1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the loop fusion pass.
11 /// The implementation is largely based on the following document:
12 ///
13 ///       Code Transformations to Augment the Scope of Loop Fusion in a
14 ///         Production Compiler
15 ///       Christopher Mark Barton
16 ///       MSc Thesis
17 ///       https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
18 ///
19 /// The general approach taken is to collect sets of control flow equivalent
20 /// loops and test whether they can be fused. The necessary conditions for
21 /// fusion are:
22 ///    1. The loops must be adjacent (there cannot be any statements between
23 ///       the two loops).
24 ///    2. The loops must be conforming (they must execute the same number of
25 ///       iterations).
26 ///    3. The loops must be control flow equivalent (if one loop executes, the
27 ///       other is guaranteed to execute).
28 ///    4. There cannot be any negative distance dependencies between the loops.
29 /// If all of these conditions are satisfied, it is safe to fuse the loops.
30 ///
31 /// This implementation creates FusionCandidates that represent the loop and the
32 /// necessary information needed by fusion. It then operates on the fusion
33 /// candidates, first confirming that the candidate is eligible for fusion. The
34 /// candidates are then collected into control flow equivalent sets, sorted in
35 /// dominance order. Each set of control flow equivalent candidates is then
36 /// traversed, attempting to fuse pairs of candidates in the set. If all
37 /// requirements for fusion are met, the two candidates are fused, creating a
38 /// new (fused) candidate which is then added back into the set to consider for
39 /// additional fusion.
40 ///
41 /// This implementation currently does not make any modifications to remove
42 /// conditions for fusion. Code transformations to make loops conform to each of
43 /// the conditions for fusion are discussed in more detail in the document
44 /// above. These can be added to the current implementation in the future.
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/Transforms/Scalar/LoopFuse.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/Analysis/DependenceAnalysis.h"
50 #include "llvm/Analysis/DomTreeUpdater.h"
51 #include "llvm/Analysis/LoopInfo.h"
52 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
53 #include "llvm/Analysis/PostDominators.h"
54 #include "llvm/Analysis/ScalarEvolution.h"
55 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/Verifier.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Scalar.h"
62 #include "llvm/Transforms/Utils.h"
63 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "loop-fusion"
68 
69 STATISTIC(FuseCounter, "Loops fused");
70 STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
71 STATISTIC(InvalidPreheader, "Loop has invalid preheader");
72 STATISTIC(InvalidHeader, "Loop has invalid header");
73 STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
74 STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
75 STATISTIC(InvalidLatch, "Loop has invalid latch");
76 STATISTIC(InvalidLoop, "Loop is invalid");
77 STATISTIC(AddressTakenBB, "Basic block has address taken");
78 STATISTIC(MayThrowException, "Loop may throw an exception");
79 STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
80 STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
81 STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
82 STATISTIC(UnknownTripCount, "Loop has unknown trip count");
83 STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
84 STATISTIC(NonEqualTripCount, "Loop trip counts are not the same");
85 STATISTIC(NonAdjacent, "Loops are not adjacent");
86 STATISTIC(NonEmptyPreheader, "Loop has a non-empty preheader");
87 STATISTIC(FusionNotBeneficial, "Fusion is not beneficial");
88 
89 enum FusionDependenceAnalysisChoice {
90   FUSION_DEPENDENCE_ANALYSIS_SCEV,
91   FUSION_DEPENDENCE_ANALYSIS_DA,
92   FUSION_DEPENDENCE_ANALYSIS_ALL,
93 };
94 
95 static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis(
96     "loop-fusion-dependence-analysis",
97     cl::desc("Which dependence analysis should loop fusion use?"),
98     cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev",
99                           "Use the scalar evolution interface"),
100                clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da",
101                           "Use the dependence analysis interface"),
102                clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all",
103                           "Use all available analyses")),
104     cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore);
105 
106 #ifndef NDEBUG
107 static cl::opt<bool>
108     VerboseFusionDebugging("loop-fusion-verbose-debug",
109                            cl::desc("Enable verbose debugging for Loop Fusion"),
110                            cl::Hidden, cl::init(false), cl::ZeroOrMore);
111 #endif
112 
113 namespace {
114 /// This class is used to represent a candidate for loop fusion. When it is
115 /// constructed, it checks the conditions for loop fusion to ensure that it
116 /// represents a valid candidate. It caches several parts of a loop that are
117 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
118 /// of continually querying the underlying Loop to retrieve these values. It is
119 /// assumed these will not change throughout loop fusion.
120 ///
121 /// The invalidate method should be used to indicate that the FusionCandidate is
122 /// no longer a valid candidate for fusion. Similarly, the isValid() method can
123 /// be used to ensure that the FusionCandidate is still valid for fusion.
124 struct FusionCandidate {
125   /// Cache of parts of the loop used throughout loop fusion. These should not
126   /// need to change throughout the analysis and transformation.
127   /// These parts are cached to avoid repeatedly looking up in the Loop class.
128 
129   /// Preheader of the loop this candidate represents
130   BasicBlock *Preheader;
131   /// Header of the loop this candidate represents
132   BasicBlock *Header;
133   /// Blocks in the loop that exit the loop
134   BasicBlock *ExitingBlock;
135   /// The successor block of this loop (where the exiting blocks go to)
136   BasicBlock *ExitBlock;
137   /// Latch of the loop
138   BasicBlock *Latch;
139   /// The loop that this fusion candidate represents
140   Loop *L;
141   /// Vector of instructions in this loop that read from memory
142   SmallVector<Instruction *, 16> MemReads;
143   /// Vector of instructions in this loop that write to memory
144   SmallVector<Instruction *, 16> MemWrites;
145   /// Are all of the members of this fusion candidate still valid
146   bool Valid;
147 
148   /// Dominator and PostDominator trees are needed for the
149   /// FusionCandidateCompare function, required by FusionCandidateSet to
150   /// determine where the FusionCandidate should be inserted into the set. These
151   /// are used to establish ordering of the FusionCandidates based on dominance.
