1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the loop fusion pass. 11 /// The implementation is largely based on the following document: 12 /// 13 /// Code Transformations to Augment the Scope of Loop Fusion in a 14 /// Production Compiler 15 /// Christopher Mark Barton 16 /// MSc Thesis 17 /// https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf 18 /// 19 /// The general approach taken is to collect sets of control flow equivalent 20 /// loops and test whether they can be fused. The necessary conditions for 21 /// fusion are: 22 /// 1. The loops must be adjacent (there cannot be any statements between 23 /// the two loops). 24 /// 2. The loops must be conforming (they must execute the same number of 25 /// iterations). 26 /// 3. The loops must be control flow equivalent (if one loop executes, the 27 /// other is guaranteed to execute). 28 /// 4. There cannot be any negative distance dependencies between the loops. 29 /// If all of these conditions are satisfied, it is safe to fuse the loops. 30 /// 31 /// This implementation creates FusionCandidates that represent the loop and the 32 /// necessary information needed by fusion. It then operates on the fusion 33 /// candidates, first confirming that the candidate is eligible for fusion. The 34 /// candidates are then collected into control flow equivalent sets, sorted in 35 /// dominance order. Each set of control flow equivalent candidates is then 36 /// traversed, attempting to fuse pairs of candidates in the set. If all 37 /// requirements for fusion are met, the two candidates are fused, creating a 38 /// new (fused) candidate which is then added back into the set to consider for 39 /// additional fusion. 40 /// 41 /// This implementation currently does not make any modifications to remove 42 /// conditions for fusion. Code transformations to make loops conform to each of 43 /// the conditions for fusion are discussed in more detail in the document 44 /// above. These can be added to the current implementation in the future. 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/Transforms/Scalar/LoopFuse.h" 48 #include "llvm/ADT/Statistic.h" 49 #include "llvm/Analysis/DependenceAnalysis.h" 50 #include "llvm/Analysis/DomTreeUpdater.h" 51 #include "llvm/Analysis/LoopInfo.h" 52 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 53 #include "llvm/Analysis/PostDominators.h" 54 #include "llvm/Analysis/ScalarEvolution.h" 55 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/Verifier.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/Scalar.h" 62 #include "llvm/Transforms/Utils.h" 63 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "loop-fusion" 68 69 STATISTIC(FuseCounter, "Count number of loop fusions performed"); 70 STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion"); 71 STATISTIC(InvalidPreheader, "Loop has invalid preheader"); 72 STATISTIC(InvalidHeader, "Loop has invalid header"); 73 STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks"); 74 STATISTIC(InvalidExitBlock, "Loop has invalid exit block"); 75 STATISTIC(InvalidLatch, "Loop has invalid latch"); 76 STATISTIC(InvalidLoop, "Loop is invalid"); 77 STATISTIC(AddressTakenBB, "Basic block has address taken"); 78 STATISTIC(MayThrowException, "Loop may throw an exception"); 79 STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access"); 80 STATISTIC(NotSimplifiedForm, "Loop is not in simplified form"); 81 STATISTIC(InvalidDependencies, "Dependencies prevent fusion"); 82 STATISTIC(InvalidTripCount, 83 "Loop does not have invariant backedge taken count"); 84 STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop"); 85 STATISTIC(NonEqualTripCount, "Candidate trip counts are not the same"); 86 STATISTIC(NonAdjacent, "Candidates are not adjacent"); 87 STATISTIC(NonEmptyPreheader, "Candidate has a non-empty preheader"); 88 89 enum FusionDependenceAnalysisChoice { 90 FUSION_DEPENDENCE_ANALYSIS_SCEV, 91 FUSION_DEPENDENCE_ANALYSIS_DA, 92 FUSION_DEPENDENCE_ANALYSIS_ALL, 93 }; 94 95 static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis( 96 "loop-fusion-dependence-analysis", 97 cl::desc("Which dependence analysis should loop fusion use?"), 98 cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev", 99 "Use the scalar evolution interface"), 100 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da", 101 "Use the dependence analysis interface"), 102 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all", 103 "Use all available analyses")), 104 cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore); 105 106 #ifndef NDEBUG 107 static cl::opt<bool> 108 VerboseFusionDebugging("loop-fusion-verbose-debug", 109 cl::desc("Enable verbose debugging for Loop Fusion"), 110 cl::Hidden, cl::init(false), cl::ZeroOrMore); 111 #endif 112 113 /// This class is used to represent a candidate for loop fusion. When it is 114 /// constructed, it checks the conditions for loop fusion to ensure that it 115 /// represents a valid candidate. It caches several parts of a loop that are 116 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead 117 /// of continually querying the underlying Loop to retrieve these values. It is 118 /// assumed these will not change throughout loop fusion. 119 /// 120 /// The invalidate method should be used to indicate that the FusionCandidate is 121 /// no longer a valid candidate for fusion. Similarly, the isValid() method can 122 /// be used to ensure that the FusionCandidate is still valid for fusion. 123 struct FusionCandidate { 124 /// Cache of parts of the loop used throughout loop fusion. These should not 125 /// need to change throughout the analysis and transformation. 126 /// These parts are cached to avoid repeatedly looking up in the Loop class. 