1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the loop fusion pass. 11 /// The implementation is largely based on the following document: 12 /// 13 /// Code Transformations to Augment the Scope of Loop Fusion in a 14 /// Production Compiler 15 /// Christopher Mark Barton 16 /// MSc Thesis 17 /// https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf 18 /// 19 /// The general approach taken is to collect sets of control flow equivalent 20 /// loops and test whether they can be fused. The necessary conditions for 21 /// fusion are: 22 /// 1. The loops must be adjacent (there cannot be any statements between 23 /// the two loops). 24 /// 2. The loops must be conforming (they must execute the same number of 25 /// iterations). 26 /// 3. The loops must be control flow equivalent (if one loop executes, the 27 /// other is guaranteed to execute). 28 /// 4. There cannot be any negative distance dependencies between the loops. 29 /// If all of these conditions are satisfied, it is safe to fuse the loops. 30 /// 31 /// This implementation creates FusionCandidates that represent the loop and the 32 /// necessary information needed by fusion. It then operates on the fusion 33 /// candidates, first confirming that the candidate is eligible for fusion. The 34 /// candidates are then collected into control flow equivalent sets, sorted in 35 /// dominance order. Each set of control flow equivalent candidates is then 36 /// traversed, attempting to fuse pairs of candidates in the set. If all 37 /// requirements for fusion are met, the two candidates are fused, creating a 38 /// new (fused) candidate which is then added back into the set to consider for 39 /// additional fusion. 40 /// 41 /// This implementation currently does not make any modifications to remove 42 /// conditions for fusion. Code transformations to make loops conform to each of 43 /// the conditions for fusion are discussed in more detail in the document 44 /// above. These can be added to the current implementation in the future. 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/Transforms/Scalar/LoopFuse.h" 48 #include "llvm/ADT/Statistic.h" 49 #include "llvm/Analysis/DependenceAnalysis.h" 50 #include "llvm/Analysis/DomTreeUpdater.h" 51 #include "llvm/Analysis/LoopInfo.h" 52 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 53 #include "llvm/Analysis/PostDominators.h" 54 #include "llvm/Analysis/ScalarEvolution.h" 55 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/Verifier.h" 58 #include "llvm/InitializePasses.h" 59 #include "llvm/Pass.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Scalar.h" 64 #include "llvm/Transforms/Utils.h" 65 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 66 67 using namespace llvm; 68 69 #define DEBUG_TYPE "loop-fusion" 70 71 STATISTIC(FuseCounter, "Loops fused"); 72 STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion"); 73 STATISTIC(InvalidPreheader, "Loop has invalid preheader"); 74 STATISTIC(InvalidHeader, "Loop has invalid header"); 75 STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks"); 76 STATISTIC(InvalidExitBlock, "Loop has invalid exit block"); 77 STATISTIC(InvalidLatch, "Loop has invalid latch"); 78 STATISTIC(InvalidLoop, "Loop is invalid"); 79 STATISTIC(AddressTakenBB, "Basic block has address taken"); 80 STATISTIC(MayThrowException, "Loop may throw an exception"); 81 STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access"); 82 STATISTIC(NotSimplifiedForm, "Loop is not in simplified form"); 83 STATISTIC(InvalidDependencies, "Dependencies prevent fusion"); 84 STATISTIC(UnknownTripCount, "Loop has unknown trip count"); 85 STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop"); 86 STATISTIC(NonEqualTripCount, "Loop trip counts are not the same"); 87 STATISTIC(NonAdjacent, "Loops are not adjacent"); 88 STATISTIC(NonEmptyPreheader, "Loop has a non-empty preheader"); 89 STATISTIC(FusionNotBeneficial, "Fusion is not beneficial"); 90 STATISTIC(NonIdenticalGuards, "Candidates have different guards"); 91 STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block"); 92 STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block"); 93 94 enum FusionDependenceAnalysisChoice { 95 FUSION_DEPENDENCE_ANALYSIS_SCEV, 96 FUSION_DEPENDENCE_ANALYSIS_DA, 97 FUSION_DEPENDENCE_ANALYSIS_ALL, 98 }; 99 100 static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis( 101 "loop-fusion-dependence-analysis", 102 cl::desc("Which dependence analysis should loop fusion use?"), 103 cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev", 104 "Use the scalar evolution interface"), 105 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da", 106 "Use the dependence analysis interface"), 107 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all", 108 "Use all available analyses")), 109 cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore); 110 111 #ifndef NDEBUG 112 static cl::opt<bool> 113 VerboseFusionDebugging("loop-fusion-verbose-debug", 114 cl::desc("Enable verbose debugging for Loop Fusion"), 115 cl::Hidden, cl::init(false), cl::ZeroOrMore); 116 #endif 117 118 namespace { 119 /// This class is used to represent a candidate for loop fusion. When it is 120 /// constructed, it checks the conditions for loop fusion to ensure that it 121 /// represents a valid candidate. It caches several parts of a loop that are 122 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead 123 /// of continually querying the underlying Loop to retrieve these values. It is 124 /// assumed these will not change throughout loop fusion. 125 /// 126 /// The invalidate method should be used to indicate that the FusionCandidate is 127 /// no longer a valid candidate for fusion. Similarly, the isValid() method can 128 /// be used to ensure that the FusionCandidate is still valid for fusion. 129 struct FusionCandidate { 130 /// Cache of parts of the loop used throughout loop fusion. These should not 131 /// need to change throughout the analysis and transformation. 132 /// These parts are cached to avoid repeatedly looking up in the Loop class. 133 134 /// Preheader of the loop this candidate represents 135 BasicBlock *Preheader; 136 /// Header of the loop this candidate represents 137 BasicBlock *Header; 138 /// Blocks in the loop that exit the loop 139 BasicBlock *ExitingBlock; 140 /// The successor block of this loop (where the exiting blocks go to) 141 BasicBlock *ExitBlock; 142 /// Latch of the loop 143 BasicBlock *Latch; 144 /// The loop that this fusion candidate represents 145 Loop *L; 146 /// Vector of instructions in this loop that read from memory 147 SmallVector<Instruction *, 16> MemReads; 148 /// Vector of instructions in this loop that write to memory 149 SmallVector<Instruction *, 16> MemWrites; 150 /// Are all of the members of this fusion candidate still valid 151 bool Valid; 152 /// Guard branch of the loop, if it exists 153 BranchInst *GuardBranch; 154 155 /// Dominator and PostDominator trees are needed for the 156 /// FusionCandidateCompare function, required by FusionCandidateSet to 157 /// determine where the FusionCandidate should be inserted into the set. These 158 /// are used to establish ordering of the FusionCandidates based on dominance. 159 const DominatorTree *DT; 160 const PostDominatorTree *PDT; 161 162 OptimizationRemarkEmitter &ORE; 163 164 FusionCandidate(Loop *L, const DominatorTree *DT, 165 const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE) 166 : Preheader(L->getLoopPreheader()), Header(L->getHeader()), 167 ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()), 168 Latch(L->getLoopLatch()), L(L), Valid(true), GuardBranch(nullptr), 169 DT(DT), PDT(PDT), ORE(ORE) { 170 171 // TODO: This is temporary while we fuse both rotated and non-rotated 172 // loops. Once we switch to only fusing rotated loops, the initialization of 173 // GuardBranch can be moved into the initialization list above. 174 if (isRotated()) 175 GuardBranch = L->getLoopGuardBranch(); 176 177 // Walk over all blocks in the loop and check for conditions that may 178 // prevent fusion. For each block, walk over all instructions and collect 179 // the memory reads and writes If any instructions that prevent fusion are 180 // found, invalidate this object and return. 