152   const DominatorTree *DT;
153   const PostDominatorTree *PDT;
154 
155   OptimizationRemarkEmitter &ORE;
156 
157   FusionCandidate(Loop *L, const DominatorTree *DT,
158                   const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE)
159       : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
160         ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
161         Latch(L->getLoopLatch()), L(L), Valid(true), DT(DT), PDT(PDT),
162         ORE(ORE) {
163 
164     // Walk over all blocks in the loop and check for conditions that may
165     // prevent fusion. For each block, walk over all instructions and collect
166     // the memory reads and writes If any instructions that prevent fusion are
167     // found, invalidate this object and return.
168     for (BasicBlock *BB : L->blocks()) {
169       if (BB->hasAddressTaken()) {
170         invalidate();
171         reportInvalidCandidate(AddressTakenBB);
172         return;
173       }
174 
175       for (Instruction &I : *BB) {
176         if (I.mayThrow()) {
177           invalidate();
178           reportInvalidCandidate(MayThrowException);
179           return;
180         }
181         if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
182           if (SI->isVolatile()) {
183             invalidate();
184             reportInvalidCandidate(ContainsVolatileAccess);
185             return;
186           }
187         }
188         if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
189           if (LI->isVolatile()) {
190             invalidate();
191             reportInvalidCandidate(ContainsVolatileAccess);
192             return;
193           }
194         }
195         if (I.mayWriteToMemory())
196           MemWrites.push_back(&I);
197         if (I.mayReadFromMemory())
198           MemReads.push_back(&I);
199       }
200     }
201   }
202 
203   /// Check if all members of the class are valid.
204   bool isValid() const {
205     return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
206            !L->isInvalid() && Valid;
207   }
208 
209   /// Verify that all members are in sync with the Loop object.
210   void verify() const {
211     assert(isValid() && "Candidate is not valid!!");
212     assert(!L->isInvalid() && "Loop is invalid!");
213     assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
214     assert(Header == L->getHeader() && "Header is out of sync");
215     assert(ExitingBlock == L->getExitingBlock() &&
216            "Exiting Blocks is out of sync");
217     assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
218     assert(Latch == L->getLoopLatch() && "Latch is out of sync");
219   }
220 
221 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
222   LLVM_DUMP_METHOD void dump() const {
223     dbgs() << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
224            << "\n"
225            << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
226            << "\tExitingBB: "
227            << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
228            << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
229            << "\n"
230            << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n";
231   }
232 #endif
233 
234   /// Determine if a fusion candidate (representing a loop) is eligible for
235   /// fusion. Note that this only checks whether a single loop can be fused - it
236   /// does not check whether it is *legal* to fuse two loops together.
237   bool isEligibleForFusion(ScalarEvolution &SE) const {
238     if (!isValid()) {
239       LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
240       if (!Preheader)
241         ++InvalidPreheader;
242       if (!Header)
243         ++InvalidHeader;
244       if (!ExitingBlock)
245         ++InvalidExitingBlock;
246       if (!ExitBlock)
247         ++InvalidExitBlock;
248       if (!Latch)
249         ++InvalidLatch;
250       if (L->isInvalid())
251         ++InvalidLoop;
252 
253       return false;
254     }
255 
256     // Require ScalarEvolution to be able to determine a trip count.
257     if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
258       LLVM_DEBUG(dbgs() << "Loop " << L->getName()
259                         << " trip count not computable!\n");
260       return reportInvalidCandidate(UnknownTripCount);
261     }
262 
263     if (!L->isLoopSimplifyForm()) {
264       LLVM_DEBUG(dbgs() << "Loop " << L->getName()
265                         << " is not in simplified form!\n");
266       return reportInvalidCandidate(NotSimplifiedForm);
267     }
268 
269     return true;
270   }
271 
272 private:
273   // This is only used internally for now, to clear the MemWrites and MemReads
274   // list and setting Valid to false. I can't envision other uses of this right
275   // now, since once FusionCandidates are put into the FusionCandidateSet they
276   // are immutable. Thus, any time we need to change/update a FusionCandidate,
277   // we must create a new one and insert it into the FusionCandidateSet to
278   // ensure the FusionCandidateSet remains ordered correctly.
279   void invalidate() {
280     MemWrites.clear();
281     MemReads.clear();
282     Valid = false;
283   }
284 
285   bool reportInvalidCandidate(llvm::Statistic &Stat) const {
286     using namespace ore;
287     assert(L && Preheader && "Fusion candidate not initialized properly!");
288     ++Stat;
289     ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(),
290                                         L->getStartLoc(), Preheader)
291              << "[" << Preheader->getParent()->getName() << "]: "
292              << "Loop is not a candidate for fusion: " << Stat.getDesc());
293     return false;
294   }
295 };
296 
297 struct FusionCandidateCompare {
298   /// Comparison functor to sort two Control Flow Equivalent fusion candidates
299   /// into dominance order.
