1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the loop fusion pass. 11 /// The implementation is largely based on the following document: 12 /// 13 /// Code Transformations to Augment the Scope of Loop Fusion in a 14 /// Production Compiler 15 /// Christopher Mark Barton 16 /// MSc Thesis 17 /// https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf 18 /// 19 /// The general approach taken is to collect sets of control flow equivalent 20 /// loops and test whether they can be fused. The necessary conditions for 21 /// fusion are: 22 /// 1. The loops must be adjacent (there cannot be any statements between 23 /// the two loops). 24 /// 2. The loops must be conforming (they must execute the same number of 25 /// iterations). 26 /// 3. The loops must be control flow equivalent (if one loop executes, the 27 /// other is guaranteed to execute). 28 /// 4. There cannot be any negative distance dependencies between the loops. 29 /// If all of these conditions are satisfied, it is safe to fuse the loops. 30 /// 31 /// This implementation creates FusionCandidates that represent the loop and the 32 /// necessary information needed by fusion. It then operates on the fusion 33 /// candidates, first confirming that the candidate is eligible for fusion. The 34 /// candidates are then collected into control flow equivalent sets, sorted in 35 /// dominance order. Each set of control flow equivalent candidates is then 36 /// traversed, attempting to fuse pairs of candidates in the set. If all 37 /// requirements for fusion are met, the two candidates are fused, creating a 38 /// new (fused) candidate which is then added back into the set to consider for 39 /// additional fusion. 40 /// 41 /// This implementation currently does not make any modifications to remove 42 /// conditions for fusion. Code transformations to make loops conform to each of 43 /// the conditions for fusion are discussed in more detail in the document 44 /// above. These can be added to the current implementation in the future. 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/Transforms/Scalar/LoopFuse.h" 48 #include "llvm/ADT/Statistic.h" 49 #include "llvm/Analysis/DependenceAnalysis.h" 50 #include "llvm/Analysis/DomTreeUpdater.h" 51 #include "llvm/Analysis/LoopInfo.h" 52 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 53 #include "llvm/Analysis/PostDominators.h" 54 #include "llvm/Analysis/ScalarEvolution.h" 55 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/Verifier.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/Scalar.h" 62 #include "llvm/Transforms/Utils.h" 63 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "loop-fusion" 68 69 STATISTIC(FuseCounter, "Loops fused"); 70 STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion"); 71 STATISTIC(InvalidPreheader, "Loop has invalid preheader"); 72 STATISTIC(InvalidHeader, "Loop has invalid header"); 73 STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks"); 74 STATISTIC(InvalidExitBlock, "Loop has invalid exit block"); 75 STATISTIC(InvalidLatch, "Loop has invalid latch"); 76 STATISTIC(InvalidLoop, "Loop is invalid"); 77 STATISTIC(AddressTakenBB, "Basic block has address taken"); 78 STATISTIC(MayThrowException, "Loop may throw an exception"); 79 STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access"); 80 STATISTIC(NotSimplifiedForm, "Loop is not in simplified form"); 81 STATISTIC(InvalidDependencies, "Dependencies prevent fusion"); 82 STATISTIC(UnknownTripCount, "Loop has unknown trip count"); 83 STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop"); 84 STATISTIC(NonEqualTripCount, "Loop trip counts are not the same"); 85 STATISTIC(NonAdjacent, "Loops are not adjacent"); 86 STATISTIC(NonEmptyPreheader, "Loop has a non-empty preheader"); 87 STATISTIC(FusionNotBeneficial, "Fusion is not beneficial"); 88 89 enum FusionDependenceAnalysisChoice { 90 FUSION_DEPENDENCE_ANALYSIS_SCEV, 91 FUSION_DEPENDENCE_ANALYSIS_DA, 92 FUSION_DEPENDENCE_ANALYSIS_ALL, 93 }; 94 95 static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis( 96 "loop-fusion-dependence-analysis", 97 cl::desc("Which dependence analysis should loop fusion use?"), 98 cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev", 99 "Use the scalar evolution interface"), 100 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da", 101 "Use the dependence analysis interface"), 102 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all", 103 "Use all available analyses")), 104 cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore); 105 106 #ifndef NDEBUG 107 static cl::opt<bool> 108 VerboseFusionDebugging("loop-fusion-verbose-debug", 109 cl::desc("Enable verbose debugging for Loop Fusion"), 110 cl::Hidden, cl::init(false), cl::ZeroOrMore); 111 #endif 112 113 /// This class is used to represent a candidate for loop fusion. When it is 114 /// constructed, it checks the conditions for loop fusion to ensure that it 115 /// represents a valid candidate. It caches several parts of a loop that are 116 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead 117 /// of continually querying the underlying Loop to retrieve these values. It is 118 /// assumed these will not change throughout loop fusion. 119 /// 120 /// The invalidate method should be used to indicate that the FusionCandidate is 121 /// no longer a valid candidate for fusion. Similarly, the isValid() method can 122 /// be used to ensure that the FusionCandidate is still valid for fusion. 123 struct FusionCandidate { 124 /// Cache of parts of the loop used throughout loop fusion. These should not 125 /// need to change throughout the analysis and transformation. 126 /// These parts are cached to avoid repeatedly looking up in the Loop class. 127 128 /// Preheader of the loop this candidate represents 129 BasicBlock *Preheader; 130 /// Header of the loop this candidate represents 131 BasicBlock *Header; 132 /// Blocks in the loop that exit the loop 133 BasicBlock *ExitingBlock; 134 /// The successor block of this loop (where the exiting blocks go to) 135 BasicBlock *ExitBlock; 136 /// Latch of the loop 137 BasicBlock *Latch; 138 /// The loop that this fusion candidate represents 139 Loop *L; 140 /// Vector of instructions in this loop that read from memory 141 SmallVector<Instruction *, 16> MemReads; 142 /// Vector of instructions in this loop that write to memory 143 SmallVector<Instruction *, 16> MemWrites; 144 /// Are all of the members of this fusion candidate still valid 145 bool Valid; 146 147 /// Dominator and PostDominator trees are needed for the 148 /// FusionCandidateCompare function, required by FusionCandidateSet to 149 /// determine where the FusionCandidate should be inserted into the set. These 150 /// are used to establish ordering of the FusionCandidates based on dominance. 151 const DominatorTree *DT; 152 const PostDominatorTree *PDT; 153 154 OptimizationRemarkEmitter &ORE; 155 156 FusionCandidate(Loop *L, const DominatorTree *DT, 157 const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE) 158 : Preheader(L->getLoopPreheader()), Header(L->getHeader()), 159 ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()), 160 Latch(L->getLoopLatch()), L(L), Valid(true), DT(DT), PDT(PDT), 161 ORE(ORE) { 162 163 // Walk over all blocks in the loop and check for conditions that may 164 // prevent fusion. For each block, walk over all instructions and collect 165 // the memory reads and writes If any instructions that prevent fusion are 166 // found, invalidate this object and return. 167 for (BasicBlock *BB : L->blocks()) { 168 if (BB->hasAddressTaken()) { 169 invalidate(); 170 reportInvalidCandidate(AddressTakenBB); 171 return; 172 } 173 174 for (Instruction &I : *BB) { 175 if (I.mayThrow()) { 176 invalidate(); 177 reportInvalidCandidate(MayThrowException); 178 return; 179 } 180 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 181 if (SI->isVolatile()) { 182 invalidate(); 183 reportInvalidCandidate(ContainsVolatileAccess); 184 return; 185 } 186 } 187 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 188 if (LI->isVolatile()) { 189 invalidate(); 190 reportInvalidCandidate(ContainsVolatileAccess); 191 return; 192 } 193 } 194 if (I.mayWriteToMemory()) 195 MemWrites.push_back(&I); 196 if (I.mayReadFromMemory()) 197 MemReads.push_back(&I); 198 } 199 } 200 } 201 202 /// Check if all members of the class are valid. 