1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the loop fusion pass. 11 /// The implementation is largely based on the following document: 12 /// 13 /// Code Transformations to Augment the Scope of Loop Fusion in a 14 /// Production Compiler 15 /// Christopher Mark Barton 16 /// MSc Thesis 17 /// https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf 18 /// 19 /// The general approach taken is to collect sets of control flow equivalent 20 /// loops and test whether they can be fused. The necessary conditions for 21 /// fusion are: 22 /// 1. The loops must be adjacent (there cannot be any statements between 23 /// the two loops). 24 /// 2. The loops must be conforming (they must execute the same number of 25 /// iterations). 26 /// 3. The loops must be control flow equivalent (if one loop executes, the 27 /// other is guaranteed to execute). 28 /// 4. There cannot be any negative distance dependencies between the loops. 29 /// If all of these conditions are satisfied, it is safe to fuse the loops. 30 /// 31 /// This implementation creates FusionCandidates that represent the loop and the 32 /// necessary information needed by fusion. It then operates on the fusion 33 /// candidates, first confirming that the candidate is eligible for fusion. The 34 /// candidates are then collected into control flow equivalent sets, sorted in 35 /// dominance order. Each set of control flow equivalent candidates is then 36 /// traversed, attempting to fuse pairs of candidates in the set. If all 37 /// requirements for fusion are met, the two candidates are fused, creating a 38 /// new (fused) candidate which is then added back into the set to consider for 39 /// additional fusion. 40 /// 41 /// This implementation currently does not make any modifications to remove 42 /// conditions for fusion. Code transformations to make loops conform to each of 43 /// the conditions for fusion are discussed in more detail in the document 44 /// above. These can be added to the current implementation in the future. 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/Transforms/Scalar/LoopFuse.h" 48 #include "llvm/ADT/Statistic.h" 49 #include "llvm/Analysis/DependenceAnalysis.h" 50 #include "llvm/Analysis/DomTreeUpdater.h" 51 #include "llvm/Analysis/LoopInfo.h" 52 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 53 #include "llvm/Analysis/PostDominators.h" 54 #include "llvm/Analysis/ScalarEvolution.h" 55 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/Verifier.h" 58 #include "llvm/InitializePasses.h" 59 #include "llvm/Pass.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Scalar.h" 64 #include "llvm/Transforms/Utils.h" 65 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 66 #include "llvm/Transforms/Utils/CodeMoverUtils.h" 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "loop-fusion" 71 72 STATISTIC(FuseCounter, "Loops fused"); 73 STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion"); 74 STATISTIC(InvalidPreheader, "Loop has invalid preheader"); 75 STATISTIC(InvalidHeader, "Loop has invalid header"); 76 STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks"); 77 STATISTIC(InvalidExitBlock, "Loop has invalid exit block"); 78 STATISTIC(InvalidLatch, "Loop has invalid latch"); 79 STATISTIC(InvalidLoop, "Loop is invalid"); 80 STATISTIC(AddressTakenBB, "Basic block has address taken"); 81 STATISTIC(MayThrowException, "Loop may throw an exception"); 82 STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access"); 83 STATISTIC(NotSimplifiedForm, "Loop is not in simplified form"); 84 STATISTIC(InvalidDependencies, "Dependencies prevent fusion"); 85 STATISTIC(UnknownTripCount, "Loop has unknown trip count"); 86 STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop"); 87 STATISTIC(NonEqualTripCount, "Loop trip counts are not the same"); 88 STATISTIC(NonAdjacent, "Loops are not adjacent"); 89 STATISTIC(NonEmptyPreheader, "Loop has a non-empty preheader"); 90 STATISTIC(FusionNotBeneficial, "Fusion is not beneficial"); 91 STATISTIC(NonIdenticalGuards, "Candidates have different guards"); 92 STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block"); 93 STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block"); 94 95 enum FusionDependenceAnalysisChoice { 96 FUSION_DEPENDENCE_ANALYSIS_SCEV, 97 FUSION_DEPENDENCE_ANALYSIS_DA, 98 FUSION_DEPENDENCE_ANALYSIS_ALL, 99 }; 100 101 static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis( 102 "loop-fusion-dependence-analysis", 103 cl::desc("Which dependence analysis should loop fusion use?"), 104 cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev", 105 "Use the scalar evolution interface"), 106 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da", 107 "Use the dependence analysis interface"), 108 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all", 109 "Use all available analyses")), 110 cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore); 111 112 #ifndef NDEBUG 113 static cl::opt<bool> 114 VerboseFusionDebugging("loop-fusion-verbose-debug", 115 cl::desc("Enable verbose debugging for Loop Fusion"), 116 cl::Hidden, cl::init(false), cl::ZeroOrMore); 117 #endif 118 119 namespace { 120 /// This class is used to represent a candidate for loop fusion. When it is 121 /// constructed, it checks the conditions for loop fusion to ensure that it 122 /// represents a valid candidate. It caches several parts of a loop that are 123 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead 124 /// of continually querying the underlying Loop to retrieve these values. It is 125 /// assumed these will not change throughout loop fusion. 126 /// 127 /// The invalidate method should be used to indicate that the FusionCandidate is 128 /// no longer a valid candidate for fusion. Similarly, the isValid() method can 129 /// be used to ensure that the FusionCandidate is still valid for fusion. 130 struct FusionCandidate { 131 /// Cache of parts of the loop used throughout loop fusion. These should not 132 /// need to change throughout the analysis and transformation. 133 /// These parts are cached to avoid repeatedly looking up in the Loop class. 134 135 /// Preheader of the loop this candidate represents 136 BasicBlock *Preheader; 137 /// Header of the loop this candidate represents 138 BasicBlock *Header; 139 /// Blocks in the loop that exit the loop 140 BasicBlock *ExitingBlock; 141 /// The successor block of this loop (where the exiting blocks go to) 142 BasicBlock *ExitBlock; 143 /// Latch of the loop 144 BasicBlock *Latch; 145 /// The loop that this fusion candidate represents 146 Loop *L; 147 /// Vector of instructions in this loop that read from memory 148 SmallVector<Instruction *, 16> MemReads; 149 /// Vector of instructions in this loop that write to memory 150 SmallVector<Instruction *, 16> MemWrites; 151 /// Are all of the members of this fusion candidate still valid 152 bool Valid; 153 /// Guard branch of the loop, if it exists 154 BranchInst *GuardBranch; 155 156 /// Dominator and PostDominator trees are needed for the 157 /// FusionCandidateCompare function, required by FusionCandidateSet to 158 /// determine where the FusionCandidate should be inserted into the set. These 159 /// are used to establish ordering of the FusionCandidates based on dominance. 160 const DominatorTree *DT; 161 const PostDominatorTree *PDT; 162 163 OptimizationRemarkEmitter &ORE; 164 165 FusionCandidate(Loop *L, const DominatorTree *DT, 166 const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE) 167 : Preheader(L->getLoopPreheader()), Header(L->getHeader()), 168 ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()), 169 Latch(L->getLoopLatch()), L(L), Valid(true), GuardBranch(nullptr), 170 DT(DT), PDT(PDT), ORE(ORE) { 171 172 // TODO: This is temporary while we fuse both rotated and non-rotated 173 // loops. Once we switch to only fusing rotated loops, the initialization of 174 // GuardBranch can be moved into the initialization list above. 175 if (isRotated()) 176 GuardBranch = L->getLoopGuardBranch(); 177 178 // Walk over all blocks in the loop and check for conditions that may 179 // prevent fusion. For each block, walk over all instructions and collect 180 // the memory reads and writes If any instructions that prevent fusion are 181 // found, invalidate this object and return. 