127 128 /// Preheader of the loop this candidate represents 129 BasicBlock *Preheader; 130 /// Header of the loop this candidate represents 131 BasicBlock *Header; 132 /// Blocks in the loop that exit the loop 133 BasicBlock *ExitingBlock; 134 /// The successor block of this loop (where the exiting blocks go to) 135 BasicBlock *ExitBlock; 136 /// Latch of the loop 137 BasicBlock *Latch; 138 /// The loop that this fusion candidate represents 139 Loop *L; 140 /// Vector of instructions in this loop that read from memory 141 SmallVector<Instruction *, 16> MemReads; 142 /// Vector of instructions in this loop that write to memory 143 SmallVector<Instruction *, 16> MemWrites; 144 /// Are all of the members of this fusion candidate still valid 145 bool Valid; 146 147 /// Dominator and PostDominator trees are needed for the 148 /// FusionCandidateCompare function, required by FusionCandidateSet to 149 /// determine where the FusionCandidate should be inserted into the set. These 150 /// are used to establish ordering of the FusionCandidates based on dominance. 151 const DominatorTree *DT; 152 const PostDominatorTree *PDT; 153 154 FusionCandidate(Loop *L, const DominatorTree *DT, 155 const PostDominatorTree *PDT) 156 : Preheader(L->getLoopPreheader()), Header(L->getHeader()), 157 ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()), 158 Latch(L->getLoopLatch()), L(L), Valid(true), DT(DT), PDT(PDT) { 159 160 // Walk over all blocks in the loop and check for conditions that may 161 // prevent fusion. For each block, walk over all instructions and collect 162 // the memory reads and writes If any instructions that prevent fusion are 163 // found, invalidate this object and return. 164 for (BasicBlock *BB : L->blocks()) { 165 if (BB->hasAddressTaken()) { 166 AddressTakenBB++; 167 invalidate(); 168 return; 169 } 170 171 for (Instruction &I : *BB) { 172 if (I.mayThrow()) { 173 MayThrowException++; 174 invalidate(); 175 return; 176 } 177 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 178 if (SI->isVolatile()) { 179 ContainsVolatileAccess++; 180 invalidate(); 181 return; 182 } 183 } 184 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 185 if (LI->isVolatile()) { 186 ContainsVolatileAccess++; 187 invalidate(); 188 return; 189 } 190 } 191 if (I.mayWriteToMemory()) 192 MemWrites.push_back(&I); 193 if (I.mayReadFromMemory()) 194 MemReads.push_back(&I); 195 } 196 } 197 } 198 199 /// Check if all members of the class are valid. 200 bool isValid() const { 201 return Preheader && Header && ExitingBlock && ExitBlock && Latch && L && 202 !L->isInvalid() && Valid; 203 } 204 205 /// Verify that all members are in sync with the Loop object. 206 void verify() const { 207 assert(isValid() && "Candidate is not valid!!"); 208 assert(!L->isInvalid() && "Loop is invalid!"); 209 assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync"); 210 assert(Header == L->getHeader() && "Header is out of sync"); 211 assert(ExitingBlock == L->getExitingBlock() && 212 "Exiting Blocks is out of sync"); 213 assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync"); 214 assert(Latch == L->getLoopLatch() && "Latch is out of sync"); 215 } 216 217 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 218 LLVM_DUMP_METHOD void dump() const { 219 dbgs() << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr") 220 << "\n" 221 << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n" 222 << "\tExitingBB: " 223 << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n" 224 << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr") 225 << "\n" 226 << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"; 227 } 228 #endif 229 230 private: 231 // This is only used internally for now, to clear the MemWrites and MemReads 232 // list and setting Valid to false. I can't envision other uses of this right 233 // now, since once FusionCandidates are put into the FusionCandidateSet they 234 // are immutable. Thus, any time we need to change/update a FusionCandidate, 235 // we must create a new one and insert it into the FusionCandidateSet to 236 // ensure the FusionCandidateSet remains ordered correctly. 237 void invalidate() { 238 MemWrites.clear(); 239 MemReads.clear(); 240 Valid = false; 241 } 242 }; 243 244 inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, 245 const FusionCandidate &FC) { 246 if (FC.isValid()) 247 OS << FC.Preheader->getName(); 248 else 249 OS << "<Invalid>"; 250 251 return OS; 252 } 253 254 struct FusionCandidateCompare { 255 /// Comparison functor to sort two Control Flow Equivalent fusion candidates 256 /// into dominance order. 257 /// If LHS dominates RHS and RHS post-dominates LHS, return true; 258 /// IF RHS dominates LHS and LHS post-dominates RHS, return false; 259 bool operator()(const FusionCandidate &LHS, 260 const FusionCandidate &RHS) const { 261 const DominatorTree *DT = LHS.DT; 262 263 // Do not save PDT to local variable as it is only used in asserts and thus 264 // will trigger an unused variable warning if building without asserts. 265 assert(DT && LHS.PDT && "Expecting valid dominator tree"); 266 267 // Do this compare first so if LHS == RHS, function returns false. 268 if (DT->dominates(RHS.Preheader, LHS.Preheader)) { 269 // RHS dominates LHS 270 // Verify LHS post-dominates RHS 271 assert(LHS.PDT->dominates(LHS.Preheader, RHS.Preheader)); 272 return false; 273 } 274 275 if (DT->dominates(LHS.Preheader, RHS.Preheader)) { 276 // Verify RHS Postdominates LHS 277 assert(LHS.PDT->dominates(RHS.Preheader, LHS.Preheader)); 278 return true; 279 } 280 281 // If LHS does not dominate RHS and RHS does not dominate LHS then there is 282 // no dominance relationship between the two FusionCandidates. Thus, they 283 // should not be in the same set together. 