1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the loop fusion pass.
11 /// The implementation is largely based on the following document:
12 ///
13 ///       Code Transformations to Augment the Scope of Loop Fusion in a
14 ///         Production Compiler
15 ///       Christopher Mark Barton
16 ///       MSc Thesis
17 ///       https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
18 ///
19 /// The general approach taken is to collect sets of control flow equivalent
20 /// loops and test whether they can be fused. The necessary conditions for
21 /// fusion are:
22 ///    1. The loops must be adjacent (there cannot be any statements between
23 ///       the two loops).
24 ///    2. The loops must be conforming (they must execute the same number of
25 ///       iterations).
26 ///    3. The loops must be control flow equivalent (if one loop executes, the
27 ///       other is guaranteed to execute).
28 ///    4. There cannot be any negative distance dependencies between the loops.
29 /// If all of these conditions are satisfied, it is safe to fuse the loops.
30 ///
31 /// This implementation creates FusionCandidates that represent the loop and the
32 /// necessary information needed by fusion. It then operates on the fusion
33 /// candidates, first confirming that the candidate is eligible for fusion. The
34 /// candidates are then collected into control flow equivalent sets, sorted in
35 /// dominance order. Each set of control flow equivalent candidates is then
36 /// traversed, attempting to fuse pairs of candidates in the set. If all
37 /// requirements for fusion are met, the two candidates are fused, creating a
38 /// new (fused) candidate which is then added back into the set to consider for
39 /// additional fusion.
40 ///
41 /// This implementation currently does not make any modifications to remove
42 /// conditions for fusion. Code transformations to make loops conform to each of
43 /// the conditions for fusion are discussed in more detail in the document
44 /// above. These can be added to the current implementation in the future.
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/Transforms/Scalar/LoopFuse.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/Analysis/AssumptionCache.h"
50 #include "llvm/Analysis/DependenceAnalysis.h"
51 #include "llvm/Analysis/DomTreeUpdater.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
54 #include "llvm/Analysis/PostDominators.h"
55 #include "llvm/Analysis/ScalarEvolution.h"
56 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
57 #include "llvm/Analysis/TargetTransformInfo.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/Verifier.h"
60 #include "llvm/InitializePasses.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/CodeMoverUtils.h"
69 #include "llvm/Transforms/Utils/UnrollLoop.h"
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "loop-fusion"
74 
75 STATISTIC(FuseCounter, "Loops fused");
76 STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
77 STATISTIC(InvalidPreheader, "Loop has invalid preheader");
78 STATISTIC(InvalidHeader, "Loop has invalid header");
79 STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
80 STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
81 STATISTIC(InvalidLatch, "Loop has invalid latch");
82 STATISTIC(InvalidLoop, "Loop is invalid");
83 STATISTIC(AddressTakenBB, "Basic block has address taken");
84 STATISTIC(MayThrowException, "Loop may throw an exception");
85 STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
86 STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
87 STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
88 STATISTIC(UnknownTripCount, "Loop has unknown trip count");
89 STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
90 STATISTIC(NonEqualTripCount, "Loop trip counts are not the same");
91 STATISTIC(NonAdjacent, "Loops are not adjacent");
92 STATISTIC(
93     NonEmptyPreheader,
94     "Loop has a non-empty preheader with instructions that cannot be moved");
95 STATISTIC(FusionNotBeneficial, "Fusion is not beneficial");
96 STATISTIC(NonIdenticalGuards, "Candidates have different guards");
97 STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block with "
98                              "instructions that cannot be moved");
99 STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block with "
100                               "instructions that cannot be moved");
101 STATISTIC(NotRotated, "Candidate is not rotated");
102 
103 enum FusionDependenceAnalysisChoice {
104   FUSION_DEPENDENCE_ANALYSIS_SCEV,
105   FUSION_DEPENDENCE_ANALYSIS_DA,
106   FUSION_DEPENDENCE_ANALYSIS_ALL,
107 };
108 
109 static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis(
110     "loop-fusion-dependence-analysis",
111     cl::desc("Which dependence analysis should loop fusion use?"),
112     cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev",
113                           "Use the scalar evolution interface"),
114                clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da",
115                           "Use the dependence analysis interface"),
116                clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all",
117                           "Use all available analyses")),
118     cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore);
119 
120 static cl::opt<unsigned> FusionPeelMaxCount(
121     "loop-fusion-peel-max-count", cl::init(0), cl::Hidden,
122     cl::desc("Max number of iterations to be peeled from a loop, such that "
123              "fusion can take place"));
124 
125 #ifndef NDEBUG
126 static cl::opt<bool>
127     VerboseFusionDebugging("loop-fusion-verbose-debug",
128                            cl::desc("Enable verbose debugging for Loop Fusion"),
129                            cl::Hidden, cl::init(false), cl::ZeroOrMore);
130 #endif
131 
132 namespace {
133 /// This class is used to represent a candidate for loop fusion. When it is
134 /// constructed, it checks the conditions for loop fusion to ensure that it
135 /// represents a valid candidate. It caches several parts of a loop that are
136 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
137 /// of continually querying the underlying Loop to retrieve these values. It is
138 /// assumed these will not change throughout loop fusion.
139 ///
140 /// The invalidate method should be used to indicate that the FusionCandidate is
141 /// no longer a valid candidate for fusion. Similarly, the isValid() method can
142 /// be used to ensure that the FusionCandidate is still valid for fusion.
143 struct FusionCandidate {
144   /// Cache of parts of the loop used throughout loop fusion. These should not
145   /// need to change throughout the analysis and transformation.
146   /// These parts are cached to avoid repeatedly looking up in the Loop class.
147 
148   /// Preheader of the loop this candidate represents
149   BasicBlock *Preheader;
150   /// Header of the loop this candidate represents
151   BasicBlock *Header;
152   /// Blocks in the loop that exit the loop
153   BasicBlock *ExitingBlock;
154   /// The successor block of this loop (where the exiting blocks go to)
155   BasicBlock *ExitBlock;
156   /// Latch of the loop
157   BasicBlock *Latch;
158   /// The loop that this fusion candidate represents
159   Loop *L;
160   /// Vector of instructions in this loop that read from memory
161   SmallVector<Instruction *, 16> MemReads;
162   /// Vector of instructions in this loop that write to memory
163   SmallVector<Instruction *, 16> MemWrites;
164   /// Are all of the members of this fusion candidate still valid
165   bool Valid;
166   /// Guard branch of the loop, if it exists
167   BranchInst *GuardBranch;
168   /// Peeling Paramaters of the Loop.
169   TTI::PeelingPreferences PP;
170   /// Can you Peel this Loop?
171   bool AbleToPeel;
172   /// Has this loop been Peeled
173   bool Peeled;
174 
175   /// Dominator and PostDominator trees are needed for the
176   /// FusionCandidateCompare function, required by FusionCandidateSet to
177   /// determine where the FusionCandidate should be inserted into the set. These
178   /// are used to establish ordering of the FusionCandidates based on dominance.
179   const DominatorTree *DT;
180   const PostDominatorTree *PDT;
181 
182   OptimizationRemarkEmitter &ORE;
183 
184   FusionCandidate(Loop *L, const DominatorTree *DT,
185                   const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE,
186                   TTI::PeelingPreferences PP)
187       : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
188         ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
189         Latch(L->getLoopLatch()), L(L), Valid(true),
190         GuardBranch(L->getLoopGuardBranch()), PP(PP), AbleToPeel(canPeel(L)),
191         Peeled(false), DT(DT), PDT(PDT), ORE(ORE) {
192 
193     // Walk over all blocks in the loop and check for conditions that may
194     // prevent fusion. For each block, walk over all instructions and collect
195     // the memory reads and writes If any instructions that prevent fusion are
196     // found, invalidate this object and return.
197     for (BasicBlock *BB : L->blocks()) {
198       if (BB->hasAddressTaken()) {
199         invalidate();
200         reportInvalidCandidate(AddressTakenBB);
201         return;
202       }
203 
204       for (Instruction &I : *BB) {
205         if (I.mayThrow()) {
206           invalidate();
207           reportInvalidCandidate(MayThrowException);
208           return;
209         }
210         if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
211           if (SI->isVolatile()) {
212             invalidate();
213             reportInvalidCandidate(ContainsVolatileAccess);
214             return;
215           }
216         }
217         if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
218           if (LI->isVolatile()) {
219             invalidate();
220             reportInvalidCandidate(ContainsVolatileAccess);
221             return;
222           }
223         }
224         if (I.mayWriteToMemory())
225           MemWrites.push_back(&I);
226         if (I.mayReadFromMemory())
227           MemReads.push_back(&I);
228       }
229     }
230   }
231 
232   /// Check if all members of the class are valid.
233   bool isValid() const {
234     return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
235            !L->isInvalid() && Valid;
236   }
237 
238   /// Verify that all members are in sync with the Loop object.