182 for (BasicBlock *BB : L->blocks()) { 183 if (BB->hasAddressTaken()) { 184 invalidate(); 185 reportInvalidCandidate(AddressTakenBB); 186 return; 187 } 188 189 for (Instruction &I : *BB) { 190 if (I.mayThrow()) { 191 invalidate(); 192 reportInvalidCandidate(MayThrowException); 193 return; 194 } 195 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 196 if (SI->isVolatile()) { 197 invalidate(); 198 reportInvalidCandidate(ContainsVolatileAccess); 199 return; 200 } 201 } 202 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 203 if (LI->isVolatile()) { 204 invalidate(); 205 reportInvalidCandidate(ContainsVolatileAccess); 206 return; 207 } 208 } 209 if (I.mayWriteToMemory()) 210 MemWrites.push_back(&I); 211 if (I.mayReadFromMemory()) 212 MemReads.push_back(&I); 213 } 214 } 215 } 216 217 /// Check if all members of the class are valid. 218 bool isValid() const { 219 return Preheader && Header && ExitingBlock && ExitBlock && Latch && L && 220 !L->isInvalid() && Valid; 221 } 222 223 /// Verify that all members are in sync with the Loop object. 224 void verify() const { 225 assert(isValid() && "Candidate is not valid!!"); 226 assert(!L->isInvalid() && "Loop is invalid!"); 227 assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync"); 228 assert(Header == L->getHeader() && "Header is out of sync"); 229 assert(ExitingBlock == L->getExitingBlock() && 230 "Exiting Blocks is out of sync"); 231 assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync"); 232 assert(Latch == L->getLoopLatch() && "Latch is out of sync"); 233 } 234 235 /// Get the entry block for this fusion candidate. 236 /// 237 /// If this fusion candidate represents a guarded loop, the entry block is the 238 /// loop guard block. If it represents an unguarded loop, the entry block is 239 /// the preheader of the loop. 240 BasicBlock *getEntryBlock() const { 241 if (GuardBranch) 242 return GuardBranch->getParent(); 243 else 244 return Preheader; 245 } 246 247 /// Given a guarded loop, get the successor of the guard that is not in the 248 /// loop. 249 /// 250 /// This method returns the successor of the loop guard that is not located 251 /// within the loop (i.e., the successor of the guard that is not the 252 /// preheader). 253 /// This method is only valid for guarded loops. 254 BasicBlock *getNonLoopBlock() const { 255 assert(GuardBranch && "Only valid on guarded loops."); 256 assert(GuardBranch->isConditional() && 257 "Expecting guard to be a conditional branch."); 258 return (GuardBranch->getSuccessor(0) == Preheader) 259 ? GuardBranch->getSuccessor(1) 260 : GuardBranch->getSuccessor(0); 261 } 262 263 bool isRotated() const { 264 assert(L && "Expecting loop to be valid."); 265 assert(Latch && "Expecting latch to be valid."); 266 return L->isLoopExiting(Latch); 267 } 268 269 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 270 LLVM_DUMP_METHOD void dump() const { 271 dbgs() << "\tGuardBranch: " 272 << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n" 273 << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr") 274 << "\n" 275 << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n" 276 << "\tExitingBB: " 277 << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n" 278 << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr") 279 << "\n" 280 << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n" 281 << "\tEntryBlock: " 282 << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr") 283 << "\n"; 284 } 285 #endif 286 287 /// Determine if a fusion candidate (representing a loop) is eligible for 288 /// fusion. Note that this only checks whether a single loop can be fused - it 289 /// does not check whether it is *legal* to fuse two loops together. 290 bool isEligibleForFusion(ScalarEvolution &SE) const { 291 if (!isValid()) { 292 LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n"); 293 if (!Preheader) 294 ++InvalidPreheader; 295 if (!Header) 296 ++InvalidHeader; 297 if (!ExitingBlock) 298 ++InvalidExitingBlock; 299 if (!ExitBlock) 300 ++InvalidExitBlock; 301 if (!Latch) 302 ++InvalidLatch; 303 if (L->isInvalid()) 304 ++InvalidLoop; 305 306 return false; 307 } 308 309 // Require ScalarEvolution to be able to determine a trip count. 310 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { 311 LLVM_DEBUG(dbgs() << "Loop " << L->getName() 312 << " trip count not computable!\n"); 313 return reportInvalidCandidate(UnknownTripCount); 314 } 315 316 if (!L->isLoopSimplifyForm()) { 317 LLVM_DEBUG(dbgs() << "Loop " << L->getName() 318 << " is not in simplified form!\n"); 319 return reportInvalidCandidate(NotSimplifiedForm); 320 } 321 322 return true; 323 } 324 325 private: 326 // This is only used internally for now, to clear the MemWrites and MemReads 327 // list and setting Valid to false. I can't envision other uses of this right 328 // now, since once FusionCandidates are put into the FusionCandidateSet they 329 // are immutable. Thus, any time we need to change/update a FusionCandidate, 330 // we must create a new one and insert it into the FusionCandidateSet to 331 // ensure the FusionCandidateSet remains ordered correctly. 332 void invalidate() { 333 MemWrites.clear(); 334 MemReads.clear(); 335 Valid = false; 336 } 337 338 bool reportInvalidCandidate(llvm::Statistic &Stat) const { 339 using namespace ore; 340 assert(L && Preheader && "Fusion candidate not initialized properly!"); 341 ++Stat; 342 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(), 343 L->getStartLoc(), Preheader) 344 << "[" << Preheader->getParent()->getName() << "]: " 345 << "Loop is not a candidate for fusion: " << Stat.getDesc()); 346 return false; 347 } 348 }; 349 350 struct FusionCandidateCompare { 351 /// Comparison functor to sort two Control Flow Equivalent fusion candidates 352 /// into dominance order. 353 /// If LHS dominates RHS and RHS post-dominates LHS, return true; 354 /// IF RHS dominates LHS and LHS post-dominates RHS, return false; 355 bool operator()(const FusionCandidate &LHS, 356 const FusionCandidate &RHS) const { 357 const DominatorTree *DT = LHS.DT; 358 359 BasicBlock *LHSEntryBlock = LHS.getEntryBlock(); 360 BasicBlock *RHSEntryBlock = RHS.getEntryBlock(); 361 362 // Do not save PDT to local variable as it is only used in asserts and thus 363 // will trigger an unused variable warning if building without asserts. 364 assert(DT && LHS.PDT && "Expecting valid dominator tree"); 365 366 // Do this compare first so if LHS == RHS, function returns false. 367 if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) { 368 // RHS dominates LHS 369 // Verify LHS post-dominates RHS 370 assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock)); 371 return false; 372 } 373 374 if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) { 375 // Verify RHS Postdominates LHS 376 assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock)); 377 return true; 378 } 379 380 // If LHS does not dominate RHS and RHS does not dominate LHS then there is 381 // no dominance relationship between the two FusionCandidates. Thus, they 382 // should not be in the same set together. 383 llvm_unreachable( 384 "No dominance relationship between these fusion candidates!"); 385 } 386 }; 387 388 using LoopVector = SmallVector<Loop *, 4>; 389 390 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance 391 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0 392 // dominates FC1 and FC1 post-dominates FC0. 393 // std::set was chosen because we want a sorted data structure with stable 394 // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent 395 // loops by moving intervening code around. When this intervening code contains 396 // loops, those loops will be moved also. The corresponding FusionCandidates 397 // will also need to be moved accordingly. As this is done, having stable 398 // iterators will simplify the logic. Similarly, having an efficient insert that 399 // keeps the FusionCandidateSet sorted will also simplify the implementation. 