1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the loop fusion pass.
11 /// The implementation is largely based on the following document:
12 ///
13 ///       Code Transformations to Augment the Scope of Loop Fusion in a
14 ///         Production Compiler
15 ///       Christopher Mark Barton
16 ///       MSc Thesis
17 ///       https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
18 ///
19 /// The general approach taken is to collect sets of control flow equivalent
20 /// loops and test whether they can be fused. The necessary conditions for
21 /// fusion are:
22 ///    1. The loops must be adjacent (there cannot be any statements between
23 ///       the two loops).
24 ///    2. The loops must be conforming (they must execute the same number of
25 ///       iterations).
26 ///    3. The loops must be control flow equivalent (if one loop executes, the
27 ///       other is guaranteed to execute).
28 ///    4. There cannot be any negative distance dependencies between the loops.
29 /// If all of these conditions are satisfied, it is safe to fuse the loops.
30 ///
31 /// This implementation creates FusionCandidates that represent the loop and the
32 /// necessary information needed by fusion. It then operates on the fusion
33 /// candidates, first confirming that the candidate is eligible for fusion. The
34 /// candidates are then collected into control flow equivalent sets, sorted in
35 /// dominance order. Each set of control flow equivalent candidates is then
36 /// traversed, attempting to fuse pairs of candidates in the set. If all
37 /// requirements for fusion are met, the two candidates are fused, creating a
38 /// new (fused) candidate which is then added back into the set to consider for
39 /// additional fusion.
40 ///
41 /// This implementation currently does not make any modifications to remove
42 /// conditions for fusion. Code transformations to make loops conform to each of
43 /// the conditions for fusion are discussed in more detail in the document
44 /// above. These can be added to the current implementation in the future.
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/Transforms/Scalar/LoopFuse.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/Analysis/DependenceAnalysis.h"
50 #include "llvm/Analysis/DomTreeUpdater.h"
51 #include "llvm/Analysis/LoopInfo.h"
52 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
53 #include "llvm/Analysis/PostDominators.h"
54 #include "llvm/Analysis/ScalarEvolution.h"
55 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/Verifier.h"
58 #include "llvm/InitializePasses.h"
59 #include "llvm/Pass.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Scalar.h"
64 #include "llvm/Transforms/Utils.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/CodeMoverUtils.h"
67 
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "loop-fusion"
71 
72 STATISTIC(FuseCounter, "Loops fused");
73 STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
74 STATISTIC(InvalidPreheader, "Loop has invalid preheader");
75 STATISTIC(InvalidHeader, "Loop has invalid header");
76 STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
77 STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
78 STATISTIC(InvalidLatch, "Loop has invalid latch");
79 STATISTIC(InvalidLoop, "Loop is invalid");
80 STATISTIC(AddressTakenBB, "Basic block has address taken");
81 STATISTIC(MayThrowException, "Loop may throw an exception");
82 STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
83 STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
84 STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
85 STATISTIC(UnknownTripCount, "Loop has unknown trip count");
86 STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
87 STATISTIC(NonEqualTripCount, "Loop trip counts are not the same");
88 STATISTIC(NonAdjacent, "Loops are not adjacent");
89 STATISTIC(
90     NonEmptyPreheader,
91     "Loop has a non-empty preheader with instructions that cannot be moved");
92 STATISTIC(FusionNotBeneficial, "Fusion is not beneficial");
93 STATISTIC(NonIdenticalGuards, "Candidates have different guards");
94 STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block");
95 STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block");
96 STATISTIC(NotRotated, "Candidate is not rotated");
97 
98 enum FusionDependenceAnalysisChoice {
99   FUSION_DEPENDENCE_ANALYSIS_SCEV,
100   FUSION_DEPENDENCE_ANALYSIS_DA,
101   FUSION_DEPENDENCE_ANALYSIS_ALL,
102 };
103 
104 static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis(
105     "loop-fusion-dependence-analysis",
106     cl::desc("Which dependence analysis should loop fusion use?"),
107     cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev",
108                           "Use the scalar evolution interface"),
109                clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da",
110                           "Use the dependence analysis interface"),
111                clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all",
112                           "Use all available analyses")),
113     cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore);
114 
115 #ifndef NDEBUG
116 static cl::opt<bool>
117     VerboseFusionDebugging("loop-fusion-verbose-debug",
118                            cl::desc("Enable verbose debugging for Loop Fusion"),
119                            cl::Hidden, cl::init(false), cl::ZeroOrMore);
120 #endif
121 
122 namespace {
123 /// This class is used to represent a candidate for loop fusion. When it is
124 /// constructed, it checks the conditions for loop fusion to ensure that it
125 /// represents a valid candidate. It caches several parts of a loop that are
126 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
127 /// of continually querying the underlying Loop to retrieve these values. It is
128 /// assumed these will not change throughout loop fusion.
129 ///
130 /// The invalidate method should be used to indicate that the FusionCandidate is
131 /// no longer a valid candidate for fusion. Similarly, the isValid() method can
132 /// be used to ensure that the FusionCandidate is still valid for fusion.
133 struct FusionCandidate {
134   /// Cache of parts of the loop used throughout loop fusion. These should not
135   /// need to change throughout the analysis and transformation.
136   /// These parts are cached to avoid repeatedly looking up in the Loop class.
137 
138   /// Preheader of the loop this candidate represents
139   BasicBlock *Preheader;
140   /// Header of the loop this candidate represents
141   BasicBlock *Header;
142   /// Blocks in the loop that exit the loop
143   BasicBlock *ExitingBlock;
144   /// The successor block of this loop (where the exiting blocks go to)
145   BasicBlock *ExitBlock;
146   /// Latch of the loop
147   BasicBlock *Latch;
148   /// The loop that this fusion candidate represents
149   Loop *L;
150   /// Vector of instructions in this loop that read from memory
151   SmallVector<Instruction *, 16> MemReads;
152   /// Vector of instructions in this loop that write to memory
153   SmallVector<Instruction *, 16> MemWrites;
154   /// Are all of the members of this fusion candidate still valid
155   bool Valid;
156   /// Guard branch of the loop, if it exists
157   BranchInst *GuardBranch;
158 
159   /// Dominator and PostDominator trees are needed for the
160   /// FusionCandidateCompare function, required by FusionCandidateSet to
161   /// determine where the FusionCandidate should be inserted into the set. These
162   /// are used to establish ordering of the FusionCandidates based on dominance.
163   const DominatorTree *DT;
164   const PostDominatorTree *PDT;
165 
166   OptimizationRemarkEmitter &ORE;
167 
168   FusionCandidate(Loop *L, const DominatorTree *DT,
169                   const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE)
170       : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
171         ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
172         Latch(L->getLoopLatch()), L(L), Valid(true),
173         GuardBranch(L->getLoopGuardBranch()), DT(DT), PDT(PDT), ORE(ORE) {
174 
175     // Walk over all blocks in the loop and check for conditions that may
176     // prevent fusion. For each block, walk over all instructions and collect
177     // the memory reads and writes If any instructions that prevent fusion are
178     // found, invalidate this object and return.
179     for (BasicBlock *BB : L->blocks()) {
180       if (BB->hasAddressTaken()) {
181         invalidate();
182         reportInvalidCandidate(AddressTakenBB);
183         return;
184       }
185 
186       for (Instruction &I : *BB) {
187         if (I.mayThrow()) {
188           invalidate();
189           reportInvalidCandidate(MayThrowException);
190           return;
191         }
192         if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
193           if (SI->isVolatile()) {
194             invalidate();
195             reportInvalidCandidate(ContainsVolatileAccess);
196             return;
197           }
198         }
199         if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
200           if (LI->isVolatile()) {
201             invalidate();
202             reportInvalidCandidate(ContainsVolatileAccess);
203             return;
204           }
205         }
206         if (I.mayWriteToMemory())
207           MemWrites.push_back(&I);
208         if (I.mayReadFromMemory())
209           MemReads.push_back(&I);
210       }
211     }
212   }
213 
214   /// Check if all members of the class are valid.