239   void verify() const {
240     assert(isValid() && "Candidate is not valid!!");
241     assert(!L->isInvalid() && "Loop is invalid!");
242     assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
243     assert(Header == L->getHeader() && "Header is out of sync");
244     assert(ExitingBlock == L->getExitingBlock() &&
245            "Exiting Blocks is out of sync");
246     assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
247     assert(Latch == L->getLoopLatch() && "Latch is out of sync");
248   }
249 
250   /// Get the entry block for this fusion candidate.
251   ///
252   /// If this fusion candidate represents a guarded loop, the entry block is the
253   /// loop guard block. If it represents an unguarded loop, the entry block is
254   /// the preheader of the loop.
255   BasicBlock *getEntryBlock() const {
256     if (GuardBranch)
257       return GuardBranch->getParent();
258     else
259       return Preheader;
260   }
261 
262   /// After Peeling the loop is modified quite a bit, hence all of the Blocks
263   /// need to be updated accordingly.
264   void updateAfterPeeling() {
265     Preheader = L->getLoopPreheader();
266     Header = L->getHeader();
267     ExitingBlock = L->getExitingBlock();
268     ExitBlock = L->getExitBlock();
269     Latch = L->getLoopLatch();
270     verify();
271   }
272 
273   /// Given a guarded loop, get the successor of the guard that is not in the
274   /// loop.
275   ///
276   /// This method returns the successor of the loop guard that is not located
277   /// within the loop (i.e., the successor of the guard that is not the
278   /// preheader).
279   /// This method is only valid for guarded loops.
280   BasicBlock *getNonLoopBlock() const {
281     assert(GuardBranch && "Only valid on guarded loops.");
282     assert(GuardBranch->isConditional() &&
283            "Expecting guard to be a conditional branch.");
284     if (Peeled)
285       return GuardBranch->getSuccessor(1);
286     return (GuardBranch->getSuccessor(0) == Preheader)
287                ? GuardBranch->getSuccessor(1)
288                : GuardBranch->getSuccessor(0);
289   }
290 
291 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
292   LLVM_DUMP_METHOD void dump() const {
293     dbgs() << "\tGuardBranch: ";
294     if (GuardBranch)
295       dbgs() << *GuardBranch;
296     else
297       dbgs() << "nullptr";
298     dbgs() << "\n"
299            << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n"
300            << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
301            << "\n"
302            << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
303            << "\tExitingBB: "
304            << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
305            << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
306            << "\n"
307            << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"
308            << "\tEntryBlock: "
309            << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr")
310            << "\n";
311   }
312 #endif
313 
314   /// Determine if a fusion candidate (representing a loop) is eligible for
315   /// fusion. Note that this only checks whether a single loop can be fused - it
316   /// does not check whether it is *legal* to fuse two loops together.
317   bool isEligibleForFusion(ScalarEvolution &SE) const {
318     if (!isValid()) {
319       LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
320       if (!Preheader)
321         ++InvalidPreheader;
322       if (!Header)
323         ++InvalidHeader;
324       if (!ExitingBlock)
325         ++InvalidExitingBlock;
326       if (!ExitBlock)
327         ++InvalidExitBlock;
328       if (!Latch)
329         ++InvalidLatch;
330       if (L->isInvalid())
331         ++InvalidLoop;
332 
333       return false;
334     }
335 
336     // Require ScalarEvolution to be able to determine a trip count.
337     if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
338       LLVM_DEBUG(dbgs() << "Loop " << L->getName()
339                         << " trip count not computable!\n");
340       return reportInvalidCandidate(UnknownTripCount);
341     }
342 
343     if (!L->isLoopSimplifyForm()) {
344       LLVM_DEBUG(dbgs() << "Loop " << L->getName()
345                         << " is not in simplified form!\n");
346       return reportInvalidCandidate(NotSimplifiedForm);
347     }
348 
349     if (!L->isRotatedForm()) {
350       LLVM_DEBUG(dbgs() << "Loop " << L->getName() << " is not rotated!\n");
351       return reportInvalidCandidate(NotRotated);
352     }
353 
354     return true;
355   }
356 
357 private:
358   // This is only used internally for now, to clear the MemWrites and MemReads
359   // list and setting Valid to false. I can't envision other uses of this right
360   // now, since once FusionCandidates are put into the FusionCandidateSet they
361   // are immutable. Thus, any time we need to change/update a FusionCandidate,
362   // we must create a new one and insert it into the FusionCandidateSet to
363   // ensure the FusionCandidateSet remains ordered correctly.
364   void invalidate() {
365     MemWrites.clear();
366     MemReads.clear();
367     Valid = false;
368   }
369 
370   bool reportInvalidCandidate(llvm::Statistic &Stat) const {
371     using namespace ore;
372     assert(L && Preheader && "Fusion candidate not initialized properly!");
373     ++Stat;
374     ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(),
375                                         L->getStartLoc(), Preheader)
376              << "[" << Preheader->getParent()->getName() << "]: "
377              << "Loop is not a candidate for fusion: " << Stat.getDesc());
378     return false;
379   }
380 };
381 
382 struct FusionCandidateCompare {
383   /// Comparison functor to sort two Control Flow Equivalent fusion candidates
384   /// into dominance order.
385   /// If LHS dominates RHS and RHS post-dominates LHS, return true;
386   /// IF RHS dominates LHS and LHS post-dominates RHS, return false;
387   bool operator()(const FusionCandidate &LHS,
388                   const FusionCandidate &RHS) const {
389     const DominatorTree *DT = LHS.DT;
390     const PostDominatorTree *PDT = LHS.PDT;
391 
392     BasicBlock *LHSEntryBlock = LHS.getEntryBlock();
393     BasicBlock *RHSEntryBlock = RHS.getEntryBlock();
394 
395     // Do not save PDT to local variable as it is only used in asserts and thus
396     // will trigger an unused variable warning if building without asserts.
397     assert(DT && PDT && "Expecting valid dominator tree");
398 
399     // Do this compare first so if LHS == RHS, function returns false.
400     if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) {
401       // RHS dominates LHS
402       // Verify LHS post-dominates RHS
403       assert(PDT->dominates(LHSEntryBlock, RHSEntryBlock));
404       return false;
405     }
406 
407     if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) {
408       // Verify RHS Postdominates LHS
409       assert(PDT->dominates(RHSEntryBlock, LHSEntryBlock));
410       return true;
411     }
412 
413     // If LHS does not dominate RHS and RHS does not dominate LHS then there is
414     // no dominance relationship between the two FusionCandidates. Thus, they
415     // should not be in the same set together.
416     llvm_unreachable(
417         "No dominance relationship between these fusion candidates!");
418   }
419 };
420 
421 using LoopVector = SmallVector<Loop *, 4>;
422 
423 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
424 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
425 // dominates FC1 and FC1 post-dominates FC0.
426 // std::set was chosen because we want a sorted data structure with stable
427 // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent
428 // loops by moving intervening code around. When this intervening code contains
429 // loops, those loops will be moved also. The corresponding FusionCandidates
430 // will also need to be moved accordingly. As this is done, having stable
431 // iterators will simplify the logic. Similarly, having an efficient insert that
432 // keeps the FusionCandidateSet sorted will also simplify the implementation.
433 using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
434 using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;
435 
436 #if !defined(NDEBUG)
437 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
438                                      const FusionCandidate &FC) {
439   if (FC.isValid())
440     OS << FC.Preheader->getName();
441   else
442     OS << "<Invalid>";
443 
444   return OS;
445 }
446 
447 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
448                                      const FusionCandidateSet &CandSet) {
449   for (const FusionCandidate &FC : CandSet)
450     OS << FC << '\n';
451 
452   return OS;
453 }
454 
455 static void
456 printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
457   dbgs() << "Fusion Candidates: \n";
458   for (const auto &CandidateSet : FusionCandidates) {
459     dbgs() << "*** Fusion Candidate Set ***\n";
460     dbgs() << CandidateSet;
461     dbgs() << "****************************\n";
462   }
463 }
464 #endif
465 
466 /// Collect all loops in function at the same nest level, starting at the
467 /// outermost level.
468 ///
469 /// This data structure collects all loops at the same nest level for a
470 /// given function (specified by the LoopInfo object). It starts at the
471 /// outermost level.
472 struct LoopDepthTree {
473   using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
474   using iterator = LoopsOnLevelTy::iterator;
475   using const_iterator = LoopsOnLevelTy::const_iterator;
476 
477   LoopDepthTree(LoopInfo &LI) : Depth(1) {
478     if (!LI.empty())
479       LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
480   }
481 
482   /// Test whether a given loop has been removed from the function, and thus is
483   /// no longer valid.
484   bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }
485 
486   /// Record that a given loop has been removed from the function and is no
487   /// longer valid.