284 llvm_unreachable( 285 "No dominance relationship between these fusion candidates!"); 286 } 287 }; 288 289 namespace { 290 using LoopVector = SmallVector<Loop *, 4>; 291 292 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance 293 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0 294 // dominates FC1 and FC1 post-dominates FC0. 295 // std::set was chosen because we want a sorted data structure with stable 296 // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent 297 // loops by moving intervening code around. When this intervening code contains 298 // loops, those loops will be moved also. The corresponding FusionCandidates 299 // will also need to be moved accordingly. As this is done, having stable 300 // iterators will simplify the logic. Similarly, having an efficient insert that 301 // keeps the FusionCandidateSet sorted will also simplify the implementation. 302 using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>; 303 using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>; 304 } // namespace 305 306 inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, 307 const FusionCandidateSet &CandSet) { 308 for (auto IT : CandSet) 309 OS << IT << "\n"; 310 311 return OS; 312 } 313 314 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 315 static void 316 printFusionCandidates(const FusionCandidateCollection &FusionCandidates) { 317 LLVM_DEBUG(dbgs() << "Fusion Candidates: \n"); 318 for (const auto &CandidateSet : FusionCandidates) { 319 LLVM_DEBUG({ 320 dbgs() << "*** Fusion Candidate Set ***\n"; 321 dbgs() << CandidateSet; 322 dbgs() << "****************************\n"; 323 }); 324 } 325 } 326 #endif 327 328 /// Collect all loops in function at the same nest level, starting at the 329 /// outermost level. 330 /// 331 /// This data structure collects all loops at the same nest level for a 332 /// given function (specified by the LoopInfo object). It starts at the 333 /// outermost level. 334 struct LoopDepthTree { 335 using LoopsOnLevelTy = SmallVector<LoopVector, 4>; 336 using iterator = LoopsOnLevelTy::iterator; 337 using const_iterator = LoopsOnLevelTy::const_iterator; 338 339 LoopDepthTree(LoopInfo &LI) : Depth(1) { 340 if (!LI.empty()) 341 LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend())); 342 } 343 344 /// Test whether a given loop has been removed from the function, and thus is 345 /// no longer valid. 346 bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); } 347 348 /// Record that a given loop has been removed from the function and is no 349 /// longer valid. 350 void removeLoop(const Loop *L) { RemovedLoops.insert(L); } 351 352 /// Descend the tree to the next (inner) nesting level 353 void descend() { 354 LoopsOnLevelTy LoopsOnNextLevel; 355 356 for (const LoopVector &LV : *this) 357 for (Loop *L : LV) 358 if (!isRemovedLoop(L) && L->begin() != L->end()) 359 LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end())); 360 361 LoopsOnLevel = LoopsOnNextLevel; 362 RemovedLoops.clear(); 363 Depth++; 364 } 365 366 bool empty() const { return size() == 0; } 367 size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); } 368 unsigned getDepth() const { return Depth; } 369 370 iterator begin() { return LoopsOnLevel.begin(); } 371 iterator end() { return LoopsOnLevel.end(); } 372 const_iterator begin() const { return LoopsOnLevel.begin(); } 373 const_iterator end() const { return LoopsOnLevel.end(); } 374 375 private: 376 /// Set of loops that have been removed from the function and are no longer 377 /// valid. 378 SmallPtrSet<const Loop *, 8> RemovedLoops; 379 380 /// Depth of the current level, starting at 1 (outermost loops). 381 unsigned Depth; 382 383 /// Vector of loops at the current depth level that have the same parent loop 384 LoopsOnLevelTy LoopsOnLevel; 385 }; 386 387 #ifndef NDEBUG 388 static void printLoopVector(const LoopVector &LV) { 389 dbgs() << "****************************\n"; 390 for (auto L : LV) 391 printLoop(*L, dbgs()); 392 dbgs() << "****************************\n"; 393 } 394 #endif 395 396 static void reportLoopFusion(const FusionCandidate &FC0, 397 const FusionCandidate &FC1, 398 OptimizationRemarkEmitter &ORE) { 399 using namespace ore; 400 ORE.emit( 401 OptimizationRemark(DEBUG_TYPE, "LoopFusion", FC0.Preheader->getParent()) 402 << "Fused " << NV("Cand1", StringRef(FC0.Preheader->getName())) 403 << " with " << NV("Cand2", StringRef(FC1.Preheader->getName()))); 404 } 405 406 struct LoopFuser { 407 private: 408 // Sets of control flow equivalent fusion candidates for a given nest level. 409 FusionCandidateCollection FusionCandidates; 410 411 LoopDepthTree LDT; 412 DomTreeUpdater DTU; 413 414 LoopInfo &LI; 415 DominatorTree &DT; 416 DependenceInfo &DI; 417 ScalarEvolution &SE; 418 PostDominatorTree &PDT; 419 OptimizationRemarkEmitter &ORE; 420 421 public: 422 LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI, 423 ScalarEvolution &SE, PostDominatorTree &PDT, 424 OptimizationRemarkEmitter &ORE, const DataLayout &DL) 425 : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI), 426 DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE) {} 427 428 /// This is the main entry point for loop fusion. It will traverse the 429 /// specified function and collect candidate loops to fuse, starting at the 430 /// outermost nesting level and working inwards. 431 bool fuseLoops(Function &F) { 432 #ifndef NDEBUG 433 if (VerboseFusionDebugging) { 434 LI.print(dbgs()); 435 } 436 #endif 437 438 LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName() 439 << "\n"); 440 bool Changed = false; 441 442 while (!LDT.empty()) { 443 LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth " 444 << LDT.getDepth() << "\n";); 445 446 for (const LoopVector &LV : LDT) { 447 assert(LV.size() > 0 && "Empty loop set was build!"); 448 449 // Skip singleton loop sets as they do not offer fusion opportunities on 450 // this level. 