215   bool isValid() const {
216     return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
217            !L->isInvalid() && Valid;
218   }
219 
220   /// Verify that all members are in sync with the Loop object.
221   void verify() const {
222     assert(isValid() && "Candidate is not valid!!");
223     assert(!L->isInvalid() && "Loop is invalid!");
224     assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
225     assert(Header == L->getHeader() && "Header is out of sync");
226     assert(ExitingBlock == L->getExitingBlock() &&
227            "Exiting Blocks is out of sync");
228     assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
229     assert(Latch == L->getLoopLatch() && "Latch is out of sync");
230   }
231 
232   /// Get the entry block for this fusion candidate.
233   ///
234   /// If this fusion candidate represents a guarded loop, the entry block is the
235   /// loop guard block. If it represents an unguarded loop, the entry block is
236   /// the preheader of the loop.
237   BasicBlock *getEntryBlock() const {
238     if (GuardBranch)
239       return GuardBranch->getParent();
240     else
241       return Preheader;
242   }
243 
244   /// Given a guarded loop, get the successor of the guard that is not in the
245   /// loop.
246   ///
247   /// This method returns the successor of the loop guard that is not located
248   /// within the loop (i.e., the successor of the guard that is not the
249   /// preheader).
250   /// This method is only valid for guarded loops.
251   BasicBlock *getNonLoopBlock() const {
252     assert(GuardBranch && "Only valid on guarded loops.");
253     assert(GuardBranch->isConditional() &&
254            "Expecting guard to be a conditional branch.");
255     return (GuardBranch->getSuccessor(0) == Preheader)
256                ? GuardBranch->getSuccessor(1)
257                : GuardBranch->getSuccessor(0);
258   }
259 
260 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
261   LLVM_DUMP_METHOD void dump() const {
262     dbgs() << "\tGuardBranch: ";
263     if (GuardBranch)
264       dbgs() << *GuardBranch;
265     else
266       dbgs() << "nullptr";
267     dbgs() << "\n"
268            << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n"
269            << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
270            << "\n"
271            << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
272            << "\tExitingBB: "
273            << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
274            << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
275            << "\n"
276            << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"
277            << "\tEntryBlock: "
278            << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr")
279            << "\n";
280   }
281 #endif
282 
283   /// Determine if a fusion candidate (representing a loop) is eligible for
284   /// fusion. Note that this only checks whether a single loop can be fused - it
285   /// does not check whether it is *legal* to fuse two loops together.
286   bool isEligibleForFusion(ScalarEvolution &SE) const {
287     if (!isValid()) {
288       LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
289       if (!Preheader)
290         ++InvalidPreheader;
291       if (!Header)
292         ++InvalidHeader;
293       if (!ExitingBlock)
294         ++InvalidExitingBlock;
295       if (!ExitBlock)
296         ++InvalidExitBlock;
297       if (!Latch)
298         ++InvalidLatch;
299       if (L->isInvalid())
300         ++InvalidLoop;
301 
302       return false;
303     }
304 
305     // Require ScalarEvolution to be able to determine a trip count.
306     if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
307       LLVM_DEBUG(dbgs() << "Loop " << L->getName()
308                         << " trip count not computable!\n");
309       return reportInvalidCandidate(UnknownTripCount);
310     }
311 
312     if (!L->isLoopSimplifyForm()) {
313       LLVM_DEBUG(dbgs() << "Loop " << L->getName()
314                         << " is not in simplified form!\n");
315       return reportInvalidCandidate(NotSimplifiedForm);
316     }
317 
318     if (!L->isRotatedForm()) {
319       LLVM_DEBUG(dbgs() << "Loop " << L->getName() << " is not rotated!\n");
320       return reportInvalidCandidate(NotRotated);
321     }
322 
323     return true;
324   }
325 
326 private:
327   // This is only used internally for now, to clear the MemWrites and MemReads
328   // list and setting Valid to false. I can't envision other uses of this right
329   // now, since once FusionCandidates are put into the FusionCandidateSet they
330   // are immutable. Thus, any time we need to change/update a FusionCandidate,
331   // we must create a new one and insert it into the FusionCandidateSet to
332   // ensure the FusionCandidateSet remains ordered correctly.
333   void invalidate() {
334     MemWrites.clear();
335     MemReads.clear();
336     Valid = false;
337   }
338 
339   bool reportInvalidCandidate(llvm::Statistic &Stat) const {
340     using namespace ore;
341     assert(L && Preheader && "Fusion candidate not initialized properly!");
342     ++Stat;
343     ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(),
344                                         L->getStartLoc(), Preheader)
345              << "[" << Preheader->getParent()->getName() << "]: "
346              << "Loop is not a candidate for fusion: " << Stat.getDesc());
347     return false;
348   }
349 };
350 
351 struct FusionCandidateCompare {
352   /// Comparison functor to sort two Control Flow Equivalent fusion candidates
353   /// into dominance order.
354   /// If LHS dominates RHS and RHS post-dominates LHS, return true;
355   /// IF RHS dominates LHS and LHS post-dominates RHS, return false;
356   bool operator()(const FusionCandidate &LHS,
357                   const FusionCandidate &RHS) const {
358     const DominatorTree *DT = LHS.DT;
359 
360     BasicBlock *LHSEntryBlock = LHS.getEntryBlock();
361     BasicBlock *RHSEntryBlock = RHS.getEntryBlock();
362 
363     // Do not save PDT to local variable as it is only used in asserts and thus
364     // will trigger an unused variable warning if building without asserts.
365     assert(DT && LHS.PDT && "Expecting valid dominator tree");
366 
367     // Do this compare first so if LHS == RHS, function returns false.
368     if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) {
369       // RHS dominates LHS
370       // Verify LHS post-dominates RHS
371       assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock));
372       return false;
373     }
374 
375     if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) {
376       // Verify RHS Postdominates LHS
377       assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock));
378       return true;
379     }
380 
381     // If LHS does not dominate RHS and RHS does not dominate LHS then there is
382     // no dominance relationship between the two FusionCandidates. Thus, they
383     // should not be in the same set together.
384     llvm_unreachable(
385         "No dominance relationship between these fusion candidates!");
386   }
387 };
388 
389 using LoopVector = SmallVector<Loop *, 4>;
390 
391 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
392 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
393 // dominates FC1 and FC1 post-dominates FC0.
394 // std::set was chosen because we want a sorted data structure with stable
395 // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent
396 // loops by moving intervening code around. When this intervening code contains
397 // loops, those loops will be moved also. The corresponding FusionCandidates
398 // will also need to be moved accordingly. As this is done, having stable
399 // iterators will simplify the logic. Similarly, having an efficient insert that
400 // keeps the FusionCandidateSet sorted will also simplify the implementation.
401 using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
402 using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;
403 
404 #if !defined(NDEBUG)
405 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
406                                      const FusionCandidate &FC) {
407   if (FC.isValid())
408     OS << FC.Preheader->getName();
409   else
410     OS << "<Invalid>";
411 
412   return OS;
413 }
414 
415 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
416                                      const FusionCandidateSet &CandSet) {
417   for (const FusionCandidate &FC : CandSet)
418     OS << FC << '\n';
419 
420   return OS;
421 }
422 
423 static void
424 printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
425   dbgs() << "Fusion Candidates: \n";
426   for (const auto &CandidateSet : FusionCandidates) {
427     dbgs() << "*** Fusion Candidate Set ***\n";
428     dbgs() << CandidateSet;
429     dbgs() << "****************************\n";
430   }
431 }
432 #endif
433 
434 /// Collect all loops in function at the same nest level, starting at the
435 /// outermost level.