488   void removeLoop(const Loop *L) { RemovedLoops.insert(L); }
489 
490   /// Descend the tree to the next (inner) nesting level
491   void descend() {
492     LoopsOnLevelTy LoopsOnNextLevel;
493 
494     for (const LoopVector &LV : *this)
495       for (Loop *L : LV)
496         if (!isRemovedLoop(L) && L->begin() != L->end())
497           LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));
498 
499     LoopsOnLevel = LoopsOnNextLevel;
500     RemovedLoops.clear();
501     Depth++;
502   }
503 
504   bool empty() const { return size() == 0; }
505   size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
506   unsigned getDepth() const { return Depth; }
507 
508   iterator begin() { return LoopsOnLevel.begin(); }
509   iterator end() { return LoopsOnLevel.end(); }
510   const_iterator begin() const { return LoopsOnLevel.begin(); }
511   const_iterator end() const { return LoopsOnLevel.end(); }
512 
513 private:
514   /// Set of loops that have been removed from the function and are no longer
515   /// valid.
516   SmallPtrSet<const Loop *, 8> RemovedLoops;
517 
518   /// Depth of the current level, starting at 1 (outermost loops).
519   unsigned Depth;
520 
521   /// Vector of loops at the current depth level that have the same parent loop
522   LoopsOnLevelTy LoopsOnLevel;
523 };
524 
525 #ifndef NDEBUG
526 static void printLoopVector(const LoopVector &LV) {
527   dbgs() << "****************************\n";
528   for (auto L : LV)
529     printLoop(*L, dbgs());
530   dbgs() << "****************************\n";
531 }
532 #endif
533 
534 struct LoopFuser {
535 private:
536   // Sets of control flow equivalent fusion candidates for a given nest level.
537   FusionCandidateCollection FusionCandidates;
538 
539   LoopDepthTree LDT;
540   DomTreeUpdater DTU;
541 
542   LoopInfo &LI;
543   DominatorTree &DT;
544   DependenceInfo &DI;
545   ScalarEvolution &SE;
546   PostDominatorTree &PDT;
547   OptimizationRemarkEmitter &ORE;
548   AssumptionCache &AC;
549 
550   const TargetTransformInfo &TTI;
551 
552 public:
553   LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
554             ScalarEvolution &SE, PostDominatorTree &PDT,
555             OptimizationRemarkEmitter &ORE, const DataLayout &DL,
556             AssumptionCache &AC, const TargetTransformInfo &TTI)
557       : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
558         DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE), AC(AC), TTI(TTI) {}
559 
560   /// This is the main entry point for loop fusion. It will traverse the
561   /// specified function and collect candidate loops to fuse, starting at the
562   /// outermost nesting level and working inwards.
563   bool fuseLoops(Function &F) {
564 #ifndef NDEBUG
565     if (VerboseFusionDebugging) {
566       LI.print(dbgs());
567     }
568 #endif
569 
570     LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
571                       << "\n");
572     bool Changed = false;
573 
574     while (!LDT.empty()) {
575       LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
576                         << LDT.getDepth() << "\n";);
577 
578       for (const LoopVector &LV : LDT) {
579         assert(LV.size() > 0 && "Empty loop set was build!");
580 
581         // Skip singleton loop sets as they do not offer fusion opportunities on
582         // this level.
583         if (LV.size() == 1)
584           continue;
585 #ifndef NDEBUG
586         if (VerboseFusionDebugging) {
587           LLVM_DEBUG({
588             dbgs() << "  Visit loop set (#" << LV.size() << "):\n";
589             printLoopVector(LV);
590           });
591         }
592 #endif
593 
594         collectFusionCandidates(LV);
595         Changed |= fuseCandidates();
596       }
597 
598       // Finished analyzing candidates at this level.
599       // Descend to the next level and clear all of the candidates currently
600       // collected. Note that it will not be possible to fuse any of the
601       // existing candidates with new candidates because the new candidates will
602       // be at a different nest level and thus not be control flow equivalent
603       // with all of the candidates collected so far.
604       LLVM_DEBUG(dbgs() << "Descend one level!\n");
605       LDT.descend();
606       FusionCandidates.clear();
607     }
608 
609     if (Changed)
610       LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););
611 
612 #ifndef NDEBUG
613     assert(DT.verify());
614     assert(PDT.verify());
615     LI.verify(DT);
616     SE.verify();
617 #endif
618 
619     LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
620     return Changed;
621   }
622 
623 private:
624   /// Determine if two fusion candidates are control flow equivalent.
625   ///
626   /// Two fusion candidates are control flow equivalent if when one executes,
627   /// the other is guaranteed to execute. This is determined using dominators
628   /// and post-dominators: if A dominates B and B post-dominates A then A and B
629   /// are control-flow equivalent.
630   bool isControlFlowEquivalent(const FusionCandidate &FC0,
631                                const FusionCandidate &FC1) const {
632     assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");
633 
634     return ::isControlFlowEquivalent(*FC0.getEntryBlock(), *FC1.getEntryBlock(),
635                                      DT, PDT);
636   }
637 
638   /// Iterate over all loops in the given loop set and identify the loops that
639   /// are eligible for fusion. Place all eligible fusion candidates into Control
640   /// Flow Equivalent sets, sorted by dominance.
641   void collectFusionCandidates(const LoopVector &LV) {
642     for (Loop *L : LV) {
643       TTI::PeelingPreferences PP =
644           gatherPeelingPreferences(L, SE, TTI, None, None);
645       FusionCandidate CurrCand(L, &DT, &PDT, ORE, PP);
646       if (!CurrCand.isEligibleForFusion(SE))
647         continue;
648 
649       // Go through each list in FusionCandidates and determine if L is control
650       // flow equivalent with the first loop in that list. If it is, append LV.
651       // If not, go to the next list.
652       // If no suitable list is found, start another list and add it to
653       // FusionCandidates.
654       bool FoundSet = false;
655 
656       for (auto &CurrCandSet : FusionCandidates) {
657         if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
658           CurrCandSet.insert(CurrCand);
659           FoundSet = true;
660 #ifndef NDEBUG
661           if (VerboseFusionDebugging)
662             LLVM_DEBUG(dbgs() << "Adding " << CurrCand
663                               << " to existing candidate set\n");
664 #endif
665           break;
666         }
667       }
668       if (!FoundSet) {
669         // No set was found. Create a new set and add to FusionCandidates
670 #ifndef NDEBUG
671         if (VerboseFusionDebugging)
672           LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
673 #endif
674         FusionCandidateSet NewCandSet;
675         NewCandSet.insert(CurrCand);
676         FusionCandidates.push_back(NewCandSet);
677       }
678       NumFusionCandidates++;
679     }
680   }
681 
682   /// Determine if it is beneficial to fuse two loops.
683   ///
684   /// For now, this method simply returns true because we want to fuse as much
685   /// as possible (primarily to test the pass). This method will evolve, over
686   /// time, to add heuristics for profitability of fusion.
687   bool isBeneficialFusion(const FusionCandidate &FC0,
688                           const FusionCandidate &FC1) {
689     return true;
690   }
691 
692   /// Determine if two fusion candidates have the same trip count (i.e., they
693   /// execute the same number of iterations).
694   ///
695   /// This function will return a pair of values. The first is a boolean,
696   /// stating whether or not the two candidates are known at compile time to
697   /// have the same TripCount. The second is the difference in the two
698   /// TripCounts. This information can be used later to determine whether or not
699   /// peeling can be performed on either one of the candiates.
700   std::pair<bool, Optional<unsigned>>
701   haveIdenticalTripCounts(const FusionCandidate &FC0,
702                           const FusionCandidate &FC1) const {
703 
704     const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
705     if (isa<SCEVCouldNotCompute>(TripCount0)) {
706       UncomputableTripCount++;
707       LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
708       return {false, None};
709     }
710 
711     const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
712     if (isa<SCEVCouldNotCompute>(TripCount1)) {
713       UncomputableTripCount++;
714       LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
715       return {false, None};
716     }
717 
718     LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
719                       << *TripCount1 << " are "
720                       << (TripCount0 == TripCount1 ? "identical" : "different")
721                       << "\n");
722 
723     if (TripCount0 == TripCount1)
724       return {true, 0};
725 
726     LLVM_DEBUG(dbgs() << "The loops do not have the same tripcount, "
727                          "determining the difference between trip counts\n");
728 
729     // Currently only considering loops with a single exit point
730     // and a non-constant trip count.
731     unsigned TC0 = SE.getSmallConstantTripCount(FC0.L);
732     unsigned TC1 = SE.getSmallConstantTripCount(FC1.L);
733 
734     // If any of the tripcounts are zero that means that loop(s) do not have
735     // a single exit or a constant tripcount.