400 using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>; 401 using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>; 402 403 #if !defined(NDEBUG) 404 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, 405 const FusionCandidate &FC) { 406 if (FC.isValid()) 407 OS << FC.Preheader->getName(); 408 else 409 OS << "<Invalid>"; 410 411 return OS; 412 } 413 414 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, 415 const FusionCandidateSet &CandSet) { 416 for (const FusionCandidate &FC : CandSet) 417 OS << FC << '\n'; 418 419 return OS; 420 } 421 422 static void 423 printFusionCandidates(const FusionCandidateCollection &FusionCandidates) { 424 dbgs() << "Fusion Candidates: \n"; 425 for (const auto &CandidateSet : FusionCandidates) { 426 dbgs() << "*** Fusion Candidate Set ***\n"; 427 dbgs() << CandidateSet; 428 dbgs() << "****************************\n"; 429 } 430 } 431 #endif 432 433 /// Collect all loops in function at the same nest level, starting at the 434 /// outermost level. 435 /// 436 /// This data structure collects all loops at the same nest level for a 437 /// given function (specified by the LoopInfo object). It starts at the 438 /// outermost level. 439 struct LoopDepthTree { 440 using LoopsOnLevelTy = SmallVector<LoopVector, 4>; 441 using iterator = LoopsOnLevelTy::iterator; 442 using const_iterator = LoopsOnLevelTy::const_iterator; 443 444 LoopDepthTree(LoopInfo &LI) : Depth(1) { 445 if (!LI.empty()) 446 LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend())); 447 } 448 449 /// Test whether a given loop has been removed from the function, and thus is 450 /// no longer valid. 451 bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); } 452 453 /// Record that a given loop has been removed from the function and is no 454 /// longer valid. 455 void removeLoop(const Loop *L) { RemovedLoops.insert(L); } 456 457 /// Descend the tree to the next (inner) nesting level 458 void descend() { 459 LoopsOnLevelTy LoopsOnNextLevel; 460 461 for (const LoopVector &LV : *this) 462 for (Loop *L : LV) 463 if (!isRemovedLoop(L) && L->begin() != L->end()) 464 LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end())); 465 466 LoopsOnLevel = LoopsOnNextLevel; 467 RemovedLoops.clear(); 468 Depth++; 469 } 470 471 bool empty() const { return size() == 0; } 472 size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); } 473 unsigned getDepth() const { return Depth; } 474 475 iterator begin() { return LoopsOnLevel.begin(); } 476 iterator end() { return LoopsOnLevel.end(); } 477 const_iterator begin() const { return LoopsOnLevel.begin(); } 478 const_iterator end() const { return LoopsOnLevel.end(); } 479 480 private: 481 /// Set of loops that have been removed from the function and are no longer 482 /// valid. 483 SmallPtrSet<const Loop *, 8> RemovedLoops; 484 485 /// Depth of the current level, starting at 1 (outermost loops). 486 unsigned Depth; 487 488 /// Vector of loops at the current depth level that have the same parent loop 489 LoopsOnLevelTy LoopsOnLevel; 490 }; 491 492 #ifndef NDEBUG 493 static void printLoopVector(const LoopVector &LV) { 494 dbgs() << "****************************\n"; 495 for (auto L : LV) 496 printLoop(*L, dbgs()); 497 dbgs() << "****************************\n"; 498 } 499 #endif 500 501 struct LoopFuser { 502 private: 503 // Sets of control flow equivalent fusion candidates for a given nest level. 504 FusionCandidateCollection FusionCandidates; 505 506 LoopDepthTree LDT; 507 DomTreeUpdater DTU; 508 509 LoopInfo &LI; 510 DominatorTree &DT; 511 DependenceInfo &DI; 512 ScalarEvolution &SE; 513 PostDominatorTree &PDT; 514 OptimizationRemarkEmitter &ORE; 515 516 public: 517 LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI, 518 ScalarEvolution &SE, PostDominatorTree &PDT, 519 OptimizationRemarkEmitter &ORE, const DataLayout &DL) 520 : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI), 521 DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE) {} 522 523 /// This is the main entry point for loop fusion. It will traverse the 524 /// specified function and collect candidate loops to fuse, starting at the 525 /// outermost nesting level and working inwards. 526 bool fuseLoops(Function &F) { 527 #ifndef NDEBUG 528 if (VerboseFusionDebugging) { 529 LI.print(dbgs()); 530 } 531 #endif 532 533 LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName() 534 << "\n"); 535 bool Changed = false; 536 537 while (!LDT.empty()) { 538 LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth " 539 << LDT.getDepth() << "\n";); 540 541 for (const LoopVector &LV : LDT) { 542 assert(LV.size() > 0 && "Empty loop set was build!"); 543 544 // Skip singleton loop sets as they do not offer fusion opportunities on 545 // this level. 546 if (LV.size() == 1) 547 continue; 548 #ifndef NDEBUG 549 if (VerboseFusionDebugging) { 550 LLVM_DEBUG({ 551 dbgs() << " Visit loop set (#" << LV.size() << "):\n"; 552 printLoopVector(LV); 553 }); 554 } 555 #endif 556 557 collectFusionCandidates(LV); 558 Changed |= fuseCandidates(); 559 } 560 561 // Finished analyzing candidates at this level. 562 // Descend to the next level and clear all of the candidates currently 563 // collected. Note that it will not be possible to fuse any of the 564 // existing candidates with new candidates because the new candidates will 565 // be at a different nest level and thus not be control flow equivalent 566 // with all of the candidates collected so far. 567 LLVM_DEBUG(dbgs() << "Descend one level!\n"); 568 LDT.descend(); 569 FusionCandidates.clear(); 570 } 571 572 if (Changed) 573 LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump();); 574 575 #ifndef NDEBUG 576 assert(DT.verify()); 577 assert(PDT.verify()); 578 LI.verify(DT); 579 SE.verify(); 580 #endif 581 582 LLVM_DEBUG(dbgs() << "Loop Fusion complete\n"); 583 return Changed; 584 } 585 586 private: 587 /// Determine if two fusion candidates are control flow equivalent. 588 /// 589 /// Two fusion candidates are control flow equivalent if when one executes, 590 /// the other is guaranteed to execute. This is determined using dominators 591 /// and post-dominators: if A dominates B and B post-dominates A then A and B 592 /// are control-flow equivalent. 593 bool isControlFlowEquivalent(const FusionCandidate &FC0, 594 const FusionCandidate &FC1) const { 595 assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders"); 596 597 return ::isControlFlowEquivalent(*FC0.getEntryBlock(), *FC1.getEntryBlock(), 598 DT, PDT); 599 } 600 601 /// Iterate over all loops in the given loop set and identify the loops that 602 /// are eligible for fusion. Place all eligible fusion candidates into Control 603 /// Flow Equivalent sets, sorted by dominance. 604 void collectFusionCandidates(const LoopVector &LV) { 605 for (Loop *L : LV) { 606 FusionCandidate CurrCand(L, &DT, &PDT, ORE); 607 if (!CurrCand.isEligibleForFusion(SE)) 608 continue; 609 610 // Go through each list in FusionCandidates and determine if L is control 611 // flow equivalent with the first loop in that list. If it is, append LV. 612 // If not, go to the next list. 613 // If no suitable list is found, start another list and add it to 614 // FusionCandidates. 615 bool FoundSet = false; 616 617 for (auto &CurrCandSet : FusionCandidates) { 618 if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) { 619 CurrCandSet.insert(CurrCand); 620 FoundSet = true; 621 #ifndef NDEBUG 622 if (VerboseFusionDebugging) 623 LLVM_DEBUG(dbgs() << "Adding " << CurrCand 624 << " to existing candidate set\n"); 625 #endif 626 break; 627 } 628 } 629 if (!FoundSet) { 630 // No set was found. Create a new set and add to FusionCandidates 631 #ifndef NDEBUG 632 if (VerboseFusionDebugging) 633 LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n"); 634 #endif 635 FusionCandidateSet NewCandSet; 636 NewCandSet.insert(CurrCand); 637 FusionCandidates.push_back(NewCandSet); 638 } 639 NumFusionCandidates++; 640 } 641 } 642 643 /// Determine if it is beneficial to fuse two loops. 644 /// 645 /// For now, this method simply returns true because we want to fuse as much 646 /// as possible (primarily to test the pass). This method will evolve, over 647 /// time, to add heuristics for profitability of fusion. 