451 if (LV.size() == 1) 452 continue; 453 #ifndef NDEBUG 454 if (VerboseFusionDebugging) { 455 LLVM_DEBUG({ 456 dbgs() << " Visit loop set (#" << LV.size() << "):\n"; 457 printLoopVector(LV); 458 }); 459 } 460 #endif 461 462 collectFusionCandidates(LV); 463 Changed |= fuseCandidates(); 464 } 465 466 // Finished analyzing candidates at this level. 467 // Descend to the next level and clear all of the candidates currently 468 // collected. Note that it will not be possible to fuse any of the 469 // existing candidates with new candidates because the new candidates will 470 // be at a different nest level and thus not be control flow equivalent 471 // with all of the candidates collected so far. 472 LLVM_DEBUG(dbgs() << "Descend one level!\n"); 473 LDT.descend(); 474 FusionCandidates.clear(); 475 } 476 477 if (Changed) 478 LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump();); 479 480 #ifndef NDEBUG 481 assert(DT.verify()); 482 assert(PDT.verify()); 483 LI.verify(DT); 484 SE.verify(); 485 #endif 486 487 LLVM_DEBUG(dbgs() << "Loop Fusion complete\n"); 488 return Changed; 489 } 490 491 private: 492 /// Determine if two fusion candidates are control flow equivalent. 493 /// 494 /// Two fusion candidates are control flow equivalent if when one executes, 495 /// the other is guaranteed to execute. This is determined using dominators 496 /// and post-dominators: if A dominates B and B post-dominates A then A and B 497 /// are control-flow equivalent. 498 bool isControlFlowEquivalent(const FusionCandidate &FC0, 499 const FusionCandidate &FC1) const { 500 assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders"); 501 502 if (DT.dominates(FC0.Preheader, FC1.Preheader)) 503 return PDT.dominates(FC1.Preheader, FC0.Preheader); 504 505 if (DT.dominates(FC1.Preheader, FC0.Preheader)) 506 return PDT.dominates(FC0.Preheader, FC1.Preheader); 507 508 return false; 509 } 510 511 /// Determine if a fusion candidate (representing a loop) is eligible for 512 /// fusion. Note that this only checks whether a single loop can be fused - it 513 /// does not check whether it is *legal* to fuse two loops together. 514 bool eligibleForFusion(const FusionCandidate &FC) const { 515 if (!FC.isValid()) { 516 LLVM_DEBUG(dbgs() << "FC " << FC << " has invalid CFG requirements!\n"); 517 if (!FC.Preheader) 518 InvalidPreheader++; 519 if (!FC.Header) 520 InvalidHeader++; 521 if (!FC.ExitingBlock) 522 InvalidExitingBlock++; 523 if (!FC.ExitBlock) 524 InvalidExitBlock++; 525 if (!FC.Latch) 526 InvalidLatch++; 527 if (FC.L->isInvalid()) 528 InvalidLoop++; 529 530 return false; 531 } 532 533 // Require ScalarEvolution to be able to determine a trip count. 534 if (!SE.hasLoopInvariantBackedgeTakenCount(FC.L)) { 535 LLVM_DEBUG(dbgs() << "Loop " << FC.L->getName() 536 << " trip count not computable!\n"); 537 InvalidTripCount++; 538 return false; 539 } 540 541 if (!FC.L->isLoopSimplifyForm()) { 542 LLVM_DEBUG(dbgs() << "Loop " << FC.L->getName() 543 << " is not in simplified form!\n"); 544 NotSimplifiedForm++; 545 return false; 546 } 547 548 return true; 549 } 550 551 /// Iterate over all loops in the given loop set and identify the loops that 552 /// are eligible for fusion. Place all eligible fusion candidates into Control 553 /// Flow Equivalent sets, sorted by dominance. 554 void collectFusionCandidates(const LoopVector &LV) { 555 for (Loop *L : LV) { 556 FusionCandidate CurrCand(L, &DT, &PDT); 557 if (!eligibleForFusion(CurrCand)) 558 continue; 559 560 // Go through each list in FusionCandidates and determine if L is control 561 // flow equivalent with the first loop in that list. If it is, append LV. 562 // If not, go to the next list. 563 // If no suitable list is found, start another list and add it to 564 // FusionCandidates. 565 bool FoundSet = false; 566 567 for (auto &CurrCandSet : FusionCandidates) { 568 if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) { 569 CurrCandSet.insert(CurrCand); 570 FoundSet = true; 571 #ifndef NDEBUG 572 if (VerboseFusionDebugging) 573 LLVM_DEBUG(dbgs() << "Adding " << CurrCand 574 << " to existing candidate set\n"); 575 #endif 576 break; 577 } 578 } 579 if (!FoundSet) { 580 // No set was found. Create a new set and add to FusionCandidates 581 #ifndef NDEBUG 582 if (VerboseFusionDebugging) 583 LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n"); 584 #endif 585 FusionCandidateSet NewCandSet; 586 NewCandSet.insert(CurrCand); 587 FusionCandidates.push_back(NewCandSet); 588 } 589 NumFusionCandidates++; 590 } 591 } 592 593 /// Determine if it is beneficial to fuse two loops. 594 /// 595 /// For now, this method simply returns true because we want to fuse as much 596 /// as possible (primarily to test the pass). This method will evolve, over 597 /// time, to add heuristics for profitability of fusion. 598 bool isBeneficialFusion(const FusionCandidate &FC0, 599 const FusionCandidate &FC1) { 600 return true; 601 } 602 603 /// Determine if two fusion candidates have the same trip count (i.e., they 604 /// execute the same number of iterations). 605 /// 606 /// Note that for now this method simply returns a boolean value because there 607 /// are no mechanisms in loop fusion to handle different trip counts. In the 608 /// future, this behaviour can be extended to adjust one of the loops to make 609 /// the trip counts equal (e.g., loop peeling). When this is added, this 610 /// interface may need to change to return more information than just a 611 /// boolean value. 