181 for (BasicBlock *BB : L->blocks()) { 182 if (BB->hasAddressTaken()) { 183 invalidate(); 184 reportInvalidCandidate(AddressTakenBB); 185 return; 186 } 187 188 for (Instruction &I : *BB) { 189 if (I.mayThrow()) { 190 invalidate(); 191 reportInvalidCandidate(MayThrowException); 192 return; 193 } 194 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 195 if (SI->isVolatile()) { 196 invalidate(); 197 reportInvalidCandidate(ContainsVolatileAccess); 198 return; 199 } 200 } 201 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 202 if (LI->isVolatile()) { 203 invalidate(); 204 reportInvalidCandidate(ContainsVolatileAccess); 205 return; 206 } 207 } 208 if (I.mayWriteToMemory()) 209 MemWrites.push_back(&I); 210 if (I.mayReadFromMemory()) 211 MemReads.push_back(&I); 212 } 213 } 214 } 215 216 /// Check if all members of the class are valid. 217 bool isValid() const { 218 return Preheader && Header && ExitingBlock && ExitBlock && Latch && L && 219 !L->isInvalid() && Valid; 220 } 221 222 /// Verify that all members are in sync with the Loop object. 223 void verify() const { 224 assert(isValid() && "Candidate is not valid!!"); 225 assert(!L->isInvalid() && "Loop is invalid!"); 226 assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync"); 227 assert(Header == L->getHeader() && "Header is out of sync"); 228 assert(ExitingBlock == L->getExitingBlock() && 229 "Exiting Blocks is out of sync"); 230 assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync"); 231 assert(Latch == L->getLoopLatch() && "Latch is out of sync"); 232 } 233 234 /// Get the entry block for this fusion candidate. 235 /// 236 /// If this fusion candidate represents a guarded loop, the entry block is the 237 /// loop guard block. If it represents an unguarded loop, the entry block is 238 /// the preheader of the loop. 239 BasicBlock *getEntryBlock() const { 240 if (GuardBranch) 241 return GuardBranch->getParent(); 242 else 243 return Preheader; 244 } 245 246 /// Given a guarded loop, get the successor of the guard that is not in the 247 /// loop. 248 /// 249 /// This method returns the successor of the loop guard that is not located 250 /// within the loop (i.e., the successor of the guard that is not the 251 /// preheader). 252 /// This method is only valid for guarded loops. 253 BasicBlock *getNonLoopBlock() const { 254 assert(GuardBranch && "Only valid on guarded loops."); 255 assert(GuardBranch->isConditional() && 256 "Expecting guard to be a conditional branch."); 257 return (GuardBranch->getSuccessor(0) == Preheader) 258 ? GuardBranch->getSuccessor(1) 259 : GuardBranch->getSuccessor(0); 260 } 261 262 bool isRotated() const { 263 assert(L && "Expecting loop to be valid."); 264 assert(Latch && "Expecting latch to be valid."); 265 return L->isLoopExiting(Latch); 266 } 267 268 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 269 LLVM_DUMP_METHOD void dump() const { 270 dbgs() << "\tGuardBranch: " 271 << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n" 272 << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr") 273 << "\n" 274 << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n" 275 << "\tExitingBB: " 276 << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n" 277 << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr") 278 << "\n" 279 << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n" 280 << "\tEntryBlock: " 281 << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr") 282 << "\n"; 283 } 284 #endif 285 286 /// Determine if a fusion candidate (representing a loop) is eligible for 287 /// fusion. Note that this only checks whether a single loop can be fused - it 288 /// does not check whether it is *legal* to fuse two loops together. 289 bool isEligibleForFusion(ScalarEvolution &SE) const { 290 if (!isValid()) { 291 LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n"); 292 if (!Preheader) 293 ++InvalidPreheader; 294 if (!Header) 295 ++InvalidHeader; 296 if (!ExitingBlock) 297 ++InvalidExitingBlock; 298 if (!ExitBlock) 299 ++InvalidExitBlock; 300 if (!Latch) 301 ++InvalidLatch; 302 if (L->isInvalid()) 303 ++InvalidLoop; 304 305 return false; 306 } 307 308 // Require ScalarEvolution to be able to determine a trip count. 309 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { 310 LLVM_DEBUG(dbgs() << "Loop " << L->getName() 311 << " trip count not computable!\n"); 312 return reportInvalidCandidate(UnknownTripCount); 313 } 314 315 if (!L->isLoopSimplifyForm()) { 316 LLVM_DEBUG(dbgs() << "Loop " << L->getName() 317 << " is not in simplified form!\n"); 318 return reportInvalidCandidate(NotSimplifiedForm); 319 } 320 321 return true; 322 } 323 324 private: 325 // This is only used internally for now, to clear the MemWrites and MemReads 326 // list and setting Valid to false. I can't envision other uses of this right 327 // now, since once FusionCandidates are put into the FusionCandidateSet they 328 // are immutable. Thus, any time we need to change/update a FusionCandidate, 329 // we must create a new one and insert it into the FusionCandidateSet to 330 // ensure the FusionCandidateSet remains ordered correctly. 331 void invalidate() { 332 MemWrites.clear(); 333 MemReads.clear(); 334 Valid = false; 335 } 336 337 bool reportInvalidCandidate(llvm::Statistic &Stat) const { 338 using namespace ore; 339 assert(L && Preheader && "Fusion candidate not initialized properly!"); 340 ++Stat; 341 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(), 342 L->getStartLoc(), Preheader) 343 << "[" << Preheader->getParent()->getName() << "]: " 344 << "Loop is not a candidate for fusion: " << Stat.getDesc()); 345 return false; 346 } 347 }; 348 349 struct FusionCandidateCompare { 350 /// Comparison functor to sort two Control Flow Equivalent fusion candidates 351 /// into dominance order. 352 /// If LHS dominates RHS and RHS post-dominates LHS, return true; 353 /// IF RHS dominates LHS and LHS post-dominates RHS, return false; 354 bool operator()(const FusionCandidate &LHS, 355 const FusionCandidate &RHS) const { 356 const DominatorTree *DT = LHS.DT; 357 358 BasicBlock *LHSEntryBlock = LHS.getEntryBlock(); 359 BasicBlock *RHSEntryBlock = RHS.getEntryBlock(); 360 361 // Do not save PDT to local variable as it is only used in asserts and thus 362 // will trigger an unused variable warning if building without asserts. 363 assert(DT && LHS.PDT && "Expecting valid dominator tree"); 364 365 // Do this compare first so if LHS == RHS, function returns false. 366 if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) { 367 // RHS dominates LHS 368 // Verify LHS post-dominates RHS 369 assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock)); 370 return false; 371 } 372 373 if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) { 374 // Verify RHS Postdominates LHS 375 assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock)); 376 return true; 377 } 378 379 // If LHS does not dominate RHS and RHS does not dominate LHS then there is 380 // no dominance relationship between the two FusionCandidates. Thus, they 381 // should not be in the same set together. 382 llvm_unreachable( 383 "No dominance relationship between these fusion candidates!"); 384 } 385 }; 386 387 using LoopVector = SmallVector<Loop *, 4>; 388 389 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance 390 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0 391 // dominates FC1 and FC1 post-dominates FC0. 392 // std::set was chosen because we want a sorted data structure with stable 393 // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent 394 // loops by moving intervening code around. When this intervening code contains 395 // loops, those loops will be moved also. The corresponding FusionCandidates 396 // will also need to be moved accordingly. As this is done, having stable 397 // iterators will simplify the logic. Similarly, having an efficient insert that 398 // keeps the FusionCandidateSet sorted will also simplify the implementation. 