436 ///
437 /// This data structure collects all loops at the same nest level for a
438 /// given function (specified by the LoopInfo object). It starts at the
439 /// outermost level.
440 struct LoopDepthTree {
441   using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
442   using iterator = LoopsOnLevelTy::iterator;
443   using const_iterator = LoopsOnLevelTy::const_iterator;
444 
445   LoopDepthTree(LoopInfo &LI) : Depth(1) {
446     if (!LI.empty())
447       LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
448   }
449 
450   /// Test whether a given loop has been removed from the function, and thus is
451   /// no longer valid.
452   bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }
453 
454   /// Record that a given loop has been removed from the function and is no
455   /// longer valid.
456   void removeLoop(const Loop *L) { RemovedLoops.insert(L); }
457 
458   /// Descend the tree to the next (inner) nesting level
459   void descend() {
460     LoopsOnLevelTy LoopsOnNextLevel;
461 
462     for (const LoopVector &LV : *this)
463       for (Loop *L : LV)
464         if (!isRemovedLoop(L) && L->begin() != L->end())
465           LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));
466 
467     LoopsOnLevel = LoopsOnNextLevel;
468     RemovedLoops.clear();
469     Depth++;
470   }
471 
472   bool empty() const { return size() == 0; }
473   size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
474   unsigned getDepth() const { return Depth; }
475 
476   iterator begin() { return LoopsOnLevel.begin(); }
477   iterator end() { return LoopsOnLevel.end(); }
478   const_iterator begin() const { return LoopsOnLevel.begin(); }
479   const_iterator end() const { return LoopsOnLevel.end(); }
480 
481 private:
482   /// Set of loops that have been removed from the function and are no longer
483   /// valid.
484   SmallPtrSet<const Loop *, 8> RemovedLoops;
485 
486   /// Depth of the current level, starting at 1 (outermost loops).
487   unsigned Depth;
488 
489   /// Vector of loops at the current depth level that have the same parent loop
490   LoopsOnLevelTy LoopsOnLevel;
491 };
492 
493 #ifndef NDEBUG
494 static void printLoopVector(const LoopVector &LV) {
495   dbgs() << "****************************\n";
496   for (auto L : LV)
497     printLoop(*L, dbgs());
498   dbgs() << "****************************\n";
499 }
500 #endif
501 
502 struct LoopFuser {
503 private:
504   // Sets of control flow equivalent fusion candidates for a given nest level.
505   FusionCandidateCollection FusionCandidates;
506 
507   LoopDepthTree LDT;
508   DomTreeUpdater DTU;
509 
510   LoopInfo &LI;
511   DominatorTree &DT;
512   DependenceInfo &DI;
513   ScalarEvolution &SE;
514   PostDominatorTree &PDT;
515   OptimizationRemarkEmitter &ORE;
516 
517 public:
518   LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
519             ScalarEvolution &SE, PostDominatorTree &PDT,
520             OptimizationRemarkEmitter &ORE, const DataLayout &DL)
521       : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
522         DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE) {}
523 
524   /// This is the main entry point for loop fusion. It will traverse the
525   /// specified function and collect candidate loops to fuse, starting at the
526   /// outermost nesting level and working inwards.
527   bool fuseLoops(Function &F) {
528 #ifndef NDEBUG
529     if (VerboseFusionDebugging) {
530       LI.print(dbgs());
531     }
532 #endif
533 
534     LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
535                       << "\n");
536     bool Changed = false;
537 
538     while (!LDT.empty()) {
539       LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
540                         << LDT.getDepth() << "\n";);
541 
542       for (const LoopVector &LV : LDT) {
543         assert(LV.size() > 0 && "Empty loop set was build!");
544 
545         // Skip singleton loop sets as they do not offer fusion opportunities on
546         // this level.
547         if (LV.size() == 1)
548           continue;
549 #ifndef NDEBUG
550         if (VerboseFusionDebugging) {
551           LLVM_DEBUG({
552             dbgs() << "  Visit loop set (#" << LV.size() << "):\n";
553             printLoopVector(LV);
554           });
555         }
556 #endif
557 
558         collectFusionCandidates(LV);
559         Changed |= fuseCandidates();
560       }
561 
562       // Finished analyzing candidates at this level.
563       // Descend to the next level and clear all of the candidates currently
564       // collected. Note that it will not be possible to fuse any of the
565       // existing candidates with new candidates because the new candidates will
566       // be at a different nest level and thus not be control flow equivalent
567       // with all of the candidates collected so far.
568       LLVM_DEBUG(dbgs() << "Descend one level!\n");
569       LDT.descend();
570       FusionCandidates.clear();
571     }
572 
573     if (Changed)
574       LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););
575 
576 #ifndef NDEBUG
577     assert(DT.verify());
578     assert(PDT.verify());
579     LI.verify(DT);
580     SE.verify();
581 #endif
582 
583     LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
584     return Changed;
585   }
586 
587 private:
588   /// Determine if two fusion candidates are control flow equivalent.
589   ///
590   /// Two fusion candidates are control flow equivalent if when one executes,
591   /// the other is guaranteed to execute. This is determined using dominators
592   /// and post-dominators: if A dominates B and B post-dominates A then A and B
593   /// are control-flow equivalent.
594   bool isControlFlowEquivalent(const FusionCandidate &FC0,
595                                const FusionCandidate &FC1) const {
596     assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");
597 
598     return ::isControlFlowEquivalent(*FC0.getEntryBlock(), *FC1.getEntryBlock(),
599                                      DT, PDT);
600   }
601 
602   /// Iterate over all loops in the given loop set and identify the loops that
603   /// are eligible for fusion. Place all eligible fusion candidates into Control
604   /// Flow Equivalent sets, sorted by dominance.
605   void collectFusionCandidates(const LoopVector &LV) {
606     for (Loop *L : LV) {
607       FusionCandidate CurrCand(L, &DT, &PDT, ORE);
608       if (!CurrCand.isEligibleForFusion(SE))
609         continue;
610 
611       // Go through each list in FusionCandidates and determine if L is control
612       // flow equivalent with the first loop in that list. If it is, append LV.
613       // If not, go to the next list.
614       // If no suitable list is found, start another list and add it to
615       // FusionCandidates.
616       bool FoundSet = false;
617 
618       for (auto &CurrCandSet : FusionCandidates) {
619         if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
620           CurrCandSet.insert(CurrCand);
621           FoundSet = true;
622 #ifndef NDEBUG
623           if (VerboseFusionDebugging)
624             LLVM_DEBUG(dbgs() << "Adding " << CurrCand
625                               << " to existing candidate set\n");
626 #endif
627           break;
628         }
629       }
630       if (!FoundSet) {
631         // No set was found. Create a new set and add to FusionCandidates
632 #ifndef NDEBUG
633         if (VerboseFusionDebugging)
634           LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
635 #endif
636         FusionCandidateSet NewCandSet;
637         NewCandSet.insert(CurrCand);
638         FusionCandidates.push_back(NewCandSet);
639       }
640       NumFusionCandidates++;
641     }
642   }
643 
644   /// Determine if it is beneficial to fuse two loops.
645   ///
646   /// For now, this method simply returns true because we want to fuse as much
647   /// as possible (primarily to test the pass). This method will evolve, over
648   /// time, to add heuristics for profitability of fusion.
649   bool isBeneficialFusion(const FusionCandidate &FC0,
650                           const FusionCandidate &FC1) {
651     return true;
652   }
653 
654   /// Determine if two fusion candidates have the same trip count (i.e., they
655   /// execute the same number of iterations).