300   /// If LHS dominates RHS and RHS post-dominates LHS, return true;
301   /// IF RHS dominates LHS and LHS post-dominates RHS, return false;
302   bool operator()(const FusionCandidate &LHS,
303                   const FusionCandidate &RHS) const {
304     const DominatorTree *DT = LHS.DT;
305 
306     // Do not save PDT to local variable as it is only used in asserts and thus
307     // will trigger an unused variable warning if building without asserts.
308     assert(DT && LHS.PDT && "Expecting valid dominator tree");
309 
310     // Do this compare first so if LHS == RHS, function returns false.
311     if (DT->dominates(RHS.Preheader, LHS.Preheader)) {
312       // RHS dominates LHS
313       // Verify LHS post-dominates RHS
314       assert(LHS.PDT->dominates(LHS.Preheader, RHS.Preheader));
315       return false;
316     }
317 
318     if (DT->dominates(LHS.Preheader, RHS.Preheader)) {
319       // Verify RHS Postdominates LHS
320       assert(LHS.PDT->dominates(RHS.Preheader, LHS.Preheader));
321       return true;
322     }
323 
324     // If LHS does not dominate RHS and RHS does not dominate LHS then there is
325     // no dominance relationship between the two FusionCandidates. Thus, they
326     // should not be in the same set together.
327     llvm_unreachable(
328         "No dominance relationship between these fusion candidates!");
329   }
330 };
331 
332 using LoopVector = SmallVector<Loop *, 4>;
333 
334 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
335 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
336 // dominates FC1 and FC1 post-dominates FC0.
337 // std::set was chosen because we want a sorted data structure with stable
338 // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent
339 // loops by moving intervening code around. When this intervening code contains
340 // loops, those loops will be moved also. The corresponding FusionCandidates
341 // will also need to be moved accordingly. As this is done, having stable
342 // iterators will simplify the logic. Similarly, having an efficient insert that
343 // keeps the FusionCandidateSet sorted will also simplify the implementation.
344 using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
345 using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;
346 
347 #if !defined(NDEBUG)
348 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
349                                      const FusionCandidate &FC) {
350   if (FC.isValid())
351     OS << FC.Preheader->getName();
352   else
353     OS << "<Invalid>";
354 
355   return OS;
356 }
357 
358 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
359                                      const FusionCandidateSet &CandSet) {
360   for (const FusionCandidate &FC : CandSet)
361     OS << FC << '\n';
362 
363   return OS;
364 }
365 
366 static void
367 printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
368   dbgs() << "Fusion Candidates: \n";
369   for (const auto &CandidateSet : FusionCandidates) {
370     dbgs() << "*** Fusion Candidate Set ***\n";
371     dbgs() << CandidateSet;
372     dbgs() << "****************************\n";
373   }
374 }
375 #endif
376 
377 /// Collect all loops in function at the same nest level, starting at the
378 /// outermost level.
379 ///
380 /// This data structure collects all loops at the same nest level for a
381 /// given function (specified by the LoopInfo object). It starts at the
382 /// outermost level.
383 struct LoopDepthTree {
384   using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
385   using iterator = LoopsOnLevelTy::iterator;
386   using const_iterator = LoopsOnLevelTy::const_iterator;
387 
388   LoopDepthTree(LoopInfo &LI) : Depth(1) {
389     if (!LI.empty())
390       LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
391   }
392 
393   /// Test whether a given loop has been removed from the function, and thus is
394   /// no longer valid.
395   bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }
396 
397   /// Record that a given loop has been removed from the function and is no
398   /// longer valid.
399   void removeLoop(const Loop *L) { RemovedLoops.insert(L); }
400 
401   /// Descend the tree to the next (inner) nesting level
402   void descend() {
403     LoopsOnLevelTy LoopsOnNextLevel;
404 
405     for (const LoopVector &LV : *this)
406       for (Loop *L : LV)
407         if (!isRemovedLoop(L) && L->begin() != L->end())
408           LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));
409 
410     LoopsOnLevel = LoopsOnNextLevel;
411     RemovedLoops.clear();
412     Depth++;
413   }
414 
415   bool empty() const { return size() == 0; }
416   size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
417   unsigned getDepth() const { return Depth; }
418 
419   iterator begin() { return LoopsOnLevel.begin(); }
420   iterator end() { return LoopsOnLevel.end(); }
421   const_iterator begin() const { return LoopsOnLevel.begin(); }
422   const_iterator end() const { return LoopsOnLevel.end(); }
423 
424 private:
425   /// Set of loops that have been removed from the function and are no longer
426   /// valid.
427   SmallPtrSet<const Loop *, 8> RemovedLoops;
428 
429   /// Depth of the current level, starting at 1 (outermost loops).
430   unsigned Depth;
431 
432   /// Vector of loops at the current depth level that have the same parent loop
433   LoopsOnLevelTy LoopsOnLevel;
434 };
435 
436 #ifndef NDEBUG
437 static void printLoopVector(const LoopVector &LV) {
438   dbgs() << "****************************\n";
439   for (auto L : LV)
440     printLoop(*L, dbgs());
441   dbgs() << "****************************\n";
442 }
443 #endif
444 
445 struct LoopFuser {
446 private:
447   // Sets of control flow equivalent fusion candidates for a given nest level.
448   FusionCandidateCollection FusionCandidates;
449 
450   LoopDepthTree LDT;
451   DomTreeUpdater DTU;
452 
453   LoopInfo &LI;
454   DominatorTree &DT;
455   DependenceInfo &DI;
456   ScalarEvolution &SE;
457   PostDominatorTree &PDT;
458   OptimizationRemarkEmitter &ORE;
459 
460 public:
461   LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
462             ScalarEvolution &SE, PostDominatorTree &PDT,
463             OptimizationRemarkEmitter &ORE, const DataLayout &DL)
464       : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
465         DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE) {}
466 
467   /// This is the main entry point for loop fusion. It will traverse the
468   /// specified function and collect candidate loops to fuse, starting at the
469   /// outermost nesting level and working inwards.