399 using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>; 400 using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>; 401 402 #if !defined(NDEBUG) 403 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, 404 const FusionCandidate &FC) { 405 if (FC.isValid()) 406 OS << FC.Preheader->getName(); 407 else 408 OS << "<Invalid>"; 409 410 return OS; 411 } 412 413 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, 414 const FusionCandidateSet &CandSet) { 415 for (const FusionCandidate &FC : CandSet) 416 OS << FC << '\n'; 417 418 return OS; 419 } 420 421 static void 422 printFusionCandidates(const FusionCandidateCollection &FusionCandidates) { 423 dbgs() << "Fusion Candidates: \n"; 424 for (const auto &CandidateSet : FusionCandidates) { 425 dbgs() << "*** Fusion Candidate Set ***\n"; 426 dbgs() << CandidateSet; 427 dbgs() << "****************************\n"; 428 } 429 } 430 #endif 431 432 /// Collect all loops in function at the same nest level, starting at the 433 /// outermost level. 434 /// 435 /// This data structure collects all loops at the same nest level for a 436 /// given function (specified by the LoopInfo object). It starts at the 437 /// outermost level. 438 struct LoopDepthTree { 439 using LoopsOnLevelTy = SmallVector<LoopVector, 4>; 440 using iterator = LoopsOnLevelTy::iterator; 441 using const_iterator = LoopsOnLevelTy::const_iterator; 442 443 LoopDepthTree(LoopInfo &LI) : Depth(1) { 444 if (!LI.empty()) 445 LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend())); 446 } 447 448 /// Test whether a given loop has been removed from the function, and thus is 449 /// no longer valid. 450 bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); } 451 452 /// Record that a given loop has been removed from the function and is no 453 /// longer valid. 454 void removeLoop(const Loop *L) { RemovedLoops.insert(L); } 455 456 /// Descend the tree to the next (inner) nesting level 457 void descend() { 458 LoopsOnLevelTy LoopsOnNextLevel; 459 460 for (const LoopVector &LV : *this) 461 for (Loop *L : LV) 462 if (!isRemovedLoop(L) && L->begin() != L->end()) 463 LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end())); 464 465 LoopsOnLevel = LoopsOnNextLevel; 466 RemovedLoops.clear(); 467 Depth++; 468 } 469 470 bool empty() const { return size() == 0; } 471 size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); } 472 unsigned getDepth() const { return Depth; } 473 474 iterator begin() { return LoopsOnLevel.begin(); } 475 iterator end() { return LoopsOnLevel.end(); } 476 const_iterator begin() const { return LoopsOnLevel.begin(); } 477 const_iterator end() const { return LoopsOnLevel.end(); } 478 479 private: 480 /// Set of loops that have been removed from the function and are no longer 481 /// valid. 482 SmallPtrSet<const Loop *, 8> RemovedLoops; 483 484 /// Depth of the current level, starting at 1 (outermost loops). 485 unsigned Depth; 486 487 /// Vector of loops at the current depth level that have the same parent loop 488 LoopsOnLevelTy LoopsOnLevel; 489 }; 490 491 #ifndef NDEBUG 492 static void printLoopVector(const LoopVector &LV) { 493 dbgs() << "****************************\n"; 494 for (auto L : LV) 495 printLoop(*L, dbgs()); 496 dbgs() << "****************************\n"; 497 } 498 #endif 499 500 struct LoopFuser { 501 private: 502 // Sets of control flow equivalent fusion candidates for a given nest level. 503 FusionCandidateCollection FusionCandidates; 504 505 LoopDepthTree LDT; 506 DomTreeUpdater DTU; 507 508 LoopInfo &LI; 509 DominatorTree &DT; 510 DependenceInfo &DI; 511 ScalarEvolution &SE; 512 PostDominatorTree &PDT; 513 OptimizationRemarkEmitter &ORE; 514 515 public: 516 LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI, 517 ScalarEvolution &SE, PostDominatorTree &PDT, 518 OptimizationRemarkEmitter &ORE, const DataLayout &DL) 519 : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI), 520 DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE) {} 521 522 /// This is the main entry point for loop fusion. It will traverse the 523 /// specified function and collect candidate loops to fuse, starting at the 524 /// outermost nesting level and working inwards. 525 bool fuseLoops(Function &F) { 526 #ifndef NDEBUG 527 if (VerboseFusionDebugging) { 528 LI.print(dbgs()); 529 } 530 #endif 531 532 LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName() 533 << "\n"); 534 bool Changed = false; 535 536 while (!LDT.empty()) { 537 LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth " 538 << LDT.getDepth() << "\n";); 539 540 for (const LoopVector &LV : LDT) { 541 assert(LV.size() > 0 && "Empty loop set was build!"); 542 543 // Skip singleton loop sets as they do not offer fusion opportunities on 544 // this level. 545 if (LV.size() == 1) 546 continue; 547 #ifndef NDEBUG 548 if (VerboseFusionDebugging) { 549 LLVM_DEBUG({ 550 dbgs() << " Visit loop set (#" << LV.size() << "):\n"; 551 printLoopVector(LV); 552 }); 553 } 554 #endif 555 556 collectFusionCandidates(LV); 557 Changed |= fuseCandidates(); 558 } 559 560 // Finished analyzing candidates at this level. 561 // Descend to the next level and clear all of the candidates currently 562 // collected. Note that it will not be possible to fuse any of the 563 // existing candidates with new candidates because the new candidates will 564 // be at a different nest level and thus not be control flow equivalent 565 // with all of the candidates collected so far. 566 LLVM_DEBUG(dbgs() << "Descend one level!\n"); 567 LDT.descend(); 568 FusionCandidates.clear(); 569 } 570 571 if (Changed) 572 LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump();); 573 574 #ifndef NDEBUG 575 assert(DT.verify()); 576 assert(PDT.verify()); 577 LI.verify(DT); 578 SE.verify(); 579 #endif 580 581 LLVM_DEBUG(dbgs() << "Loop Fusion complete\n"); 582 return Changed; 583 } 584 585 private: 586 /// Determine if two fusion candidates are control flow equivalent. 587 /// 588 /// Two fusion candidates are control flow equivalent if when one executes, 589 /// the other is guaranteed to execute. This is determined using dominators 590 /// and post-dominators: if A dominates B and B post-dominates A then A and B 591 /// are control-flow equivalent. 592 bool isControlFlowEquivalent(const FusionCandidate &FC0, 593 const FusionCandidate &FC1) const { 594 assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders"); 595 596 BasicBlock *FC0EntryBlock = FC0.getEntryBlock(); 597 BasicBlock *FC1EntryBlock = FC1.getEntryBlock(); 598 599 if (DT.dominates(FC0EntryBlock, FC1EntryBlock)) 600 return PDT.dominates(FC1EntryBlock, FC0EntryBlock); 601 602 if (DT.dominates(FC1EntryBlock, FC0EntryBlock)) 603 return PDT.dominates(FC0EntryBlock, FC1EntryBlock); 604 605 return false; 606 } 607 608 /// Iterate over all loops in the given loop set and identify the loops that 609 /// are eligible for fusion. Place all eligible fusion candidates into Control 610 /// Flow Equivalent sets, sorted by dominance. 611 void collectFusionCandidates(const LoopVector &LV) { 612 for (Loop *L : LV) { 613 FusionCandidate CurrCand(L, &DT, &PDT, ORE); 614 if (!CurrCand.isEligibleForFusion(SE)) 615 continue; 616 617 // Go through each list in FusionCandidates and determine if L is control 618 // flow equivalent with the first loop in that list. If it is, append LV. 619 // If not, go to the next list. 620 // If no suitable list is found, start another list and add it to 621 // FusionCandidates. 622 bool FoundSet = false; 623 624 for (auto &CurrCandSet : FusionCandidates) { 625 if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) { 626 CurrCandSet.insert(CurrCand); 627 FoundSet = true; 628 #ifndef NDEBUG 629 if (VerboseFusionDebugging) 630 LLVM_DEBUG(dbgs() << "Adding " << CurrCand 631 << " to existing candidate set\n"); 632 #endif 633 break; 634 } 635 } 636 if (!FoundSet) { 637 // No set was found. Create a new set and add to FusionCandidates 638 #ifndef NDEBUG 639 if (VerboseFusionDebugging) 640 LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n"); 641 #endif 642 FusionCandidateSet NewCandSet; 643 NewCandSet.insert(CurrCand); 644 FusionCandidates.push_back(NewCandSet); 645 } 646 NumFusionCandidates++; 647 } 648 } 649 650 /// Determine if it is beneficial to fuse two loops. 