1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the loop fusion pass. 11 /// The implementation is largely based on the following document: 12 /// 13 /// Code Transformations to Augment the Scope of Loop Fusion in a 14 /// Production Compiler 15 /// Christopher Mark Barton 16 /// MSc Thesis 17 /// https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf 18 /// 19 /// The general approach taken is to collect sets of control flow equivalent 20 /// loops and test whether they can be fused. The necessary conditions for 21 /// fusion are: 22 /// 1. The loops must be adjacent (there cannot be any statements between 23 /// the two loops). 24 /// 2. The loops must be conforming (they must execute the same number of 25 /// iterations). 26 /// 3. The loops must be control flow equivalent (if one loop executes, the 27 /// other is guaranteed to execute). 28 /// 4. There cannot be any negative distance dependencies between the loops. 29 /// If all of these conditions are satisfied, it is safe to fuse the loops. 30 /// 31 /// This implementation creates FusionCandidates that represent the loop and the 32 /// necessary information needed by fusion. It then operates on the fusion 33 /// candidates, first confirming that the candidate is eligible for fusion. The 34 /// candidates are then collected into control flow equivalent sets, sorted in 35 /// dominance order. Each set of control flow equivalent candidates is then 36 /// traversed, attempting to fuse pairs of candidates in the set. If all 37 /// requirements for fusion are met, the two candidates are fused, creating a 38 /// new (fused) candidate which is then added back into the set to consider for 39 /// additional fusion. 40 /// 41 /// This implementation currently does not make any modifications to remove 42 /// conditions for fusion. Code transformations to make loops conform to each of 43 /// the conditions for fusion are discussed in more detail in the document 44 /// above. These can be added to the current implementation in the future. 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/Transforms/Scalar/LoopFuse.h" 48 #include "llvm/ADT/Statistic.h" 49 #include "llvm/Analysis/DependenceAnalysis.h" 50 #include "llvm/Analysis/DomTreeUpdater.h" 51 #include "llvm/Analysis/LoopInfo.h" 52 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 53 #include "llvm/Analysis/PostDominators.h" 54 #include "llvm/Analysis/ScalarEvolution.h" 55 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/Verifier.h" 58 #include "llvm/InitializePasses.h" 59 #include "llvm/Pass.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Scalar.h" 64 #include "llvm/Transforms/Utils.h" 65 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 66 #include "llvm/Transforms/Utils/CodeMoverUtils.h" 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "loop-fusion" 71 72 STATISTIC(FuseCounter, "Loops fused"); 73 STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion"); 74 STATISTIC(InvalidPreheader, "Loop has invalid preheader"); 75 STATISTIC(InvalidHeader, "Loop has invalid header"); 76 STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks"); 77 STATISTIC(InvalidExitBlock, "Loop has invalid exit block"); 78 STATISTIC(InvalidLatch, "Loop has invalid latch"); 79 STATISTIC(InvalidLoop, "Loop is invalid"); 80 STATISTIC(AddressTakenBB, "Basic block has address taken"); 81 STATISTIC(MayThrowException, "Loop may throw an exception"); 82 STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access"); 83 STATISTIC(NotSimplifiedForm, "Loop is not in simplified form"); 84 STATISTIC(InvalidDependencies, "Dependencies prevent fusion"); 85 STATISTIC(UnknownTripCount, "Loop has unknown trip count"); 86 STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop"); 87 STATISTIC(NonEqualTripCount, "Loop trip counts are not the same"); 88 STATISTIC(NonAdjacent, "Loops are not adjacent"); 89 STATISTIC(NonEmptyPreheader, "Loop has a non-empty preheader"); 90 STATISTIC(FusionNotBeneficial, "Fusion is not beneficial"); 91 STATISTIC(NonIdenticalGuards, "Candidates have different guards"); 92 STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block"); 93 STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block"); 94 STATISTIC(NotRotated, "Candidate is not rotated"); 95 96 enum FusionDependenceAnalysisChoice { 97 FUSION_DEPENDENCE_ANALYSIS_SCEV, 98 FUSION_DEPENDENCE_ANALYSIS_DA, 99 FUSION_DEPENDENCE_ANALYSIS_ALL, 100 }; 101 102 static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis( 103 "loop-fusion-dependence-analysis", 104 cl::desc("Which dependence analysis should loop fusion use?"), 105 cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev", 106 "Use the scalar evolution interface"), 107 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da", 108 "Use the dependence analysis interface"), 109 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all", 110 "Use all available analyses")), 111 cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore); 112 113 #ifndef NDEBUG 114 static cl::opt<bool> 115 VerboseFusionDebugging("loop-fusion-verbose-debug", 116 cl::desc("Enable verbose debugging for Loop Fusion"), 117 cl::Hidden, cl::init(false), cl::ZeroOrMore); 118 #endif 119 120 namespace { 121 /// This class is used to represent a candidate for loop fusion. When it is 122 /// constructed, it checks the conditions for loop fusion to ensure that it 123 /// represents a valid candidate. It caches several parts of a loop that are 124 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead 125 /// of continually querying the underlying Loop to retrieve these values. It is 126 /// assumed these will not change throughout loop fusion. 127 /// 128 /// The invalidate method should be used to indicate that the FusionCandidate is 129 /// no longer a valid candidate for fusion. Similarly, the isValid() method can 130 /// be used to ensure that the FusionCandidate is still valid for fusion. 131 struct FusionCandidate { 132 /// Cache of parts of the loop used throughout loop fusion. These should not 133 /// need to change throughout the analysis and transformation. 134 /// These parts are cached to avoid repeatedly looking up in the Loop class. 135 136 /// Preheader of the loop this candidate represents 137 BasicBlock *Preheader; 138 /// Header of the loop this candidate represents 139 BasicBlock *Header; 140 /// Blocks in the loop that exit the loop 141 BasicBlock *ExitingBlock; 142 /// The successor block of this loop (where the exiting blocks go to) 143 BasicBlock *ExitBlock; 144 /// Latch of the loop 145 BasicBlock *Latch; 146 /// The loop that this fusion candidate represents 147 Loop *L; 148 /// Vector of instructions in this loop that read from memory 149 SmallVector<Instruction *, 16> MemReads; 150 /// Vector of instructions in this loop that write to memory 151 SmallVector<Instruction *, 16> MemWrites; 152 /// Are all of the members of this fusion candidate still valid 153 bool Valid; 154 /// Guard branch of the loop, if it exists 155 BranchInst *GuardBranch; 156 157 /// Dominator and PostDominator trees are needed for the 158 /// FusionCandidateCompare function, required by FusionCandidateSet to 159 /// determine where the FusionCandidate should be inserted into the set. These 160 /// are used to establish ordering of the FusionCandidates based on dominance. 161 const DominatorTree *DT; 162 const PostDominatorTree *PDT; 163 164 OptimizationRemarkEmitter &ORE; 165 166 FusionCandidate(Loop *L, const DominatorTree *DT, 167 const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE) 168 : Preheader(L->getLoopPreheader()), Header(L->getHeader()), 169 ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()), 170 Latch(L->getLoopLatch()), L(L), Valid(true), 171 GuardBranch(L->getLoopGuardBranch()), DT(DT), PDT(PDT), ORE(ORE) { 172 173 // Walk over all blocks in the loop and check for conditions that may 174 // prevent fusion. For each block, walk over all instructions and collect 175 // the memory reads and writes If any instructions that prevent fusion are 176 // found, invalidate this object and return. 