656   ///
657   /// Note that for now this method simply returns a boolean value because there
658   /// are no mechanisms in loop fusion to handle different trip counts. In the
659   /// future, this behaviour can be extended to adjust one of the loops to make
660   /// the trip counts equal (e.g., loop peeling). When this is added, this
661   /// interface may need to change to return more information than just a
662   /// boolean value.
663   bool identicalTripCounts(const FusionCandidate &FC0,
664                            const FusionCandidate &FC1) const {
665     const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
666     if (isa<SCEVCouldNotCompute>(TripCount0)) {
667       UncomputableTripCount++;
668       LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
669       return false;
670     }
671 
672     const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
673     if (isa<SCEVCouldNotCompute>(TripCount1)) {
674       UncomputableTripCount++;
675       LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
676       return false;
677     }
678     LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
679                       << *TripCount1 << " are "
680                       << (TripCount0 == TripCount1 ? "identical" : "different")
681                       << "\n");
682 
683     return (TripCount0 == TripCount1);
684   }
685 
686   /// Walk each set of control flow equivalent fusion candidates and attempt to
687   /// fuse them. This does a single linear traversal of all candidates in the
688   /// set. The conditions for legal fusion are checked at this point. If a pair
689   /// of fusion candidates passes all legality checks, they are fused together
690   /// and a new fusion candidate is created and added to the FusionCandidateSet.
691   /// The original fusion candidates are then removed, as they are no longer
692   /// valid.
693   bool fuseCandidates() {
694     bool Fused = false;
695     LLVM_DEBUG(printFusionCandidates(FusionCandidates));
696     for (auto &CandidateSet : FusionCandidates) {
697       if (CandidateSet.size() < 2)
698         continue;
699 
700       LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
701                         << CandidateSet << "\n");
702 
703       for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
704         assert(!LDT.isRemovedLoop(FC0->L) &&
705                "Should not have removed loops in CandidateSet!");
706         auto FC1 = FC0;
707         for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
708           assert(!LDT.isRemovedLoop(FC1->L) &&
709                  "Should not have removed loops in CandidateSet!");
710 
711           LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
712                      dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");
713 
714           FC0->verify();
715           FC1->verify();
716 
717           if (!identicalTripCounts(*FC0, *FC1)) {
718             LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
719                                  "counts. Not fusing.\n");
720             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
721                                                        NonEqualTripCount);
722             continue;
723           }
724 
725           if (!isAdjacent(*FC0, *FC1)) {
726             LLVM_DEBUG(dbgs()
727                        << "Fusion candidates are not adjacent. Not fusing.\n");
728             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent);
729             continue;
730           }
731 
732           // Ensure that FC0 and FC1 have identical guards.
733           // If one (or both) are not guarded, this check is not necessary.
734           if (FC0->GuardBranch && FC1->GuardBranch &&
735               !haveIdenticalGuards(*FC0, *FC1)) {
736             LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical "
737                                  "guards. Not Fusing.\n");
738             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
739                                                        NonIdenticalGuards);
740             continue;
741           }
742 
743           if (!isSafeToMoveBefore(*FC1->Preheader,
744                                   *FC0->Preheader->getTerminator(), DT, PDT,
745                                   DI)) {
746             LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
747                                  "instructions in preheader. Not fusing.\n");
748             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
749                                                        NonEmptyPreheader);
750             continue;
751           }
752 
753           // The following two checks look for empty blocks in FC0 and FC1. If
754           // any of these blocks are non-empty, we do not fuse. This is done
755           // because we currently do not have the safety checks to determine if
756           // it is safe to move the blocks past other blocks in the loop. Once
757           // these checks are added, these conditions can be relaxed.
758           if (FC0->GuardBranch && !isEmptyExitBlock(*FC0)) {
759             LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty exit "
760                                  "block. Not fusing.\n");
761             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
762                                                        NonEmptyExitBlock);
763             continue;
764           }
765 
766           if (FC1->GuardBranch && !isEmptyGuardBlock(*FC1)) {
767             LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty guard "
768                                  "block. Not fusing.\n");
769             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
770                                                        NonEmptyGuardBlock);
771             continue;
772           }
773 
774           // Check the dependencies across the loops and do not fuse if it would
775           // violate them.
776           if (!dependencesAllowFusion(*FC0, *FC1)) {
777             LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
778             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
779                                                        InvalidDependencies);
780             continue;
781           }
782 
783           bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
784           LLVM_DEBUG(dbgs()
785                      << "\tFusion appears to be "
786                      << (BeneficialToFuse ? "" : "un") << "profitable!\n");
787           if (!BeneficialToFuse) {
788             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
789                                                        FusionNotBeneficial);
790             continue;
791           }
792           // All analysis has completed and has determined that fusion is legal
793           // and profitable. At this point, start transforming the code and
794           // perform fusion.
795 
796           LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
797                             << *FC1 << "\n");
798 
799           // Report fusion to the Optimization Remarks.
800           // Note this needs to be done *before* performFusion because
801           // performFusion will change the original loops, making it not
802           // possible to identify them after fusion is complete.
803           reportLoopFusion<OptimizationRemark>(*FC0, *FC1, FuseCounter);
804 
805           FusionCandidate FusedCand(performFusion(*FC0, *FC1), &DT, &PDT, ORE);
806           FusedCand.verify();
807           assert(FusedCand.isEligibleForFusion(SE) &&
808                  "Fused candidate should be eligible for fusion!");
809 
810           // Notify the loop-depth-tree that these loops are not valid objects
811           LDT.removeLoop(FC1->L);
812 
813           CandidateSet.erase(FC0);
814           CandidateSet.erase(FC1);
815 
816           auto InsertPos = CandidateSet.insert(FusedCand);
817 
818           assert(InsertPos.second &&
819                  "Unable to insert TargetCandidate in CandidateSet!");
820 
821           // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
822           // of the FC1 loop will attempt to fuse the new (fused) loop with the
823           // remaining candidates in the current candidate set.
824           FC0 = FC1 = InsertPos.first;
825 
826           LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
827                             << "\n");
828 
829           Fused = true;
830         }
831       }
832     }
833     return Fused;
834   }
835 
836   /// Rewrite all additive recurrences in a SCEV to use a new loop.
837   class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
838   public:
839     AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
840                        bool UseMax = true)
841         : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
842           NewL(NewL) {}
843 
844     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
845       const Loop *ExprL = Expr->getLoop();
846       SmallVector<const SCEV *, 2> Operands;
847       if (ExprL == &OldL) {
848         Operands.append(Expr->op_begin(), Expr->op_end());
849         return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
850       }
851 
852       if (OldL.contains(ExprL)) {
853         bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
854         if (!UseMax || !Pos || !Expr->isAffine()) {
855           Valid = false;
856           return Expr;
857         }
858         return visit(Expr->getStart());
859       }
860 
861       for (const SCEV *Op : Expr->operands())
862         Operands.push_back(visit(Op));
863       return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
864     }
865 
866     bool wasValidSCEV() const { return Valid; }
867 
868   private:
869     bool Valid, UseMax;
870     const Loop &OldL, &NewL;
871   };
872 
873   /// Return false if the access functions of \p I0 and \p I1 could cause
874   /// a negative dependence.
875   bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
876                             Instruction &I1, bool EqualIsInvalid) {
877     Value *Ptr0 = getLoadStorePointerOperand(&I0);
878     Value *Ptr1 = getLoadStorePointerOperand(&I1);
879     if (!Ptr0 || !Ptr1)
880       return false;
881 
882     const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
883     const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
884 #ifndef NDEBUG
885     if (VerboseFusionDebugging)
886       LLVM_DEBUG(dbgs() << "    Access function check: " << *SCEVPtr0 << " vs "
887                         << *SCEVPtr1 << "\n");
888 #endif
889     AddRecLoopReplacer Rewriter(SE, L0, L1);
890     SCEVPtr0 = Rewriter.visit(SCEVPtr0);
891 #ifndef NDEBUG
892     if (VerboseFusionDebugging)
893       LLVM_DEBUG(dbgs() << "    Access function after rewrite: " << *SCEVPtr0
894                         << " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
895 #endif
896     if (!Rewriter.wasValidSCEV())
897       return false;
898 
899     // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
900     //       L0) and the other is not. We could check if it is monotone and test
901     //       the beginning and end value instead.