612 bool identicalTripCounts(const FusionCandidate &FC0, 613 const FusionCandidate &FC1) const { 614 const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L); 615 if (isa<SCEVCouldNotCompute>(TripCount0)) { 616 UncomputableTripCount++; 617 LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!"); 618 return false; 619 } 620 621 const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L); 622 if (isa<SCEVCouldNotCompute>(TripCount1)) { 623 UncomputableTripCount++; 624 LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!"); 625 return false; 626 } 627 LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & " 628 << *TripCount1 << " are " 629 << (TripCount0 == TripCount1 ? "identical" : "different") 630 << "\n"); 631 632 return (TripCount0 == TripCount1); 633 } 634 635 /// Walk each set of control flow equivalent fusion candidates and attempt to 636 /// fuse them. This does a single linear traversal of all candidates in the 637 /// set. The conditions for legal fusion are checked at this point. If a pair 638 /// of fusion candidates passes all legality checks, they are fused together 639 /// and a new fusion candidate is created and added to the FusionCandidateSet. 640 /// The original fusion candidates are then removed, as they are no longer 641 /// valid. 642 bool fuseCandidates() { 643 bool Fused = false; 644 LLVM_DEBUG(printFusionCandidates(FusionCandidates)); 645 for (auto &CandidateSet : FusionCandidates) { 646 if (CandidateSet.size() < 2) 647 continue; 648 649 LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n" 650 << CandidateSet << "\n"); 651 652 for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) { 653 assert(!LDT.isRemovedLoop(FC0->L) && 654 "Should not have removed loops in CandidateSet!"); 655 auto FC1 = FC0; 656 for (++FC1; FC1 != CandidateSet.end(); ++FC1) { 657 assert(!LDT.isRemovedLoop(FC1->L) && 658 "Should not have removed loops in CandidateSet!"); 659 660 LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump(); 661 dbgs() << " with\n"; FC1->dump(); dbgs() << "\n"); 662 663 FC0->verify(); 664 FC1->verify(); 665 666 if (!identicalTripCounts(*FC0, *FC1)) { 667 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip " 668 "counts. Not fusing.\n"); 669 NonEqualTripCount++; 670 continue; 671 } 672 673 if (!isAdjacent(*FC0, *FC1)) { 674 LLVM_DEBUG(dbgs() 675 << "Fusion candidates are not adjacent. Not fusing.\n"); 676 NonAdjacent++; 677 continue; 678 } 679 680 // For now we skip fusing if the second candidate has any instructions 681 // in the preheader. This is done because we currently do not have the 682 // safety checks to determine if it is save to move the preheader of 683 // the second candidate past the body of the first candidate. Once 684 // these checks are added, this condition can be removed. 685 if (!isEmptyPreheader(*FC1)) { 686 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty " 687 "preheader. Not fusing.\n"); 688 NonEmptyPreheader++; 689 continue; 690 } 691 692 if (!dependencesAllowFusion(*FC0, *FC1)) { 693 LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n"); 694 continue; 695 } 696 697 bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1); 698 LLVM_DEBUG(dbgs() 699 << "\tFusion appears to be " 700 << (BeneficialToFuse ? "" : "un") << "profitable!\n"); 701 if (!BeneficialToFuse) 702 continue; 703 704 // All analysis has completed and has determined that fusion is legal 705 // and profitable. At this point, start transforming the code and 706 // perform fusion. 707 708 LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and " 709 << *FC1 << "\n"); 710 711 // Report fusion to the Optimization Remarks. 712 // Note this needs to be done *before* performFusion because 713 // performFusion will change the original loops, making it not 714 // possible to identify them after fusion is complete. 715 reportLoopFusion(*FC0, *FC1, ORE); 716 717 FusionCandidate FusedCand(performFusion(*FC0, *FC1), &DT, &PDT); 718 FusedCand.verify(); 719 assert(eligibleForFusion(FusedCand) && 720 "Fused candidate should be eligible for fusion!"); 721 722 // Notify the loop-depth-tree that these loops are not valid objects 723 // anymore. 724 LDT.removeLoop(FC1->L); 725 726 CandidateSet.erase(FC0); 727 CandidateSet.erase(FC1); 728 729 auto InsertPos = CandidateSet.insert(FusedCand); 730 731 assert(InsertPos.second && 732 "Unable to insert TargetCandidate in CandidateSet!"); 733 734 // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations 735 // of the FC1 loop will attempt to fuse the new (fused) loop with the 736 // remaining candidates in the current candidate set. 737 FC0 = FC1 = InsertPos.first; 738 739 LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet 740 << "\n"); 741 742 Fused = true; 743 } 744 } 745 } 746 return Fused; 747 } 748 749 /// Rewrite all additive recurrences in a SCEV to use a new loop. 750 class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> { 751 public: 752 AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL, 753 bool UseMax = true) 754 : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL), 755 NewL(NewL) {} 756 757 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 758 const Loop *ExprL = Expr->getLoop(); 759 SmallVector<const SCEV *, 2> Operands; 760 if (ExprL == &OldL) { 761 Operands.append(Expr->op_begin(), Expr->op_end()); 762 return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags()); 763 } 764 765 if (OldL.contains(ExprL)) { 766 bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE)); 767 if (!UseMax || !Pos || !Expr->isAffine()) { 768 Valid = false; 769 return Expr; 770 } 771 return visit(Expr->getStart()); 772 } 773 774 for (const SCEV *Op : Expr->operands()) 775 Operands.push_back(visit(Op)); 776 return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags()); 777 } 778 779 bool wasValidSCEV() const { return Valid; } 780 781 private: 782 bool Valid, UseMax; 783 const Loop &OldL, &NewL; 784 }; 785 786 /// Return false if the access functions of \p I0 and \p I1 could cause 787 /// a negative dependence. 