736     if (TC0 == 0 || TC1 == 0) {
737       LLVM_DEBUG(dbgs() << "Loop(s) do not have a single exit point or do not "
738                            "have a constant number of iterations. Peeling "
739                            "is not benefical\n");
740       return {false, None};
741     }
742 
743     Optional<unsigned> Difference = None;
744     int Diff = TC0 - TC1;
745 
746     if (Diff > 0)
747       Difference = Diff;
748     else {
749       LLVM_DEBUG(
750           dbgs()
751           << "Difference is less than 0. FC1 (second loop) has more "
752              "iterations than the first one. Currently not supported.\n");
753     }
754 
755     LLVM_DEBUG(dbgs() << "Difference in loop trip count is: " << Difference
756                       << "\n");
757 
758     return {false, Difference};
759   }
760 
761   void peelFusionCandidate(FusionCandidate &FC0, const FusionCandidate &FC1,
762                            unsigned PeelCount) {
763     assert(FC0.AbleToPeel && "Should be able to peel loop");
764 
765     LLVM_DEBUG(dbgs() << "Attempting to peel first " << PeelCount
766                       << " iterations of the first loop. \n");
767 
768     FC0.Peeled = peelLoop(FC0.L, PeelCount, &LI, &SE, &DT, &AC, true);
769     if (FC0.Peeled) {
770       LLVM_DEBUG(dbgs() << "Done Peeling\n");
771 
772 #ifndef NDEBUG
773       auto IdenticalTripCount = haveIdenticalTripCounts(FC0, FC1);
774 
775       assert(IdenticalTripCount.first && *IdenticalTripCount.second == 0 &&
776              "Loops should have identical trip counts after peeling");
777 #endif
778 
779       FC0.PP.PeelCount = PeelCount;
780 
781       // Peeling does not update the PDT
782       PDT.recalculate(*FC0.Preheader->getParent());
783 
784       FC0.updateAfterPeeling();
785 
786       // In this case the iterations of the loop are constant, so the first
787       // loop will execute completely (will not jump from one of
788       // the peeled blocks to the second loop). Here we are updating the
789       // branch conditions of each of the peeled blocks, such that it will
790       // branch to its successor which is not the Preheader of the second Loop.
791       // Doing this update will ensure that the entry block of the first loop
792       // dominates the entry block of the second loop.
793       BasicBlock *BB =
794           FC0.GuardBranch ? FC0.ExitBlock->getUniqueSuccessor() : FC1.Preheader;
795       SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
796       for (BasicBlock *Pred : predecessors(BB)) {
797         if (Pred != FC0.ExitBlock) {
798           BranchInst *Old = dyn_cast<BranchInst>(Pred->getTerminator());
799           BasicBlock *Succ = Old->getSuccessor(0);
800           if (Succ == BB)
801             Succ = Old->getSuccessor(1);
802           BranchInst *NewBranch = BranchInst::Create(Succ);
803           ReplaceInstWithInst(Old, NewBranch);
804           TreeUpdates.emplace_back(
805               DominatorTree::UpdateType(DominatorTree::Delete, Pred, BB));
806         }
807       }
808       DTU.applyUpdates(TreeUpdates);
809       DTU.flush();
810       LLVM_DEBUG(
811           dbgs() << "Sucessfully peeled " << FC0.PP.PeelCount
812                  << " iterations from the first loop.\n"
813                     "Both Loops have the same number of iterations now.\n");
814     }
815   }
816 
817   /// Walk each set of control flow equivalent fusion candidates and attempt to
818   /// fuse them. This does a single linear traversal of all candidates in the
819   /// set. The conditions for legal fusion are checked at this point. If a pair
820   /// of fusion candidates passes all legality checks, they are fused together
821   /// and a new fusion candidate is created and added to the FusionCandidateSet.
822   /// The original fusion candidates are then removed, as they are no longer
823   /// valid.
824   bool fuseCandidates() {
825     bool Fused = false;
826     LLVM_DEBUG(printFusionCandidates(FusionCandidates));
827     for (auto &CandidateSet : FusionCandidates) {
828       if (CandidateSet.size() < 2)
829         continue;
830 
831       LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
832                         << CandidateSet << "\n");
833 
834       for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
835         assert(!LDT.isRemovedLoop(FC0->L) &&
836                "Should not have removed loops in CandidateSet!");
837         auto FC1 = FC0;
838         for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
839           assert(!LDT.isRemovedLoop(FC1->L) &&
840                  "Should not have removed loops in CandidateSet!");
841 
842           LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
843                      dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");
844 
845           FC0->verify();
846           FC1->verify();
847 
848           // Check if the candidates have identical tripcounts (first value of
849           // pair), and if not check the difference in the tripcounts between
850           // the loops (second value of pair). The difference is not equal to
851           // None iff the loops iterate a constant number of times, and have a
852           // single exit.
853           std::pair<bool, Optional<unsigned>> IdenticalTripCountRes =
854               haveIdenticalTripCounts(*FC0, *FC1);
855           bool SameTripCount = IdenticalTripCountRes.first;
856           Optional<unsigned> TCDifference = IdenticalTripCountRes.second;
857 
858           // Here we are checking that FC0 (the first loop) can be peeled, and
859           // both loops have different tripcounts.
860           if (FC0->AbleToPeel && !SameTripCount && TCDifference) {
861             if (*TCDifference > FusionPeelMaxCount) {
862               LLVM_DEBUG(dbgs()
863                          << "Difference in loop trip counts: " << *TCDifference
864                          << " is greater than maximum peel count specificed: "
865                          << FusionPeelMaxCount << "\n");
866             } else {
867               // Dependent on peeling being performed on the first loop, and
868               // assuming all other conditions for fusion return true.
869               SameTripCount = true;
870             }
871           }
872 
873           if (!SameTripCount) {
874             LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
875                                  "counts. Not fusing.\n");
876             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
877                                                        NonEqualTripCount);
878             continue;
879           }
880 
881           if (!isAdjacent(*FC0, *FC1)) {
882             LLVM_DEBUG(dbgs()
883                        << "Fusion candidates are not adjacent. Not fusing.\n");
884             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent);
885             continue;
886           }
887 
888           // Ensure that FC0 and FC1 have identical guards.
889           // If one (or both) are not guarded, this check is not necessary.
890           if (FC0->GuardBranch && FC1->GuardBranch &&
891               !haveIdenticalGuards(*FC0, *FC1) && !TCDifference) {
892             LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical "
893                                  "guards. Not Fusing.\n");
894             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
895                                                        NonIdenticalGuards);
896             continue;
897           }
898 
899           if (!isSafeToMoveBefore(*FC1->Preheader,
900                                   *FC0->Preheader->getTerminator(), DT, &PDT,
901                                   &DI)) {
902             LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
903                                  "instructions in preheader. Not fusing.\n");
904             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
905                                                        NonEmptyPreheader);
906             continue;
907           }
908 
909           if (FC0->GuardBranch) {
910             assert(FC1->GuardBranch && "Expecting valid FC1 guard branch");
911 
912             if (!isSafeToMoveBefore(*FC0->ExitBlock,
913                                     *FC1->ExitBlock->getFirstNonPHIOrDbg(), DT,
914                                     &PDT, &DI)) {
915               LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
916                                    "instructions in exit block. Not fusing.\n");
917               reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
918                                                          NonEmptyExitBlock);
919               continue;
920             }
921 
922             if (!isSafeToMoveBefore(
923                     *FC1->GuardBranch->getParent(),
924                     *FC0->GuardBranch->getParent()->getTerminator(), DT, &PDT,
925                     &DI)) {
926               LLVM_DEBUG(dbgs()
927                          << "Fusion candidate contains unsafe "
928                             "instructions in guard block. Not fusing.\n");
929               reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
930                                                          NonEmptyGuardBlock);
931               continue;
932             }
933           }
934 
935           // Check the dependencies across the loops and do not fuse if it would
936           // violate them.
937           if (!dependencesAllowFusion(*FC0, *FC1)) {
938             LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
939             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
940                                                        InvalidDependencies);
941             continue;
942           }
943 
944           bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
945           LLVM_DEBUG(dbgs()
946                      << "\tFusion appears to be "
947                      << (BeneficialToFuse ? "" : "un") << "profitable!\n");
948           if (!BeneficialToFuse) {
949             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
950                                                        FusionNotBeneficial);
951             continue;
952           }
953           // All analysis has completed and has determined that fusion is legal
954           // and profitable. At this point, start transforming the code and
955           // perform fusion.
956 
957           LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
958                             << *FC1 << "\n");
959 
960           FusionCandidate FC0Copy = *FC0;
961           // Peel the loop after determining that fusion is legal. The Loops
962           // will still be safe to fuse after the peeling is performed.
963           bool Peel = TCDifference && *TCDifference > 0;
964           if (Peel)
965             peelFusionCandidate(FC0Copy, *FC1, *TCDifference);
966 
967           // Report fusion to the Optimization Remarks.
968           // Note this needs to be done *before* performFusion because
969           // performFusion will change the original loops, making it not
970           // possible to identify them after fusion is complete.