470   bool fuseLoops(Function &F) {
471 #ifndef NDEBUG
472     if (VerboseFusionDebugging) {
473       LI.print(dbgs());
474     }
475 #endif
476 
477     LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
478                       << "\n");
479     bool Changed = false;
480 
481     while (!LDT.empty()) {
482       LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
483                         << LDT.getDepth() << "\n";);
484 
485       for (const LoopVector &LV : LDT) {
486         assert(LV.size() > 0 && "Empty loop set was build!");
487 
488         // Skip singleton loop sets as they do not offer fusion opportunities on
489         // this level.
490         if (LV.size() == 1)
491           continue;
492 #ifndef NDEBUG
493         if (VerboseFusionDebugging) {
494           LLVM_DEBUG({
495             dbgs() << "  Visit loop set (#" << LV.size() << "):\n";
496             printLoopVector(LV);
497           });
498         }
499 #endif
500 
501         collectFusionCandidates(LV);
502         Changed |= fuseCandidates();
503       }
504 
505       // Finished analyzing candidates at this level.
506       // Descend to the next level and clear all of the candidates currently
507       // collected. Note that it will not be possible to fuse any of the
508       // existing candidates with new candidates because the new candidates will
509       // be at a different nest level and thus not be control flow equivalent
510       // with all of the candidates collected so far.
511       LLVM_DEBUG(dbgs() << "Descend one level!\n");
512       LDT.descend();
513       FusionCandidates.clear();
514     }
515 
516     if (Changed)
517       LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););
518 
519 #ifndef NDEBUG
520     assert(DT.verify());
521     assert(PDT.verify());
522     LI.verify(DT);
523     SE.verify();
524 #endif
525 
526     LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
527     return Changed;
528   }
529 
530 private:
531   /// Determine if two fusion candidates are control flow equivalent.
532   ///
533   /// Two fusion candidates are control flow equivalent if when one executes,
534   /// the other is guaranteed to execute. This is determined using dominators
535   /// and post-dominators: if A dominates B and B post-dominates A then A and B
536   /// are control-flow equivalent.
537   bool isControlFlowEquivalent(const FusionCandidate &FC0,
538                                const FusionCandidate &FC1) const {
539     assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");
540 
541     if (DT.dominates(FC0.Preheader, FC1.Preheader))
542       return PDT.dominates(FC1.Preheader, FC0.Preheader);
543 
544     if (DT.dominates(FC1.Preheader, FC0.Preheader))
545       return PDT.dominates(FC0.Preheader, FC1.Preheader);
546 
547     return false;
548   }
549 
550   /// Iterate over all loops in the given loop set and identify the loops that
551   /// are eligible for fusion. Place all eligible fusion candidates into Control
552   /// Flow Equivalent sets, sorted by dominance.
553   void collectFusionCandidates(const LoopVector &LV) {
554     for (Loop *L : LV) {
555       FusionCandidate CurrCand(L, &DT, &PDT, ORE);
556       if (!CurrCand.isEligibleForFusion(SE))
557         continue;
558 
559       // Go through each list in FusionCandidates and determine if L is control
560       // flow equivalent with the first loop in that list. If it is, append LV.
561       // If not, go to the next list.
562       // If no suitable list is found, start another list and add it to
563       // FusionCandidates.
564       bool FoundSet = false;
565 
566       for (auto &CurrCandSet : FusionCandidates) {
567         if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
568           CurrCandSet.insert(CurrCand);
569           FoundSet = true;
570 #ifndef NDEBUG
571           if (VerboseFusionDebugging)
572             LLVM_DEBUG(dbgs() << "Adding " << CurrCand
573                               << " to existing candidate set\n");
574 #endif
575           break;
576         }
577       }
578       if (!FoundSet) {
579         // No set was found. Create a new set and add to FusionCandidates
580 #ifndef NDEBUG
581         if (VerboseFusionDebugging)
582           LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
583 #endif
584         FusionCandidateSet NewCandSet;
585         NewCandSet.insert(CurrCand);
586         FusionCandidates.push_back(NewCandSet);
587       }
588       NumFusionCandidates++;
589     }
590   }
591 
592   /// Determine if it is beneficial to fuse two loops.
593   ///
594   /// For now, this method simply returns true because we want to fuse as much
595   /// as possible (primarily to test the pass). This method will evolve, over
596   /// time, to add heuristics for profitability of fusion.
597   bool isBeneficialFusion(const FusionCandidate &FC0,
598                           const FusionCandidate &FC1) {
599     return true;
600   }
601 
602   /// Determine if two fusion candidates have the same trip count (i.e., they
603   /// execute the same number of iterations).
604   ///
605   /// Note that for now this method simply returns a boolean value because there
606   /// are no mechanisms in loop fusion to handle different trip counts. In the
607   /// future, this behaviour can be extended to adjust one of the loops to make
608   /// the trip counts equal (e.g., loop peeling). When this is added, this
609   /// interface may need to change to return more information than just a
610   /// boolean value.