788 bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0, 789 Instruction &I1, bool EqualIsInvalid) { 790 Value *Ptr0 = getLoadStorePointerOperand(&I0); 791 Value *Ptr1 = getLoadStorePointerOperand(&I1); 792 if (!Ptr0 || !Ptr1) 793 return false; 794 795 const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0); 796 const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1); 797 #ifndef NDEBUG 798 if (VerboseFusionDebugging) 799 LLVM_DEBUG(dbgs() << " Access function check: " << *SCEVPtr0 << " vs " 800 << *SCEVPtr1 << "\n"); 801 #endif 802 AddRecLoopReplacer Rewriter(SE, L0, L1); 803 SCEVPtr0 = Rewriter.visit(SCEVPtr0); 804 #ifndef NDEBUG 805 if (VerboseFusionDebugging) 806 LLVM_DEBUG(dbgs() << " Access function after rewrite: " << *SCEVPtr0 807 << " [Valid: " << Rewriter.wasValidSCEV() << "]\n"); 808 #endif 809 if (!Rewriter.wasValidSCEV()) 810 return false; 811 812 // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by 813 // L0) and the other is not. We could check if it is monotone and test 814 // the beginning and end value instead. 815 816 BasicBlock *L0Header = L0.getHeader(); 817 auto HasNonLinearDominanceRelation = [&](const SCEV *S) { 818 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S); 819 if (!AddRec) 820 return false; 821 return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) && 822 !DT.dominates(AddRec->getLoop()->getHeader(), L0Header); 823 }; 824 if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation)) 825 return false; 826 827 ICmpInst::Predicate Pred = 828 EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE; 829 bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1); 830 #ifndef NDEBUG 831 if (VerboseFusionDebugging) 832 LLVM_DEBUG(dbgs() << " Relation: " << *SCEVPtr0 833 << (IsAlwaysGE ? " >= " : " may < ") << *SCEVPtr1 834 << "\n"); 835 #endif 836 return IsAlwaysGE; 837 } 838 839 /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in 840 /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses 841 /// specified by @p DepChoice are used to determine this. 842 bool dependencesAllowFusion(const FusionCandidate &FC0, 843 const FusionCandidate &FC1, Instruction &I0, 844 Instruction &I1, bool AnyDep, 845 FusionDependenceAnalysisChoice DepChoice) { 846 #ifndef NDEBUG 847 if (VerboseFusionDebugging) { 848 LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : " 849 << DepChoice << "\n"); 850 } 851 #endif 852 switch (DepChoice) { 853 case FUSION_DEPENDENCE_ANALYSIS_SCEV: 854 return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep); 855 case FUSION_DEPENDENCE_ANALYSIS_DA: { 856 auto DepResult = DI.depends(&I0, &I1, true); 857 if (!DepResult) 858 return true; 859 #ifndef NDEBUG 860 if (VerboseFusionDebugging) { 861 LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs()); 862 dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: " 863 << (DepResult->isOrdered() ? "true" : "false") 864 << "]\n"); 865 LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels() 866 << "\n"); 867 } 868 #endif 869 870 if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor()) 871 LLVM_DEBUG( 872 dbgs() << "TODO: Implement pred/succ dependence handling!\n"); 873 874 // TODO: Can we actually use the dependence info analysis here? 875 return false; 876 } 877 878 case FUSION_DEPENDENCE_ANALYSIS_ALL: 879 return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep, 880 FUSION_DEPENDENCE_ANALYSIS_SCEV) || 881 dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep, 882 FUSION_DEPENDENCE_ANALYSIS_DA); 883 } 884 885 llvm_unreachable("Unknown fusion dependence analysis choice!"); 886 } 887 888 /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused. 889 bool dependencesAllowFusion(const FusionCandidate &FC0, 890 const FusionCandidate &FC1) { 891 LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1 892 << "\n"); 893 assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth()); 894 assert(DT.dominates(FC0.Preheader, FC1.Preheader)); 895 896 for (Instruction *WriteL0 : FC0.MemWrites) { 897 for (Instruction *WriteL1 : FC1.MemWrites) 898 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1, 899 /* AnyDep */ false, 900 FusionDependenceAnalysis)) { 901 InvalidDependencies++; 902 return false; 903 } 904 for (Instruction *ReadL1 : FC1.MemReads) 905 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1, 906 /* AnyDep */ false, 907 FusionDependenceAnalysis)) { 908 InvalidDependencies++; 909 return false; 910 } 911 } 912 913 for (Instruction *WriteL1 : FC1.MemWrites) { 914 for (Instruction *WriteL0 : FC0.MemWrites) 915 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1, 916 /* AnyDep */ false, 917 FusionDependenceAnalysis)) { 918 InvalidDependencies++; 919 return false; 920 } 921 for (Instruction *ReadL0 : FC0.MemReads) 922 if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1, 923 /* AnyDep */ false, 924 FusionDependenceAnalysis)) { 925 InvalidDependencies++; 926 return false; 927 } 928 } 929 930 // Walk through all uses in FC1. For each use, find the reaching def. If the 931 // def is located in FC0 then it is is not safe to fuse. 932 for (BasicBlock *BB : FC1.L->blocks()) 933 for (Instruction &I : *BB) 934 for (auto &Op : I.operands()) 935 if (Instruction *Def = dyn_cast<Instruction>(Op)) 936 if (FC0.L->contains(Def->getParent())) { 937 InvalidDependencies++; 938 return false; 939 } 940 941 return true; 942 } 943 944 /// Determine if the exit block of \p FC0 is the preheader of \p FC1. In this 945 /// case, there is no code in between the two fusion candidates, thus making 946 /// them adjacent. 