902 
903     BasicBlock *L0Header = L0.getHeader();
904     auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
905       const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
906       if (!AddRec)
907         return false;
908       return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
909              !DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
910     };
911     if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
912       return false;
913 
914     ICmpInst::Predicate Pred =
915         EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
916     bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
917 #ifndef NDEBUG
918     if (VerboseFusionDebugging)
919       LLVM_DEBUG(dbgs() << "    Relation: " << *SCEVPtr0
920                         << (IsAlwaysGE ? "  >=  " : "  may <  ") << *SCEVPtr1
921                         << "\n");
922 #endif
923     return IsAlwaysGE;
924   }
925 
926   /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
927   /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
928   /// specified by @p DepChoice are used to determine this.
929   bool dependencesAllowFusion(const FusionCandidate &FC0,
930                               const FusionCandidate &FC1, Instruction &I0,
931                               Instruction &I1, bool AnyDep,
932                               FusionDependenceAnalysisChoice DepChoice) {
933 #ifndef NDEBUG
934     if (VerboseFusionDebugging) {
935       LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
936                         << DepChoice << "\n");
937     }
938 #endif
939     switch (DepChoice) {
940     case FUSION_DEPENDENCE_ANALYSIS_SCEV:
941       return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
942     case FUSION_DEPENDENCE_ANALYSIS_DA: {
943       auto DepResult = DI.depends(&I0, &I1, true);
944       if (!DepResult)
945         return true;
946 #ifndef NDEBUG
947       if (VerboseFusionDebugging) {
948         LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
949                    dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
950                           << (DepResult->isOrdered() ? "true" : "false")
951                           << "]\n");
952         LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
953                           << "\n");
954       }
955 #endif
956 
957       if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
958         LLVM_DEBUG(
959             dbgs() << "TODO: Implement pred/succ dependence handling!\n");
960 
961       // TODO: Can we actually use the dependence info analysis here?
962       return false;
963     }
964 
965     case FUSION_DEPENDENCE_ANALYSIS_ALL:
966       return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
967                                     FUSION_DEPENDENCE_ANALYSIS_SCEV) ||
968              dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
969                                     FUSION_DEPENDENCE_ANALYSIS_DA);
970     }
971 
972     llvm_unreachable("Unknown fusion dependence analysis choice!");
973   }
974 
975   /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
976   bool dependencesAllowFusion(const FusionCandidate &FC0,
977                               const FusionCandidate &FC1) {
978     LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
979                       << "\n");
980     assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
981     assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock()));
982 
983     for (Instruction *WriteL0 : FC0.MemWrites) {
984       for (Instruction *WriteL1 : FC1.MemWrites)
985         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
986                                     /* AnyDep */ false,
987                                     FusionDependenceAnalysis)) {
988           InvalidDependencies++;
989           return false;
990         }
991       for (Instruction *ReadL1 : FC1.MemReads)
992         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
993                                     /* AnyDep */ false,
994                                     FusionDependenceAnalysis)) {
995           InvalidDependencies++;
996           return false;
997         }
998     }
999 
1000     for (Instruction *WriteL1 : FC1.MemWrites) {
1001       for (Instruction *WriteL0 : FC0.MemWrites)
1002         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
1003                                     /* AnyDep */ false,
1004                                     FusionDependenceAnalysis)) {
1005           InvalidDependencies++;
1006           return false;
1007         }
1008       for (Instruction *ReadL0 : FC0.MemReads)
1009         if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
1010                                     /* AnyDep */ false,
1011                                     FusionDependenceAnalysis)) {
1012           InvalidDependencies++;
1013           return false;
1014         }
1015     }
1016 
1017     // Walk through all uses in FC1. For each use, find the reaching def. If the
1018     // def is located in FC0 then it is is not safe to fuse.
1019     for (BasicBlock *BB : FC1.L->blocks())
1020       for (Instruction &I : *BB)
1021         for (auto &Op : I.operands())
1022           if (Instruction *Def = dyn_cast<Instruction>(Op))
1023             if (FC0.L->contains(Def->getParent())) {
1024               InvalidDependencies++;
1025               return false;
1026             }
1027 
1028     return true;
1029   }
1030 
1031   /// Determine if two fusion candidates are adjacent in the CFG.
1032   ///
1033   /// This method will determine if there are additional basic blocks in the CFG
1034   /// between the exit of \p FC0 and the entry of \p FC1.
1035   /// If the two candidates are guarded loops, then it checks whether the
1036   /// non-loop successor of the \p FC0 guard branch is the entry block of \p
1037   /// FC1. If not, then the loops are not adjacent. If the two candidates are
1038   /// not guarded loops, then it checks whether the exit block of \p FC0 is the
1039   /// preheader of \p FC1.
1040   bool isAdjacent(const FusionCandidate &FC0,
1041                   const FusionCandidate &FC1) const {
1042     // If the successor of the guard branch is FC1, then the loops are adjacent
1043     if (FC0.GuardBranch)
1044       return FC0.getNonLoopBlock() == FC1.getEntryBlock();
1045     else
1046       return FC0.ExitBlock == FC1.getEntryBlock();
1047   }
1048 
1049   /// Determine if two fusion candidates have identical guards
1050   ///
1051   /// This method will determine if two fusion candidates have the same guards.
1052   /// The guards are considered the same if:
1053   ///   1. The instructions to compute the condition used in the compare are
1054   ///      identical.
1055   ///   2. The successors of the guard have the same flow into/around the loop.
1056   /// If the compare instructions are identical, then the first successor of the
1057   /// guard must go to the same place (either the preheader of the loop or the
1058   /// NonLoopBlock). In other words, the the first successor of both loops must
1059   /// both go into the loop (i.e., the preheader) or go around the loop (i.e.,
1060   /// the NonLoopBlock). The same must be true for the second successor.
1061   bool haveIdenticalGuards(const FusionCandidate &FC0,
1062                            const FusionCandidate &FC1) const {
1063     assert(FC0.GuardBranch && FC1.GuardBranch &&
1064            "Expecting FC0 and FC1 to be guarded loops.");
1065 
1066     if (auto FC0CmpInst =
1067             dyn_cast<Instruction>(FC0.GuardBranch->getCondition()))
1068       if (auto FC1CmpInst =
1069               dyn_cast<Instruction>(FC1.GuardBranch->getCondition()))
1070         if (!FC0CmpInst->isIdenticalTo(FC1CmpInst))
1071           return false;
1072 
1073     // The compare instructions are identical.
1074     // Now make sure the successor of the guards have the same flow into/around
1075     // the loop
1076     if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader)
1077       return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader);
1078     else
1079       return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader);
1080   }
1081 
1082   /// Check that the guard for \p FC *only* contains the cmp/branch for the
1083   /// guard.
1084   /// Once we are able to handle intervening code, any code in the guard block
1085   /// for FC1 will need to be treated as intervening code and checked whether
1086   /// it can safely move around the loops.
1087   bool isEmptyGuardBlock(const FusionCandidate &FC) const {
1088     assert(FC.GuardBranch && "Expecting a fusion candidate with guard branch.");
1089     if (auto *CmpInst = dyn_cast<Instruction>(FC.GuardBranch->getCondition())) {
1090       auto *GuardBlock = FC.GuardBranch->getParent();
1091       // If the generation of the cmp value is in GuardBlock, then the size of
1092       // the guard block should be 2 (cmp + branch). If the generation of the
1093       // cmp value is in a different block, then the size of the guard block
1094       // should only be 1.