611   bool identicalTripCounts(const FusionCandidate &FC0,
612                            const FusionCandidate &FC1) const {
613     const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
614     if (isa<SCEVCouldNotCompute>(TripCount0)) {
615       UncomputableTripCount++;
616       LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
617       return false;
618     }
619 
620     const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
621     if (isa<SCEVCouldNotCompute>(TripCount1)) {
622       UncomputableTripCount++;
623       LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
624       return false;
625     }
626     LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
627                       << *TripCount1 << " are "
628                       << (TripCount0 == TripCount1 ? "identical" : "different")
629                       << "\n");
630 
631     return (TripCount0 == TripCount1);
632   }
633 
634   /// Walk each set of control flow equivalent fusion candidates and attempt to
635   /// fuse them. This does a single linear traversal of all candidates in the
636   /// set. The conditions for legal fusion are checked at this point. If a pair
637   /// of fusion candidates passes all legality checks, they are fused together
638   /// and a new fusion candidate is created and added to the FusionCandidateSet.
639   /// The original fusion candidates are then removed, as they are no longer
640   /// valid.
641   bool fuseCandidates() {
642     bool Fused = false;
643     LLVM_DEBUG(printFusionCandidates(FusionCandidates));
644     for (auto &CandidateSet : FusionCandidates) {
645       if (CandidateSet.size() < 2)
646         continue;
647 
648       LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
649                         << CandidateSet << "\n");
650 
651       for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
652         assert(!LDT.isRemovedLoop(FC0->L) &&
653                "Should not have removed loops in CandidateSet!");
654         auto FC1 = FC0;
655         for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
656           assert(!LDT.isRemovedLoop(FC1->L) &&
657                  "Should not have removed loops in CandidateSet!");
658 
659           LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
660                      dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");
661 
662           FC0->verify();
663           FC1->verify();
664 
665           if (!identicalTripCounts(*FC0, *FC1)) {
666             LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
667                                  "counts. Not fusing.\n");
668             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
669                                                        NonEqualTripCount);
670             continue;
671           }
672 
673           if (!isAdjacent(*FC0, *FC1)) {
674             LLVM_DEBUG(dbgs()
675                        << "Fusion candidates are not adjacent. Not fusing.\n");
676             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent);
677             continue;
678           }
679 
680           // For now we skip fusing if the second candidate has any instructions
681           // in the preheader. This is done because we currently do not have the
682           // safety checks to determine if it is save to move the preheader of
683           // the second candidate past the body of the first candidate. Once
684           // these checks are added, this condition can be removed.
685           if (!isEmptyPreheader(*FC1)) {
686             LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty "
687                                  "preheader. Not fusing.\n");
688             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
689                                                        NonEmptyPreheader);
690             continue;
691           }
692 
693           if (!dependencesAllowFusion(*FC0, *FC1)) {
694             LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
695             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
696                                                        InvalidDependencies);
697             continue;
698           }
699 
700           bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
701           LLVM_DEBUG(dbgs()
702                      << "\tFusion appears to be "
703                      << (BeneficialToFuse ? "" : "un") << "profitable!\n");
704           if (!BeneficialToFuse) {
705             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
706                                                        FusionNotBeneficial);
707             continue;
708           }
709           // All analysis has completed and has determined that fusion is legal
710           // and profitable. At this point, start transforming the code and
711           // perform fusion.
712 
713           LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
714                             << *FC1 << "\n");
715 
716           // Report fusion to the Optimization Remarks.
717           // Note this needs to be done *before* performFusion because
718           // performFusion will change the original loops, making it not
719           // possible to identify them after fusion is complete.
720           reportLoopFusion<OptimizationRemark>(*FC0, *FC1, FuseCounter);
721 
722           FusionCandidate FusedCand(performFusion(*FC0, *FC1), &DT, &PDT, ORE);
723           FusedCand.verify();
724           assert(FusedCand.isEligibleForFusion(SE) &&
725                  "Fused candidate should be eligible for fusion!");
726 
727           // Notify the loop-depth-tree that these loops are not valid objects
728           LDT.removeLoop(FC1->L);
729 
730           CandidateSet.erase(FC0);
731           CandidateSet.erase(FC1);
732 
733           auto InsertPos = CandidateSet.insert(FusedCand);
734 
735           assert(InsertPos.second &&
736                  "Unable to insert TargetCandidate in CandidateSet!");
737 
738           // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
739           // of the FC1 loop will attempt to fuse the new (fused) loop with the
740           // remaining candidates in the current candidate set.
741           FC0 = FC1 = InsertPos.first;
742 
743           LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
744                             << "\n");
745 
746           Fused = true;
747         }
748       }
749     }
750     return Fused;
751   }
752 
753   /// Rewrite all additive recurrences in a SCEV to use a new loop.
754   class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
755   public:
756     AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
757                        bool UseMax = true)
758         : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
759           NewL(NewL) {}
760 
761     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
762       const Loop *ExprL = Expr->getLoop();
763       SmallVector<const SCEV *, 2> Operands;
764       if (ExprL == &OldL) {
765         Operands.append(Expr->op_begin(), Expr->op_end());
766         return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
767       }
768 
769       if (OldL.contains(ExprL)) {
770         bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
771         if (!UseMax || !Pos || !Expr->isAffine()) {
772           Valid = false;
773           return Expr;
774         }
775         return visit(Expr->getStart());
776       }
777 
778       for (const SCEV *Op : Expr->operands())
779         Operands.push_back(visit(Op));
780       return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
781     }
782 
783     bool wasValidSCEV() const { return Valid; }
784 
785   private:
786     bool Valid, UseMax;
787     const Loop &OldL, &NewL;
788   };
789 
790   /// Return false if the access functions of \p I0 and \p I1 could cause
791   /// a negative dependence.