651 /// 652 /// For now, this method simply returns true because we want to fuse as much 653 /// as possible (primarily to test the pass). This method will evolve, over 654 /// time, to add heuristics for profitability of fusion. 655 bool isBeneficialFusion(const FusionCandidate &FC0, 656 const FusionCandidate &FC1) { 657 return true; 658 } 659 660 /// Determine if two fusion candidates have the same trip count (i.e., they 661 /// execute the same number of iterations). 662 /// 663 /// Note that for now this method simply returns a boolean value because there 664 /// are no mechanisms in loop fusion to handle different trip counts. In the 665 /// future, this behaviour can be extended to adjust one of the loops to make 666 /// the trip counts equal (e.g., loop peeling). When this is added, this 667 /// interface may need to change to return more information than just a 668 /// boolean value. 669 bool identicalTripCounts(const FusionCandidate &FC0, 670 const FusionCandidate &FC1) const { 671 const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L); 672 if (isa<SCEVCouldNotCompute>(TripCount0)) { 673 UncomputableTripCount++; 674 LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!"); 675 return false; 676 } 677 678 const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L); 679 if (isa<SCEVCouldNotCompute>(TripCount1)) { 680 UncomputableTripCount++; 681 LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!"); 682 return false; 683 } 684 LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & " 685 << *TripCount1 << " are " 686 << (TripCount0 == TripCount1 ? "identical" : "different") 687 << "\n"); 688 689 return (TripCount0 == TripCount1); 690 } 691 692 /// Walk each set of control flow equivalent fusion candidates and attempt to 693 /// fuse them. This does a single linear traversal of all candidates in the 694 /// set. The conditions for legal fusion are checked at this point. If a pair 695 /// of fusion candidates passes all legality checks, they are fused together 696 /// and a new fusion candidate is created and added to the FusionCandidateSet. 697 /// The original fusion candidates are then removed, as they are no longer 698 /// valid. 699 bool fuseCandidates() { 700 bool Fused = false; 701 LLVM_DEBUG(printFusionCandidates(FusionCandidates)); 702 for (auto &CandidateSet : FusionCandidates) { 703 if (CandidateSet.size() < 2) 704 continue; 705 706 LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n" 707 << CandidateSet << "\n"); 708 709 for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) { 710 assert(!LDT.isRemovedLoop(FC0->L) && 711 "Should not have removed loops in CandidateSet!"); 712 auto FC1 = FC0; 713 for (++FC1; FC1 != CandidateSet.end(); ++FC1) { 714 assert(!LDT.isRemovedLoop(FC1->L) && 715 "Should not have removed loops in CandidateSet!"); 716 717 LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump(); 718 dbgs() << " with\n"; FC1->dump(); dbgs() << "\n"); 719 720 FC0->verify(); 721 FC1->verify(); 722 723 if (!identicalTripCounts(*FC0, *FC1)) { 724 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip " 725 "counts. Not fusing.\n"); 726 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 727 NonEqualTripCount); 728 continue; 729 } 730 731 if (!isAdjacent(*FC0, *FC1)) { 732 LLVM_DEBUG(dbgs() 733 << "Fusion candidates are not adjacent. Not fusing.\n"); 734 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent); 735 continue; 736 } 737 738 // Ensure that FC0 and FC1 have identical guards. 739 // If one (or both) are not guarded, this check is not necessary. 740 if (FC0->GuardBranch && FC1->GuardBranch && 741 !haveIdenticalGuards(*FC0, *FC1)) { 742 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical " 743 "guards. Not Fusing.\n"); 744 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 745 NonIdenticalGuards); 746 continue; 747 } 748 749 // The following three checks look for empty blocks in FC0 and FC1. If 750 // any of these blocks are non-empty, we do not fuse. This is done 751 // because we currently do not have the safety checks to determine if 752 // it is safe to move the blocks past other blocks in the loop. Once 753 // these checks are added, these conditions can be relaxed. 754 if (!isEmptyPreheader(*FC1)) { 755 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty " 756 "preheader. Not fusing.\n"); 757 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 758 NonEmptyPreheader); 759 continue; 760 } 761 762 if (FC0->GuardBranch && !isEmptyExitBlock(*FC0)) { 763 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty exit " 764 "block. Not fusing.\n"); 765 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 766 NonEmptyExitBlock); 767 continue; 768 } 769 770 if (FC1->GuardBranch && !isEmptyGuardBlock(*FC1)) { 771 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty guard " 772 "block. Not fusing.\n"); 773 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 774 NonEmptyGuardBlock); 775 continue; 776 } 777 778 // Check the dependencies across the loops and do not fuse if it would 779 // violate them. 780 if (!dependencesAllowFusion(*FC0, *FC1)) { 781 LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n"); 782 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 783 InvalidDependencies); 784 continue; 785 } 786 787 bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1); 788 LLVM_DEBUG(dbgs() 789 << "\tFusion appears to be " 790 << (BeneficialToFuse ? "" : "un") << "profitable!\n"); 791 if (!BeneficialToFuse) { 792 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 793 FusionNotBeneficial); 794 continue; 795 } 796 // All analysis has completed and has determined that fusion is legal 797 // and profitable. At this point, start transforming the code and 798 // perform fusion. 799 800 LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and " 801 << *FC1 << "\n"); 802 803 // Report fusion to the Optimization Remarks. 804 // Note this needs to be done *before* performFusion because 805 // performFusion will change the original loops, making it not 806 // possible to identify them after fusion is complete. 807 reportLoopFusion<OptimizationRemark>(*FC0, *FC1, FuseCounter); 808 809 FusionCandidate FusedCand(performFusion(*FC0, *FC1), &DT, &PDT, ORE); 810 FusedCand.verify(); 811 assert(FusedCand.isEligibleForFusion(SE) && 812 "Fused candidate should be eligible for fusion!"); 813 814 // Notify the loop-depth-tree that these loops are not valid objects 815 LDT.removeLoop(FC1->L); 816 817 CandidateSet.erase(FC0); 818 CandidateSet.erase(FC1); 819 820 auto InsertPos = CandidateSet.insert(FusedCand); 821 822 assert(InsertPos.second && 823 "Unable to insert TargetCandidate in CandidateSet!"); 824 825 // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations 826 // of the FC1 loop will attempt to fuse the new (fused) loop with the 827 // remaining candidates in the current candidate set. 828 FC0 = FC1 = InsertPos.first; 829 830 LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet 831 << "\n"); 832 833 Fused = true; 834 } 835 } 836 } 837 return Fused; 838 } 839 840 /// Rewrite all additive recurrences in a SCEV to use a new loop. 841 class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> { 842 public: 843 AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL, 844 bool UseMax = true) 845 : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL), 846 NewL(NewL) {} 847 848 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 849 const Loop *ExprL = Expr->getLoop(); 850 SmallVector<const SCEV *, 2> Operands; 851 if (ExprL == &OldL) { 852 Operands.append(Expr->op_begin(), Expr->op_end()); 853 return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags()); 854 } 855 856 if (OldL.contains(ExprL)) { 857 bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE)); 858 if (!UseMax || !Pos || !Expr->isAffine()) { 859 Valid = false; 860 return Expr; 861 } 862 return visit(Expr->getStart()); 863 } 864 865 for (const SCEV *Op : Expr->operands()) 866 Operands.push_back(visit(Op)); 867 return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags()); 868 } 869 870 bool wasValidSCEV() const { return Valid; } 871 872 private: 873 bool Valid, UseMax; 874 const Loop &OldL, &NewL; 875 }; 876 877 /// Return false if the access functions of \p I0 and \p I1 could cause 878 /// a negative dependence. 