947 bool isAdjacent(const FusionCandidate &FC0, 948 const FusionCandidate &FC1) const { 949 return FC0.ExitBlock == FC1.Preheader; 950 } 951 952 bool isEmptyPreheader(const FusionCandidate &FC) const { 953 return FC.Preheader->size() == 1; 954 } 955 956 /// Fuse two fusion candidates, creating a new fused loop. 957 /// 958 /// This method contains the mechanics of fusing two loops, represented by \p 959 /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1 960 /// postdominates \p FC0 (making them control flow equivalent). It also 961 /// assumes that the other conditions for fusion have been met: adjacent, 962 /// identical trip counts, and no negative distance dependencies exist that 963 /// would prevent fusion. Thus, there is no checking for these conditions in 964 /// this method. 965 /// 966 /// Fusion is performed by rewiring the CFG to update successor blocks of the 967 /// components of tho loop. Specifically, the following changes are done: 968 /// 969 /// 1. The preheader of \p FC1 is removed as it is no longer necessary 970 /// (because it is currently only a single statement block). 971 /// 2. The latch of \p FC0 is modified to jump to the header of \p FC1. 972 /// 3. The latch of \p FC1 i modified to jump to the header of \p FC0. 973 /// 4. All blocks from \p FC1 are removed from FC1 and added to FC0. 974 /// 975 /// All of these modifications are done with dominator tree updates, thus 976 /// keeping the dominator (and post dominator) information up-to-date. 977 /// 978 /// This can be improved in the future by actually merging blocks during 979 /// fusion. For example, the preheader of \p FC1 can be merged with the 980 /// preheader of \p FC0. This would allow loops with more than a single 981 /// statement in the preheader to be fused. Similarly, the latch blocks of the 982 /// two loops could also be fused into a single block. This will require 983 /// analysis to prove it is safe to move the contents of the block past 984 /// existing code, which currently has not been implemented. 985 Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) { 986 assert(FC0.isValid() && FC1.isValid() && 987 "Expecting valid fusion candidates"); 988 989 LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump(); 990 dbgs() << "Fusion Candidate 1: \n"; FC1.dump();); 991 992 assert(FC1.Preheader == FC0.ExitBlock); 993 assert(FC1.Preheader->size() == 1 && 994 FC1.Preheader->getSingleSuccessor() == FC1.Header); 995 996 // Remember the phi nodes originally in the header of FC0 in order to rewire 997 // them later. However, this is only necessary if the new loop carried 998 // values might not dominate the exiting branch. While we do not generally 999 // test if this is the case but simply insert intermediate phi nodes, we 1000 // need to make sure these intermediate phi nodes have different 1001 // predecessors. To this end, we filter the special case where the exiting 1002 // block is the latch block of the first loop. Nothing needs to be done 1003 // anyway as all loop carried values dominate the latch and thereby also the 1004 // exiting branch. 1005 SmallVector<PHINode *, 8> OriginalFC0PHIs; 1006 if (FC0.ExitingBlock != FC0.Latch) 1007 for (PHINode &PHI : FC0.Header->phis()) 1008 OriginalFC0PHIs.push_back(&PHI); 1009 1010 // Replace incoming blocks for header PHIs first. 1011 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader); 1012 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch); 1013 1014 // Then modify the control flow and update DT and PDT. 1015 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates; 1016 1017 // The old exiting block of the first loop (FC0) has to jump to the header 1018 // of the second as we need to execute the code in the second header block 1019 // regardless of the trip count. That is, if the trip count is 0, so the 1020 // back edge is never taken, we still have to execute both loop headers, 1021 // especially (but not only!) if the second is a do-while style loop. 1022 // However, doing so might invalidate the phi nodes of the first loop as 1023 // the new values do only need to dominate their latch and not the exiting 1024 // predicate. To remedy this potential problem we always introduce phi 1025 // nodes in the header of the second loop later that select the loop carried 1026 // value, if the second header was reached through an old latch of the 1027 // first, or undef otherwise. This is sound as exiting the first implies the 1028 // second will exit too, __without__ taking the back-edge. [Their 1029 // trip-counts are equal after all. 1030 // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go 1031 // to FC1.Header? I think this is basically what the three sequences are 1032 // trying to accomplish; however, doing this directly in the CFG may mean 1033 // the DT/PDT becomes invalid 1034 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader, 1035 FC1.Header); 1036 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1037 DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader)); 1038 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1039 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header)); 1040 1041 // The pre-header of L1 is not necessary anymore. 1042 assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader)); 1043 FC1.Preheader->getTerminator()->eraseFromParent(); 1044 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader); 1045 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1046 DominatorTree::Delete, FC1.Preheader, FC1.Header)); 1047 1048 // Moves the phi nodes from the second to the first loops header block. 1049 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) { 1050 if (SE.isSCEVable(PHI->getType())) 1051 SE.forgetValue(PHI); 1052 if (PHI->hasNUsesOrMore(1)) 1053 PHI->moveBefore(&*FC0.Header->getFirstInsertionPt()); 1054 else 1055 PHI->eraseFromParent(); 1056 } 1057 1058 // Introduce new phi nodes in the second loop header to ensure 1059 // exiting the first and jumping to the header of the second does not break 1060 // the SSA property of the phis originally in the first loop. See also the 1061 // comment above. 