971           reportLoopFusion<OptimizationRemark>((Peel ? FC0Copy : *FC0), *FC1,
972                                                FuseCounter);
973 
974           FusionCandidate FusedCand(
975               performFusion((Peel ? FC0Copy : *FC0), *FC1), &DT, &PDT, ORE,
976               FC0Copy.PP);
977           FusedCand.verify();
978           assert(FusedCand.isEligibleForFusion(SE) &&
979                  "Fused candidate should be eligible for fusion!");
980 
981           // Notify the loop-depth-tree that these loops are not valid objects
982           LDT.removeLoop(FC1->L);
983 
984           CandidateSet.erase(FC0);
985           CandidateSet.erase(FC1);
986 
987           auto InsertPos = CandidateSet.insert(FusedCand);
988 
989           assert(InsertPos.second &&
990                  "Unable to insert TargetCandidate in CandidateSet!");
991 
992           // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
993           // of the FC1 loop will attempt to fuse the new (fused) loop with the
994           // remaining candidates in the current candidate set.
995           FC0 = FC1 = InsertPos.first;
996 
997           LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
998                             << "\n");
999 
1000           Fused = true;
1001         }
1002       }
1003     }
1004     return Fused;
1005   }
1006 
1007   /// Rewrite all additive recurrences in a SCEV to use a new loop.
1008   class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
1009   public:
1010     AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
1011                        bool UseMax = true)
1012         : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
1013           NewL(NewL) {}
1014 
1015     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
1016       const Loop *ExprL = Expr->getLoop();
1017       SmallVector<const SCEV *, 2> Operands;
1018       if (ExprL == &OldL) {
1019         Operands.append(Expr->op_begin(), Expr->op_end());
1020         return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
1021       }
1022 
1023       if (OldL.contains(ExprL)) {
1024         bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
1025         if (!UseMax || !Pos || !Expr->isAffine()) {
1026           Valid = false;
1027           return Expr;
1028         }
1029         return visit(Expr->getStart());
1030       }
1031 
1032       for (const SCEV *Op : Expr->operands())
1033         Operands.push_back(visit(Op));
1034       return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
1035     }
1036 
1037     bool wasValidSCEV() const { return Valid; }
1038 
1039   private:
1040     bool Valid, UseMax;
1041     const Loop &OldL, &NewL;
1042   };
1043 
1044   /// Return false if the access functions of \p I0 and \p I1 could cause
1045   /// a negative dependence.
1046   bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
1047                             Instruction &I1, bool EqualIsInvalid) {
1048     Value *Ptr0 = getLoadStorePointerOperand(&I0);
1049     Value *Ptr1 = getLoadStorePointerOperand(&I1);
1050     if (!Ptr0 || !Ptr1)
1051       return false;
1052 
1053     const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
1054     const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
1055 #ifndef NDEBUG
1056     if (VerboseFusionDebugging)
1057       LLVM_DEBUG(dbgs() << "    Access function check: " << *SCEVPtr0 << " vs "
1058                         << *SCEVPtr1 << "\n");
1059 #endif
1060     AddRecLoopReplacer Rewriter(SE, L0, L1);
1061     SCEVPtr0 = Rewriter.visit(SCEVPtr0);
1062 #ifndef NDEBUG
1063     if (VerboseFusionDebugging)
1064       LLVM_DEBUG(dbgs() << "    Access function after rewrite: " << *SCEVPtr0
1065                         << " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
1066 #endif
1067     if (!Rewriter.wasValidSCEV())
1068       return false;
1069 
1070     // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
1071     //       L0) and the other is not. We could check if it is monotone and test
1072     //       the beginning and end value instead.
1073 
1074     BasicBlock *L0Header = L0.getHeader();
1075     auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
1076       const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
1077       if (!AddRec)
1078         return false;
1079       return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
1080              !DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
1081     };
1082     if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
1083       return false;
1084 
1085     ICmpInst::Predicate Pred =
1086         EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
1087     bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
1088 #ifndef NDEBUG
1089     if (VerboseFusionDebugging)
1090       LLVM_DEBUG(dbgs() << "    Relation: " << *SCEVPtr0
1091                         << (IsAlwaysGE ? "  >=  " : "  may <  ") << *SCEVPtr1
1092                         << "\n");
1093 #endif
1094     return IsAlwaysGE;
1095   }
1096 
1097   /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
1098   /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
1099   /// specified by @p DepChoice are used to determine this.
1100   bool dependencesAllowFusion(const FusionCandidate &FC0,
1101                               const FusionCandidate &FC1, Instruction &I0,
1102                               Instruction &I1, bool AnyDep,
1103                               FusionDependenceAnalysisChoice DepChoice) {
1104 #ifndef NDEBUG
1105     if (VerboseFusionDebugging) {
1106       LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
1107                         << DepChoice << "\n");
1108     }
1109 #endif
1110     switch (DepChoice) {
1111     case FUSION_DEPENDENCE_ANALYSIS_SCEV:
1112       return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
1113     case FUSION_DEPENDENCE_ANALYSIS_DA: {
1114       auto DepResult = DI.depends(&I0, &I1, true);
1115       if (!DepResult)
1116         return true;
1117 #ifndef NDEBUG
1118       if (VerboseFusionDebugging) {
1119         LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
1120                    dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
1121                           << (DepResult->isOrdered() ? "true" : "false")
1122                           << "]\n");
1123         LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
1124                           << "\n");
1125       }
1126 #endif
1127 
1128       if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
1129         LLVM_DEBUG(
1130             dbgs() << "TODO: Implement pred/succ dependence handling!\n");
1131 
1132       // TODO: Can we actually use the dependence info analysis here?
1133       return false;
1134     }
1135 
1136     case FUSION_DEPENDENCE_ANALYSIS_ALL:
1137       return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
1138                                     FUSION_DEPENDENCE_ANALYSIS_SCEV) ||
1139              dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
1140                                     FUSION_DEPENDENCE_ANALYSIS_DA);
1141     }
1142 
1143     llvm_unreachable("Unknown fusion dependence analysis choice!");
1144   }
1145 
1146   /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
1147   bool dependencesAllowFusion(const FusionCandidate &FC0,
1148                               const FusionCandidate &FC1) {
1149     LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
1150                       << "\n");
1151     assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
1152     assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock()));
1153 
1154     for (Instruction *WriteL0 : FC0.MemWrites) {
1155       for (Instruction *WriteL1 : FC1.MemWrites)
1156         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
1157                                     /* AnyDep */ false,
1158                                     FusionDependenceAnalysis)) {
1159           InvalidDependencies++;
1160           return false;
1161         }
1162       for (Instruction *ReadL1 : FC1.MemReads)
1163         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
1164                                     /* AnyDep */ false,
1165                                     FusionDependenceAnalysis)) {
1166           InvalidDependencies++;
1167           return false;
1168         }
1169     }
1170 
1171     for (Instruction *WriteL1 : FC1.MemWrites) {
1172       for (Instruction *WriteL0 : FC0.MemWrites)
1173         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
1174                                     /* AnyDep */ false,
1175                                     FusionDependenceAnalysis)) {
1176           InvalidDependencies++;
1177           return false;
1178         }
1179       for (Instruction *ReadL0 : FC0.MemReads)
1180         if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
1181                                     /* AnyDep */ false,
1182                                     FusionDependenceAnalysis)) {
1183           InvalidDependencies++;
1184           return false;
1185         }
1186     }
1187 
1188     // Walk through all uses in FC1. For each use, find the reaching def. If the
1189     // def is located in FC0 then it is is not safe to fuse.
1190     for (BasicBlock *BB : FC1.L->blocks())
1191       for (Instruction &I : *BB)
1192         for (auto &Op : I.operands())
1193           if (Instruction *Def = dyn_cast<Instruction>(Op))
1194             if (FC0.L->contains(Def->getParent())) {
1195               InvalidDependencies++;
1196               return false;
1197             }
1198 
1199     return true;
1200   }
1201 
1202   /// Determine if two fusion candidates are adjacent in the CFG.
1203   ///
1204   /// This method will determine if there are additional basic blocks in the CFG
1205   /// between the exit of \p FC0 and the entry of \p FC1.
1206   /// If the two candidates are guarded loops, then it checks whether the
1207   /// non-loop successor of the \p FC0 guard branch is the entry block of \p
1208   /// FC1. If not, then the loops are not adjacent. If the two candidates are
1209   /// not guarded loops, then it checks whether the exit block of \p FC0 is the
1210   /// preheader of \p FC1.
1211   bool isAdjacent(const FusionCandidate &FC0,
1212                   const FusionCandidate &FC1) const {
1213     // If the successor of the guard branch is FC1, then the loops are adjacent
1214     if (FC0.GuardBranch)
1215       return FC0.getNonLoopBlock() == FC1.getEntryBlock();
1216     else
1217       return FC0.ExitBlock == FC1.getEntryBlock();
1218   }
1219 
1220   /// Determine if two fusion candidates have identical guards
1221   ///
1222   /// This method will determine if two fusion candidates have the same guards.