879 bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0, 880 Instruction &I1, bool EqualIsInvalid) { 881 Value *Ptr0 = getLoadStorePointerOperand(&I0); 882 Value *Ptr1 = getLoadStorePointerOperand(&I1); 883 if (!Ptr0 || !Ptr1) 884 return false; 885 886 const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0); 887 const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1); 888 #ifndef NDEBUG 889 if (VerboseFusionDebugging) 890 LLVM_DEBUG(dbgs() << " Access function check: " << *SCEVPtr0 << " vs " 891 << *SCEVPtr1 << "\n"); 892 #endif 893 AddRecLoopReplacer Rewriter(SE, L0, L1); 894 SCEVPtr0 = Rewriter.visit(SCEVPtr0); 895 #ifndef NDEBUG 896 if (VerboseFusionDebugging) 897 LLVM_DEBUG(dbgs() << " Access function after rewrite: " << *SCEVPtr0 898 << " [Valid: " << Rewriter.wasValidSCEV() << "]\n"); 899 #endif 900 if (!Rewriter.wasValidSCEV()) 901 return false; 902 903 // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by 904 // L0) and the other is not. We could check if it is monotone and test 905 // the beginning and end value instead. 906 907 BasicBlock *L0Header = L0.getHeader(); 908 auto HasNonLinearDominanceRelation = [&](const SCEV *S) { 909 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S); 910 if (!AddRec) 911 return false; 912 return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) && 913 !DT.dominates(AddRec->getLoop()->getHeader(), L0Header); 914 }; 915 if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation)) 916 return false; 917 918 ICmpInst::Predicate Pred = 919 EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE; 920 bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1); 921 #ifndef NDEBUG 922 if (VerboseFusionDebugging) 923 LLVM_DEBUG(dbgs() << " Relation: " << *SCEVPtr0 924 << (IsAlwaysGE ? " >= " : " may < ") << *SCEVPtr1 925 << "\n"); 926 #endif 927 return IsAlwaysGE; 928 } 929 930 /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in 931 /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses 932 /// specified by @p DepChoice are used to determine this. 933 bool dependencesAllowFusion(const FusionCandidate &FC0, 934 const FusionCandidate &FC1, Instruction &I0, 935 Instruction &I1, bool AnyDep, 936 FusionDependenceAnalysisChoice DepChoice) { 937 #ifndef NDEBUG 938 if (VerboseFusionDebugging) { 939 LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : " 940 << DepChoice << "\n"); 941 } 942 #endif 943 switch (DepChoice) { 944 case FUSION_DEPENDENCE_ANALYSIS_SCEV: 945 return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep); 946 case FUSION_DEPENDENCE_ANALYSIS_DA: { 947 auto DepResult = DI.depends(&I0, &I1, true); 948 if (!DepResult) 949 return true; 950 #ifndef NDEBUG 951 if (VerboseFusionDebugging) { 952 LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs()); 953 dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: " 954 << (DepResult->isOrdered() ? "true" : "false") 955 << "]\n"); 956 LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels() 957 << "\n"); 958 } 959 #endif 960 961 if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor()) 962 LLVM_DEBUG( 963 dbgs() << "TODO: Implement pred/succ dependence handling!\n"); 964 965 // TODO: Can we actually use the dependence info analysis here? 966 return false; 967 } 968 969 case FUSION_DEPENDENCE_ANALYSIS_ALL: 970 return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep, 971 FUSION_DEPENDENCE_ANALYSIS_SCEV) || 972 dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep, 973 FUSION_DEPENDENCE_ANALYSIS_DA); 974 } 975 976 llvm_unreachable("Unknown fusion dependence analysis choice!"); 977 } 978 979 /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused. 980 bool dependencesAllowFusion(const FusionCandidate &FC0, 981 const FusionCandidate &FC1) { 982 LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1 983 << "\n"); 984 assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth()); 985 assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock())); 986 987 for (Instruction *WriteL0 : FC0.MemWrites) { 988 for (Instruction *WriteL1 : FC1.MemWrites) 989 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1, 990 /* AnyDep */ false, 991 FusionDependenceAnalysis)) { 992 InvalidDependencies++; 993 return false; 994 } 995 for (Instruction *ReadL1 : FC1.MemReads) 996 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1, 997 /* AnyDep */ false, 998 FusionDependenceAnalysis)) { 999 InvalidDependencies++; 1000 return false; 1001 } 1002 } 1003 1004 for (Instruction *WriteL1 : FC1.MemWrites) { 1005 for (Instruction *WriteL0 : FC0.MemWrites) 1006 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1, 1007 /* AnyDep */ false, 1008 FusionDependenceAnalysis)) { 1009 InvalidDependencies++; 1010 return false; 1011 } 1012 for (Instruction *ReadL0 : FC0.MemReads) 1013 if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1, 1014 /* AnyDep */ false, 1015 FusionDependenceAnalysis)) { 1016 InvalidDependencies++; 1017 return false; 1018 } 1019 } 1020 1021 // Walk through all uses in FC1. For each use, find the reaching def. If the 1022 // def is located in FC0 then it is is not safe to fuse. 1023 for (BasicBlock *BB : FC1.L->blocks()) 1024 for (Instruction &I : *BB) 1025 for (auto &Op : I.operands()) 1026 if (Instruction *Def = dyn_cast<Instruction>(Op)) 1027 if (FC0.L->contains(Def->getParent())) { 1028 InvalidDependencies++; 1029 return false; 1030 } 1031 1032 return true; 1033 } 1034 1035 /// Determine if two fusion candidates are adjacent in the CFG. 1036 /// 1037 /// This method will determine if there are additional basic blocks in the CFG 1038 /// between the exit of \p FC0 and the entry of \p FC1. 1039 /// If the two candidates are guarded loops, then it checks whether the 1040 /// non-loop successor of the \p FC0 guard branch is the entry block of \p 1041 /// FC1. If not, then the loops are not adjacent. If the two candidates are 1042 /// not guarded loops, then it checks whether the exit block of \p FC0 is the 1043 /// preheader of \p FC1. 1044 bool isAdjacent(const FusionCandidate &FC0, 1045 const FusionCandidate &FC1) const { 1046 // If the successor of the guard branch is FC1, then the loops are adjacent 1047 if (FC0.GuardBranch) 1048 return FC0.getNonLoopBlock() == FC1.getEntryBlock(); 1049 else 1050 return FC0.ExitBlock == FC1.getEntryBlock(); 1051 } 1052 1053 /// Determine if two fusion candidates have identical guards 1054 /// 1055 /// This method will determine if two fusion candidates have the same guards. 1056 /// The guards are considered the same if: 1057 /// 1. The instructions to compute the condition used in the compare are 1058 /// identical. 1059 /// 2. The successors of the guard have the same flow into/around the loop. 1060 /// If the compare instructions are identical, then the first successor of the 1061 /// guard must go to the same place (either the preheader of the loop or the 1062 /// NonLoopBlock). In other words, the the first successor of both loops must 1063 /// both go into the loop (i.e., the preheader) or go around the loop (i.e., 1064 /// the NonLoopBlock). The same must be true for the second successor. 1065 bool haveIdenticalGuards(const FusionCandidate &FC0, 1066 const FusionCandidate &FC1) const { 1067 assert(FC0.GuardBranch && FC1.GuardBranch && 1068 "Expecting FC0 and FC1 to be guarded loops."); 1069 1070 if (auto FC0CmpInst = 1071 dyn_cast<Instruction>(FC0.GuardBranch->getCondition())) 1072 if (auto FC1CmpInst = 1073 dyn_cast<Instruction>(FC1.GuardBranch->getCondition())) 1074 if (!FC0CmpInst->isIdenticalTo(FC1CmpInst)) 1075 return false; 1076 1077 // The compare instructions are identical. 1078 // Now make sure the successor of the guards have the same flow into/around 1079 // the loop 1080 if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader) 1081 return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader); 1082 else 1083 return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader); 1084 } 1085 1086 /// Check that the guard for \p FC *only* contains the cmp/branch for the 1087 /// guard. 