648 bool isBeneficialFusion(const FusionCandidate &FC0, 649 const FusionCandidate &FC1) { 650 return true; 651 } 652 653 /// Determine if two fusion candidates have the same trip count (i.e., they 654 /// execute the same number of iterations). 655 /// 656 /// Note that for now this method simply returns a boolean value because there 657 /// are no mechanisms in loop fusion to handle different trip counts. In the 658 /// future, this behaviour can be extended to adjust one of the loops to make 659 /// the trip counts equal (e.g., loop peeling). When this is added, this 660 /// interface may need to change to return more information than just a 661 /// boolean value. 662 bool identicalTripCounts(const FusionCandidate &FC0, 663 const FusionCandidate &FC1) const { 664 const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L); 665 if (isa<SCEVCouldNotCompute>(TripCount0)) { 666 UncomputableTripCount++; 667 LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!"); 668 return false; 669 } 670 671 const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L); 672 if (isa<SCEVCouldNotCompute>(TripCount1)) { 673 UncomputableTripCount++; 674 LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!"); 675 return false; 676 } 677 LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & " 678 << *TripCount1 << " are " 679 << (TripCount0 == TripCount1 ? "identical" : "different") 680 << "\n"); 681 682 return (TripCount0 == TripCount1); 683 } 684 685 /// Walk each set of control flow equivalent fusion candidates and attempt to 686 /// fuse them. This does a single linear traversal of all candidates in the 687 /// set. The conditions for legal fusion are checked at this point. If a pair 688 /// of fusion candidates passes all legality checks, they are fused together 689 /// and a new fusion candidate is created and added to the FusionCandidateSet. 690 /// The original fusion candidates are then removed, as they are no longer 691 /// valid. 692 bool fuseCandidates() { 693 bool Fused = false; 694 LLVM_DEBUG(printFusionCandidates(FusionCandidates)); 695 for (auto &CandidateSet : FusionCandidates) { 696 if (CandidateSet.size() < 2) 697 continue; 698 699 LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n" 700 << CandidateSet << "\n"); 701 702 for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) { 703 assert(!LDT.isRemovedLoop(FC0->L) && 704 "Should not have removed loops in CandidateSet!"); 705 auto FC1 = FC0; 706 for (++FC1; FC1 != CandidateSet.end(); ++FC1) { 707 assert(!LDT.isRemovedLoop(FC1->L) && 708 "Should not have removed loops in CandidateSet!"); 709 710 LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump(); 711 dbgs() << " with\n"; FC1->dump(); dbgs() << "\n"); 712 713 FC0->verify(); 714 FC1->verify(); 715 716 if (!identicalTripCounts(*FC0, *FC1)) { 717 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip " 718 "counts. Not fusing.\n"); 719 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 720 NonEqualTripCount); 721 continue; 722 } 723 724 if (!isAdjacent(*FC0, *FC1)) { 725 LLVM_DEBUG(dbgs() 726 << "Fusion candidates are not adjacent. Not fusing.\n"); 727 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent); 728 continue; 729 } 730 731 // Ensure that FC0 and FC1 have identical guards. 732 // If one (or both) are not guarded, this check is not necessary. 733 if (FC0->GuardBranch && FC1->GuardBranch && 734 !haveIdenticalGuards(*FC0, *FC1)) { 735 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical " 736 "guards. Not Fusing.\n"); 737 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 738 NonIdenticalGuards); 739 continue; 740 } 741 742 // The following three checks look for empty blocks in FC0 and FC1. If 743 // any of these blocks are non-empty, we do not fuse. This is done 744 // because we currently do not have the safety checks to determine if 745 // it is safe to move the blocks past other blocks in the loop. Once 746 // these checks are added, these conditions can be relaxed. 747 if (!isEmptyPreheader(*FC1)) { 748 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty " 749 "preheader. Not fusing.\n"); 750 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 751 NonEmptyPreheader); 752 continue; 753 } 754 755 if (FC0->GuardBranch && !isEmptyExitBlock(*FC0)) { 756 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty exit " 757 "block. Not fusing.\n"); 758 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 759 NonEmptyExitBlock); 760 continue; 761 } 762 763 if (FC1->GuardBranch && !isEmptyGuardBlock(*FC1)) { 764 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty guard " 765 "block. Not fusing.\n"); 766 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 767 NonEmptyGuardBlock); 768 continue; 769 } 770 771 // Check the dependencies across the loops and do not fuse if it would 772 // violate them. 773 if (!dependencesAllowFusion(*FC0, *FC1)) { 774 LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n"); 775 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 776 InvalidDependencies); 777 continue; 778 } 779 780 bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1); 781 LLVM_DEBUG(dbgs() 782 << "\tFusion appears to be " 783 << (BeneficialToFuse ? "" : "un") << "profitable!\n"); 784 if (!BeneficialToFuse) { 785 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 786 FusionNotBeneficial); 787 continue; 788 } 789 // All analysis has completed and has determined that fusion is legal 790 // and profitable. At this point, start transforming the code and 791 // perform fusion. 792 793 LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and " 794 << *FC1 << "\n"); 795 796 // Report fusion to the Optimization Remarks. 797 // Note this needs to be done *before* performFusion because 798 // performFusion will change the original loops, making it not 799 // possible to identify them after fusion is complete. 800 reportLoopFusion<OptimizationRemark>(*FC0, *FC1, FuseCounter); 801 802 FusionCandidate FusedCand(performFusion(*FC0, *FC1), &DT, &PDT, ORE); 803 FusedCand.verify(); 804 assert(FusedCand.isEligibleForFusion(SE) && 805 "Fused candidate should be eligible for fusion!"); 806 807 // Notify the loop-depth-tree that these loops are not valid objects 808 LDT.removeLoop(FC1->L); 809 810 CandidateSet.erase(FC0); 811 CandidateSet.erase(FC1); 812 813 auto InsertPos = CandidateSet.insert(FusedCand); 814 815 assert(InsertPos.second && 816 "Unable to insert TargetCandidate in CandidateSet!"); 817 818 // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations 819 // of the FC1 loop will attempt to fuse the new (fused) loop with the 820 // remaining candidates in the current candidate set. 821 FC0 = FC1 = InsertPos.first; 822 823 LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet 824 << "\n"); 825 826 Fused = true; 827 } 828 } 829 } 830 return Fused; 831 } 832 833 /// Rewrite all additive recurrences in a SCEV to use a new loop. 834 class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> { 835 public: 836 AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL, 837 bool UseMax = true) 838 : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL), 839 NewL(NewL) {} 840 841 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 842 const Loop *ExprL = Expr->getLoop(); 843 SmallVector<const SCEV *, 2> Operands; 844 if (ExprL == &OldL) { 845 Operands.append(Expr->op_begin(), Expr->op_end()); 846 return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags()); 847 } 848 849 if (OldL.contains(ExprL)) { 850 bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE)); 851 if (!UseMax || !Pos || !Expr->isAffine()) { 852 Valid = false; 853 return Expr; 854 } 855 return visit(Expr->getStart()); 856 } 857 858 for (const SCEV *Op : Expr->operands()) 859 Operands.push_back(visit(Op)); 860 return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags()); 861 } 862 863 bool wasValidSCEV() const { return Valid; } 864 865 private: 866 bool Valid, UseMax; 867 const Loop &OldL, &NewL; 868 }; 869 870 /// Return false if the access functions of \p I0 and \p I1 could cause 871 /// a negative dependence. 