1095       if (CmpInst->getParent() == GuardBlock)
1096         return GuardBlock->size() == 2;
1097       else
1098         return GuardBlock->size() == 1;
1099     }
1100 
1101     return false;
1102   }
1103 
1104   bool isEmptyPreheader(const FusionCandidate &FC) const {
1105     assert(FC.Preheader && "Expecting a valid preheader");
1106     return FC.Preheader->size() == 1;
1107   }
1108 
1109   bool isEmptyExitBlock(const FusionCandidate &FC) const {
1110     assert(FC.ExitBlock && "Expecting a valid exit block");
1111     return FC.ExitBlock->size() == 1;
1112   }
1113 
1114   /// Simplify the condition of the latch branch of \p FC to true, when both of
1115   /// its successors are the same.
1116   void simplifyLatchBranch(const FusionCandidate &FC) const {
1117     BranchInst *FCLatchBranch = dyn_cast<BranchInst>(FC.Latch->getTerminator());
1118     if (FCLatchBranch) {
1119       assert(FCLatchBranch->isConditional() &&
1120              FCLatchBranch->getSuccessor(0) == FCLatchBranch->getSuccessor(1) &&
1121              "Expecting the two successors of FCLatchBranch to be the same");
1122       FCLatchBranch->setCondition(
1123           llvm::ConstantInt::getTrue(FCLatchBranch->getCondition()->getType()));
1124     }
1125   }
1126 
1127   /// Move instructions from FC0.Latch to FC1.Latch. If FC0.Latch has an unique
1128   /// successor, then merge FC0.Latch with its unique successor.
1129   void mergeLatch(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1130     moveInstructionsToTheBeginning(*FC0.Latch, *FC1.Latch, DT, PDT, DI);
1131     if (BasicBlock *Succ = FC0.Latch->getUniqueSuccessor()) {
1132       MergeBlockIntoPredecessor(Succ, &DTU, &LI);
1133       DTU.flush();
1134     }
1135   }
1136 
1137   /// Fuse two fusion candidates, creating a new fused loop.
1138   ///
1139   /// This method contains the mechanics of fusing two loops, represented by \p
1140   /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
1141   /// postdominates \p FC0 (making them control flow equivalent). It also
1142   /// assumes that the other conditions for fusion have been met: adjacent,
1143   /// identical trip counts, and no negative distance dependencies exist that
1144   /// would prevent fusion. Thus, there is no checking for these conditions in
1145   /// this method.
1146   ///
1147   /// Fusion is performed by rewiring the CFG to update successor blocks of the
1148   /// components of tho loop. Specifically, the following changes are done:
1149   ///
1150   ///   1. The preheader of \p FC1 is removed as it is no longer necessary
1151   ///   (because it is currently only a single statement block).
1152   ///   2. The latch of \p FC0 is modified to jump to the header of \p FC1.
1153   ///   3. The latch of \p FC1 i modified to jump to the header of \p FC0.
1154   ///   4. All blocks from \p FC1 are removed from FC1 and added to FC0.
1155   ///
1156   /// All of these modifications are done with dominator tree updates, thus
1157   /// keeping the dominator (and post dominator) information up-to-date.
1158   ///
1159   /// This can be improved in the future by actually merging blocks during
1160   /// fusion. For example, the preheader of \p FC1 can be merged with the
1161   /// preheader of \p FC0. This would allow loops with more than a single
1162   /// statement in the preheader to be fused. Similarly, the latch blocks of the
1163   /// two loops could also be fused into a single block. This will require
1164   /// analysis to prove it is safe to move the contents of the block past
1165   /// existing code, which currently has not been implemented.
1166   Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1167     assert(FC0.isValid() && FC1.isValid() &&
1168            "Expecting valid fusion candidates");
1169 
1170     LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
1171                dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););
1172 
1173     // Move instructions from the preheader of FC1 to the end of the preheader
1174     // of FC0.
1175     moveInstructionsToTheEnd(*FC1.Preheader, *FC0.Preheader, DT, PDT, DI);
1176 
1177     // Fusing guarded loops is handled slightly differently than non-guarded
1178     // loops and has been broken out into a separate method instead of trying to
1179     // intersperse the logic within a single method.
1180     if (FC0.GuardBranch)
1181       return fuseGuardedLoops(FC0, FC1);
1182 
1183     assert(FC1.Preheader == FC0.ExitBlock);
1184     assert(FC1.Preheader->size() == 1 &&
1185            FC1.Preheader->getSingleSuccessor() == FC1.Header);
1186 
1187     // Remember the phi nodes originally in the header of FC0 in order to rewire
1188     // them later. However, this is only necessary if the new loop carried
1189     // values might not dominate the exiting branch. While we do not generally
1190     // test if this is the case but simply insert intermediate phi nodes, we
1191     // need to make sure these intermediate phi nodes have different
1192     // predecessors. To this end, we filter the special case where the exiting
1193     // block is the latch block of the first loop. Nothing needs to be done
1194     // anyway as all loop carried values dominate the latch and thereby also the
1195     // exiting branch.
1196     SmallVector<PHINode *, 8> OriginalFC0PHIs;
1197     if (FC0.ExitingBlock != FC0.Latch)
1198       for (PHINode &PHI : FC0.Header->phis())
1199         OriginalFC0PHIs.push_back(&PHI);
1200 
1201     // Replace incoming blocks for header PHIs first.
1202     FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1203     FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1204 
1205     // Then modify the control flow and update DT and PDT.
1206     SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1207 
1208     // The old exiting block of the first loop (FC0) has to jump to the header
1209     // of the second as we need to execute the code in the second header block
1210     // regardless of the trip count. That is, if the trip count is 0, so the
1211     // back edge is never taken, we still have to execute both loop headers,
1212     // especially (but not only!) if the second is a do-while style loop.
1213     // However, doing so might invalidate the phi nodes of the first loop as
1214     // the new values do only need to dominate their latch and not the exiting
1215     // predicate. To remedy this potential problem we always introduce phi
1216     // nodes in the header of the second loop later that select the loop carried
1217     // value, if the second header was reached through an old latch of the
1218     // first, or undef otherwise. This is sound as exiting the first implies the
1219     // second will exit too, __without__ taking the back-edge. [Their
1220     // trip-counts are equal after all.
1221     // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
1222     // to FC1.Header? I think this is basically what the three sequences are
1223     // trying to accomplish; however, doing this directly in the CFG may mean
1224     // the DT/PDT becomes invalid
1225     FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
1226                                                          FC1.Header);
1227     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1228         DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
1229     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1230         DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1231 
1232     // The pre-header of L1 is not necessary anymore.
1233     assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
1234     FC1.Preheader->getTerminator()->eraseFromParent();
1235     new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1236     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1237         DominatorTree::Delete, FC1.Preheader, FC1.Header));
1238 
1239     // Moves the phi nodes from the second to the first loops header block.
1240     while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1241       if (SE.isSCEVable(PHI->getType()))
1242         SE.forgetValue(PHI);
1243       if (PHI->hasNUsesOrMore(1))
1244         PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1245       else
1246         PHI->eraseFromParent();
1247     }
1248 
1249     // Introduce new phi nodes in the second loop header to ensure
1250     // exiting the first and jumping to the header of the second does not break
1251     // the SSA property of the phis originally in the first loop. See also the
1252     // comment above.