177 for (BasicBlock *BB : L->blocks()) { 178 if (BB->hasAddressTaken()) { 179 invalidate(); 180 reportInvalidCandidate(AddressTakenBB); 181 return; 182 } 183 184 for (Instruction &I : *BB) { 185 if (I.mayThrow()) { 186 invalidate(); 187 reportInvalidCandidate(MayThrowException); 188 return; 189 } 190 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 191 if (SI->isVolatile()) { 192 invalidate(); 193 reportInvalidCandidate(ContainsVolatileAccess); 194 return; 195 } 196 } 197 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 198 if (LI->isVolatile()) { 199 invalidate(); 200 reportInvalidCandidate(ContainsVolatileAccess); 201 return; 202 } 203 } 204 if (I.mayWriteToMemory()) 205 MemWrites.push_back(&I); 206 if (I.mayReadFromMemory()) 207 MemReads.push_back(&I); 208 } 209 } 210 } 211 212 /// Check if all members of the class are valid. 213 bool isValid() const { 214 return Preheader && Header && ExitingBlock && ExitBlock && Latch && L && 215 !L->isInvalid() && Valid; 216 } 217 218 /// Verify that all members are in sync with the Loop object. 219 void verify() const { 220 assert(isValid() && "Candidate is not valid!!"); 221 assert(!L->isInvalid() && "Loop is invalid!"); 222 assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync"); 223 assert(Header == L->getHeader() && "Header is out of sync"); 224 assert(ExitingBlock == L->getExitingBlock() && 225 "Exiting Blocks is out of sync"); 226 assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync"); 227 assert(Latch == L->getLoopLatch() && "Latch is out of sync"); 228 } 229 230 /// Get the entry block for this fusion candidate. 231 /// 232 /// If this fusion candidate represents a guarded loop, the entry block is the 233 /// loop guard block. If it represents an unguarded loop, the entry block is 234 /// the preheader of the loop. 235 BasicBlock *getEntryBlock() const { 236 if (GuardBranch) 237 return GuardBranch->getParent(); 238 else 239 return Preheader; 240 } 241 242 /// Given a guarded loop, get the successor of the guard that is not in the 243 /// loop. 244 /// 245 /// This method returns the successor of the loop guard that is not located 246 /// within the loop (i.e., the successor of the guard that is not the 247 /// preheader). 248 /// This method is only valid for guarded loops. 249 BasicBlock *getNonLoopBlock() const { 250 assert(GuardBranch && "Only valid on guarded loops."); 251 assert(GuardBranch->isConditional() && 252 "Expecting guard to be a conditional branch."); 253 return (GuardBranch->getSuccessor(0) == Preheader) 254 ? GuardBranch->getSuccessor(1) 255 : GuardBranch->getSuccessor(0); 256 } 257 258 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 259 LLVM_DUMP_METHOD void dump() const { 260 dbgs() << "\tGuardBranch: " 261 << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n" 262 << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr") 263 << "\n" 264 << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n" 265 << "\tExitingBB: " 266 << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n" 267 << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr") 268 << "\n" 269 << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n" 270 << "\tEntryBlock: " 271 << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr") 272 << "\n"; 273 } 274 #endif 275 276 /// Determine if a fusion candidate (representing a loop) is eligible for 277 /// fusion. Note that this only checks whether a single loop can be fused - it 278 /// does not check whether it is *legal* to fuse two loops together. 279 bool isEligibleForFusion(ScalarEvolution &SE) const { 280 if (!isValid()) { 281 LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n"); 282 if (!Preheader) 283 ++InvalidPreheader; 284 if (!Header) 285 ++InvalidHeader; 286 if (!ExitingBlock) 287 ++InvalidExitingBlock; 288 if (!ExitBlock) 289 ++InvalidExitBlock; 290 if (!Latch) 291 ++InvalidLatch; 292 if (L->isInvalid()) 293 ++InvalidLoop; 294 295 return false; 296 } 297 298 // Require ScalarEvolution to be able to determine a trip count. 299 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { 300 LLVM_DEBUG(dbgs() << "Loop " << L->getName() 301 << " trip count not computable!\n"); 302 return reportInvalidCandidate(UnknownTripCount); 303 } 304 305 if (!L->isLoopSimplifyForm()) { 306 LLVM_DEBUG(dbgs() << "Loop " << L->getName() 307 << " is not in simplified form!\n"); 308 return reportInvalidCandidate(NotSimplifiedForm); 309 } 310 311 if (!L->isRotatedForm()) { 312 LLVM_DEBUG(dbgs() << "Loop " << L->getName() << " is not rotated!\n"); 313 return reportInvalidCandidate(NotRotated); 314 } 315 316 return true; 317 } 318 319 private: 320 // This is only used internally for now, to clear the MemWrites and MemReads 321 // list and setting Valid to false. I can't envision other uses of this right 322 // now, since once FusionCandidates are put into the FusionCandidateSet they 323 // are immutable. Thus, any time we need to change/update a FusionCandidate, 324 // we must create a new one and insert it into the FusionCandidateSet to 325 // ensure the FusionCandidateSet remains ordered correctly. 326 void invalidate() { 327 MemWrites.clear(); 328 MemReads.clear(); 329 Valid = false; 330 } 331 332 bool reportInvalidCandidate(llvm::Statistic &Stat) const { 333 using namespace ore; 334 assert(L && Preheader && "Fusion candidate not initialized properly!"); 335 ++Stat; 336 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(), 337 L->getStartLoc(), Preheader) 338 << "[" << Preheader->getParent()->getName() << "]: " 339 << "Loop is not a candidate for fusion: " << Stat.getDesc()); 340 return false; 341 } 342 }; 343 344 struct FusionCandidateCompare { 345 /// Comparison functor to sort two Control Flow Equivalent fusion candidates 346 /// into dominance order. 347 /// If LHS dominates RHS and RHS post-dominates LHS, return true; 348 /// IF RHS dominates LHS and LHS post-dominates RHS, return false; 349 bool operator()(const FusionCandidate &LHS, 350 const FusionCandidate &RHS) const { 351 const DominatorTree *DT = LHS.DT; 352 353 BasicBlock *LHSEntryBlock = LHS.getEntryBlock(); 354 BasicBlock *RHSEntryBlock = RHS.getEntryBlock(); 355 356 // Do not save PDT to local variable as it is only used in asserts and thus 357 // will trigger an unused variable warning if building without asserts. 358 assert(DT && LHS.PDT && "Expecting valid dominator tree"); 359 360 // Do this compare first so if LHS == RHS, function returns false. 361 if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) { 362 // RHS dominates LHS 363 // Verify LHS post-dominates RHS 364 assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock)); 365 return false; 366 } 367 368 if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) { 369 // Verify RHS Postdominates LHS 370 assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock)); 371 return true; 372 } 373 374 // If LHS does not dominate RHS and RHS does not dominate LHS then there is 375 // no dominance relationship between the two FusionCandidates. Thus, they 376 // should not be in the same set together. 377 llvm_unreachable( 378 "No dominance relationship between these fusion candidates!"); 379 } 380 }; 381 382 using LoopVector = SmallVector<Loop *, 4>; 383 384 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance 385 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0 386 // dominates FC1 and FC1 post-dominates FC0. 387 // std::set was chosen because we want a sorted data structure with stable 388 // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent 389 // loops by moving intervening code around. When this intervening code contains 390 // loops, those loops will be moved also. The corresponding FusionCandidates 391 // will also need to be moved accordingly. As this is done, having stable 392 // iterators will simplify the logic. Similarly, having an efficient insert that 393 // keeps the FusionCandidateSet sorted will also simplify the implementation. 394 using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>; 395 using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>; 396 397 #if !defined(NDEBUG) 398 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, 399 const FusionCandidate &FC) { 400 if (FC.isValid()) 401 OS << FC.Preheader->getName(); 402 else 403 OS << "<Invalid>"; 404 405 return OS; 406 } 407 408 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, 409 const FusionCandidateSet &CandSet) { 410 for (const FusionCandidate &FC : CandSet) 411 OS << FC << '\n'; 412 413 return OS; 414 } 415 416 static void 417 printFusionCandidates(const FusionCandidateCollection &FusionCandidates) { 418 dbgs() << "Fusion Candidates: \n"; 419 for (const auto &CandidateSet : FusionCandidates) { 420 dbgs() << "*** Fusion Candidate Set ***\n"; 421 dbgs() << CandidateSet; 422 dbgs() << "****************************\n"; 423 } 424 } 425 #endif 426 427 /// Collect all loops in function at the same nest level, starting at the 428 /// outermost level. 