1223   /// The guards are considered the same if:
1224   ///   1. The instructions to compute the condition used in the compare are
1225   ///      identical.
1226   ///   2. The successors of the guard have the same flow into/around the loop.
1227   /// If the compare instructions are identical, then the first successor of the
1228   /// guard must go to the same place (either the preheader of the loop or the
1229   /// NonLoopBlock). In other words, the the first successor of both loops must
1230   /// both go into the loop (i.e., the preheader) or go around the loop (i.e.,
1231   /// the NonLoopBlock). The same must be true for the second successor.
1232   bool haveIdenticalGuards(const FusionCandidate &FC0,
1233                            const FusionCandidate &FC1) const {
1234     assert(FC0.GuardBranch && FC1.GuardBranch &&
1235            "Expecting FC0 and FC1 to be guarded loops.");
1236 
1237     if (auto FC0CmpInst =
1238             dyn_cast<Instruction>(FC0.GuardBranch->getCondition()))
1239       if (auto FC1CmpInst =
1240               dyn_cast<Instruction>(FC1.GuardBranch->getCondition()))
1241         if (!FC0CmpInst->isIdenticalTo(FC1CmpInst))
1242           return false;
1243 
1244     // The compare instructions are identical.
1245     // Now make sure the successor of the guards have the same flow into/around
1246     // the loop
1247     if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader)
1248       return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader);
1249     else
1250       return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader);
1251   }
1252 
1253   /// Modify the latch branch of FC to be unconditional since successors of the
1254   /// branch are the same.
1255   void simplifyLatchBranch(const FusionCandidate &FC) const {
1256     BranchInst *FCLatchBranch = dyn_cast<BranchInst>(FC.Latch->getTerminator());
1257     if (FCLatchBranch) {
1258       assert(FCLatchBranch->isConditional() &&
1259              FCLatchBranch->getSuccessor(0) == FCLatchBranch->getSuccessor(1) &&
1260              "Expecting the two successors of FCLatchBranch to be the same");
1261       BranchInst *NewBranch =
1262           BranchInst::Create(FCLatchBranch->getSuccessor(0));
1263       ReplaceInstWithInst(FCLatchBranch, NewBranch);
1264     }
1265   }
1266 
1267   /// Move instructions from FC0.Latch to FC1.Latch. If FC0.Latch has an unique
1268   /// successor, then merge FC0.Latch with its unique successor.
1269   void mergeLatch(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1270     moveInstructionsToTheBeginning(*FC0.Latch, *FC1.Latch, DT, PDT, DI);
1271     if (BasicBlock *Succ = FC0.Latch->getUniqueSuccessor()) {
1272       MergeBlockIntoPredecessor(Succ, &DTU, &LI);
1273       DTU.flush();
1274     }
1275   }
1276 
1277   /// Fuse two fusion candidates, creating a new fused loop.
1278   ///
1279   /// This method contains the mechanics of fusing two loops, represented by \p
1280   /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
1281   /// postdominates \p FC0 (making them control flow equivalent). It also
1282   /// assumes that the other conditions for fusion have been met: adjacent,
1283   /// identical trip counts, and no negative distance dependencies exist that
1284   /// would prevent fusion. Thus, there is no checking for these conditions in
1285   /// this method.
1286   ///
1287   /// Fusion is performed by rewiring the CFG to update successor blocks of the
1288   /// components of tho loop. Specifically, the following changes are done:
1289   ///
1290   ///   1. The preheader of \p FC1 is removed as it is no longer necessary
1291   ///   (because it is currently only a single statement block).
1292   ///   2. The latch of \p FC0 is modified to jump to the header of \p FC1.
1293   ///   3. The latch of \p FC1 i modified to jump to the header of \p FC0.
1294   ///   4. All blocks from \p FC1 are removed from FC1 and added to FC0.
1295   ///
1296   /// All of these modifications are done with dominator tree updates, thus
1297   /// keeping the dominator (and post dominator) information up-to-date.
1298   ///
1299   /// This can be improved in the future by actually merging blocks during
1300   /// fusion. For example, the preheader of \p FC1 can be merged with the
1301   /// preheader of \p FC0. This would allow loops with more than a single
1302   /// statement in the preheader to be fused. Similarly, the latch blocks of the
1303   /// two loops could also be fused into a single block. This will require
1304   /// analysis to prove it is safe to move the contents of the block past
1305   /// existing code, which currently has not been implemented.
1306   Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1307     assert(FC0.isValid() && FC1.isValid() &&
1308            "Expecting valid fusion candidates");
1309 
1310     LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
1311                dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););
1312 
1313     // Move instructions from the preheader of FC1 to the end of the preheader
1314     // of FC0.
1315     moveInstructionsToTheEnd(*FC1.Preheader, *FC0.Preheader, DT, PDT, DI);
1316 
1317     // Fusing guarded loops is handled slightly differently than non-guarded
1318     // loops and has been broken out into a separate method instead of trying to
1319     // intersperse the logic within a single method.
1320     if (FC0.GuardBranch)
1321       return fuseGuardedLoops(FC0, FC1);
1322 
1323     assert(FC1.Preheader ==
1324            (FC0.Peeled ? FC0.ExitBlock->getUniqueSuccessor() : FC0.ExitBlock));
1325     assert(FC1.Preheader->size() == 1 &&
1326            FC1.Preheader->getSingleSuccessor() == FC1.Header);
1327 
1328     // Remember the phi nodes originally in the header of FC0 in order to rewire
1329     // them later. However, this is only necessary if the new loop carried
1330     // values might not dominate the exiting branch. While we do not generally
1331     // test if this is the case but simply insert intermediate phi nodes, we
1332     // need to make sure these intermediate phi nodes have different
1333     // predecessors. To this end, we filter the special case where the exiting
1334     // block is the latch block of the first loop. Nothing needs to be done
1335     // anyway as all loop carried values dominate the latch and thereby also the
1336     // exiting branch.
1337     SmallVector<PHINode *, 8> OriginalFC0PHIs;
1338     if (FC0.ExitingBlock != FC0.Latch)
1339       for (PHINode &PHI : FC0.Header->phis())
1340         OriginalFC0PHIs.push_back(&PHI);
1341 
1342     // Replace incoming blocks for header PHIs first.
1343     FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1344     FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1345 
1346     // Then modify the control flow and update DT and PDT.
1347     SmallVector<DominatorTree::UpdateType, 16> TreeUpdates;
1348 
1349     // The old exiting block of the first loop (FC0) has to jump to the header
1350     // of the second as we need to execute the code in the second header block
1351     // regardless of the trip count. That is, if the trip count is 0, so the
1352     // back edge is never taken, we still have to execute both loop headers,
1353     // especially (but not only!) if the second is a do-while style loop.
1354     // However, doing so might invalidate the phi nodes of the first loop as
1355     // the new values do only need to dominate their latch and not the exiting
1356     // predicate. To remedy this potential problem we always introduce phi
1357     // nodes in the header of the second loop later that select the loop carried
1358     // value, if the second header was reached through an old latch of the
1359     // first, or undef otherwise. This is sound as exiting the first implies the
1360     // second will exit too, __without__ taking the back-edge. [Their
1361     // trip-counts are equal after all.
1362     // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
1363     // to FC1.Header? I think this is basically what the three sequences are
1364     // trying to accomplish; however, doing this directly in the CFG may mean
1365     // the DT/PDT becomes invalid
1366     if (!FC0.Peeled) {
1367       FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
1368                                                            FC1.Header);
1369       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1370           DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
1371       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1372           DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1373     } else {
1374       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1375           DominatorTree::Delete, FC0.ExitBlock, FC1.Preheader));
1376 
1377       // Remove the ExitBlock of the first Loop (also not needed)
1378       FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
1379                                                            FC1.Header);
1380       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1381           DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
1382       FC0.ExitBlock->getTerminator()->eraseFromParent();
1383       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1384           DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1385       new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
1386     }
1387 
1388     // The pre-header of L1 is not necessary anymore.
1389     assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
1390     FC1.Preheader->getTerminator()->eraseFromParent();
1391     new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1392     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1393         DominatorTree::Delete, FC1.Preheader, FC1.Header));
1394 
1395     // Moves the phi nodes from the second to the first loops header block.
1396     while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1397       if (SE.isSCEVable(PHI->getType()))
1398         SE.forgetValue(PHI);
1399       if (PHI->hasNUsesOrMore(1))
1400         PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1401       else
1402         PHI->eraseFromParent();
1403     }
1404 
1405     // Introduce new phi nodes in the second loop header to ensure
1406     // exiting the first and jumping to the header of the second does not break
1407     // the SSA property of the phis originally in the first loop. See also the
1408     // comment above.