792   bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
793                             Instruction &I1, bool EqualIsInvalid) {
794     Value *Ptr0 = getLoadStorePointerOperand(&I0);
795     Value *Ptr1 = getLoadStorePointerOperand(&I1);
796     if (!Ptr0 || !Ptr1)
797       return false;
798 
799     const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
800     const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
801 #ifndef NDEBUG
802     if (VerboseFusionDebugging)
803       LLVM_DEBUG(dbgs() << "    Access function check: " << *SCEVPtr0 << " vs "
804                         << *SCEVPtr1 << "\n");
805 #endif
806     AddRecLoopReplacer Rewriter(SE, L0, L1);
807     SCEVPtr0 = Rewriter.visit(SCEVPtr0);
808 #ifndef NDEBUG
809     if (VerboseFusionDebugging)
810       LLVM_DEBUG(dbgs() << "    Access function after rewrite: " << *SCEVPtr0
811                         << " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
812 #endif
813     if (!Rewriter.wasValidSCEV())
814       return false;
815 
816     // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
817     //       L0) and the other is not. We could check if it is monotone and test
818     //       the beginning and end value instead.
819 
820     BasicBlock *L0Header = L0.getHeader();
821     auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
822       const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
823       if (!AddRec)
824         return false;
825       return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
826              !DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
827     };
828     if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
829       return false;
830 
831     ICmpInst::Predicate Pred =
832         EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
833     bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
834 #ifndef NDEBUG
835     if (VerboseFusionDebugging)
836       LLVM_DEBUG(dbgs() << "    Relation: " << *SCEVPtr0
837                         << (IsAlwaysGE ? "  >=  " : "  may <  ") << *SCEVPtr1
838                         << "\n");
839 #endif
840     return IsAlwaysGE;
841   }
842 
843   /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
844   /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
845   /// specified by @p DepChoice are used to determine this.
846   bool dependencesAllowFusion(const FusionCandidate &FC0,
847                               const FusionCandidate &FC1, Instruction &I0,
848                               Instruction &I1, bool AnyDep,
849                               FusionDependenceAnalysisChoice DepChoice) {
850 #ifndef NDEBUG
851     if (VerboseFusionDebugging) {
852       LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
853                         << DepChoice << "\n");
854     }
855 #endif
856     switch (DepChoice) {
857     case FUSION_DEPENDENCE_ANALYSIS_SCEV:
858       return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
859     case FUSION_DEPENDENCE_ANALYSIS_DA: {
860       auto DepResult = DI.depends(&I0, &I1, true);
861       if (!DepResult)
862         return true;
863 #ifndef NDEBUG
864       if (VerboseFusionDebugging) {
865         LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
866                    dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
867                           << (DepResult->isOrdered() ? "true" : "false")
868                           << "]\n");
869         LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
870                           << "\n");
871       }
872 #endif
873 
874       if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
875         LLVM_DEBUG(
876             dbgs() << "TODO: Implement pred/succ dependence handling!\n");
877 
878       // TODO: Can we actually use the dependence info analysis here?
879       return false;
880     }
881 
882     case FUSION_DEPENDENCE_ANALYSIS_ALL:
883       return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
884                                     FUSION_DEPENDENCE_ANALYSIS_SCEV) ||
885              dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
886                                     FUSION_DEPENDENCE_ANALYSIS_DA);
887     }
888 
889     llvm_unreachable("Unknown fusion dependence analysis choice!");
890   }
891 
892   /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
893   bool dependencesAllowFusion(const FusionCandidate &FC0,
894                               const FusionCandidate &FC1) {
895     LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
896                       << "\n");
897     assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
898     assert(DT.dominates(FC0.Preheader, FC1.Preheader));
899 
900     for (Instruction *WriteL0 : FC0.MemWrites) {
901       for (Instruction *WriteL1 : FC1.MemWrites)
902         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
903                                     /* AnyDep */ false,
904                                     FusionDependenceAnalysis)) {
905           InvalidDependencies++;
906           return false;
907         }
908       for (Instruction *ReadL1 : FC1.MemReads)
909         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
910                                     /* AnyDep */ false,
911                                     FusionDependenceAnalysis)) {
912           InvalidDependencies++;
913           return false;
914         }
915     }
916 
917     for (Instruction *WriteL1 : FC1.MemWrites) {
918       for (Instruction *WriteL0 : FC0.MemWrites)
919         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
920                                     /* AnyDep */ false,
921                                     FusionDependenceAnalysis)) {
922           InvalidDependencies++;
923           return false;
924         }
925       for (Instruction *ReadL0 : FC0.MemReads)
926         if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
927                                     /* AnyDep */ false,
928                                     FusionDependenceAnalysis)) {
929           InvalidDependencies++;
930           return false;
931         }
932     }
933 
934     // Walk through all uses in FC1. For each use, find the reaching def. If the
935     // def is located in FC0 then it is is not safe to fuse.
936     for (BasicBlock *BB : FC1.L->blocks())
937       for (Instruction &I : *BB)
938         for (auto &Op : I.operands())
939           if (Instruction *Def = dyn_cast<Instruction>(Op))
940             if (FC0.L->contains(Def->getParent())) {
941               InvalidDependencies++;
942               return false;
943             }
944 
945     return true;
946   }
947 
948   /// Determine if the exit block of \p FC0 is the preheader of \p FC1. In this
949   /// case, there is no code in between the two fusion candidates, thus making
950   /// them adjacent.