429 /// 430 /// This data structure collects all loops at the same nest level for a 431 /// given function (specified by the LoopInfo object). It starts at the 432 /// outermost level. 433 struct LoopDepthTree { 434 using LoopsOnLevelTy = SmallVector<LoopVector, 4>; 435 using iterator = LoopsOnLevelTy::iterator; 436 using const_iterator = LoopsOnLevelTy::const_iterator; 437 438 LoopDepthTree(LoopInfo &LI) : Depth(1) { 439 if (!LI.empty()) 440 LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend())); 441 } 442 443 /// Test whether a given loop has been removed from the function, and thus is 444 /// no longer valid. 445 bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); } 446 447 /// Record that a given loop has been removed from the function and is no 448 /// longer valid. 449 void removeLoop(const Loop *L) { RemovedLoops.insert(L); } 450 451 /// Descend the tree to the next (inner) nesting level 452 void descend() { 453 LoopsOnLevelTy LoopsOnNextLevel; 454 455 for (const LoopVector &LV : *this) 456 for (Loop *L : LV) 457 if (!isRemovedLoop(L) && L->begin() != L->end()) 458 LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end())); 459 460 LoopsOnLevel = LoopsOnNextLevel; 461 RemovedLoops.clear(); 462 Depth++; 463 } 464 465 bool empty() const { return size() == 0; } 466 size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); } 467 unsigned getDepth() const { return Depth; } 468 469 iterator begin() { return LoopsOnLevel.begin(); } 470 iterator end() { return LoopsOnLevel.end(); } 471 const_iterator begin() const { return LoopsOnLevel.begin(); } 472 const_iterator end() const { return LoopsOnLevel.end(); } 473 474 private: 475 /// Set of loops that have been removed from the function and are no longer 476 /// valid. 477 SmallPtrSet<const Loop *, 8> RemovedLoops; 478 479 /// Depth of the current level, starting at 1 (outermost loops). 480 unsigned Depth; 481 482 /// Vector of loops at the current depth level that have the same parent loop 483 LoopsOnLevelTy LoopsOnLevel; 484 }; 485 486 #ifndef NDEBUG 487 static void printLoopVector(const LoopVector &LV) { 488 dbgs() << "****************************\n"; 489 for (auto L : LV) 490 printLoop(*L, dbgs()); 491 dbgs() << "****************************\n"; 492 } 493 #endif 494 495 struct LoopFuser { 496 private: 497 // Sets of control flow equivalent fusion candidates for a given nest level. 498 FusionCandidateCollection FusionCandidates; 499 500 LoopDepthTree LDT; 501 DomTreeUpdater DTU; 502 503 LoopInfo &LI; 504 DominatorTree &DT; 505 DependenceInfo &DI; 506 ScalarEvolution &SE; 507 PostDominatorTree &PDT; 508 OptimizationRemarkEmitter &ORE; 509 510 public: 511 LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI, 512 ScalarEvolution &SE, PostDominatorTree &PDT, 513 OptimizationRemarkEmitter &ORE, const DataLayout &DL) 514 : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI), 515 DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE) {} 516 517 /// This is the main entry point for loop fusion. It will traverse the 518 /// specified function and collect candidate loops to fuse, starting at the 519 /// outermost nesting level and working inwards. 520 bool fuseLoops(Function &F) { 521 #ifndef NDEBUG 522 if (VerboseFusionDebugging) { 523 LI.print(dbgs()); 524 } 525 #endif 526 527 LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName() 528 << "\n"); 529 bool Changed = false; 530 531 while (!LDT.empty()) { 532 LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth " 533 << LDT.getDepth() << "\n";); 534 535 for (const LoopVector &LV : LDT) { 536 assert(LV.size() > 0 && "Empty loop set was build!"); 537 538 // Skip singleton loop sets as they do not offer fusion opportunities on 539 // this level. 540 if (LV.size() == 1) 541 continue; 542 #ifndef NDEBUG 543 if (VerboseFusionDebugging) { 544 LLVM_DEBUG({ 545 dbgs() << " Visit loop set (#" << LV.size() << "):\n"; 546 printLoopVector(LV); 547 }); 548 } 549 #endif 550 551 collectFusionCandidates(LV); 552 Changed |= fuseCandidates(); 553 } 554 555 // Finished analyzing candidates at this level. 556 // Descend to the next level and clear all of the candidates currently 557 // collected. Note that it will not be possible to fuse any of the 558 // existing candidates with new candidates because the new candidates will 559 // be at a different nest level and thus not be control flow equivalent 560 // with all of the candidates collected so far. 561 LLVM_DEBUG(dbgs() << "Descend one level!\n"); 562 LDT.descend(); 563 FusionCandidates.clear(); 564 } 565 566 if (Changed) 567 LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump();); 568 569 #ifndef NDEBUG 570 assert(DT.verify()); 571 assert(PDT.verify()); 572 LI.verify(DT); 573 SE.verify(); 574 #endif 575 576 LLVM_DEBUG(dbgs() << "Loop Fusion complete\n"); 577 return Changed; 578 } 579 580 private: 581 /// Determine if two fusion candidates are control flow equivalent. 582 /// 583 /// Two fusion candidates are control flow equivalent if when one executes, 584 /// the other is guaranteed to execute. This is determined using dominators 585 /// and post-dominators: if A dominates B and B post-dominates A then A and B 586 /// are control-flow equivalent. 587 bool isControlFlowEquivalent(const FusionCandidate &FC0, 588 const FusionCandidate &FC1) const { 589 assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders"); 590 591 return ::isControlFlowEquivalent(*FC0.getEntryBlock(), *FC1.getEntryBlock(), 592 DT, PDT); 593 } 594 595 /// Iterate over all loops in the given loop set and identify the loops that 596 /// are eligible for fusion. Place all eligible fusion candidates into Control 597 /// Flow Equivalent sets, sorted by dominance. 598 void collectFusionCandidates(const LoopVector &LV) { 599 for (Loop *L : LV) { 600 FusionCandidate CurrCand(L, &DT, &PDT, ORE); 601 if (!CurrCand.isEligibleForFusion(SE)) 602 continue; 603 604 // Go through each list in FusionCandidates and determine if L is control 605 // flow equivalent with the first loop in that list. If it is, append LV. 606 // If not, go to the next list. 607 // If no suitable list is found, start another list and add it to 608 // FusionCandidates. 609 bool FoundSet = false; 610 611 for (auto &CurrCandSet : FusionCandidates) { 612 if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) { 613 CurrCandSet.insert(CurrCand); 614 FoundSet = true; 615 #ifndef NDEBUG 616 if (VerboseFusionDebugging) 617 LLVM_DEBUG(dbgs() << "Adding " << CurrCand 618 << " to existing candidate set\n"); 619 #endif 620 break; 621 } 622 } 623 if (!FoundSet) { 624 // No set was found. Create a new set and add to FusionCandidates 625 #ifndef NDEBUG 626 if (VerboseFusionDebugging) 627 LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n"); 628 #endif 629 FusionCandidateSet NewCandSet; 630 NewCandSet.insert(CurrCand); 631 FusionCandidates.push_back(NewCandSet); 632 } 633 NumFusionCandidates++; 634 } 635 } 636 637 /// Determine if it is beneficial to fuse two loops. 638 /// 639 /// For now, this method simply returns true because we want to fuse as much 640 /// as possible (primarily to test the pass). This method will evolve, over 641 /// time, to add heuristics for profitability of fusion. 642 bool isBeneficialFusion(const FusionCandidate &FC0, 643 const FusionCandidate &FC1) { 644 return true; 645 } 646 647 /// Determine if two fusion candidates have the same trip count (i.e., they 648 /// execute the same number of iterations). 649 /// 650 /// Note that for now this method simply returns a boolean value because there 651 /// are no mechanisms in loop fusion to handle different trip counts. In the 652 /// future, this behaviour can be extended to adjust one of the loops to make 653 /// the trip counts equal (e.g., loop peeling). When this is added, this 654 /// interface may need to change to return more information than just a 655 /// boolean value. 