1253     Instruction *L1HeaderIP = &FC1.Header->front();
1254     for (PHINode *LCPHI : OriginalFC0PHIs) {
1255       int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1256       assert(L1LatchBBIdx >= 0 &&
1257              "Expected loop carried value to be rewired at this point!");
1258 
1259       Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1260 
1261       PHINode *L1HeaderPHI = PHINode::Create(
1262           LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1263       L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1264       L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1265                                FC0.ExitingBlock);
1266 
1267       LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1268     }
1269 
1270     // Replace latch terminator destinations.
1271     FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1272     FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1273 
1274     // Change the condition of FC0 latch branch to true, as both successors of
1275     // the branch are the same.
1276     simplifyLatchBranch(FC0);
1277 
1278     // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1279     // performed the updates above.
1280     if (FC0.Latch != FC0.ExitingBlock)
1281       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1282           DominatorTree::Insert, FC0.Latch, FC1.Header));
1283 
1284     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1285                                                        FC0.Latch, FC0.Header));
1286     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1287                                                        FC1.Latch, FC0.Header));
1288     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1289                                                        FC1.Latch, FC1.Header));
1290 
1291     // Update DT/PDT
1292     DTU.applyUpdates(TreeUpdates);
1293 
1294     LI.removeBlock(FC1.Preheader);
1295     DTU.deleteBB(FC1.Preheader);
1296     DTU.flush();
1297 
1298     // Is there a way to keep SE up-to-date so we don't need to forget the loops
1299     // and rebuild the information in subsequent passes of fusion?
1300     // Note: Need to forget the loops before merging the loop latches, as
1301     // mergeLatch may remove the only block in FC1.
1302     SE.forgetLoop(FC1.L);
1303     SE.forgetLoop(FC0.L);
1304 
1305     // Move instructions from FC0.Latch to FC1.Latch.
1306     // Note: mergeLatch requires an updated DT.
1307     mergeLatch(FC0, FC1);
1308 
1309     // Merge the loops.
1310     SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
1311                                         FC1.L->block_end());
1312     for (BasicBlock *BB : Blocks) {
1313       FC0.L->addBlockEntry(BB);
1314       FC1.L->removeBlockFromLoop(BB);
1315       if (LI.getLoopFor(BB) != FC1.L)
1316         continue;
1317       LI.changeLoopFor(BB, FC0.L);
1318     }
1319     while (!FC1.L->empty()) {
1320       const auto &ChildLoopIt = FC1.L->begin();
1321       Loop *ChildLoop = *ChildLoopIt;
1322       FC1.L->removeChildLoop(ChildLoopIt);
1323       FC0.L->addChildLoop(ChildLoop);
1324     }
1325 
1326     // Delete the now empty loop L1.
1327     LI.erase(FC1.L);
1328 
1329 #ifndef NDEBUG
1330     assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1331     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1332     assert(PDT.verify());
1333     LI.verify(DT);
1334     SE.verify();
1335 #endif
1336 
1337     LLVM_DEBUG(dbgs() << "Fusion done:\n");
1338 
1339     return FC0.L;
1340   }
1341 
1342   /// Report details on loop fusion opportunities.
1343   ///
1344   /// This template function can be used to report both successful and missed
1345   /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
1346   /// be one of:
1347   ///   - OptimizationRemarkMissed to report when loop fusion is unsuccessful
1348   ///     given two valid fusion candidates.
1349   ///   - OptimizationRemark to report successful fusion of two fusion
1350   ///     candidates.
1351   /// The remarks will be printed using the form:
1352   ///    <path/filename>:<line number>:<column number>: [<function name>]:
1353   ///       <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
1354   template <typename RemarkKind>
1355   void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1,
1356                         llvm::Statistic &Stat) {
1357     assert(FC0.Preheader && FC1.Preheader &&
1358            "Expecting valid fusion candidates");
1359     using namespace ore;
1360     ++Stat;
1361     ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(),
1362                         FC0.Preheader)
1363              << "[" << FC0.Preheader->getParent()->getName()
1364              << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName()))
1365              << " and " << NV("Cand2", StringRef(FC1.Preheader->getName()))
1366              << ": " << Stat.getDesc());
1367   }
1368 
1369   /// Fuse two guarded fusion candidates, creating a new fused loop.
1370   ///
1371   /// Fusing guarded loops is handled much the same way as fusing non-guarded
1372   /// loops. The rewiring of the CFG is slightly different though, because of
1373   /// the presence of the guards around the loops and the exit blocks after the
1374   /// loop body. As such, the new loop is rewired as follows:
1375   ///    1. Keep the guard branch from FC0 and use the non-loop block target
1376   /// from the FC1 guard branch.
1377   ///    2. Remove the exit block from FC0 (this exit block should be empty
1378   /// right now).
1379   ///    3. Remove the guard branch for FC1
1380   ///    4. Remove the preheader for FC1.
1381   /// The exit block successor for the latch of FC0 is updated to be the header
1382   /// of FC1 and the non-exit block successor of the latch of FC1 is updated to
1383   /// be the header of FC0, thus creating the fused loop.
1384   Loop *fuseGuardedLoops(const FusionCandidate &FC0,
1385                          const FusionCandidate &FC1) {
1386     assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops");
1387 
1388     BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent();
1389     BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent();
1390     BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock();
1391     BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock();
1392 
1393     assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent");
1394 
1395     SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1396 
1397     ////////////////////////////////////////////////////////////////////////////
1398     // Update the Loop Guard
1399     ////////////////////////////////////////////////////////////////////////////
1400     // The guard for FC0 is updated to guard both FC0 and FC1. This is done by
1401     // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1.
1402     // Thus, one path from the guard goes to the preheader for FC0 (and thus
1403     // executes the new fused loop) and the other path goes to the NonLoopBlock
1404     // for FC1 (where FC1 guard would have gone if FC1 was not executed).
1405     FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock);
1406     FC0.ExitBlock->getTerminator()->replaceUsesOfWith(FC1GuardBlock,
1407                                                       FC1.Header);
1408 
1409     // The guard of FC1 is not necessary anymore.
1410     FC1.GuardBranch->eraseFromParent();
1411     new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock);
1412 
1413     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1414         DominatorTree::Delete, FC1GuardBlock, FC1.Preheader));
1415     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1416         DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock));
1417     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1418         DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock));
1419     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1420         DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock));
1421 
1422     assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) &&
1423            "Expecting guard block to have no predecessors");
1424     assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) &&
1425            "Expecting guard block to have no successors");
1426 
1427     // Remember the phi nodes originally in the header of FC0 in order to rewire
1428     // them later. However, this is only necessary if the new loop carried
1429     // values might not dominate the exiting branch. While we do not generally
1430     // test if this is the case but simply insert intermediate phi nodes, we
1431     // need to make sure these intermediate phi nodes have different
1432     // predecessors. To this end, we filter the special case where the exiting
1433     // block is the latch block of the first loop. Nothing needs to be done
1434     // anyway as all loop carried values dominate the latch and thereby also the
1435     // exiting branch.
1436     // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch
1437     // (because the loops are rotated. Thus, nothing will ever be added to
1438     // OriginalFC0PHIs.
1439     SmallVector<PHINode *, 8> OriginalFC0PHIs;
1440     if (FC0.ExitingBlock != FC0.Latch)
1441       for (PHINode &PHI : FC0.Header->phis())
1442         OriginalFC0PHIs.push_back(&PHI);
1443 
1444     assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!");
1445 
1446     // Replace incoming blocks for header PHIs first.
1447     FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1448     FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1449 
1450     // The old exiting block of the first loop (FC0) has to jump to the header
1451     // of the second as we need to execute the code in the second header block
1452     // regardless of the trip count. That is, if the trip count is 0, so the
1453     // back edge is never taken, we still have to execute both loop headers,
1454     // especially (but not only!) if the second is a do-while style loop.