1088 /// Once we are able to handle intervening code, any code in the guard block 1089 /// for FC1 will need to be treated as intervening code and checked whether 1090 /// it can safely move around the loops. 1091 bool isEmptyGuardBlock(const FusionCandidate &FC) const { 1092 assert(FC.GuardBranch && "Expecting a fusion candidate with guard branch."); 1093 if (auto *CmpInst = dyn_cast<Instruction>(FC.GuardBranch->getCondition())) { 1094 auto *GuardBlock = FC.GuardBranch->getParent(); 1095 // If the generation of the cmp value is in GuardBlock, then the size of 1096 // the guard block should be 2 (cmp + branch). If the generation of the 1097 // cmp value is in a different block, then the size of the guard block 1098 // should only be 1. 1099 if (CmpInst->getParent() == GuardBlock) 1100 return GuardBlock->size() == 2; 1101 else 1102 return GuardBlock->size() == 1; 1103 } 1104 1105 return false; 1106 } 1107 1108 bool isEmptyPreheader(const FusionCandidate &FC) const { 1109 assert(FC.Preheader && "Expecting a valid preheader"); 1110 return FC.Preheader->size() == 1; 1111 } 1112 1113 bool isEmptyExitBlock(const FusionCandidate &FC) const { 1114 assert(FC.ExitBlock && "Expecting a valid exit block"); 1115 return FC.ExitBlock->size() == 1; 1116 } 1117 1118 /// Fuse two fusion candidates, creating a new fused loop. 1119 /// 1120 /// This method contains the mechanics of fusing two loops, represented by \p 1121 /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1 1122 /// postdominates \p FC0 (making them control flow equivalent). It also 1123 /// assumes that the other conditions for fusion have been met: adjacent, 1124 /// identical trip counts, and no negative distance dependencies exist that 1125 /// would prevent fusion. Thus, there is no checking for these conditions in 1126 /// this method. 1127 /// 1128 /// Fusion is performed by rewiring the CFG to update successor blocks of the 1129 /// components of tho loop. Specifically, the following changes are done: 1130 /// 1131 /// 1. The preheader of \p FC1 is removed as it is no longer necessary 1132 /// (because it is currently only a single statement block). 1133 /// 2. The latch of \p FC0 is modified to jump to the header of \p FC1. 1134 /// 3. The latch of \p FC1 i modified to jump to the header of \p FC0. 1135 /// 4. All blocks from \p FC1 are removed from FC1 and added to FC0. 1136 /// 1137 /// All of these modifications are done with dominator tree updates, thus 1138 /// keeping the dominator (and post dominator) information up-to-date. 1139 /// 1140 /// This can be improved in the future by actually merging blocks during 1141 /// fusion. For example, the preheader of \p FC1 can be merged with the 1142 /// preheader of \p FC0. This would allow loops with more than a single 1143 /// statement in the preheader to be fused. Similarly, the latch blocks of the 1144 /// two loops could also be fused into a single block. This will require 1145 /// analysis to prove it is safe to move the contents of the block past 1146 /// existing code, which currently has not been implemented. 1147 Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) { 1148 assert(FC0.isValid() && FC1.isValid() && 1149 "Expecting valid fusion candidates"); 1150 1151 LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump(); 1152 dbgs() << "Fusion Candidate 1: \n"; FC1.dump();); 1153 1154 // Fusing guarded loops is handled slightly differently than non-guarded 1155 // loops and has been broken out into a separate method instead of trying to 1156 // intersperse the logic within a single method. 1157 if (FC0.GuardBranch) 1158 return fuseGuardedLoops(FC0, FC1); 1159 1160 assert(FC1.Preheader == FC0.ExitBlock); 1161 assert(FC1.Preheader->size() == 1 && 1162 FC1.Preheader->getSingleSuccessor() == FC1.Header); 1163 1164 // Remember the phi nodes originally in the header of FC0 in order to rewire 1165 // them later. However, this is only necessary if the new loop carried 1166 // values might not dominate the exiting branch. While we do not generally 1167 // test if this is the case but simply insert intermediate phi nodes, we 1168 // need to make sure these intermediate phi nodes have different 1169 // predecessors. To this end, we filter the special case where the exiting 1170 // block is the latch block of the first loop. Nothing needs to be done 1171 // anyway as all loop carried values dominate the latch and thereby also the 1172 // exiting branch. 1173 SmallVector<PHINode *, 8> OriginalFC0PHIs; 1174 if (FC0.ExitingBlock != FC0.Latch) 1175 for (PHINode &PHI : FC0.Header->phis()) 1176 OriginalFC0PHIs.push_back(&PHI); 1177 1178 // Replace incoming blocks for header PHIs first. 1179 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader); 1180 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch); 1181 1182 // Then modify the control flow and update DT and PDT. 1183 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates; 1184 1185 // The old exiting block of the first loop (FC0) has to jump to the header 1186 // of the second as we need to execute the code in the second header block 1187 // regardless of the trip count. That is, if the trip count is 0, so the 1188 // back edge is never taken, we still have to execute both loop headers, 1189 // especially (but not only!) if the second is a do-while style loop. 1190 // However, doing so might invalidate the phi nodes of the first loop as 1191 // the new values do only need to dominate their latch and not the exiting 1192 // predicate. To remedy this potential problem we always introduce phi 1193 // nodes in the header of the second loop later that select the loop carried 1194 // value, if the second header was reached through an old latch of the 1195 // first, or undef otherwise. This is sound as exiting the first implies the 1196 // second will exit too, __without__ taking the back-edge. [Their 1197 // trip-counts are equal after all. 1198 // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go 1199 // to FC1.Header? I think this is basically what the three sequences are 1200 // trying to accomplish; however, doing this directly in the CFG may mean 1201 // the DT/PDT becomes invalid 1202 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader, 1203 FC1.Header); 1204 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1205 DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader)); 1206 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1207 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header)); 1208 1209 // The pre-header of L1 is not necessary anymore. 1210 assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader)); 1211 FC1.Preheader->getTerminator()->eraseFromParent(); 1212 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader); 1213 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1214 DominatorTree::Delete, FC1.Preheader, FC1.Header)); 1215 1216 // Moves the phi nodes from the second to the first loops header block. 1217 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) { 1218 if (SE.isSCEVable(PHI->getType())) 1219 SE.forgetValue(PHI); 1220 if (PHI->hasNUsesOrMore(1)) 1221 PHI->moveBefore(&*FC0.Header->getFirstInsertionPt()); 1222 else 1223 PHI->eraseFromParent(); 1224 } 1225 1226 // Introduce new phi nodes in the second loop header to ensure 1227 // exiting the first and jumping to the header of the second does not break 1228 // the SSA property of the phis originally in the first loop. See also the 1229 // comment above. 1230 Instruction *L1HeaderIP = &FC1.Header->front(); 1231 for (PHINode *LCPHI : OriginalFC0PHIs) { 1232 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch); 1233 assert(L1LatchBBIdx >= 0 && 1234 "Expected loop carried value to be rewired at this point!"); 1235 1236 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx); 1237 1238 PHINode *L1HeaderPHI = PHINode::Create( 1239 LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP); 1240 L1HeaderPHI->addIncoming(LCV, FC0.Latch); 1241 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()), 1242 FC0.ExitingBlock); 1243 1244 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI); 1245 } 1246 1247 // Replace latch terminator destinations. 