656 bool identicalTripCounts(const FusionCandidate &FC0, 657 const FusionCandidate &FC1) const { 658 const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L); 659 if (isa<SCEVCouldNotCompute>(TripCount0)) { 660 UncomputableTripCount++; 661 LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!"); 662 return false; 663 } 664 665 const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L); 666 if (isa<SCEVCouldNotCompute>(TripCount1)) { 667 UncomputableTripCount++; 668 LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!"); 669 return false; 670 } 671 LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & " 672 << *TripCount1 << " are " 673 << (TripCount0 == TripCount1 ? "identical" : "different") 674 << "\n"); 675 676 return (TripCount0 == TripCount1); 677 } 678 679 /// Walk each set of control flow equivalent fusion candidates and attempt to 680 /// fuse them. This does a single linear traversal of all candidates in the 681 /// set. The conditions for legal fusion are checked at this point. If a pair 682 /// of fusion candidates passes all legality checks, they are fused together 683 /// and a new fusion candidate is created and added to the FusionCandidateSet. 684 /// The original fusion candidates are then removed, as they are no longer 685 /// valid. 686 bool fuseCandidates() { 687 bool Fused = false; 688 LLVM_DEBUG(printFusionCandidates(FusionCandidates)); 689 for (auto &CandidateSet : FusionCandidates) { 690 if (CandidateSet.size() < 2) 691 continue; 692 693 LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n" 694 << CandidateSet << "\n"); 695 696 for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) { 697 assert(!LDT.isRemovedLoop(FC0->L) && 698 "Should not have removed loops in CandidateSet!"); 699 auto FC1 = FC0; 700 for (++FC1; FC1 != CandidateSet.end(); ++FC1) { 701 assert(!LDT.isRemovedLoop(FC1->L) && 702 "Should not have removed loops in CandidateSet!"); 703 704 LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump(); 705 dbgs() << " with\n"; FC1->dump(); dbgs() << "\n"); 706 707 FC0->verify(); 708 FC1->verify(); 709 710 if (!identicalTripCounts(*FC0, *FC1)) { 711 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip " 712 "counts. Not fusing.\n"); 713 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 714 NonEqualTripCount); 715 continue; 716 } 717 718 if (!isAdjacent(*FC0, *FC1)) { 719 LLVM_DEBUG(dbgs() 720 << "Fusion candidates are not adjacent. Not fusing.\n"); 721 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent); 722 continue; 723 } 724 725 // Ensure that FC0 and FC1 have identical guards. 726 // If one (or both) are not guarded, this check is not necessary. 727 if (FC0->GuardBranch && FC1->GuardBranch && 728 !haveIdenticalGuards(*FC0, *FC1)) { 729 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical " 730 "guards. Not Fusing.\n"); 731 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 732 NonIdenticalGuards); 733 continue; 734 } 735 736 // The following three checks look for empty blocks in FC0 and FC1. If 737 // any of these blocks are non-empty, we do not fuse. This is done 738 // because we currently do not have the safety checks to determine if 739 // it is safe to move the blocks past other blocks in the loop. Once 740 // these checks are added, these conditions can be relaxed. 741 if (!isEmptyPreheader(*FC1)) { 742 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty " 743 "preheader. Not fusing.\n"); 744 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 745 NonEmptyPreheader); 746 continue; 747 } 748 749 if (FC0->GuardBranch && !isEmptyExitBlock(*FC0)) { 750 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty exit " 751 "block. Not fusing.\n"); 752 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 753 NonEmptyExitBlock); 754 continue; 755 } 756 757 if (FC1->GuardBranch && !isEmptyGuardBlock(*FC1)) { 758 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty guard " 759 "block. Not fusing.\n"); 760 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 761 NonEmptyGuardBlock); 762 continue; 763 } 764 765 // Check the dependencies across the loops and do not fuse if it would 766 // violate them. 767 if (!dependencesAllowFusion(*FC0, *FC1)) { 768 LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n"); 769 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 770 InvalidDependencies); 771 continue; 772 } 773 774 bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1); 775 LLVM_DEBUG(dbgs() 776 << "\tFusion appears to be " 777 << (BeneficialToFuse ? "" : "un") << "profitable!\n"); 778 if (!BeneficialToFuse) { 779 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 780 FusionNotBeneficial); 781 continue; 782 } 783 // All analysis has completed and has determined that fusion is legal 784 // and profitable. At this point, start transforming the code and 785 // perform fusion. 786 787 LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and " 788 << *FC1 << "\n"); 789 790 // Report fusion to the Optimization Remarks. 791 // Note this needs to be done *before* performFusion because 792 // performFusion will change the original loops, making it not 793 // possible to identify them after fusion is complete. 794 reportLoopFusion<OptimizationRemark>(*FC0, *FC1, FuseCounter); 795 796 FusionCandidate FusedCand(performFusion(*FC0, *FC1), &DT, &PDT, ORE); 797 FusedCand.verify(); 798 assert(FusedCand.isEligibleForFusion(SE) && 799 "Fused candidate should be eligible for fusion!"); 800 801 // Notify the loop-depth-tree that these loops are not valid objects 802 LDT.removeLoop(FC1->L); 803 804 CandidateSet.erase(FC0); 805 CandidateSet.erase(FC1); 806 807 auto InsertPos = CandidateSet.insert(FusedCand); 808 809 assert(InsertPos.second && 810 "Unable to insert TargetCandidate in CandidateSet!"); 811 812 // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations 813 // of the FC1 loop will attempt to fuse the new (fused) loop with the 814 // remaining candidates in the current candidate set. 815 FC0 = FC1 = InsertPos.first; 816 817 LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet 818 << "\n"); 819 820 Fused = true; 821 } 822 } 823 } 824 return Fused; 825 } 826 827 /// Rewrite all additive recurrences in a SCEV to use a new loop. 828 class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> { 829 public: 830 AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL, 831 bool UseMax = true) 832 : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL), 833 NewL(NewL) {} 834 835 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 836 const Loop *ExprL = Expr->getLoop(); 837 SmallVector<const SCEV *, 2> Operands; 838 if (ExprL == &OldL) { 839 Operands.append(Expr->op_begin(), Expr->op_end()); 840 return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags()); 841 } 842 843 if (OldL.contains(ExprL)) { 844 bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE)); 845 if (!UseMax || !Pos || !Expr->isAffine()) { 846 Valid = false; 847 return Expr; 848 } 849 return visit(Expr->getStart()); 850 } 851 852 for (const SCEV *Op : Expr->operands()) 853 Operands.push_back(visit(Op)); 854 return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags()); 855 } 856 857 bool wasValidSCEV() const { return Valid; } 858 859 private: 860 bool Valid, UseMax; 861 const Loop &OldL, &NewL; 862 }; 863 864 /// Return false if the access functions of \p I0 and \p I1 could cause 865 /// a negative dependence. 866 bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0, 867 Instruction &I1, bool EqualIsInvalid) { 868 Value *Ptr0 = getLoadStorePointerOperand(&I0); 869 Value *Ptr1 = getLoadStorePointerOperand(&I1); 870 if (!Ptr0 || !Ptr1) 871 return false; 872 873 const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0); 874 const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1); 875 #ifndef NDEBUG 876 if (VerboseFusionDebugging) 877 LLVM_DEBUG(dbgs() << " Access function check: " << *SCEVPtr0 << " vs " 878 << *SCEVPtr1 << "\n"); 879 #endif 880 AddRecLoopReplacer Rewriter(SE, L0, L1); 881 SCEVPtr0 = Rewriter.visit(SCEVPtr0); 882 #ifndef NDEBUG 883 if (VerboseFusionDebugging) 884 LLVM_DEBUG(dbgs() << " Access function after rewrite: " << *SCEVPtr0 885 << " [Valid: " << Rewriter.wasValidSCEV() << "]\n"); 886 #endif 887 if (!Rewriter.wasValidSCEV()) 888 return false; 889 890 // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by 891 // L0) and the other is not. We could check if it is monotone and test 892 // the beginning and end value instead. 