872 bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0, 873 Instruction &I1, bool EqualIsInvalid) { 874 Value *Ptr0 = getLoadStorePointerOperand(&I0); 875 Value *Ptr1 = getLoadStorePointerOperand(&I1); 876 if (!Ptr0 || !Ptr1) 877 return false; 878 879 const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0); 880 const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1); 881 #ifndef NDEBUG 882 if (VerboseFusionDebugging) 883 LLVM_DEBUG(dbgs() << " Access function check: " << *SCEVPtr0 << " vs " 884 << *SCEVPtr1 << "\n"); 885 #endif 886 AddRecLoopReplacer Rewriter(SE, L0, L1); 887 SCEVPtr0 = Rewriter.visit(SCEVPtr0); 888 #ifndef NDEBUG 889 if (VerboseFusionDebugging) 890 LLVM_DEBUG(dbgs() << " Access function after rewrite: " << *SCEVPtr0 891 << " [Valid: " << Rewriter.wasValidSCEV() << "]\n"); 892 #endif 893 if (!Rewriter.wasValidSCEV()) 894 return false; 895 896 // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by 897 // L0) and the other is not. We could check if it is monotone and test 898 // the beginning and end value instead. 899 900 BasicBlock *L0Header = L0.getHeader(); 901 auto HasNonLinearDominanceRelation = [&](const SCEV *S) { 902 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S); 903 if (!AddRec) 904 return false; 905 return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) && 906 !DT.dominates(AddRec->getLoop()->getHeader(), L0Header); 907 }; 908 if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation)) 909 return false; 910 911 ICmpInst::Predicate Pred = 912 EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE; 913 bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1); 914 #ifndef NDEBUG 915 if (VerboseFusionDebugging) 916 LLVM_DEBUG(dbgs() << " Relation: " << *SCEVPtr0 917 << (IsAlwaysGE ? " >= " : " may < ") << *SCEVPtr1 918 << "\n"); 919 #endif 920 return IsAlwaysGE; 921 } 922 923 /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in 924 /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses 925 /// specified by @p DepChoice are used to determine this. 926 bool dependencesAllowFusion(const FusionCandidate &FC0, 927 const FusionCandidate &FC1, Instruction &I0, 928 Instruction &I1, bool AnyDep, 929 FusionDependenceAnalysisChoice DepChoice) { 930 #ifndef NDEBUG 931 if (VerboseFusionDebugging) { 932 LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : " 933 << DepChoice << "\n"); 934 } 935 #endif 936 switch (DepChoice) { 937 case FUSION_DEPENDENCE_ANALYSIS_SCEV: 938 return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep); 939 case FUSION_DEPENDENCE_ANALYSIS_DA: { 940 auto DepResult = DI.depends(&I0, &I1, true); 941 if (!DepResult) 942 return true; 943 #ifndef NDEBUG 944 if (VerboseFusionDebugging) { 945 LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs()); 946 dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: " 947 << (DepResult->isOrdered() ? "true" : "false") 948 << "]\n"); 949 LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels() 950 << "\n"); 951 } 952 #endif 953 954 if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor()) 955 LLVM_DEBUG( 956 dbgs() << "TODO: Implement pred/succ dependence handling!\n"); 957 958 // TODO: Can we actually use the dependence info analysis here? 959 return false; 960 } 961 962 case FUSION_DEPENDENCE_ANALYSIS_ALL: 963 return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep, 964 FUSION_DEPENDENCE_ANALYSIS_SCEV) || 965 dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep, 966 FUSION_DEPENDENCE_ANALYSIS_DA); 967 } 968 969 llvm_unreachable("Unknown fusion dependence analysis choice!"); 970 } 971 972 /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused. 973 bool dependencesAllowFusion(const FusionCandidate &FC0, 974 const FusionCandidate &FC1) { 975 LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1 976 << "\n"); 977 assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth()); 978 assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock())); 979 980 for (Instruction *WriteL0 : FC0.MemWrites) { 981 for (Instruction *WriteL1 : FC1.MemWrites) 982 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1, 983 /* AnyDep */ false, 984 FusionDependenceAnalysis)) { 985 InvalidDependencies++; 986 return false; 987 } 988 for (Instruction *ReadL1 : FC1.MemReads) 989 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1, 990 /* AnyDep */ false, 991 FusionDependenceAnalysis)) { 992 InvalidDependencies++; 993 return false; 994 } 995 } 996 997 for (Instruction *WriteL1 : FC1.MemWrites) { 998 for (Instruction *WriteL0 : FC0.MemWrites) 999 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1, 1000 /* AnyDep */ false, 1001 FusionDependenceAnalysis)) { 1002 InvalidDependencies++; 1003 return false; 1004 } 1005 for (Instruction *ReadL0 : FC0.MemReads) 1006 if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1, 1007 /* AnyDep */ false, 1008 FusionDependenceAnalysis)) { 1009 InvalidDependencies++; 1010 return false; 1011 } 1012 } 1013 1014 // Walk through all uses in FC1. For each use, find the reaching def. If the 1015 // def is located in FC0 then it is is not safe to fuse. 1016 for (BasicBlock *BB : FC1.L->blocks()) 1017 for (Instruction &I : *BB) 1018 for (auto &Op : I.operands()) 1019 if (Instruction *Def = dyn_cast<Instruction>(Op)) 1020 if (FC0.L->contains(Def->getParent())) { 1021 InvalidDependencies++; 1022 return false; 1023 } 1024 1025 return true; 1026 } 1027 1028 /// Determine if two fusion candidates are adjacent in the CFG. 1029 /// 1030 /// This method will determine if there are additional basic blocks in the CFG 1031 /// between the exit of \p FC0 and the entry of \p FC1. 1032 /// If the two candidates are guarded loops, then it checks whether the 1033 /// non-loop successor of the \p FC0 guard branch is the entry block of \p 1034 /// FC1. If not, then the loops are not adjacent. If the two candidates are 1035 /// not guarded loops, then it checks whether the exit block of \p FC0 is the 1036 /// preheader of \p FC1. 1037 bool isAdjacent(const FusionCandidate &FC0, 1038 const FusionCandidate &FC1) const { 1039 // If the successor of the guard branch is FC1, then the loops are adjacent 1040 if (FC0.GuardBranch) 1041 return FC0.getNonLoopBlock() == FC1.getEntryBlock(); 1042 else 1043 return FC0.ExitBlock == FC1.getEntryBlock(); 1044 } 1045 1046 /// Determine if two fusion candidates have identical guards 1047 /// 1048 /// This method will determine if two fusion candidates have the same guards. 1049 /// The guards are considered the same if: 1050 /// 1. The instructions to compute the condition used in the compare are 1051 /// identical. 1052 /// 2. The successors of the guard have the same flow into/around the loop. 1053 /// If the compare instructions are identical, then the first successor of the 1054 /// guard must go to the same place (either the preheader of the loop or the 1055 /// NonLoopBlock). In other words, the the first successor of both loops must 1056 /// both go into the loop (i.e., the preheader) or go around the loop (i.e., 1057 /// the NonLoopBlock). The same must be true for the second successor. 1058 bool haveIdenticalGuards(const FusionCandidate &FC0, 1059 const FusionCandidate &FC1) const { 1060 assert(FC0.GuardBranch && FC1.GuardBranch && 1061 "Expecting FC0 and FC1 to be guarded loops."); 1062 1063 if (auto FC0CmpInst = 1064 dyn_cast<Instruction>(FC0.GuardBranch->getCondition())) 1065 if (auto FC1CmpInst = 1066 dyn_cast<Instruction>(FC1.GuardBranch->getCondition())) 1067 if (!FC0CmpInst->isIdenticalTo(FC1CmpInst)) 1068 return false; 1069 1070 // The compare instructions are identical. 1071 // Now make sure the successor of the guards have the same flow into/around 1072 // the loop 1073 if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader) 1074 return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader); 1075 else 1076 return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader); 1077 } 1078 1079 /// Check that the guard for \p FC *only* contains the cmp/branch for the 1080 /// guard. 1081 /// Once we are able to handle intervening code, any code in the guard block 1082 /// for FC1 will need to be treated as intervening code and checked whether 1083 /// it can safely move around the loops. 