1248 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header); 1249 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header); 1250 1251 // If FC0.Latch and FC0.ExitingBlock are the same then we have already 1252 // performed the updates above. 1253 if (FC0.Latch != FC0.ExitingBlock) 1254 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1255 DominatorTree::Insert, FC0.Latch, FC1.Header)); 1256 1257 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1258 FC0.Latch, FC0.Header)); 1259 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert, 1260 FC1.Latch, FC0.Header)); 1261 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1262 FC1.Latch, FC1.Header)); 1263 1264 // Update DT/PDT 1265 DTU.applyUpdates(TreeUpdates); 1266 1267 LI.removeBlock(FC1.Preheader); 1268 DTU.deleteBB(FC1.Preheader); 1269 DTU.flush(); 1270 1271 // Is there a way to keep SE up-to-date so we don't need to forget the loops 1272 // and rebuild the information in subsequent passes of fusion? 1273 SE.forgetLoop(FC1.L); 1274 SE.forgetLoop(FC0.L); 1275 1276 // Merge the loops. 1277 SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(), 1278 FC1.L->block_end()); 1279 for (BasicBlock *BB : Blocks) { 1280 FC0.L->addBlockEntry(BB); 1281 FC1.L->removeBlockFromLoop(BB); 1282 if (LI.getLoopFor(BB) != FC1.L) 1283 continue; 1284 LI.changeLoopFor(BB, FC0.L); 1285 } 1286 while (!FC1.L->empty()) { 1287 const auto &ChildLoopIt = FC1.L->begin(); 1288 Loop *ChildLoop = *ChildLoopIt; 1289 FC1.L->removeChildLoop(ChildLoopIt); 1290 FC0.L->addChildLoop(ChildLoop); 1291 } 1292 1293 // Delete the now empty loop L1. 1294 LI.erase(FC1.L); 1295 1296 #ifndef NDEBUG 1297 assert(!verifyFunction(*FC0.Header->getParent(), &errs())); 1298 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1299 assert(PDT.verify()); 1300 LI.verify(DT); 1301 SE.verify(); 1302 #endif 1303 1304 LLVM_DEBUG(dbgs() << "Fusion done:\n"); 1305 1306 return FC0.L; 1307 } 1308 1309 /// Report details on loop fusion opportunities. 1310 /// 1311 /// This template function can be used to report both successful and missed 1312 /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should 1313 /// be one of: 1314 /// - OptimizationRemarkMissed to report when loop fusion is unsuccessful 1315 /// given two valid fusion candidates. 1316 /// - OptimizationRemark to report successful fusion of two fusion 1317 /// candidates. 1318 /// The remarks will be printed using the form: 1319 /// <path/filename>:<line number>:<column number>: [<function name>]: 1320 /// <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description> 1321 template <typename RemarkKind> 1322 void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1, 1323 llvm::Statistic &Stat) { 1324 assert(FC0.Preheader && FC1.Preheader && 1325 "Expecting valid fusion candidates"); 1326 using namespace ore; 1327 ++Stat; 1328 ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(), 1329 FC0.Preheader) 1330 << "[" << FC0.Preheader->getParent()->getName() 1331 << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName())) 1332 << " and " << NV("Cand2", StringRef(FC1.Preheader->getName())) 1333 << ": " << Stat.getDesc()); 1334 } 1335 1336 /// Fuse two guarded fusion candidates, creating a new fused loop. 1337 /// 1338 /// Fusing guarded loops is handled much the same way as fusing non-guarded 1339 /// loops. The rewiring of the CFG is slightly different though, because of 1340 /// the presence of the guards around the loops and the exit blocks after the 1341 /// loop body. As such, the new loop is rewired as follows: 1342 /// 1. Keep the guard branch from FC0 and use the non-loop block target 1343 /// from the FC1 guard branch. 1344 /// 2. Remove the exit block from FC0 (this exit block should be empty 1345 /// right now). 1346 /// 3. Remove the guard branch for FC1 1347 /// 4. Remove the preheader for FC1. 1348 /// The exit block successor for the latch of FC0 is updated to be the header 1349 /// of FC1 and the non-exit block successor of the latch of FC1 is updated to 1350 /// be the header of FC0, thus creating the fused loop. 1351 Loop *fuseGuardedLoops(const FusionCandidate &FC0, 1352 const FusionCandidate &FC1) { 1353 assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops"); 1354 1355 BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent(); 1356 BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent(); 1357 BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock(); 1358 BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock(); 1359 1360 assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent"); 1361 1362 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates; 1363 1364 //////////////////////////////////////////////////////////////////////////// 1365 // Update the Loop Guard 1366 //////////////////////////////////////////////////////////////////////////// 1367 // The guard for FC0 is updated to guard both FC0 and FC1. This is done by 1368 // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1. 1369 // Thus, one path from the guard goes to the preheader for FC0 (and thus 1370 // executes the new fused loop) and the other path goes to the NonLoopBlock 1371 // for FC1 (where FC1 guard would have gone if FC1 was not executed). 1372 FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock); 1373 FC0.ExitBlock->getTerminator()->replaceUsesOfWith(FC1GuardBlock, 1374 FC1.Header); 1375 1376 // The guard of FC1 is not necessary anymore. 1377 FC1.GuardBranch->eraseFromParent(); 1378 new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock); 1379 1380 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1381 DominatorTree::Delete, FC1GuardBlock, FC1.Preheader)); 1382 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1383 DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock)); 1384 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1385 DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock)); 1386 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1387 DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock)); 1388 1389 assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) && 1390 "Expecting guard block to have no predecessors"); 1391 assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) && 1392 "Expecting guard block to have no successors"); 1393 1394 // Remember the phi nodes originally in the header of FC0 in order to rewire 1395 // them later. However, this is only necessary if the new loop carried 1396 // values might not dominate the exiting branch. While we do not generally 1397 // test if this is the case but simply insert intermediate phi nodes, we 1398 // need to make sure these intermediate phi nodes have different 1399 // predecessors. To this end, we filter the special case where the exiting 1400 // block is the latch block of the first loop. Nothing needs to be done 1401 // anyway as all loop carried values dominate the latch and thereby also the 1402 // exiting branch. 1403 // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch 1404 // (because the loops are rotated. Thus, nothing will ever be added to 1405 // OriginalFC0PHIs. 1406 SmallVector<PHINode *, 8> OriginalFC0PHIs; 1407 if (FC0.ExitingBlock != FC0.Latch) 1408 for (PHINode &PHI : FC0.Header->phis()) 1409 OriginalFC0PHIs.push_back(&PHI); 1410 1411 assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!"); 1412 1413 // Replace incoming blocks for header PHIs first. 1414 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader); 1415 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch); 1416 1417 // The old exiting block of the first loop (FC0) has to jump to the header 1418 // of the second as we need to execute the code in the second header block 1419 // regardless of the trip count. That is, if the trip count is 0, so the 1420 // back edge is never taken, we still have to execute both loop headers, 1421 // especially (but not only!) if the second is a do-while style loop. 1422 // However, doing so might invalidate the phi nodes of the first loop as 1423 // the new values do only need to dominate their latch and not the exiting 1424 // predicate. To remedy this potential problem we always introduce phi 1425 // nodes in the header of the second loop later that select the loop carried 1426 // value, if the second header was reached through an old latch of the 1427 // first, or undef otherwise. This is sound as exiting the first implies the 1428 // second will exit too, __without__ taking the back-edge (their 1429 // trip-counts are equal after all). 