893 894 BasicBlock *L0Header = L0.getHeader(); 895 auto HasNonLinearDominanceRelation = [&](const SCEV *S) { 896 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S); 897 if (!AddRec) 898 return false; 899 return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) && 900 !DT.dominates(AddRec->getLoop()->getHeader(), L0Header); 901 }; 902 if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation)) 903 return false; 904 905 ICmpInst::Predicate Pred = 906 EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE; 907 bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1); 908 #ifndef NDEBUG 909 if (VerboseFusionDebugging) 910 LLVM_DEBUG(dbgs() << " Relation: " << *SCEVPtr0 911 << (IsAlwaysGE ? " >= " : " may < ") << *SCEVPtr1 912 << "\n"); 913 #endif 914 return IsAlwaysGE; 915 } 916 917 /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in 918 /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses 919 /// specified by @p DepChoice are used to determine this. 920 bool dependencesAllowFusion(const FusionCandidate &FC0, 921 const FusionCandidate &FC1, Instruction &I0, 922 Instruction &I1, bool AnyDep, 923 FusionDependenceAnalysisChoice DepChoice) { 924 #ifndef NDEBUG 925 if (VerboseFusionDebugging) { 926 LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : " 927 << DepChoice << "\n"); 928 } 929 #endif 930 switch (DepChoice) { 931 case FUSION_DEPENDENCE_ANALYSIS_SCEV: 932 return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep); 933 case FUSION_DEPENDENCE_ANALYSIS_DA: { 934 auto DepResult = DI.depends(&I0, &I1, true); 935 if (!DepResult) 936 return true; 937 #ifndef NDEBUG 938 if (VerboseFusionDebugging) { 939 LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs()); 940 dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: " 941 << (DepResult->isOrdered() ? "true" : "false") 942 << "]\n"); 943 LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels() 944 << "\n"); 945 } 946 #endif 947 948 if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor()) 949 LLVM_DEBUG( 950 dbgs() << "TODO: Implement pred/succ dependence handling!\n"); 951 952 // TODO: Can we actually use the dependence info analysis here? 953 return false; 954 } 955 956 case FUSION_DEPENDENCE_ANALYSIS_ALL: 957 return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep, 958 FUSION_DEPENDENCE_ANALYSIS_SCEV) || 959 dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep, 960 FUSION_DEPENDENCE_ANALYSIS_DA); 961 } 962 963 llvm_unreachable("Unknown fusion dependence analysis choice!"); 964 } 965 966 /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused. 967 bool dependencesAllowFusion(const FusionCandidate &FC0, 968 const FusionCandidate &FC1) { 969 LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1 970 << "\n"); 971 assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth()); 972 assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock())); 973 974 for (Instruction *WriteL0 : FC0.MemWrites) { 975 for (Instruction *WriteL1 : FC1.MemWrites) 976 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1, 977 /* AnyDep */ false, 978 FusionDependenceAnalysis)) { 979 InvalidDependencies++; 980 return false; 981 } 982 for (Instruction *ReadL1 : FC1.MemReads) 983 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1, 984 /* AnyDep */ false, 985 FusionDependenceAnalysis)) { 986 InvalidDependencies++; 987 return false; 988 } 989 } 990 991 for (Instruction *WriteL1 : FC1.MemWrites) { 992 for (Instruction *WriteL0 : FC0.MemWrites) 993 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1, 994 /* AnyDep */ false, 995 FusionDependenceAnalysis)) { 996 InvalidDependencies++; 997 return false; 998 } 999 for (Instruction *ReadL0 : FC0.MemReads) 1000 if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1, 1001 /* AnyDep */ false, 1002 FusionDependenceAnalysis)) { 1003 InvalidDependencies++; 1004 return false; 1005 } 1006 } 1007 1008 // Walk through all uses in FC1. For each use, find the reaching def. If the 1009 // def is located in FC0 then it is is not safe to fuse. 1010 for (BasicBlock *BB : FC1.L->blocks()) 1011 for (Instruction &I : *BB) 1012 for (auto &Op : I.operands()) 1013 if (Instruction *Def = dyn_cast<Instruction>(Op)) 1014 if (FC0.L->contains(Def->getParent())) { 1015 InvalidDependencies++; 1016 return false; 1017 } 1018 1019 return true; 1020 } 1021 1022 /// Determine if two fusion candidates are adjacent in the CFG. 1023 /// 1024 /// This method will determine if there are additional basic blocks in the CFG 1025 /// between the exit of \p FC0 and the entry of \p FC1. 1026 /// If the two candidates are guarded loops, then it checks whether the 1027 /// non-loop successor of the \p FC0 guard branch is the entry block of \p 1028 /// FC1. If not, then the loops are not adjacent. If the two candidates are 1029 /// not guarded loops, then it checks whether the exit block of \p FC0 is the 1030 /// preheader of \p FC1. 1031 bool isAdjacent(const FusionCandidate &FC0, 1032 const FusionCandidate &FC1) const { 1033 // If the successor of the guard branch is FC1, then the loops are adjacent 1034 if (FC0.GuardBranch) 1035 return FC0.getNonLoopBlock() == FC1.getEntryBlock(); 1036 else 1037 return FC0.ExitBlock == FC1.getEntryBlock(); 1038 } 1039 1040 /// Determine if two fusion candidates have identical guards 1041 /// 1042 /// This method will determine if two fusion candidates have the same guards. 1043 /// The guards are considered the same if: 1044 /// 1. The instructions to compute the condition used in the compare are 1045 /// identical. 1046 /// 2. The successors of the guard have the same flow into/around the loop. 1047 /// If the compare instructions are identical, then the first successor of the 1048 /// guard must go to the same place (either the preheader of the loop or the 1049 /// NonLoopBlock). In other words, the the first successor of both loops must 1050 /// both go into the loop (i.e., the preheader) or go around the loop (i.e., 1051 /// the NonLoopBlock). The same must be true for the second successor. 1052 bool haveIdenticalGuards(const FusionCandidate &FC0, 1053 const FusionCandidate &FC1) const { 1054 assert(FC0.GuardBranch && FC1.GuardBranch && 1055 "Expecting FC0 and FC1 to be guarded loops."); 1056 1057 if (auto FC0CmpInst = 1058 dyn_cast<Instruction>(FC0.GuardBranch->getCondition())) 1059 if (auto FC1CmpInst = 1060 dyn_cast<Instruction>(FC1.GuardBranch->getCondition())) 1061 if (!FC0CmpInst->isIdenticalTo(FC1CmpInst)) 1062 return false; 1063 1064 // The compare instructions are identical. 1065 // Now make sure the successor of the guards have the same flow into/around 1066 // the loop 1067 if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader) 1068 return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader); 1069 else 1070 return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader); 1071 } 1072 1073 /// Check that the guard for \p FC *only* contains the cmp/branch for the 1074 /// guard. 1075 /// Once we are able to handle intervening code, any code in the guard block 1076 /// for FC1 will need to be treated as intervening code and checked whether 1077 /// it can safely move around the loops. 1078 bool isEmptyGuardBlock(const FusionCandidate &FC) const { 1079 assert(FC.GuardBranch && "Expecting a fusion candidate with guard branch."); 1080 if (auto *CmpInst = dyn_cast<Instruction>(FC.GuardBranch->getCondition())) { 1081 auto *GuardBlock = FC.GuardBranch->getParent(); 1082 // If the generation of the cmp value is in GuardBlock, then the size of 1083 // the guard block should be 2 (cmp + branch). If the generation of the 1084 // cmp value is in a different block, then the size of the guard block 1085 // should only be 1. 1086 if (CmpInst->getParent() == GuardBlock) 1087 return GuardBlock->size() == 2; 1088 else 1089 return GuardBlock->size() == 1; 1090 } 1091 1092 return false; 1093 } 1094 1095 bool isEmptyPreheader(const FusionCandidate &FC) const { 1096 assert(FC.Preheader && "Expecting a valid preheader"); 1097 return FC.Preheader->size() == 1; 1098 } 1099 1100 bool isEmptyExitBlock(const FusionCandidate &FC) const { 1101 assert(FC.ExitBlock && "Expecting a valid exit block"); 1102 return FC.ExitBlock->size() == 1; 1103 } 1104 1105 /// Simplify the condition of the latch branch of \p FC to true, when both of 1106 /// its successors are the same. 1107 void simplifyLatchBranch(const FusionCandidate &FC) const { 1108 BranchInst *FCLatchBranch = dyn_cast<BranchInst>(FC.Latch->getTerminator()); 1109 if (FCLatchBranch) { 1110 assert(FCLatchBranch->isConditional() && 1111 FCLatchBranch->getSuccessor(0) == FCLatchBranch->getSuccessor(1) && 1112 "Expecting the two successors of FCLatchBranch to be the same"); 1113 FCLatchBranch->setCondition( 1114 llvm::ConstantInt::getTrue(FCLatchBranch->getCondition()->getType())); 1115 } 1116 } 1117 1118 /// Move instructions from FC0.Latch to FC1.Latch. If FC0.Latch has an unique 1119 /// successor, then merge FC0.Latch with its unique successor. 