1455     // However, doing so might invalidate the phi nodes of the first loop as
1456     // the new values do only need to dominate their latch and not the exiting
1457     // predicate. To remedy this potential problem we always introduce phi
1458     // nodes in the header of the second loop later that select the loop carried
1459     // value, if the second header was reached through an old latch of the
1460     // first, or undef otherwise. This is sound as exiting the first implies the
1461     // second will exit too, __without__ taking the back-edge (their
1462     // trip-counts are equal after all).
1463     FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
1464                                                          FC1.Header);
1465 
1466     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1467         DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
1468     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1469         DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1470 
1471     // Remove FC0 Exit Block
1472     // The exit block for FC0 is no longer needed since control will flow
1473     // directly to the header of FC1. Since it is an empty block, it can be
1474     // removed at this point.
1475     // TODO: In the future, we can handle non-empty exit blocks my merging any
1476     // instructions from FC0 exit block into FC1 exit block prior to removing
1477     // the block.
1478     assert(pred_begin(FC0.ExitBlock) == pred_end(FC0.ExitBlock) &&
1479            "Expecting exit block to be empty");
1480     FC0.ExitBlock->getTerminator()->eraseFromParent();
1481     new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
1482 
1483     // Remove FC1 Preheader
1484     // The pre-header of L1 is not necessary anymore.
1485     assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
1486     FC1.Preheader->getTerminator()->eraseFromParent();
1487     new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1488     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1489         DominatorTree::Delete, FC1.Preheader, FC1.Header));
1490 
1491     // Moves the phi nodes from the second to the first loops header block.
1492     while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1493       if (SE.isSCEVable(PHI->getType()))
1494         SE.forgetValue(PHI);
1495       if (PHI->hasNUsesOrMore(1))
1496         PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1497       else
1498         PHI->eraseFromParent();
1499     }
1500 
1501     // Introduce new phi nodes in the second loop header to ensure
1502     // exiting the first and jumping to the header of the second does not break
1503     // the SSA property of the phis originally in the first loop. See also the
1504     // comment above.
1505     Instruction *L1HeaderIP = &FC1.Header->front();
1506     for (PHINode *LCPHI : OriginalFC0PHIs) {
1507       int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1508       assert(L1LatchBBIdx >= 0 &&
1509              "Expected loop carried value to be rewired at this point!");
1510 
1511       Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1512 
1513       PHINode *L1HeaderPHI = PHINode::Create(
1514           LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1515       L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1516       L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1517                                FC0.ExitingBlock);
1518 
1519       LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1520     }
1521 
1522     // Update the latches
1523 
1524     // Replace latch terminator destinations.
1525     FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1526     FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1527 
1528     // Change the condition of FC0 latch branch to true, as both successors of
1529     // the branch are the same.
1530     simplifyLatchBranch(FC0);
1531 
1532     // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1533     // performed the updates above.
1534     if (FC0.Latch != FC0.ExitingBlock)
1535       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1536           DominatorTree::Insert, FC0.Latch, FC1.Header));
1537 
1538     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1539                                                        FC0.Latch, FC0.Header));
1540     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1541                                                        FC1.Latch, FC0.Header));
1542     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1543                                                        FC1.Latch, FC1.Header));
1544 
1545     // All done
1546     // Apply the updates to the Dominator Tree and cleanup.
1547 
1548     assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) &&
1549            "FC1GuardBlock has successors!!");
1550     assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) &&
1551            "FC1GuardBlock has predecessors!!");
1552 
1553     // Update DT/PDT
1554     DTU.applyUpdates(TreeUpdates);
1555 
1556     LI.removeBlock(FC1.Preheader);
1557     DTU.deleteBB(FC1.Preheader);
1558     DTU.deleteBB(FC0.ExitBlock);
1559     DTU.flush();
1560 
1561     // Is there a way to keep SE up-to-date so we don't need to forget the loops
1562     // and rebuild the information in subsequent passes of fusion?
1563     // Note: Need to forget the loops before merging the loop latches, as
1564     // mergeLatch may remove the only block in FC1.
1565     SE.forgetLoop(FC1.L);
1566     SE.forgetLoop(FC0.L);
1567 
1568     // Move instructions from FC0.Latch to FC1.Latch.
1569     // Note: mergeLatch requires an updated DT.
1570     mergeLatch(FC0, FC1);
1571 
1572     // Merge the loops.
1573     SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
1574                                         FC1.L->block_end());
1575     for (BasicBlock *BB : Blocks) {
1576       FC0.L->addBlockEntry(BB);
1577       FC1.L->removeBlockFromLoop(BB);
1578       if (LI.getLoopFor(BB) != FC1.L)
1579         continue;
1580       LI.changeLoopFor(BB, FC0.L);
1581     }
1582     while (!FC1.L->empty()) {
1583       const auto &ChildLoopIt = FC1.L->begin();
1584       Loop *ChildLoop = *ChildLoopIt;
1585       FC1.L->removeChildLoop(ChildLoopIt);
1586       FC0.L->addChildLoop(ChildLoop);
1587     }
1588 
1589     // Delete the now empty loop L1.
1590     LI.erase(FC1.L);
1591 
1592 #ifndef NDEBUG
1593     assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1594     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1595     assert(PDT.verify());
1596     LI.verify(DT);
1597     SE.verify();
1598 #endif
1599 
1600     LLVM_DEBUG(dbgs() << "Fusion done:\n");
1601 
1602     return FC0.L;
1603   }
1604 };
1605 
1606 struct LoopFuseLegacy : public FunctionPass {
1607 
1608   static char ID;
1609 
1610   LoopFuseLegacy() : FunctionPass(ID) {
1611     initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
1612   }
1613 
1614   void getAnalysisUsage(AnalysisUsage &AU) const override {
1615     AU.addRequiredID(LoopSimplifyID);
1616     AU.addRequired<ScalarEvolutionWrapperPass>();
1617     AU.addRequired<LoopInfoWrapperPass>();
1618     AU.addRequired<DominatorTreeWrapperPass>();
1619     AU.addRequired<PostDominatorTreeWrapperPass>();
1620     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1621     AU.addRequired<DependenceAnalysisWrapperPass>();
1622 
1623     AU.addPreserved<ScalarEvolutionWrapperPass>();
1624     AU.addPreserved<LoopInfoWrapperPass>();
1625     AU.addPreserved<DominatorTreeWrapperPass>();
1626     AU.addPreserved<PostDominatorTreeWrapperPass>();
1627   }
1628 
1629   bool runOnFunction(Function &F) override {
1630     if (skipFunction(F))
1631       return false;
1632     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1633     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1634     auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1635     auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1636     auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1637     auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1638 
1639     const DataLayout &DL = F.getParent()->getDataLayout();
1640     LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
1641     return LF.fuseLoops(F);
1642   }
1643 };
1644 } // namespace
1645 
1646 PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) {
1647   auto &LI = AM.getResult<LoopAnalysis>(F);
1648   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1649   auto &DI = AM.getResult<DependenceAnalysis>(F);
1650   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1651   auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
1652   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1653 
1654   const DataLayout &DL = F.getParent()->getDataLayout();
1655   LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
1656   bool Changed = LF.fuseLoops(F);
1657   if (!Changed)
1658     return PreservedAnalyses::all();
1659 
1660   PreservedAnalyses PA;
1661   PA.preserve<DominatorTreeAnalysis>();
1662   PA.preserve<PostDominatorTreeAnalysis>();
1663   PA.preserve<ScalarEvolutionAnalysis>();
1664   PA.preserve<LoopAnalysis>();
1665   return PA;
1666 }
1667 
1668 char LoopFuseLegacy::ID = 0;
1669 
1670 INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false,
1671                       false)
1672 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
1673 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1674 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1675 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1676 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1677 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1678 INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false)
1679 
1680 FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); }
1681