1430 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock, 1431 FC1.Header); 1432 1433 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1434 DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock)); 1435 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1436 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header)); 1437 1438 // Remove FC0 Exit Block 1439 // The exit block for FC0 is no longer needed since control will flow 1440 // directly to the header of FC1. Since it is an empty block, it can be 1441 // removed at this point. 1442 // TODO: In the future, we can handle non-empty exit blocks my merging any 1443 // instructions from FC0 exit block into FC1 exit block prior to removing 1444 // the block. 1445 assert(pred_begin(FC0.ExitBlock) == pred_end(FC0.ExitBlock) && 1446 "Expecting exit block to be empty"); 1447 FC0.ExitBlock->getTerminator()->eraseFromParent(); 1448 new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock); 1449 1450 // Remove FC1 Preheader 1451 // The pre-header of L1 is not necessary anymore. 1452 assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader)); 1453 FC1.Preheader->getTerminator()->eraseFromParent(); 1454 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader); 1455 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1456 DominatorTree::Delete, FC1.Preheader, FC1.Header)); 1457 1458 // Moves the phi nodes from the second to the first loops header block. 1459 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) { 1460 if (SE.isSCEVable(PHI->getType())) 1461 SE.forgetValue(PHI); 1462 if (PHI->hasNUsesOrMore(1)) 1463 PHI->moveBefore(&*FC0.Header->getFirstInsertionPt()); 1464 else 1465 PHI->eraseFromParent(); 1466 } 1467 1468 // Introduce new phi nodes in the second loop header to ensure 1469 // exiting the first and jumping to the header of the second does not break 1470 // the SSA property of the phis originally in the first loop. See also the 1471 // comment above. 1472 Instruction *L1HeaderIP = &FC1.Header->front(); 1473 for (PHINode *LCPHI : OriginalFC0PHIs) { 1474 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch); 1475 assert(L1LatchBBIdx >= 0 && 1476 "Expected loop carried value to be rewired at this point!"); 1477 1478 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx); 1479 1480 PHINode *L1HeaderPHI = PHINode::Create( 1481 LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP); 1482 L1HeaderPHI->addIncoming(LCV, FC0.Latch); 1483 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()), 1484 FC0.ExitingBlock); 1485 1486 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI); 1487 } 1488 1489 // Update the latches 1490 1491 // Replace latch terminator destinations. 1492 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header); 1493 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header); 1494 1495 // If FC0.Latch and FC0.ExitingBlock are the same then we have already 1496 // performed the updates above. 1497 if (FC0.Latch != FC0.ExitingBlock) 1498 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1499 DominatorTree::Insert, FC0.Latch, FC1.Header)); 1500 1501 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1502 FC0.Latch, FC0.Header)); 1503 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert, 1504 FC1.Latch, FC0.Header)); 1505 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1506 FC1.Latch, FC1.Header)); 1507 1508 // All done 1509 // Apply the updates to the Dominator Tree and cleanup. 1510 1511 assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) && 1512 "FC1GuardBlock has successors!!"); 1513 assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) && 1514 "FC1GuardBlock has predecessors!!"); 1515 1516 // Update DT/PDT 1517 DTU.applyUpdates(TreeUpdates); 1518 1519 LI.removeBlock(FC1.Preheader); 1520 DTU.deleteBB(FC1.Preheader); 1521 DTU.deleteBB(FC0.ExitBlock); 1522 DTU.flush(); 1523 1524 // Is there a way to keep SE up-to-date so we don't need to forget the loops 1525 // and rebuild the information in subsequent passes of fusion? 1526 SE.forgetLoop(FC1.L); 1527 SE.forgetLoop(FC0.L); 1528 1529 // Merge the loops. 1530 SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(), 1531 FC1.L->block_end()); 1532 for (BasicBlock *BB : Blocks) { 1533 FC0.L->addBlockEntry(BB); 1534 FC1.L->removeBlockFromLoop(BB); 1535 if (LI.getLoopFor(BB) != FC1.L) 1536 continue; 1537 LI.changeLoopFor(BB, FC0.L); 1538 } 1539 while (!FC1.L->empty()) { 1540 const auto &ChildLoopIt = FC1.L->begin(); 1541 Loop *ChildLoop = *ChildLoopIt; 1542 FC1.L->removeChildLoop(ChildLoopIt); 1543 FC0.L->addChildLoop(ChildLoop); 1544 } 1545 1546 // Delete the now empty loop L1. 1547 LI.erase(FC1.L); 1548 1549 #ifndef NDEBUG 1550 assert(!verifyFunction(*FC0.Header->getParent(), &errs())); 1551 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1552 assert(PDT.verify()); 1553 LI.verify(DT); 1554 SE.verify(); 1555 #endif 1556 1557 LLVM_DEBUG(dbgs() << "Fusion done:\n"); 1558 1559 return FC0.L; 1560 } 1561 }; 1562 1563 struct LoopFuseLegacy : public FunctionPass { 1564 1565 static char ID; 1566 1567 LoopFuseLegacy() : FunctionPass(ID) { 1568 initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry()); 1569 } 1570 1571 void getAnalysisUsage(AnalysisUsage &AU) const override { 1572 AU.addRequiredID(LoopSimplifyID); 1573 AU.addRequired<ScalarEvolutionWrapperPass>(); 1574 AU.addRequired<LoopInfoWrapperPass>(); 1575 AU.addRequired<DominatorTreeWrapperPass>(); 1576 AU.addRequired<PostDominatorTreeWrapperPass>(); 1577 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1578 AU.addRequired<DependenceAnalysisWrapperPass>(); 1579 1580 AU.addPreserved<ScalarEvolutionWrapperPass>(); 1581 AU.addPreserved<LoopInfoWrapperPass>(); 1582 AU.addPreserved<DominatorTreeWrapperPass>(); 1583 AU.addPreserved<PostDominatorTreeWrapperPass>(); 1584 } 1585 1586 bool runOnFunction(Function &F) override { 1587 if (skipFunction(F)) 1588 return false; 1589 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1590 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1591 auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 1592 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1593 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 1594 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1595 1596 const DataLayout &DL = F.getParent()->getDataLayout(); 1597 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL); 1598 return LF.fuseLoops(F); 1599 } 1600 }; 1601 } // namespace 1602 1603 PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) { 1604 auto &LI = AM.getResult<LoopAnalysis>(F); 1605 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1606 auto &DI = AM.getResult<DependenceAnalysis>(F); 1607 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1608 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 1609 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1610 1611 const DataLayout &DL = F.getParent()->getDataLayout(); 1612 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL); 1613 bool Changed = LF.fuseLoops(F); 1614 if (!Changed) 1615 return PreservedAnalyses::all(); 1616 1617 PreservedAnalyses PA; 1618 PA.preserve<DominatorTreeAnalysis>(); 1619 PA.preserve<PostDominatorTreeAnalysis>(); 1620 PA.preserve<ScalarEvolutionAnalysis>(); 1621 PA.preserve<LoopAnalysis>(); 1622 return PA; 1623 } 1624 1625 char LoopFuseLegacy::ID = 0; 1626 1627 INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, 1628 false) 1629 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 1630 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 1631 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1632 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1633 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1634 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1635 INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false) 1636 1637 FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); } 1638