1120 void mergeLatch(const FusionCandidate &FC0, const FusionCandidate &FC1) { 1121 moveInstsBottomUp(*FC0.Latch, *FC1.Latch, DT, PDT, DI); 1122 if (BasicBlock *Succ = FC0.Latch->getUniqueSuccessor()) { 1123 MergeBlockIntoPredecessor(Succ, &DTU, &LI); 1124 DTU.flush(); 1125 } 1126 } 1127 1128 /// Fuse two fusion candidates, creating a new fused loop. 1129 /// 1130 /// This method contains the mechanics of fusing two loops, represented by \p 1131 /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1 1132 /// postdominates \p FC0 (making them control flow equivalent). It also 1133 /// assumes that the other conditions for fusion have been met: adjacent, 1134 /// identical trip counts, and no negative distance dependencies exist that 1135 /// would prevent fusion. Thus, there is no checking for these conditions in 1136 /// this method. 1137 /// 1138 /// Fusion is performed by rewiring the CFG to update successor blocks of the 1139 /// components of tho loop. Specifically, the following changes are done: 1140 /// 1141 /// 1. The preheader of \p FC1 is removed as it is no longer necessary 1142 /// (because it is currently only a single statement block). 1143 /// 2. The latch of \p FC0 is modified to jump to the header of \p FC1. 1144 /// 3. The latch of \p FC1 i modified to jump to the header of \p FC0. 1145 /// 4. All blocks from \p FC1 are removed from FC1 and added to FC0. 1146 /// 1147 /// All of these modifications are done with dominator tree updates, thus 1148 /// keeping the dominator (and post dominator) information up-to-date. 1149 /// 1150 /// This can be improved in the future by actually merging blocks during 1151 /// fusion. For example, the preheader of \p FC1 can be merged with the 1152 /// preheader of \p FC0. This would allow loops with more than a single 1153 /// statement in the preheader to be fused. Similarly, the latch blocks of the 1154 /// two loops could also be fused into a single block. This will require 1155 /// analysis to prove it is safe to move the contents of the block past 1156 /// existing code, which currently has not been implemented. 1157 Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) { 1158 assert(FC0.isValid() && FC1.isValid() && 1159 "Expecting valid fusion candidates"); 1160 1161 LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump(); 1162 dbgs() << "Fusion Candidate 1: \n"; FC1.dump();); 1163 1164 // Fusing guarded loops is handled slightly differently than non-guarded 1165 // loops and has been broken out into a separate method instead of trying to 1166 // intersperse the logic within a single method. 1167 if (FC0.GuardBranch) 1168 return fuseGuardedLoops(FC0, FC1); 1169 1170 assert(FC1.Preheader == FC0.ExitBlock); 1171 assert(FC1.Preheader->size() == 1 && 1172 FC1.Preheader->getSingleSuccessor() == FC1.Header); 1173 1174 // Remember the phi nodes originally in the header of FC0 in order to rewire 1175 // them later. However, this is only necessary if the new loop carried 1176 // values might not dominate the exiting branch. While we do not generally 1177 // test if this is the case but simply insert intermediate phi nodes, we 1178 // need to make sure these intermediate phi nodes have different 1179 // predecessors. To this end, we filter the special case where the exiting 1180 // block is the latch block of the first loop. Nothing needs to be done 1181 // anyway as all loop carried values dominate the latch and thereby also the 1182 // exiting branch. 1183 SmallVector<PHINode *, 8> OriginalFC0PHIs; 1184 if (FC0.ExitingBlock != FC0.Latch) 1185 for (PHINode &PHI : FC0.Header->phis()) 1186 OriginalFC0PHIs.push_back(&PHI); 1187 1188 // Replace incoming blocks for header PHIs first. 1189 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader); 1190 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch); 1191 1192 // Then modify the control flow and update DT and PDT. 1193 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates; 1194 1195 // The old exiting block of the first loop (FC0) has to jump to the header 1196 // of the second as we need to execute the code in the second header block 1197 // regardless of the trip count. That is, if the trip count is 0, so the 1198 // back edge is never taken, we still have to execute both loop headers, 1199 // especially (but not only!) if the second is a do-while style loop. 1200 // However, doing so might invalidate the phi nodes of the first loop as 1201 // the new values do only need to dominate their latch and not the exiting 1202 // predicate. To remedy this potential problem we always introduce phi 1203 // nodes in the header of the second loop later that select the loop carried 1204 // value, if the second header was reached through an old latch of the 1205 // first, or undef otherwise. This is sound as exiting the first implies the 1206 // second will exit too, __without__ taking the back-edge. [Their 1207 // trip-counts are equal after all. 1208 // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go 1209 // to FC1.Header? I think this is basically what the three sequences are 1210 // trying to accomplish; however, doing this directly in the CFG may mean 1211 // the DT/PDT becomes invalid 1212 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader, 1213 FC1.Header); 1214 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1215 DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader)); 1216 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1217 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header)); 1218 1219 // The pre-header of L1 is not necessary anymore. 1220 assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader)); 1221 FC1.Preheader->getTerminator()->eraseFromParent(); 1222 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader); 1223 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1224 DominatorTree::Delete, FC1.Preheader, FC1.Header)); 1225 1226 // Moves the phi nodes from the second to the first loops header block. 1227 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) { 1228 if (SE.isSCEVable(PHI->getType())) 1229 SE.forgetValue(PHI); 1230 if (PHI->hasNUsesOrMore(1)) 1231 PHI->moveBefore(&*FC0.Header->getFirstInsertionPt()); 1232 else 1233 PHI->eraseFromParent(); 1234 } 1235 1236 // Introduce new phi nodes in the second loop header to ensure 1237 // exiting the first and jumping to the header of the second does not break 1238 // the SSA property of the phis originally in the first loop. See also the 1239 // comment above. 1240 Instruction *L1HeaderIP = &FC1.Header->front(); 1241 for (PHINode *LCPHI : OriginalFC0PHIs) { 1242 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch); 1243 assert(L1LatchBBIdx >= 0 && 1244 "Expected loop carried value to be rewired at this point!"); 1245 1246 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx); 1247 1248 PHINode *L1HeaderPHI = PHINode::Create( 1249 LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP); 1250 L1HeaderPHI->addIncoming(LCV, FC0.Latch); 1251 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()), 1252 FC0.ExitingBlock); 1253 1254 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI); 1255 } 1256 1257 // Replace latch terminator destinations. 1258 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header); 1259 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header); 1260 1261 // Change the condition of FC0 latch branch to true, as both successors of 1262 // the branch are the same. 1263 simplifyLatchBranch(FC0); 1264 1265 // If FC0.Latch and FC0.ExitingBlock are the same then we have already 1266 // performed the updates above. 