1409     Instruction *L1HeaderIP = &FC1.Header->front();
1410     for (PHINode *LCPHI : OriginalFC0PHIs) {
1411       int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1412       assert(L1LatchBBIdx >= 0 &&
1413              "Expected loop carried value to be rewired at this point!");
1414 
1415       Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1416 
1417       PHINode *L1HeaderPHI = PHINode::Create(
1418           LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1419       L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1420       L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1421                                FC0.ExitingBlock);
1422 
1423       LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1424     }
1425 
1426     // Replace latch terminator destinations.
1427     FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1428     FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1429 
1430     // Modify the latch branch of FC0 to be unconditional as both successors of
1431     // the branch are the same.
1432     simplifyLatchBranch(FC0);
1433 
1434     // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1435     // performed the updates above.
1436     if (FC0.Latch != FC0.ExitingBlock)
1437       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1438           DominatorTree::Insert, FC0.Latch, FC1.Header));
1439 
1440     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1441                                                        FC0.Latch, FC0.Header));
1442     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1443                                                        FC1.Latch, FC0.Header));
1444     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1445                                                        FC1.Latch, FC1.Header));
1446 
1447     // Update DT/PDT
1448     DTU.applyUpdates(TreeUpdates);
1449 
1450     LI.removeBlock(FC1.Preheader);
1451     DTU.deleteBB(FC1.Preheader);
1452     if (FC0.Peeled) {
1453       LI.removeBlock(FC0.ExitBlock);
1454       DTU.deleteBB(FC0.ExitBlock);
1455     }
1456 
1457     DTU.flush();
1458 
1459     // Is there a way to keep SE up-to-date so we don't need to forget the loops
1460     // and rebuild the information in subsequent passes of fusion?
1461     // Note: Need to forget the loops before merging the loop latches, as
1462     // mergeLatch may remove the only block in FC1.
1463     SE.forgetLoop(FC1.L);
1464     SE.forgetLoop(FC0.L);
1465 
1466     // Move instructions from FC0.Latch to FC1.Latch.
1467     // Note: mergeLatch requires an updated DT.
1468     mergeLatch(FC0, FC1);
1469 
1470     // Merge the loops.
1471     SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
1472                                         FC1.L->block_end());
1473     for (BasicBlock *BB : Blocks) {
1474       FC0.L->addBlockEntry(BB);
1475       FC1.L->removeBlockFromLoop(BB);
1476       if (LI.getLoopFor(BB) != FC1.L)
1477         continue;
1478       LI.changeLoopFor(BB, FC0.L);
1479     }
1480     while (!FC1.L->empty()) {
1481       const auto &ChildLoopIt = FC1.L->begin();
1482       Loop *ChildLoop = *ChildLoopIt;
1483       FC1.L->removeChildLoop(ChildLoopIt);
1484       FC0.L->addChildLoop(ChildLoop);
1485     }
1486 
1487     // Delete the now empty loop L1.
1488     LI.erase(FC1.L);
1489 
1490 #ifndef NDEBUG
1491     assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1492     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1493     assert(PDT.verify());
1494     LI.verify(DT);
1495     SE.verify();
1496 #endif
1497 
1498     LLVM_DEBUG(dbgs() << "Fusion done:\n");
1499 
1500     return FC0.L;
1501   }
1502 
1503   /// Report details on loop fusion opportunities.
1504   ///
1505   /// This template function can be used to report both successful and missed
1506   /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
1507   /// be one of:
1508   ///   - OptimizationRemarkMissed to report when loop fusion is unsuccessful
1509   ///     given two valid fusion candidates.
1510   ///   - OptimizationRemark to report successful fusion of two fusion
1511   ///     candidates.
1512   /// The remarks will be printed using the form:
1513   ///    <path/filename>:<line number>:<column number>: [<function name>]:
1514   ///       <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
1515   template <typename RemarkKind>
1516   void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1,
1517                         llvm::Statistic &Stat) {
1518     assert(FC0.Preheader && FC1.Preheader &&
1519            "Expecting valid fusion candidates");
1520     using namespace ore;
1521     ++Stat;
1522     ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(),
1523                         FC0.Preheader)
1524              << "[" << FC0.Preheader->getParent()->getName()
1525              << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName()))
1526              << " and " << NV("Cand2", StringRef(FC1.Preheader->getName()))
1527              << ": " << Stat.getDesc());
1528   }
1529 
1530   /// Fuse two guarded fusion candidates, creating a new fused loop.
1531   ///
1532   /// Fusing guarded loops is handled much the same way as fusing non-guarded
1533   /// loops. The rewiring of the CFG is slightly different though, because of
1534   /// the presence of the guards around the loops and the exit blocks after the
1535   /// loop body. As such, the new loop is rewired as follows:
1536   ///    1. Keep the guard branch from FC0 and use the non-loop block target
1537   /// from the FC1 guard branch.
1538   ///    2. Remove the exit block from FC0 (this exit block should be empty
1539   /// right now).
1540   ///    3. Remove the guard branch for FC1
1541   ///    4. Remove the preheader for FC1.
1542   /// The exit block successor for the latch of FC0 is updated to be the header
1543   /// of FC1 and the non-exit block successor of the latch of FC1 is updated to
1544   /// be the header of FC0, thus creating the fused loop.
1545   Loop *fuseGuardedLoops(const FusionCandidate &FC0,
1546                          const FusionCandidate &FC1) {
1547     assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops");
1548 
1549     BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent();
1550     BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent();
1551     BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock();
1552     BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock();
1553     BasicBlock *FC0ExitBlockSuccessor = FC0.ExitBlock->getUniqueSuccessor();
1554 
1555     // Move instructions from the exit block of FC0 to the beginning of the exit
1556     // block of FC1, in the case that the FC0 loop has not been peeled. In the
1557     // case that FC0 loop is peeled, then move the instructions of the successor
1558     // of the FC0 Exit block to the beginning of the exit block of FC1.
1559     moveInstructionsToTheBeginning(
1560         (FC0.Peeled ? *FC0ExitBlockSuccessor : *FC0.ExitBlock), *FC1.ExitBlock,
1561         DT, PDT, DI);
1562 
1563     // Move instructions from the guard block of FC1 to the end of the guard
1564     // block of FC0.
1565     moveInstructionsToTheEnd(*FC1GuardBlock, *FC0GuardBlock, DT, PDT, DI);
1566 
1567     assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent");
1568 
1569     SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1570 
1571     ////////////////////////////////////////////////////////////////////////////
1572     // Update the Loop Guard
1573     ////////////////////////////////////////////////////////////////////////////
1574     // The guard for FC0 is updated to guard both FC0 and FC1. This is done by
1575     // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1.
1576     // Thus, one path from the guard goes to the preheader for FC0 (and thus
1577     // executes the new fused loop) and the other path goes to the NonLoopBlock
1578     // for FC1 (where FC1 guard would have gone if FC1 was not executed).
1579     FC1NonLoopBlock->replacePhiUsesWith(FC1GuardBlock, FC0GuardBlock);
1580     FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock);
1581 
1582     BasicBlock *BBToUpdate = FC0.Peeled ? FC0ExitBlockSuccessor : FC0.ExitBlock;
1583     BBToUpdate->getTerminator()->replaceUsesOfWith(FC1GuardBlock, FC1.Header);
1584 
1585     // The guard of FC1 is not necessary anymore.
1586     FC1.GuardBranch->eraseFromParent();
1587     new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock);
1588 
1589     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1590         DominatorTree::Delete, FC1GuardBlock, FC1.Preheader));
1591     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1592         DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock));
1593     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1594         DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock));
1595     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1596         DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock));
1597 
1598     if (FC0.Peeled) {
1599       // Remove the Block after the ExitBlock of FC0
1600       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1601           DominatorTree::Delete, FC0ExitBlockSuccessor, FC1GuardBlock));
1602       FC0ExitBlockSuccessor->getTerminator()->eraseFromParent();
1603       new UnreachableInst(FC0ExitBlockSuccessor->getContext(),
1604                           FC0ExitBlockSuccessor);
1605     }
1606 
1607     assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) &&
1608            "Expecting guard block to have no predecessors");
1609     assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) &&
1610            "Expecting guard block to have no successors");
1611 
1612     // Remember the phi nodes originally in the header of FC0 in order to rewire
1613     // them later. However, this is only necessary if the new loop carried
1614     // values might not dominate the exiting branch. While we do not generally
1615     // test if this is the case but simply insert intermediate phi nodes, we
1616     // need to make sure these intermediate phi nodes have different
1617     // predecessors. To this end, we filter the special case where the exiting
1618     // block is the latch block of the first loop. Nothing needs to be done
1619     // anyway as all loop carried values dominate the latch and thereby also the
1620     // exiting branch.
1621     // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch
1622     // (because the loops are rotated. Thus, nothing will ever be added to
1623     // OriginalFC0PHIs.
1624     SmallVector<PHINode *, 8> OriginalFC0PHIs;
1625     if (FC0.ExitingBlock != FC0.Latch)
1626       for (PHINode &PHI : FC0.Header->phis())
1627         OriginalFC0PHIs.push_back(&PHI);
1628 
1629     assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!");
1630 
1631     // Replace incoming blocks for header PHIs first.