951   bool isAdjacent(const FusionCandidate &FC0,
952                   const FusionCandidate &FC1) const {
953     return FC0.ExitBlock == FC1.Preheader;
954   }
955 
956   bool isEmptyPreheader(const FusionCandidate &FC) const {
957     return FC.Preheader->size() == 1;
958   }
959 
960   /// Fuse two fusion candidates, creating a new fused loop.
961   ///
962   /// This method contains the mechanics of fusing two loops, represented by \p
963   /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
964   /// postdominates \p FC0 (making them control flow equivalent). It also
965   /// assumes that the other conditions for fusion have been met: adjacent,
966   /// identical trip counts, and no negative distance dependencies exist that
967   /// would prevent fusion. Thus, there is no checking for these conditions in
968   /// this method.
969   ///
970   /// Fusion is performed by rewiring the CFG to update successor blocks of the
971   /// components of tho loop. Specifically, the following changes are done:
972   ///
973   ///   1. The preheader of \p FC1 is removed as it is no longer necessary
974   ///   (because it is currently only a single statement block).
975   ///   2. The latch of \p FC0 is modified to jump to the header of \p FC1.
976   ///   3. The latch of \p FC1 i modified to jump to the header of \p FC0.
977   ///   4. All blocks from \p FC1 are removed from FC1 and added to FC0.
978   ///
979   /// All of these modifications are done with dominator tree updates, thus
980   /// keeping the dominator (and post dominator) information up-to-date.
981   ///
982   /// This can be improved in the future by actually merging blocks during
983   /// fusion. For example, the preheader of \p FC1 can be merged with the
984   /// preheader of \p FC0. This would allow loops with more than a single
985   /// statement in the preheader to be fused. Similarly, the latch blocks of the
986   /// two loops could also be fused into a single block. This will require
987   /// analysis to prove it is safe to move the contents of the block past
988   /// existing code, which currently has not been implemented.
989   Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
990     assert(FC0.isValid() && FC1.isValid() &&
991            "Expecting valid fusion candidates");
992 
993     LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
994                dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););
995 
996     assert(FC1.Preheader == FC0.ExitBlock);
997     assert(FC1.Preheader->size() == 1 &&
998            FC1.Preheader->getSingleSuccessor() == FC1.Header);
999 
1000     // Remember the phi nodes originally in the header of FC0 in order to rewire
1001     // them later. However, this is only necessary if the new loop carried
1002     // values might not dominate the exiting branch. While we do not generally
1003     // test if this is the case but simply insert intermediate phi nodes, we
1004     // need to make sure these intermediate phi nodes have different
1005     // predecessors. To this end, we filter the special case where the exiting
1006     // block is the latch block of the first loop. Nothing needs to be done
1007     // anyway as all loop carried values dominate the latch and thereby also the
1008     // exiting branch.
1009     SmallVector<PHINode *, 8> OriginalFC0PHIs;
1010     if (FC0.ExitingBlock != FC0.Latch)
1011       for (PHINode &PHI : FC0.Header->phis())
1012         OriginalFC0PHIs.push_back(&PHI);
1013 
1014     // Replace incoming blocks for header PHIs first.
1015     FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1016     FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1017 
1018     // Then modify the control flow and update DT and PDT.
1019     SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1020 
1021     // The old exiting block of the first loop (FC0) has to jump to the header
1022     // of the second as we need to execute the code in the second header block
1023     // regardless of the trip count. That is, if the trip count is 0, so the
1024     // back edge is never taken, we still have to execute both loop headers,
1025     // especially (but not only!) if the second is a do-while style loop.
1026     // However, doing so might invalidate the phi nodes of the first loop as
1027     // the new values do only need to dominate their latch and not the exiting
1028     // predicate. To remedy this potential problem we always introduce phi
1029     // nodes in the header of the second loop later that select the loop carried
1030     // value, if the second header was reached through an old latch of the
1031     // first, or undef otherwise. This is sound as exiting the first implies the
1032     // second will exit too, __without__ taking the back-edge. [Their
1033     // trip-counts are equal after all.
1034     // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
1035     // to FC1.Header? I think this is basically what the three sequences are
1036     // trying to accomplish; however, doing this directly in the CFG may mean
1037     // the DT/PDT becomes invalid
1038     FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
1039                                                          FC1.Header);
1040     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1041         DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
1042     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1043         DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1044 
1045     // The pre-header of L1 is not necessary anymore.
1046     assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
1047     FC1.Preheader->getTerminator()->eraseFromParent();
1048     new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1049     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1050         DominatorTree::Delete, FC1.Preheader, FC1.Header));
1051 
1052     // Moves the phi nodes from the second to the first loops header block.
1053     while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1054       if (SE.isSCEVable(PHI->getType()))
1055         SE.forgetValue(PHI);
1056       if (PHI->hasNUsesOrMore(1))
1057         PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1058       else
1059         PHI->eraseFromParent();
1060     }
1061 
1062     // Introduce new phi nodes in the second loop header to ensure
1063     // exiting the first and jumping to the header of the second does not break
1064     // the SSA property of the phis originally in the first loop. See also the
1065     // comment above.
1066     Instruction *L1HeaderIP = &FC1.Header->front();
1067     for (PHINode *LCPHI : OriginalFC0PHIs) {
1068       int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1069       assert(L1LatchBBIdx >= 0 &&
1070              "Expected loop carried value to be rewired at this point!");
1071 
1072       Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1073 
1074       PHINode *L1HeaderPHI = PHINode::Create(
1075           LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1076       L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1077       L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1078                                FC0.ExitingBlock);
1079 
1080       LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1081     }
1082 
1083     // Replace latch terminator destinations.
1084     FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1085     FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1086 
1087     // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1088     // performed the updates above.