1267 if (FC0.Latch != FC0.ExitingBlock) 1268 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1269 DominatorTree::Insert, FC0.Latch, FC1.Header)); 1270 1271 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1272 FC0.Latch, FC0.Header)); 1273 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert, 1274 FC1.Latch, FC0.Header)); 1275 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1276 FC1.Latch, FC1.Header)); 1277 1278 // Update DT/PDT 1279 DTU.applyUpdates(TreeUpdates); 1280 1281 LI.removeBlock(FC1.Preheader); 1282 DTU.deleteBB(FC1.Preheader); 1283 DTU.flush(); 1284 1285 // Is there a way to keep SE up-to-date so we don't need to forget the loops 1286 // and rebuild the information in subsequent passes of fusion? 1287 // Note: Need to forget the loops before merging the loop latches, as 1288 // mergeLatch may remove the only block in FC1. 1289 SE.forgetLoop(FC1.L); 1290 SE.forgetLoop(FC0.L); 1291 1292 // Move instructions from FC0.Latch to FC1.Latch. 1293 // Note: mergeLatch requires an updated DT. 1294 mergeLatch(FC0, FC1); 1295 1296 // Merge the loops. 1297 SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(), 1298 FC1.L->block_end()); 1299 for (BasicBlock *BB : Blocks) { 1300 FC0.L->addBlockEntry(BB); 1301 FC1.L->removeBlockFromLoop(BB); 1302 if (LI.getLoopFor(BB) != FC1.L) 1303 continue; 1304 LI.changeLoopFor(BB, FC0.L); 1305 } 1306 while (!FC1.L->empty()) { 1307 const auto &ChildLoopIt = FC1.L->begin(); 1308 Loop *ChildLoop = *ChildLoopIt; 1309 FC1.L->removeChildLoop(ChildLoopIt); 1310 FC0.L->addChildLoop(ChildLoop); 1311 } 1312 1313 // Delete the now empty loop L1. 1314 LI.erase(FC1.L); 1315 1316 #ifndef NDEBUG 1317 assert(!verifyFunction(*FC0.Header->getParent(), &errs())); 1318 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1319 assert(PDT.verify()); 1320 LI.verify(DT); 1321 SE.verify(); 1322 #endif 1323 1324 LLVM_DEBUG(dbgs() << "Fusion done:\n"); 1325 1326 return FC0.L; 1327 } 1328 1329 /// Report details on loop fusion opportunities. 1330 /// 1331 /// This template function can be used to report both successful and missed 1332 /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should 1333 /// be one of: 1334 /// - OptimizationRemarkMissed to report when loop fusion is unsuccessful 1335 /// given two valid fusion candidates. 1336 /// - OptimizationRemark to report successful fusion of two fusion 1337 /// candidates. 1338 /// The remarks will be printed using the form: 1339 /// <path/filename>:<line number>:<column number>: [<function name>]: 1340 /// <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description> 1341 template <typename RemarkKind> 1342 void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1, 1343 llvm::Statistic &Stat) { 1344 assert(FC0.Preheader && FC1.Preheader && 1345 "Expecting valid fusion candidates"); 1346 using namespace ore; 1347 ++Stat; 1348 ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(), 1349 FC0.Preheader) 1350 << "[" << FC0.Preheader->getParent()->getName() 1351 << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName())) 1352 << " and " << NV("Cand2", StringRef(FC1.Preheader->getName())) 1353 << ": " << Stat.getDesc()); 1354 } 1355 1356 /// Fuse two guarded fusion candidates, creating a new fused loop. 1357 /// 1358 /// Fusing guarded loops is handled much the same way as fusing non-guarded 1359 /// loops. The rewiring of the CFG is slightly different though, because of 1360 /// the presence of the guards around the loops and the exit blocks after the 1361 /// loop body. As such, the new loop is rewired as follows: 1362 /// 1. Keep the guard branch from FC0 and use the non-loop block target 1363 /// from the FC1 guard branch. 1364 /// 2. Remove the exit block from FC0 (this exit block should be empty 1365 /// right now). 1366 /// 3. Remove the guard branch for FC1 1367 /// 4. Remove the preheader for FC1. 1368 /// The exit block successor for the latch of FC0 is updated to be the header 1369 /// of FC1 and the non-exit block successor of the latch of FC1 is updated to 1370 /// be the header of FC0, thus creating the fused loop. 1371 Loop *fuseGuardedLoops(const FusionCandidate &FC0, 1372 const FusionCandidate &FC1) { 1373 assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops"); 1374 1375 BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent(); 1376 BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent(); 1377 BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock(); 1378 BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock(); 1379 1380 assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent"); 1381 1382 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates; 1383 1384 //////////////////////////////////////////////////////////////////////////// 1385 // Update the Loop Guard 1386 //////////////////////////////////////////////////////////////////////////// 1387 // The guard for FC0 is updated to guard both FC0 and FC1. This is done by 1388 // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1. 1389 // Thus, one path from the guard goes to the preheader for FC0 (and thus 1390 // executes the new fused loop) and the other path goes to the NonLoopBlock 1391 // for FC1 (where FC1 guard would have gone if FC1 was not executed). 1392 FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock); 1393 FC0.ExitBlock->getTerminator()->replaceUsesOfWith(FC1GuardBlock, 1394 FC1.Header); 1395 1396 // The guard of FC1 is not necessary anymore. 1397 FC1.GuardBranch->eraseFromParent(); 1398 new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock); 1399 1400 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1401 DominatorTree::Delete, FC1GuardBlock, FC1.Preheader)); 1402 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1403 DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock)); 1404 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1405 DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock)); 1406 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1407 DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock)); 1408 1409 assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) && 1410 "Expecting guard block to have no predecessors"); 1411 assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) && 1412 "Expecting guard block to have no successors"); 1413 1414 // Remember the phi nodes originally in the header of FC0 in order to rewire 1415 // them later. However, this is only necessary if the new loop carried 1416 // values might not dominate the exiting branch. While we do not generally 1417 // test if this is the case but simply insert intermediate phi nodes, we 1418 // need to make sure these intermediate phi nodes have different 1419 // predecessors. To this end, we filter the special case where the exiting 1420 // block is the latch block of the first loop. Nothing needs to be done 1421 // anyway as all loop carried values dominate the latch and thereby also the 1422 // exiting branch. 1423 // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch 1424 // (because the loops are rotated. Thus, nothing will ever be added to 1425 // OriginalFC0PHIs. 1426 SmallVector<PHINode *, 8> OriginalFC0PHIs; 1427 if (FC0.ExitingBlock != FC0.Latch) 1428 for (PHINode &PHI : FC0.Header->phis()) 1429 OriginalFC0PHIs.push_back(&PHI); 1430 1431 assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!"); 1432 1433 // Replace incoming blocks for header PHIs first. 1434 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader); 1435 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch); 1436 1437 // The old exiting block of the first loop (FC0) has to jump to the header 1438 // of the second as we need to execute the code in the second header block 1439 // regardless of the trip count. That is, if the trip count is 0, so the 1440 // back edge is never taken, we still have to execute both loop headers, 1441 // especially (but not only!) if the second is a do-while style loop. 1442 // However, doing so might invalidate the phi nodes of the first loop as 1443 // the new values do only need to dominate their latch and not the exiting 1444 // predicate. To remedy this potential problem we always introduce phi 1445 // nodes in the header of the second loop later that select the loop carried 1446 // value, if the second header was reached through an old latch of the 1447 // first, or undef otherwise. This is sound as exiting the first implies the 1448 // second will exit too, __without__ taking the back-edge (their 1449 // trip-counts are equal after all). 