X >> 1)). 1401 if (!IsCntPhiUsedOutsideLoop) 1402 if (BasicBlock *PreCondBB = PH->getSinglePredecessor()) 1403 if (BranchInst *PreCondBr = 1404 dyn_cast<BranchInst>(PreCondBB->getTerminator())) { 1405 if (matchCondition(PreCondBr, PH) == InitX) 1406 ZeroCheck = true; 1407 } 1408 1409 // Check if CTLZ intrinsic is profitable. Assume it is always profitable 1410 // if we delete the loop (the loop has only 6 instructions): 1411 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] 1412 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] 1413 // %shr = ashr %n.addr.0, 1 1414 // %tobool = icmp eq %shr, 0 1415 // %inc = add nsw %i.0, 1 1416 // br i1 %tobool 1417 1418 IRBuilder<> Builder(PH->getTerminator()); 1419 SmallVector<const Value *, 2> Ops = 1420 {InitX, ZeroCheck ? Builder.getTrue() : Builder.getFalse()}; 1421 ArrayRef<const Value *> Args(Ops); 1422 if (CurLoop->getHeader()->size() != 6 && 1423 TTI->getIntrinsicCost(Intrinsic::ctlz, InitX->getType(), Args) > 1424 TargetTransformInfo::TCC_Basic) 1425 return false; 1426 1427 const DebugLoc DL = DefX->getDebugLoc(); 1428 transformLoopToCountable(PH, CntInst, CntPhi, InitX, DL, ZeroCheck, 1429 IsCntPhiUsedOutsideLoop); 1430 return true; 1431 } 1432 1433 /// Recognizes a population count idiom in a non-countable loop. 1434 /// 1435 /// If detected, transforms the relevant code to issue the popcount intrinsic 1436 /// function call, and returns true; otherwise, returns false. 1437 bool LoopIdiomRecognize::recognizePopcount() { 1438 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 1439 return false; 1440 1441 // Counting population are usually conducted by few arithmetic instructions. 1442 // Such instructions can be easily "absorbed" by vacant slots in a 1443 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 1444 // in a compact loop. 1445 1446 // Give up if the loop has multiple blocks or multiple backedges. 1447 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1448 return false; 1449 1450 BasicBlock *LoopBody = *(CurLoop->block_begin()); 1451 if (LoopBody->size() >= 20) { 1452 // The loop is too big, bail out. 1453 return false; 1454 } 1455 1456 // It should have a preheader containing nothing but an unconditional branch. 1457 BasicBlock *PH = CurLoop->getLoopPreheader(); 1458 if (!PH || &PH->front() != PH->getTerminator()) 1459 return false; 1460 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); 1461 if (!EntryBI || EntryBI->isConditional()) 1462 return false; 1463 1464 // It should have a precondition block where the generated popcount instrinsic 1465 // function can be inserted. 1466 auto *PreCondBB = PH->getSinglePredecessor(); 1467 if (!PreCondBB) 1468 return false; 1469 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1470 if (!PreCondBI || PreCondBI->isUnconditional()) 1471 return false; 1472 1473 Instruction *CntInst; 1474 PHINode *CntPhi; 1475 Value *Val; 1476 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) 1477 return false; 1478 1479 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); 1480 return true; 1481 } 1482 1483 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1484 const DebugLoc &DL) { 1485 Value *Ops[] = {Val}; 1486 Type *Tys[] = {Val->getType()}; 1487 1488 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1489 Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); 1490 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1491 CI->setDebugLoc(DL); 1492 1493 return CI; 1494 } 1495 1496 static CallInst *createCTLZIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1497 const DebugLoc &DL, bool ZeroCheck) { 1498 Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()}; 1499 Type *Tys[] = {Val->getType()}; 1500 1501 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1502 Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctlz, Tys); 1503 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1504 CI->setDebugLoc(DL); 1505 1506 return CI; 1507 } 1508 1509 /// Transform the following loop: 1510 /// loop: 1511 /// CntPhi = PHI [Cnt0, CntInst] 1512 /// PhiX = PHI [InitX, DefX] 1513 /// CntInst = CntPhi + 1 1514 /// DefX = PhiX >> 1 1515 /// LOOP_BODY 1516 /// Br: loop if (DefX != 