1632     FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1633     FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1634 
1635     // The old exiting block of the first loop (FC0) has to jump to the header
1636     // of the second as we need to execute the code in the second header block
1637     // regardless of the trip count. That is, if the trip count is 0, so the
1638     // back edge is never taken, we still have to execute both loop headers,
1639     // especially (but not only!) if the second is a do-while style loop.
1640     // However, doing so might invalidate the phi nodes of the first loop as
1641     // the new values do only need to dominate their latch and not the exiting
1642     // predicate. To remedy this potential problem we always introduce phi
1643     // nodes in the header of the second loop later that select the loop carried
1644     // value, if the second header was reached through an old latch of the
1645     // first, or undef otherwise. This is sound as exiting the first implies the
1646     // second will exit too, __without__ taking the back-edge (their
1647     // trip-counts are equal after all).
1648     FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
1649                                                          FC1.Header);
1650 
1651     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1652         DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
1653     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1654         DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1655 
1656     // Remove FC0 Exit Block
1657     // The exit block for FC0 is no longer needed since control will flow
1658     // directly to the header of FC1. Since it is an empty block, it can be
1659     // removed at this point.
1660     // TODO: In the future, we can handle non-empty exit blocks my merging any
1661     // instructions from FC0 exit block into FC1 exit block prior to removing
1662     // the block.
1663     assert(pred_begin(FC0.ExitBlock) == pred_end(FC0.ExitBlock) &&
1664            "Expecting exit block to be empty");
1665     FC0.ExitBlock->getTerminator()->eraseFromParent();
1666     new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
1667 
1668     // Remove FC1 Preheader
1669     // The pre-header of L1 is not necessary anymore.
1670     assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
1671     FC1.Preheader->getTerminator()->eraseFromParent();
1672     new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1673     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1674         DominatorTree::Delete, FC1.Preheader, FC1.Header));
1675 
1676     // Moves the phi nodes from the second to the first loops header block.
1677     while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1678       if (SE.isSCEVable(PHI->getType()))
1679         SE.forgetValue(PHI);
1680       if (PHI->hasNUsesOrMore(1))
1681         PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1682       else
1683         PHI->eraseFromParent();
1684     }
1685 
1686     // Introduce new phi nodes in the second loop header to ensure
1687     // exiting the first and jumping to the header of the second does not break
1688     // the SSA property of the phis originally in the first loop. See also the
1689     // comment above.
1690     Instruction *L1HeaderIP = &FC1.Header->front();
1691     for (PHINode *LCPHI : OriginalFC0PHIs) {
1692       int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1693       assert(L1LatchBBIdx >= 0 &&
1694              "Expected loop carried value to be rewired at this point!");
1695 
1696       Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1697 
1698       PHINode *L1HeaderPHI = PHINode::Create(
1699           LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1700       L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1701       L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1702                                FC0.ExitingBlock);
1703 
1704       LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1705     }
1706 
1707     // Update the latches
1708 
1709     // Replace latch terminator destinations.
1710     FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1711     FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1712 
1713     // Modify the latch branch of FC0 to be unconditional as both successors of
1714     // the branch are the same.
1715     simplifyLatchBranch(FC0);
1716 
1717     // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1718     // performed the updates above.
1719     if (FC0.Latch != FC0.ExitingBlock)
1720       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1721           DominatorTree::Insert, FC0.Latch, FC1.Header));
1722 
1723     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1724                                                        FC0.Latch, FC0.Header));
1725     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1726                                                        FC1.Latch, FC0.Header));
1727     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1728                                                        FC1.Latch, FC1.Header));
1729 
1730     // All done
1731     // Apply the updates to the Dominator Tree and cleanup.
1732 
1733     assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) &&
1734            "FC1GuardBlock has successors!!");
1735     assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) &&
1736            "FC1GuardBlock has predecessors!!");
1737 
1738     // Update DT/PDT
1739     DTU.applyUpdates(TreeUpdates);
1740 
1741     LI.removeBlock(FC1GuardBlock);
1742     LI.removeBlock(FC1.Preheader);
1743     LI.removeBlock(FC0.ExitBlock);
1744     if (FC0.Peeled) {
1745       LI.removeBlock(FC0ExitBlockSuccessor);
1746       DTU.deleteBB(FC0ExitBlockSuccessor);
1747     }
1748     DTU.deleteBB(FC1GuardBlock);
1749     DTU.deleteBB(FC1.Preheader);
1750     DTU.deleteBB(FC0.ExitBlock);
1751     DTU.flush();
1752 
1753     // Is there a way to keep SE up-to-date so we don't need to forget the loops
1754     // and rebuild the information in subsequent passes of fusion?
1755     // Note: Need to forget the loops before merging the loop latches, as
1756     // mergeLatch may remove the only block in FC1.
1757     SE.forgetLoop(FC1.L);
1758     SE.forgetLoop(FC0.L);
1759 
1760     // Move instructions from FC0.Latch to FC1.Latch.
1761     // Note: mergeLatch requires an updated DT.
1762     mergeLatch(FC0, FC1);
1763 
1764     // Merge the loops.
1765     SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
1766                                         FC1.L->block_end());
1767     for (BasicBlock *BB : Blocks) {
1768       FC0.L->addBlockEntry(BB);
1769       FC1.L->removeBlockFromLoop(BB);
1770       if (LI.getLoopFor(BB) != FC1.L)
1771         continue;
1772       LI.changeLoopFor(BB, FC0.L);
1773     }
1774     while (!FC1.L->empty()) {
1775       const auto &ChildLoopIt = FC1.L->begin();
1776       Loop *ChildLoop = *ChildLoopIt;
1777       FC1.L->removeChildLoop(ChildLoopIt);
1778       FC0.L->addChildLoop(ChildLoop);
1779     }
1780 
1781     // Delete the now empty loop L1.
1782     LI.erase(FC1.L);
1783 
1784 #ifndef NDEBUG
1785     assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1786     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1787     assert(PDT.verify());
1788     LI.verify(DT);
1789     SE.verify();
1790 #endif
1791 
1792     LLVM_DEBUG(dbgs() << "Fusion done:\n");
1793 
1794     return FC0.L;
1795   }
1796 };
1797 
1798 struct LoopFuseLegacy : public FunctionPass {
1799 
1800   static char ID;
1801 
1802   LoopFuseLegacy() : FunctionPass(ID) {
1803     initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
1804   }
1805 
1806   void getAnalysisUsage(AnalysisUsage &AU) const override {
1807     AU.addRequiredID(LoopSimplifyID);
1808     AU.addRequired<ScalarEvolutionWrapperPass>();
1809     AU.addRequired<LoopInfoWrapperPass>();
1810     AU.addRequired<DominatorTreeWrapperPass>();
1811     AU.addRequired<PostDominatorTreeWrapperPass>();
1812     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1813     AU.addRequired<DependenceAnalysisWrapperPass>();
1814     AU.addRequired<AssumptionCacheTracker>();
1815     AU.addRequired<TargetTransformInfoWrapperPass>();
1816 
1817     AU.addPreserved<ScalarEvolutionWrapperPass>();
1818     AU.addPreserved<LoopInfoWrapperPass>();
1819     AU.addPreserved<DominatorTreeWrapperPass>();
1820     AU.addPreserved<PostDominatorTreeWrapperPass>();
1821   }
1822 
1823   bool runOnFunction(Function &F) override {
1824     if (skipFunction(F))
1825       return false;
1826     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1827     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1828     auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1829     auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1830     auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1831     auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1832     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1833     const TargetTransformInfo &TTI =
1834         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1835     const DataLayout &DL = F.getParent()->getDataLayout();
1836 
1837     LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL, AC, TTI);
1838     return LF.fuseLoops(F);
1839   }
1840 };
1841 } // namespace
1842 
1843 PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) {
1844   auto &LI = AM.getResult<LoopAnalysis>(F);
1845   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1846   auto &DI = AM.getResult<DependenceAnalysis>(F);
1847   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1848   auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
1849   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1850   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1851   const TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
1852   const DataLayout &DL = F.getParent()->getDataLayout();
1853 
1854   LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL, AC, TTI);
1855   bool Changed = LF.fuseLoops(F);
1856   if (!Changed)
1857     return PreservedAnalyses::all();
1858 
1859   PreservedAnalyses PA;
1860   PA.preserve<DominatorTreeAnalysis>();
1861   PA.preserve<PostDominatorTreeAnalysis>();
1862   PA.preserve<ScalarEvolutionAnalysis>();
1863   PA.preserve<LoopAnalysis>();
1864   return PA;
1865 }
1866 
1867 char LoopFuseLegacy::ID = 0;
1868 
1869 INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false,
1870                       false)
1871 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
1872 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1873 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1874 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1875 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1876 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1877 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1878 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1879 INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false)
1880 
1881 FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); }
1882