1450 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock, 1451 FC1.Header); 1452 1453 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1454 DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock)); 1455 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1456 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header)); 1457 1458 // Remove FC0 Exit Block 1459 // The exit block for FC0 is no longer needed since control will flow 1460 // directly to the header of FC1. Since it is an empty block, it can be 1461 // removed at this point. 1462 // TODO: In the future, we can handle non-empty exit blocks my merging any 1463 // instructions from FC0 exit block into FC1 exit block prior to removing 1464 // the block. 1465 assert(pred_begin(FC0.ExitBlock) == pred_end(FC0.ExitBlock) && 1466 "Expecting exit block to be empty"); 1467 FC0.ExitBlock->getTerminator()->eraseFromParent(); 1468 new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock); 1469 1470 // Remove FC1 Preheader 1471 // The pre-header of L1 is not necessary anymore. 1472 assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader)); 1473 FC1.Preheader->getTerminator()->eraseFromParent(); 1474 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader); 1475 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1476 DominatorTree::Delete, FC1.Preheader, FC1.Header)); 1477 1478 // Moves the phi nodes from the second to the first loops header block. 1479 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) { 1480 if (SE.isSCEVable(PHI->getType())) 1481 SE.forgetValue(PHI); 1482 if (PHI->hasNUsesOrMore(1)) 1483 PHI->moveBefore(&*FC0.Header->getFirstInsertionPt()); 1484 else 1485 PHI->eraseFromParent(); 1486 } 1487 1488 // Introduce new phi nodes in the second loop header to ensure 1489 // exiting the first and jumping to the header of the second does not break 1490 // the SSA property of the phis originally in the first loop. See also the 1491 // comment above. 1492 Instruction *L1HeaderIP = &FC1.Header->front(); 1493 for (PHINode *LCPHI : OriginalFC0PHIs) { 1494 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch); 1495 assert(L1LatchBBIdx >= 0 && 1496 "Expected loop carried value to be rewired at this point!"); 1497 1498 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx); 1499 1500 PHINode *L1HeaderPHI = PHINode::Create( 1501 LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP); 1502 L1HeaderPHI->addIncoming(LCV, FC0.Latch); 1503 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()), 1504 FC0.ExitingBlock); 1505 1506 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI); 1507 } 1508 1509 // Update the latches 1510 1511 // Replace latch terminator destinations. 1512 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header); 1513 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header); 1514 1515 // Change the condition of FC0 latch branch to true, as both successors of 1516 // the branch are the same. 1517 simplifyLatchBranch(FC0); 1518 1519 // If FC0.Latch and FC0.ExitingBlock are the same then we have already 1520 // performed the updates above. 1521 if (FC0.Latch != FC0.ExitingBlock) 1522 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1523 DominatorTree::Insert, FC0.Latch, FC1.Header)); 1524 1525 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1526 FC0.Latch, FC0.Header)); 1527 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert, 1528 FC1.Latch, FC0.Header)); 1529 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1530 FC1.Latch, FC1.Header)); 1531 1532 // All done 1533 // Apply the updates to the Dominator Tree and cleanup. 1534 1535 assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) && 1536 "FC1GuardBlock has successors!!"); 1537 assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) && 1538 "FC1GuardBlock has predecessors!!"); 1539 1540 // Update DT/PDT 1541 DTU.applyUpdates(TreeUpdates); 1542 1543 LI.removeBlock(FC1.Preheader); 1544 DTU.deleteBB(FC1.Preheader); 1545 DTU.deleteBB(FC0.ExitBlock); 1546 DTU.flush(); 1547 1548 // Is there a way to keep SE up-to-date so we don't need to forget the loops 1549 // and rebuild the information in subsequent passes of fusion? 1550 // Note: Need to forget the loops before merging the loop latches, as 1551 // mergeLatch may remove the only block in FC1. 1552 SE.forgetLoop(FC1.L); 1553 SE.forgetLoop(FC0.L); 1554 1555 // Move instructions from FC0.Latch to FC1.Latch. 1556 // Note: mergeLatch requires an updated DT. 1557 mergeLatch(FC0, FC1); 1558 1559 // Merge the loops. 1560 SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(), 1561 FC1.L->block_end()); 1562 for (BasicBlock *BB : Blocks) { 1563 FC0.L->addBlockEntry(BB); 1564 FC1.L->removeBlockFromLoop(BB); 1565 if (LI.getLoopFor(BB) != FC1.L) 1566 continue; 1567 LI.changeLoopFor(BB, FC0.L); 1568 } 1569 while (!FC1.L->empty()) { 1570 const auto &ChildLoopIt = FC1.L->begin(); 1571 Loop *ChildLoop = *ChildLoopIt; 1572 FC1.L->removeChildLoop(ChildLoopIt); 1573 FC0.L->addChildLoop(ChildLoop); 1574 } 1575 1576 // Delete the now empty loop L1. 1577 LI.erase(FC1.L); 1578 1579 #ifndef NDEBUG 1580 assert(!verifyFunction(*FC0.Header->getParent(), &errs())); 1581 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1582 assert(PDT.verify()); 1583 LI.verify(DT); 1584 SE.verify(); 1585 #endif 1586 1587 LLVM_DEBUG(dbgs() << "Fusion done:\n"); 1588 1589 return FC0.L; 1590 } 1591 }; 1592 1593 struct LoopFuseLegacy : public FunctionPass { 1594 1595 static char ID; 1596 1597 LoopFuseLegacy() : FunctionPass(ID) { 1598 initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry()); 1599 } 1600 1601 void getAnalysisUsage(AnalysisUsage &AU) const override { 1602 AU.addRequiredID(LoopSimplifyID); 1603 AU.addRequired<ScalarEvolutionWrapperPass>(); 1604 AU.addRequired<LoopInfoWrapperPass>(); 1605 AU.addRequired<DominatorTreeWrapperPass>(); 1606 AU.addRequired<PostDominatorTreeWrapperPass>(); 1607 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1608 AU.addRequired<DependenceAnalysisWrapperPass>(); 1609 1610 AU.addPreserved<ScalarEvolutionWrapperPass>(); 1611 AU.addPreserved<LoopInfoWrapperPass>(); 1612 AU.addPreserved<DominatorTreeWrapperPass>(); 1613 AU.addPreserved<PostDominatorTreeWrapperPass>(); 1614 } 1615 1616 bool runOnFunction(Function &F) override { 1617 if (skipFunction(F)) 1618 return false; 1619 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1620 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1621 auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 1622 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1623 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 1624 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1625 1626 const DataLayout &DL = F.getParent()->getDataLayout(); 1627 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL); 1628 return LF.fuseLoops(F); 1629 } 1630 }; 1631 } // namespace 1632 1633 PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) { 1634 auto &LI = AM.getResult<LoopAnalysis>(F); 1635 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1636 auto &DI = AM.getResult<DependenceAnalysis>(F); 1637 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1638 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 1639 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1640 1641 const DataLayout &DL = F.getParent()->getDataLayout(); 1642 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL); 1643 bool Changed = LF.fuseLoops(F); 1644 if (!Changed) 1645 return PreservedAnalyses::all(); 1646 1647 PreservedAnalyses PA; 1648 PA.preserve<DominatorTreeAnalysis>(); 1649 PA.preserve<PostDominatorTreeAnalysis>(); 1650 PA.preserve<ScalarEvolutionAnalysis>(); 1651 PA.preserve<LoopAnalysis>(); 1652 return PA; 1653 } 1654 1655 char LoopFuseLegacy::ID = 0; 1656 1657 INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, 1658 false) 1659 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 1660 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 1661 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1662 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1663 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1664 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1665 INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false) 1666 1667 FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); } 1668