1084 bool isEmptyGuardBlock(const FusionCandidate &FC) const { 1085 assert(FC.GuardBranch && "Expecting a fusion candidate with guard branch."); 1086 if (auto *CmpInst = dyn_cast<Instruction>(FC.GuardBranch->getCondition())) { 1087 auto *GuardBlock = FC.GuardBranch->getParent(); 1088 // If the generation of the cmp value is in GuardBlock, then the size of 1089 // the guard block should be 2 (cmp + branch). If the generation of the 1090 // cmp value is in a different block, then the size of the guard block 1091 // should only be 1. 1092 if (CmpInst->getParent() == GuardBlock) 1093 return GuardBlock->size() == 2; 1094 else 1095 return GuardBlock->size() == 1; 1096 } 1097 1098 return false; 1099 } 1100 1101 bool isEmptyPreheader(const FusionCandidate &FC) const { 1102 assert(FC.Preheader && "Expecting a valid preheader"); 1103 return FC.Preheader->size() == 1; 1104 } 1105 1106 bool isEmptyExitBlock(const FusionCandidate &FC) const { 1107 assert(FC.ExitBlock && "Expecting a valid exit block"); 1108 return FC.ExitBlock->size() == 1; 1109 } 1110 1111 /// Fuse two fusion candidates, creating a new fused loop. 1112 /// 1113 /// This method contains the mechanics of fusing two loops, represented by \p 1114 /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1 1115 /// postdominates \p FC0 (making them control flow equivalent). It also 1116 /// assumes that the other conditions for fusion have been met: adjacent, 1117 /// identical trip counts, and no negative distance dependencies exist that 1118 /// would prevent fusion. Thus, there is no checking for these conditions in 1119 /// this method. 1120 /// 1121 /// Fusion is performed by rewiring the CFG to update successor blocks of the 1122 /// components of tho loop. Specifically, the following changes are done: 1123 /// 1124 /// 1. The preheader of \p FC1 is removed as it is no longer necessary 1125 /// (because it is currently only a single statement block). 1126 /// 2. The latch of \p FC0 is modified to jump to the header of \p FC1. 1127 /// 3. The latch of \p FC1 i modified to jump to the header of \p FC0. 1128 /// 4. All blocks from \p FC1 are removed from FC1 and added to FC0. 1129 /// 1130 /// All of these modifications are done with dominator tree updates, thus 1131 /// keeping the dominator (and post dominator) information up-to-date. 1132 /// 1133 /// This can be improved in the future by actually merging blocks during 1134 /// fusion. For example, the preheader of \p FC1 can be merged with the 1135 /// preheader of \p FC0. This would allow loops with more than a single 1136 /// statement in the preheader to be fused. Similarly, the latch blocks of the 1137 /// two loops could also be fused into a single block. This will require 1138 /// analysis to prove it is safe to move the contents of the block past 1139 /// existing code, which currently has not been implemented. 1140 Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) { 1141 assert(FC0.isValid() && FC1.isValid() && 1142 "Expecting valid fusion candidates"); 1143 1144 LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump(); 1145 dbgs() << "Fusion Candidate 1: \n"; FC1.dump();); 1146 1147 // Fusing guarded loops is handled slightly differently than non-guarded 1148 // loops and has been broken out into a separate method instead of trying to 1149 // intersperse the logic within a single method. 1150 if (FC0.GuardBranch) 1151 return fuseGuardedLoops(FC0, FC1); 1152 1153 assert(FC1.Preheader == FC0.ExitBlock); 1154 assert(FC1.Preheader->size() == 1 && 1155 FC1.Preheader->getSingleSuccessor() == FC1.Header); 1156 1157 // Remember the phi nodes originally in the header of FC0 in order to rewire 1158 // them later. However, this is only necessary if the new loop carried 1159 // values might not dominate the exiting branch. While we do not generally 1160 // test if this is the case but simply insert intermediate phi nodes, we 1161 // need to make sure these intermediate phi nodes have different 1162 // predecessors. To this end, we filter the special case where the exiting 1163 // block is the latch block of the first loop. Nothing needs to be done 1164 // anyway as all loop carried values dominate the latch and thereby also the 1165 // exiting branch. 1166 SmallVector<PHINode *, 8> OriginalFC0PHIs; 1167 if (FC0.ExitingBlock != FC0.Latch) 1168 for (PHINode &PHI : FC0.Header->phis()) 1169 OriginalFC0PHIs.push_back(&PHI); 1170 1171 // Replace incoming blocks for header PHIs first. 1172 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader); 1173 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch); 1174 1175 // Then modify the control flow and update DT and PDT. 1176 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates; 1177 1178 // The old exiting block of the first loop (FC0) has to jump to the header 1179 // of the second as we need to execute the code in the second header block 1180 // regardless of the trip count. That is, if the trip count is 0, so the 1181 // back edge is never taken, we still have to execute both loop headers, 1182 // especially (but not only!) if the second is a do-while style loop. 1183 // However, doing so might invalidate the phi nodes of the first loop as 1184 // the new values do only need to dominate their latch and not the exiting 1185 // predicate. To remedy this potential problem we always introduce phi 1186 // nodes in the header of the second loop later that select the loop carried 1187 // value, if the second header was reached through an old latch of the 1188 // first, or undef otherwise. This is sound as exiting the first implies the 1189 // second will exit too, __without__ taking the back-edge. [Their 1190 // trip-counts are equal after all. 1191 // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go 1192 // to FC1.Header? I think this is basically what the three sequences are 1193 // trying to accomplish; however, doing this directly in the CFG may mean 1194 // the DT/PDT becomes invalid 1195 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader, 1196 FC1.Header); 1197 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1198 DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader)); 1199 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1200 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header)); 1201 1202 // The pre-header of L1 is not necessary anymore. 1203 assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader)); 1204 FC1.Preheader->getTerminator()->eraseFromParent(); 1205 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader); 1206 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1207 DominatorTree::Delete, FC1.Preheader, FC1.Header)); 1208 1209 // Moves the phi nodes from the second to the first loops header block. 1210 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) { 1211 if (SE.isSCEVable(PHI->getType())) 1212 SE.forgetValue(PHI); 1213 if (PHI->hasNUsesOrMore(1)) 1214 PHI->moveBefore(&*FC0.Header->getFirstInsertionPt()); 1215 else 1216 PHI->eraseFromParent(); 1217 } 1218 1219 // Introduce new phi nodes in the second loop header to ensure 1220 // exiting the first and jumping to the header of the second does not break 1221 // the SSA property of the phis originally in the first loop. See also the 1222 // comment above. 1223 Instruction *L1HeaderIP = &FC1.Header->front(); 1224 for (PHINode *LCPHI : OriginalFC0PHIs) { 1225 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch); 1226 assert(L1LatchBBIdx >= 0 && 1227 "Expected loop carried value to be rewired at this point!"); 1228 1229 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx); 1230 1231 PHINode *L1HeaderPHI = PHINode::Create( 1232 LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP); 1233 L1HeaderPHI->addIncoming(LCV, FC0.Latch); 1234 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()), 1235 FC0.ExitingBlock); 1236 1237 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI); 1238 } 1239 1240 // Replace latch terminator destinations. 