1062 Instruction *L1HeaderIP = &FC1.Header->front(); 1063 for (PHINode *LCPHI : OriginalFC0PHIs) { 1064 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch); 1065 assert(L1LatchBBIdx >= 0 && 1066 "Expected loop carried value to be rewired at this point!"); 1067 1068 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx); 1069 1070 PHINode *L1HeaderPHI = PHINode::Create( 1071 LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP); 1072 L1HeaderPHI->addIncoming(LCV, FC0.Latch); 1073 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()), 1074 FC0.ExitingBlock); 1075 1076 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI); 1077 } 1078 1079 // Replace latch terminator destinations. 1080 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header); 1081 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header); 1082 1083 // If FC0.Latch and FC0.ExitingBlock are the same then we have already 1084 // performed the updates above. 1085 if (FC0.Latch != FC0.ExitingBlock) 1086 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1087 DominatorTree::Insert, FC0.Latch, FC1.Header)); 1088 1089 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1090 FC0.Latch, FC0.Header)); 1091 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert, 1092 FC1.Latch, FC0.Header)); 1093 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1094 FC1.Latch, FC1.Header)); 1095 1096 // Update DT/PDT 1097 DTU.applyUpdates(TreeUpdates); 1098 1099 LI.removeBlock(FC1.Preheader); 1100 DTU.deleteBB(FC1.Preheader); 1101 DTU.flush(); 1102 1103 // Is there a way to keep SE up-to-date so we don't need to forget the loops 1104 // and rebuild the information in subsequent passes of fusion? 1105 SE.forgetLoop(FC1.L); 1106 SE.forgetLoop(FC0.L); 1107 1108 // Merge the loops. 1109 SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(), 1110 FC1.L->block_end()); 1111 for (BasicBlock *BB : Blocks) { 1112 FC0.L->addBlockEntry(BB); 1113 FC1.L->removeBlockFromLoop(BB); 1114 if (LI.getLoopFor(BB) != FC1.L) 1115 continue; 1116 LI.changeLoopFor(BB, FC0.L); 1117 } 1118 while (!FC1.L->empty()) { 1119 const auto &ChildLoopIt = FC1.L->begin(); 1120 Loop *ChildLoop = *ChildLoopIt; 1121 FC1.L->removeChildLoop(ChildLoopIt); 1122 FC0.L->addChildLoop(ChildLoop); 1123 } 1124 1125 // Delete the now empty loop L1. 1126 LI.erase(FC1.L); 1127 1128 #ifndef NDEBUG 1129 assert(!verifyFunction(*FC0.Header->getParent(), &errs())); 1130 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1131 assert(PDT.verify()); 1132 LI.verify(DT); 1133 SE.verify(); 1134 #endif 1135 1136 FuseCounter++; 1137 1138 LLVM_DEBUG(dbgs() << "Fusion done:\n"); 1139 1140 return FC0.L; 1141 } 1142 }; 1143 1144 struct LoopFuseLegacy : public FunctionPass { 1145 1146 static char ID; 1147 1148 LoopFuseLegacy() : FunctionPass(ID) { 1149 initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry()); 1150 } 1151 1152 void getAnalysisUsage(AnalysisUsage &AU) const override { 1153 AU.addRequiredID(LoopSimplifyID); 1154 AU.addRequired<ScalarEvolutionWrapperPass>(); 1155 AU.addRequired<LoopInfoWrapperPass>(); 1156 AU.addRequired<DominatorTreeWrapperPass>(); 1157 AU.addRequired<PostDominatorTreeWrapperPass>(); 1158 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1159 AU.addRequired<DependenceAnalysisWrapperPass>(); 1160 1161 AU.addPreserved<ScalarEvolutionWrapperPass>(); 1162 AU.addPreserved<LoopInfoWrapperPass>(); 1163 AU.addPreserved<DominatorTreeWrapperPass>(); 1164 AU.addPreserved<PostDominatorTreeWrapperPass>(); 1165 } 1166 1167 bool runOnFunction(Function &F) override { 1168 if (skipFunction(F)) 1169 return false; 1170 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1171 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1172 auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 1173 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1174 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 1175 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1176 1177 const DataLayout &DL = F.getParent()->getDataLayout(); 1178 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL); 1179 return LF.fuseLoops(F); 1180 } 1181 }; 1182 1183 PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) { 1184 auto &LI = AM.getResult<LoopAnalysis>(F); 1185 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1186 auto &DI = AM.getResult<DependenceAnalysis>(F); 1187 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1188 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 1189 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1190 1191 const DataLayout &DL = F.getParent()->getDataLayout(); 1192 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL); 1193 bool Changed = LF.fuseLoops(F); 1194 if (!Changed) 1195 return PreservedAnalyses::all(); 1196 1197 PreservedAnalyses PA; 1198 PA.preserve<DominatorTreeAnalysis>(); 1199 PA.preserve<PostDominatorTreeAnalysis>(); 1200 PA.preserve<ScalarEvolutionAnalysis>(); 1201 PA.preserve<LoopAnalysis>(); 1202 return PA; 1203 } 1204 1205 char LoopFuseLegacy::ID = 0; 1206 1207 INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, 1208 false) 1209 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 1210 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 1211 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1212 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1213 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1214 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1215 INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false) 1216 1217 FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); } 1218