1089     if (FC0.Latch != FC0.ExitingBlock)
1090       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1091           DominatorTree::Insert, FC0.Latch, FC1.Header));
1092 
1093     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1094                                                        FC0.Latch, FC0.Header));
1095     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1096                                                        FC1.Latch, FC0.Header));
1097     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1098                                                        FC1.Latch, FC1.Header));
1099 
1100     // Update DT/PDT
1101     DTU.applyUpdates(TreeUpdates);
1102 
1103     LI.removeBlock(FC1.Preheader);
1104     DTU.deleteBB(FC1.Preheader);
1105     DTU.flush();
1106 
1107     // Is there a way to keep SE up-to-date so we don't need to forget the loops
1108     // and rebuild the information in subsequent passes of fusion?
1109     SE.forgetLoop(FC1.L);
1110     SE.forgetLoop(FC0.L);
1111 
1112     // Merge the loops.
1113     SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
1114                                         FC1.L->block_end());
1115     for (BasicBlock *BB : Blocks) {
1116       FC0.L->addBlockEntry(BB);
1117       FC1.L->removeBlockFromLoop(BB);
1118       if (LI.getLoopFor(BB) != FC1.L)
1119         continue;
1120       LI.changeLoopFor(BB, FC0.L);
1121     }
1122     while (!FC1.L->empty()) {
1123       const auto &ChildLoopIt = FC1.L->begin();
1124       Loop *ChildLoop = *ChildLoopIt;
1125       FC1.L->removeChildLoop(ChildLoopIt);
1126       FC0.L->addChildLoop(ChildLoop);
1127     }
1128 
1129     // Delete the now empty loop L1.
1130     LI.erase(FC1.L);
1131 
1132 #ifndef NDEBUG
1133     assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1134     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1135     assert(PDT.verify());
1136     LI.verify(DT);
1137     SE.verify();
1138 #endif
1139 
1140     FuseCounter++;
1141 
1142     LLVM_DEBUG(dbgs() << "Fusion done:\n");
1143 
1144     return FC0.L;
1145   }
1146 
1147   /// Report details on loop fusion opportunities.
1148   ///
1149   /// This template function can be used to report both successful and missed
1150   /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
1151   /// be one of:
1152   ///   - OptimizationRemarkMissed to report when loop fusion is unsuccessful
1153   ///     given two valid fusion candidates.
1154   ///   - OptimizationRemark to report successful fusion of two fusion
1155   ///     candidates.
1156   /// The remarks will be printed using the form:
1157   ///    <path/filename>:<line number>:<column number>: [<function name>]:
1158   ///       <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
1159   template <typename RemarkKind>
1160   void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1,
1161                         llvm::Statistic &Stat) {
1162     assert(FC0.Preheader && FC1.Preheader &&
1163            "Expecting valid fusion candidates");
1164     using namespace ore;
1165     ++Stat;
1166     ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(),
1167                         FC0.Preheader)
1168              << "[" << FC0.Preheader->getParent()->getName()
1169              << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName()))
1170              << " and " << NV("Cand2", StringRef(FC1.Preheader->getName()))
1171              << ": " << Stat.getDesc());
1172   }
1173 };
1174 
1175 struct LoopFuseLegacy : public FunctionPass {
1176 
1177   static char ID;
1178 
1179   LoopFuseLegacy() : FunctionPass(ID) {
1180     initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
1181   }
1182 
1183   void getAnalysisUsage(AnalysisUsage &AU) const override {
1184     AU.addRequiredID(LoopSimplifyID);
1185     AU.addRequired<ScalarEvolutionWrapperPass>();
1186     AU.addRequired<LoopInfoWrapperPass>();
1187     AU.addRequired<DominatorTreeWrapperPass>();
1188     AU.addRequired<PostDominatorTreeWrapperPass>();
1189     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1190     AU.addRequired<DependenceAnalysisWrapperPass>();
1191 
1192     AU.addPreserved<ScalarEvolutionWrapperPass>();
1193     AU.addPreserved<LoopInfoWrapperPass>();
1194     AU.addPreserved<DominatorTreeWrapperPass>();
1195     AU.addPreserved<PostDominatorTreeWrapperPass>();
1196   }
1197 
1198   bool runOnFunction(Function &F) override {
1199     if (skipFunction(F))
1200       return false;
1201     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1202     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1203     auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1204     auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1205     auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1206     auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1207 
1208     const DataLayout &DL = F.getParent()->getDataLayout();
1209     LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
1210     return LF.fuseLoops(F);
1211   }
1212 };
1213 } // namespace
1214 
1215 PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) {
1216   auto &LI = AM.getResult<LoopAnalysis>(F);
1217   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1218   auto &DI = AM.getResult<DependenceAnalysis>(F);
1219   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1220   auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
1221   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1222 
1223   const DataLayout &DL = F.getParent()->getDataLayout();
1224   LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
1225   bool Changed = LF.fuseLoops(F);
1226   if (!Changed)
1227     return PreservedAnalyses::all();
1228 
1229   PreservedAnalyses PA;
1230   PA.preserve<DominatorTreeAnalysis>();
1231   PA.preserve<PostDominatorTreeAnalysis>();
1232   PA.preserve<ScalarEvolutionAnalysis>();
1233   PA.preserve<LoopAnalysis>();
1234   return PA;
1235 }
1236 
1237 char LoopFuseLegacy::ID = 0;
1238 
1239 INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false,
1240                       false)
1241 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
1242 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1243 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1244 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1245 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1246 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1247 INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false)
1248 
1249 FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); }
1250