0) 1517 /// Use(CntPhi) or Use(CntInst) 1518 /// 1519 /// Into: 1520 /// If CntPhi used outside the loop: 1521 /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) 1522 /// Count = CountPrev + 1 1523 /// else 1524 /// Count = BitWidth(InitX) - CTLZ(InitX) 1525 /// loop: 1526 /// CntPhi = PHI [Cnt0, CntInst] 1527 /// PhiX = PHI [InitX, DefX] 1528 /// PhiCount = PHI [Count, Dec] 1529 /// CntInst = CntPhi + 1 1530 /// DefX = PhiX >> 1 1531 /// Dec = PhiCount - 1 1532 /// LOOP_BODY 1533 /// Br: loop if (Dec != 0) 1534 /// Use(CountPrev + Cnt0) // Use(CntPhi) 1535 /// or 1536 /// Use(Count + Cnt0) // Use(CntInst) 1537 /// 1538 /// If LOOP_BODY is empty the loop will be deleted. 1539 /// If CntInst and DefX are not used in LOOP_BODY they will be removed. 1540 void LoopIdiomRecognize::transformLoopToCountable( 1541 BasicBlock *Preheader, Instruction *CntInst, PHINode *CntPhi, Value *InitX, 1542 const DebugLoc DL, bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) { 1543 BranchInst *PreheaderBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 1544 1545 // Step 1: Insert the CTLZ instruction at the end of the preheader block 1546 // Count = BitWidth - CTLZ(InitX); 1547 // If there are uses of CntPhi create: 1548 // CountPrev = BitWidth - CTLZ(InitX >> 1); 1549 IRBuilder<> Builder(PreheaderBr); 1550 Builder.SetCurrentDebugLocation(DL); 1551 Value *CTLZ, *Count, *CountPrev, *NewCount, *InitXNext; 1552 1553 if (IsCntPhiUsedOutsideLoop) 1554 InitXNext = Builder.CreateAShr(InitX, 1555 ConstantInt::get(InitX->getType(), 1)); 1556 else 1557 InitXNext = InitX; 1558 CTLZ = createCTLZIntrinsic(Builder, InitXNext, DL, ZeroCheck); 1559 Count = Builder.CreateSub( 1560 ConstantInt::get(CTLZ->getType(), 1561 CTLZ->getType()->getIntegerBitWidth()), 1562 CTLZ); 1563 if (IsCntPhiUsedOutsideLoop) { 1564 CountPrev = Count; 1565 Count = Builder.CreateAdd( 1566 CountPrev, 1567 ConstantInt::get(CountPrev->getType(), 1)); 1568 } 1569 if (IsCntPhiUsedOutsideLoop) 1570 NewCount = Builder.CreateZExtOrTrunc(CountPrev, 1571 cast<IntegerType>(CntInst->getType())); 1572 else 1573 NewCount = Builder.CreateZExtOrTrunc(Count, 1574 cast<IntegerType>(CntInst->getType())); 1575 1576 // If the CTLZ counter's initial value is not zero, insert Add Inst. 1577 Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); 1578 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 1579 if (!InitConst || !InitConst->isZero()) 1580 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 1581 1582 // Step 2: Insert new IV and loop condition: 1583 // loop: 1584 // ... 1585 // PhiCount = PHI [Count, Dec] 1586 // ... 1587 // Dec = PhiCount - 1 1588 // ... 1589 // Br: loop if (Dec != 0) 1590 BasicBlock *Body = *(CurLoop->block_begin()); 1591 auto *LbBr = dyn_cast<BranchInst>(Body->getTerminator()); 1592 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 1593 Type *Ty = Count->getType(); 1594 1595 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 1596 1597 Builder.SetInsertPoint(LbCond); 1598 Instruction *TcDec = cast<Instruction>( 1599 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 1600 "tcdec", false, true)); 1601 1602 TcPhi->addIncoming(Count, Preheader); 1603 TcPhi->addIncoming(TcDec, Body); 1604 1605 CmpInst::Predicate Pred = 1606 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 1607 LbCond->setPredicate(Pred); 1608 LbCond->setOperand(0, TcDec); 1609 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 1610 1611 // Step 3: All the references to the original counter outside 1612 // the loop are replaced with the NewCount -- the value returned from 1613 // __builtin_ctlz(x). 1614 if (IsCntPhiUsedOutsideLoop) 1615 CntPhi->replaceUsesOutsideBlock(NewCount, Body); 1616 else 1617 CntInst->replaceUsesOutsideBlock(NewCount, Body); 1618 1619 // step 4: Forget the "non-computable" trip-count SCEV associated with the 1620 // loop. The loop would otherwise not be deleted even if it becomes empty. 