1241 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header); 1242 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header); 1243 1244 // If FC0.Latch and FC0.ExitingBlock are the same then we have already 1245 // performed the updates above. 1246 if (FC0.Latch != FC0.ExitingBlock) 1247 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1248 DominatorTree::Insert, FC0.Latch, FC1.Header)); 1249 1250 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1251 FC0.Latch, FC0.Header)); 1252 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert, 1253 FC1.Latch, FC0.Header)); 1254 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1255 FC1.Latch, FC1.Header)); 1256 1257 // Update DT/PDT 1258 DTU.applyUpdates(TreeUpdates); 1259 1260 LI.removeBlock(FC1.Preheader); 1261 DTU.deleteBB(FC1.Preheader); 1262 DTU.flush(); 1263 1264 // Is there a way to keep SE up-to-date so we don't need to forget the loops 1265 // and rebuild the information in subsequent passes of fusion? 1266 SE.forgetLoop(FC1.L); 1267 SE.forgetLoop(FC0.L); 1268 1269 // Merge the loops. 1270 SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(), 1271 FC1.L->block_end()); 1272 for (BasicBlock *BB : Blocks) { 1273 FC0.L->addBlockEntry(BB); 1274 FC1.L->removeBlockFromLoop(BB); 1275 if (LI.getLoopFor(BB) != FC1.L) 1276 continue; 1277 LI.changeLoopFor(BB, FC0.L); 1278 } 1279 while (!FC1.L->empty()) { 1280 const auto &ChildLoopIt = FC1.L->begin(); 1281 Loop *ChildLoop = *ChildLoopIt; 1282 FC1.L->removeChildLoop(ChildLoopIt); 1283 FC0.L->addChildLoop(ChildLoop); 1284 } 1285 1286 // Delete the now empty loop L1. 1287 LI.erase(FC1.L); 1288 1289 #ifndef NDEBUG 1290 assert(!verifyFunction(*FC0.Header->getParent(), &errs())); 1291 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1292 assert(PDT.verify()); 1293 LI.verify(DT); 1294 SE.verify(); 1295 #endif 1296 1297 LLVM_DEBUG(dbgs() << "Fusion done:\n"); 1298 1299 return FC0.L; 1300 } 1301 1302 /// Report details on loop fusion opportunities. 1303 /// 1304 /// This template function can be used to report both successful and missed 1305 /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should 1306 /// be one of: 1307 /// - OptimizationRemarkMissed to report when loop fusion is unsuccessful 1308 /// given two valid fusion candidates. 1309 /// - OptimizationRemark to report successful fusion of two fusion 1310 /// candidates. 1311 /// The remarks will be printed using the form: 1312 /// <path/filename>:<line number>:<column number>: [<function name>]: 1313 /// <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description> 1314 template <typename RemarkKind> 1315 void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1, 1316 llvm::Statistic &Stat) { 1317 assert(FC0.Preheader && FC1.Preheader && 1318 "Expecting valid fusion candidates"); 1319 using namespace ore; 1320 ++Stat; 1321 ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(), 1322 FC0.Preheader) 1323 << "[" << FC0.Preheader->getParent()->getName() 1324 << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName())) 1325 << " and " << NV("Cand2", StringRef(FC1.Preheader->getName())) 1326 << ": " << Stat.getDesc()); 1327 } 1328 1329 /// Fuse two guarded fusion candidates, creating a new fused loop. 1330 /// 1331 /// Fusing guarded loops is handled much the same way as fusing non-guarded 1332 /// loops. The rewiring of the CFG is slightly different though, because of 1333 /// the presence of the guards around the loops and the exit blocks after the 1334 /// loop body. As such, the new loop is rewired as follows: 1335 /// 1. Keep the guard branch from FC0 and use the non-loop block target 1336 /// from the FC1 guard branch. 1337 /// 2. Remove the exit block from FC0 (this exit block should be empty 1338 /// right now). 1339 /// 3. Remove the guard branch for FC1 1340 /// 4. Remove the preheader for FC1. 1341 /// The exit block successor for the latch of FC0 is updated to be the header 1342 /// of FC1 and the non-exit block successor of the latch of FC1 is updated to 1343 /// be the header of FC0, thus creating the fused loop. 1344 Loop *fuseGuardedLoops(const FusionCandidate &FC0, 1345 const FusionCandidate &FC1) { 1346 assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops"); 1347 1348 BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent(); 1349 BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent(); 1350 BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock(); 1351 BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock(); 1352 1353 assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent"); 1354 1355 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates; 1356 1357 //////////////////////////////////////////////////////////////////////////// 1358 // Update the Loop Guard 1359 //////////////////////////////////////////////////////////////////////////// 1360 // The guard for FC0 is updated to guard both FC0 and FC1. This is done by 1361 // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1. 1362 // Thus, one path from the guard goes to the preheader for FC0 (and thus 1363 // executes the new fused loop) and the other path goes to the NonLoopBlock 1364 // for FC1 (where FC1 guard would have gone if FC1 was not executed). 1365 FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock); 1366 FC0.ExitBlock->getTerminator()->replaceUsesOfWith(FC1GuardBlock, 1367 FC1.Header); 1368 1369 // The guard of FC1 is not necessary anymore. 1370 FC1.GuardBranch->eraseFromParent(); 1371 new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock); 1372 1373 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1374 DominatorTree::Delete, FC1GuardBlock, FC1.Preheader)); 1375 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1376 DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock)); 1377 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1378 DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock)); 1379 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1380 DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock)); 1381 1382 assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) && 1383 "Expecting guard block to have no predecessors"); 1384 assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) && 1385 "Expecting guard block to have no successors"); 1386 1387 // Remember the phi nodes originally in the header of FC0 in order to rewire 1388 // them later. However, this is only necessary if the new loop carried 1389 // values might not dominate the exiting branch. While we do not generally 1390 // test if this is the case but simply insert intermediate phi nodes, we 1391 // need to make sure these intermediate phi nodes have different 1392 // predecessors. To this end, we filter the special case where the exiting 1393 // block is the latch block of the first loop. Nothing needs to be done 1394 // anyway as all loop carried values dominate the latch and thereby also the 1395 // exiting branch. 1396 // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch 1397 // (because the loops are rotated. Thus, nothing will ever be added to 1398 // OriginalFC0PHIs. 1399 SmallVector<PHINode *, 8> OriginalFC0PHIs; 1400 if (FC0.ExitingBlock != FC0.Latch) 1401 for (PHINode &PHI : FC0.Header->phis()) 1402 OriginalFC0PHIs.push_back(&PHI); 1403 1404 assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!"); 1405 1406 // Replace incoming blocks for header PHIs first. 1407 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader); 1408 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch); 1409 1410 // The old exiting block of the first loop (FC0) has to jump to the header 1411 // of the second as we need to execute the code in the second header block 1412 // regardless of the trip count. That is, if the trip count is 0, so the 1413 // back edge is never taken, we still have to execute both loop headers, 1414 // especially (but not only!) if the second is a do-while style loop. 1415 // However, doing so might invalidate the phi nodes of the first loop as 1416 // the new values do only need to dominate their latch and not the exiting 1417 // predicate. To remedy this potential problem we always introduce phi 1418 // nodes in the header of the second loop later that select the loop carried 1419 // value, if the second header was reached through an old latch of the 1420 // first, or undef otherwise. This is sound as exiting the first implies the 1421 // second will exit too, __without__ taking the back-edge (their 1422 // trip-counts are equal after all). 