1621 SE->forgetLoop(CurLoop); 1622 } 1623 1624 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, 1625 Instruction *CntInst, 1626 PHINode *CntPhi, Value *Var) { 1627 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 1628 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1629 const DebugLoc DL = CntInst->getDebugLoc(); 1630 1631 // Assuming before transformation, the loop is following: 1632 // if (x) // the precondition 1633 // do { cnt++; x &= x - 1; } while(x); 1634 1635 // Step 1: Insert the ctpop instruction at the end of the precondition block 1636 IRBuilder<> Builder(PreCondBr); 1637 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 1638 { 1639 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 1640 NewCount = PopCntZext = 1641 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 1642 1643 if (NewCount != PopCnt) 1644 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1645 1646 // TripCnt is exactly the number of iterations the loop has 1647 TripCnt = NewCount; 1648 1649 // If the population counter's initial value is not zero, insert Add Inst. 1650 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 1651 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 1652 if (!InitConst || !InitConst->isZero()) { 1653 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 1654 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1655 } 1656 } 1657 1658 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to 1659 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic 1660 // function would be partial dead code, and downstream passes will drag 1661 // it back from the precondition block to the preheader. 1662 { 1663 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 1664 1665 Value *Opnd0 = PopCntZext; 1666 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 1667 if (PreCond->getOperand(0) != Var) 1668 std::swap(Opnd0, Opnd1); 1669 1670 ICmpInst *NewPreCond = cast<ICmpInst>( 1671 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 1672 PreCondBr->setCondition(NewPreCond); 1673 1674 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); 1675 } 1676 1677 // Step 3: Note that the population count is exactly the trip count of the 1678 // loop in question, which enable us to convert the loop from noncountable 1679 // loop into a countable one. The benefit is twofold: 1680 // 1681 // - If the loop only counts population, the entire loop becomes dead after 1682 // the transformation. It is a lot easier to prove a countable loop dead 1683 // than to prove a noncountable one. (In some C dialects, an infinite loop 1684 // isn't dead even if it computes nothing useful. In general, DCE needs 1685 // to prove a noncountable loop finite before safely delete it.) 1686 // 1687 // - If the loop also performs something else, it remains alive. 1688 // Since it is transformed to countable form, it can be aggressively 1689 // optimized by some optimizations which are in general not applicable 1690 // to a noncountable loop. 1691 // 1692 // After this step, this loop (conceptually) would look like following: 1693 // newcnt = __builtin_ctpop(x); 1694 // t = newcnt; 1695 // if (x) 1696 // do { cnt++; x &= x-1; t--) } while (t > 0); 1697 BasicBlock *Body = *(CurLoop->block_begin()); 1698 { 1699 auto *LbBr = dyn_cast<BranchInst>(Body->getTerminator()); 1700 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 1701 Type *Ty = TripCnt->getType(); 1702 1703 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 1704 1705 Builder.SetInsertPoint(LbCond); 1706 Instruction *TcDec = cast<Instruction>( 1707 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 1708 "tcdec", false, true)); 1709 1710 TcPhi->addIncoming(TripCnt, PreHead); 1711 TcPhi->addIncoming(TcDec, Body); 1712 1713 CmpInst::Predicate Pred = 1714 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 1715 LbCond->setPredicate(Pred); 1716 LbCond->setOperand(0, TcDec); 1717 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 1718 } 1719 1720 // Step 4: All the references to the original population counter outside 1721 // the loop are replaced with the NewCount -- the value returned from 1722 // __builtin_ctpop(). 1723 CntInst->replaceUsesOutsideBlock(NewCount, Body); 1724 1725 // step 5: Forget the "non-computable" trip-count SCEV associated with the 1726 // loop. The loop would otherwise not be deleted even if it becomes empty. 1727 SE->forgetLoop(CurLoop); 1728 } 1729