1423 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock, 1424 FC1.Header); 1425 1426 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1427 DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock)); 1428 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1429 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header)); 1430 1431 // Remove FC0 Exit Block 1432 // The exit block for FC0 is no longer needed since control will flow 1433 // directly to the header of FC1. Since it is an empty block, it can be 1434 // removed at this point. 1435 // TODO: In the future, we can handle non-empty exit blocks my merging any 1436 // instructions from FC0 exit block into FC1 exit block prior to removing 1437 // the block. 1438 assert(pred_begin(FC0.ExitBlock) == pred_end(FC0.ExitBlock) && 1439 "Expecting exit block to be empty"); 1440 FC0.ExitBlock->getTerminator()->eraseFromParent(); 1441 new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock); 1442 1443 // Remove FC1 Preheader 1444 // The pre-header of L1 is not necessary anymore. 1445 assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader)); 1446 FC1.Preheader->getTerminator()->eraseFromParent(); 1447 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader); 1448 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1449 DominatorTree::Delete, FC1.Preheader, FC1.Header)); 1450 1451 // Moves the phi nodes from the second to the first loops header block. 1452 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) { 1453 if (SE.isSCEVable(PHI->getType())) 1454 SE.forgetValue(PHI); 1455 if (PHI->hasNUsesOrMore(1)) 1456 PHI->moveBefore(&*FC0.Header->getFirstInsertionPt()); 1457 else 1458 PHI->eraseFromParent(); 1459 } 1460 1461 // Introduce new phi nodes in the second loop header to ensure 1462 // exiting the first and jumping to the header of the second does not break 1463 // the SSA property of the phis originally in the first loop. See also the 1464 // comment above. 1465 Instruction *L1HeaderIP = &FC1.Header->front(); 1466 for (PHINode *LCPHI : OriginalFC0PHIs) { 1467 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch); 1468 assert(L1LatchBBIdx >= 0 && 1469 "Expected loop carried value to be rewired at this point!"); 1470 1471 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx); 1472 1473 PHINode *L1HeaderPHI = PHINode::Create( 1474 LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP); 1475 L1HeaderPHI->addIncoming(LCV, FC0.Latch); 1476 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()), 1477 FC0.ExitingBlock); 1478 1479 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI); 1480 } 1481 1482 // Update the latches 1483 1484 // Replace latch terminator destinations. 1485 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header); 1486 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header); 1487 1488 // If FC0.Latch and FC0.ExitingBlock are the same then we have already 1489 // performed the updates above. 1490 if (FC0.Latch != FC0.ExitingBlock) 1491 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1492 DominatorTree::Insert, FC0.Latch, FC1.Header)); 1493 1494 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1495 FC0.Latch, FC0.Header)); 1496 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert, 1497 FC1.Latch, FC0.Header)); 1498 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1499 FC1.Latch, FC1.Header)); 1500 1501 // All done 1502 // Apply the updates to the Dominator Tree and cleanup. 1503 1504 assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) && 1505 "FC1GuardBlock has successors!!"); 1506 assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) && 1507 "FC1GuardBlock has predecessors!!"); 1508 1509 // Update DT/PDT 1510 DTU.applyUpdates(TreeUpdates); 1511 1512 LI.removeBlock(FC1.Preheader); 1513 DTU.deleteBB(FC1.Preheader); 1514 DTU.deleteBB(FC0.ExitBlock); 1515 DTU.flush(); 1516 1517 // Is there a way to keep SE up-to-date so we don't need to forget the loops 1518 // and rebuild the information in subsequent passes of fusion? 1519 SE.forgetLoop(FC1.L); 1520 SE.forgetLoop(FC0.L); 1521 1522 // Merge the loops. 1523 SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(), 1524 FC1.L->block_end()); 1525 for (BasicBlock *BB : Blocks) { 1526 FC0.L->addBlockEntry(BB); 1527 FC1.L->removeBlockFromLoop(BB); 1528 if (LI.getLoopFor(BB) != FC1.L) 1529 continue; 1530 LI.changeLoopFor(BB, FC0.L); 1531 } 1532 while (!FC1.L->empty()) { 1533 const auto &ChildLoopIt = FC1.L->begin(); 1534 Loop *ChildLoop = *ChildLoopIt; 1535 FC1.L->removeChildLoop(ChildLoopIt); 1536 FC0.L->addChildLoop(ChildLoop); 1537 } 1538 1539 // Delete the now empty loop L1. 1540 LI.erase(FC1.L); 1541 1542 #ifndef NDEBUG 1543 assert(!verifyFunction(*FC0.Header->getParent(), &errs())); 1544 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1545 assert(PDT.verify()); 1546 LI.verify(DT); 1547 SE.verify(); 1548 #endif 1549 1550 LLVM_DEBUG(dbgs() << "Fusion done:\n"); 1551 1552 return FC0.L; 1553 } 1554 }; 1555 1556 struct LoopFuseLegacy : public FunctionPass { 1557 1558 static char ID; 1559 1560 LoopFuseLegacy() : FunctionPass(ID) { 1561 initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry()); 1562 } 1563 1564 void getAnalysisUsage(AnalysisUsage &AU) const override { 1565 AU.addRequiredID(LoopSimplifyID); 1566 AU.addRequired<ScalarEvolutionWrapperPass>(); 1567 AU.addRequired<LoopInfoWrapperPass>(); 1568 AU.addRequired<DominatorTreeWrapperPass>(); 1569 AU.addRequired<PostDominatorTreeWrapperPass>(); 1570 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1571 AU.addRequired<DependenceAnalysisWrapperPass>(); 1572 1573 AU.addPreserved<ScalarEvolutionWrapperPass>(); 1574 AU.addPreserved<LoopInfoWrapperPass>(); 1575 AU.addPreserved<DominatorTreeWrapperPass>(); 1576 AU.addPreserved<PostDominatorTreeWrapperPass>(); 1577 } 1578 1579 bool runOnFunction(Function &F) override { 1580 if (skipFunction(F)) 1581 return false; 1582 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1583 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1584 auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 1585 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1586 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 1587 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1588 1589 const DataLayout &DL = F.getParent()->getDataLayout(); 1590 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL); 1591 return LF.fuseLoops(F); 1592 } 1593 }; 1594 } // namespace 1595 1596 PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) { 1597 auto &LI = AM.getResult<LoopAnalysis>(F); 1598 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1599 auto &DI = AM.getResult<DependenceAnalysis>(F); 1600 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1601 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 1602 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1603 1604 const DataLayout &DL = F.getParent()->getDataLayout(); 1605 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL); 1606 bool Changed = LF.fuseLoops(F); 1607 if (!Changed) 1608 return PreservedAnalyses::all(); 1609 1610 PreservedAnalyses PA; 1611 PA.preserve<DominatorTreeAnalysis>(); 1612 PA.preserve<PostDominatorTreeAnalysis>(); 1613 PA.preserve<ScalarEvolutionAnalysis>(); 1614 PA.preserve<LoopAnalysis>(); 1615 return PA; 1616 } 1617 1618 char LoopFuseLegacy::ID = 0; 1619 1620 INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, 1621 false) 1622 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 1623 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 1624 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1625 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1626 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1627 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1628 INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false) 1629 1630 FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); } 1631