203 bool isValid() const { 204 return Preheader && Header && ExitingBlock && ExitBlock && Latch && L && 205 !L->isInvalid() && Valid; 206 } 207 208 /// Verify that all members are in sync with the Loop object. 209 void verify() const { 210 assert(isValid() && "Candidate is not valid!!"); 211 assert(!L->isInvalid() && "Loop is invalid!"); 212 assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync"); 213 assert(Header == L->getHeader() && "Header is out of sync"); 214 assert(ExitingBlock == L->getExitingBlock() && 215 "Exiting Blocks is out of sync"); 216 assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync"); 217 assert(Latch == L->getLoopLatch() && "Latch is out of sync"); 218 } 219 220 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 221 LLVM_DUMP_METHOD void dump() const { 222 dbgs() << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr") 223 << "\n" 224 << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n" 225 << "\tExitingBB: " 226 << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n" 227 << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr") 228 << "\n" 229 << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"; 230 } 231 #endif 232 233 /// Determine if a fusion candidate (representing a loop) is eligible for 234 /// fusion. Note that this only checks whether a single loop can be fused - it 235 /// does not check whether it is *legal* to fuse two loops together. 236 bool isEligibleForFusion(ScalarEvolution &SE) const { 237 if (!isValid()) { 238 LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n"); 239 if (!Preheader) 240 ++InvalidPreheader; 241 if (!Header) 242 ++InvalidHeader; 243 if (!ExitingBlock) 244 ++InvalidExitingBlock; 245 if (!ExitBlock) 246 ++InvalidExitBlock; 247 if (!Latch) 248 ++InvalidLatch; 249 if (L->isInvalid()) 250 ++InvalidLoop; 251 252 return false; 253 } 254 255 // Require ScalarEvolution to be able to determine a trip count. 256 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { 257 LLVM_DEBUG(dbgs() << "Loop " << L->getName() 258 << " trip count not computable!\n"); 259 return reportInvalidCandidate(UnknownTripCount); 260 } 261 262 if (!L->isLoopSimplifyForm()) { 263 LLVM_DEBUG(dbgs() << "Loop " << L->getName() 264 << " is not in simplified form!\n"); 265 return reportInvalidCandidate(NotSimplifiedForm); 266 } 267 268 return true; 269 } 270 271 private: 272 // This is only used internally for now, to clear the MemWrites and MemReads 273 // list and setting Valid to false. I can't envision other uses of this right 274 // now, since once FusionCandidates are put into the FusionCandidateSet they 275 // are immutable. Thus, any time we need to change/update a FusionCandidate, 276 // we must create a new one and insert it into the FusionCandidateSet to 277 // ensure the FusionCandidateSet remains ordered correctly. 278 void invalidate() { 279 MemWrites.clear(); 280 MemReads.clear(); 281 Valid = false; 282 } 283 284 bool reportInvalidCandidate(llvm::Statistic &Stat) const { 285 using namespace ore; 286 assert(L && Preheader && "Fusion candidate not initialized properly!"); 287 ++Stat; 288 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(), 289 L->getStartLoc(), Preheader) 290 << "[" << Preheader->getParent()->getName() << "]: " 291 << "Loop is not a candidate for fusion: " << Stat.getDesc()); 292 return false; 293 } 294 }; 295 296 inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, 297 const FusionCandidate &FC) { 298 if (FC.isValid()) 299 OS << FC.Preheader->getName(); 300 else 301 OS << "<Invalid>"; 302 303 return OS; 304 } 305 306 struct FusionCandidateCompare { 307 /// Comparison functor to sort two Control Flow Equivalent fusion candidates 308 /// into dominance order. 309 /// If LHS dominates RHS and RHS post-dominates LHS, return true; 310 /// IF RHS dominates LHS and LHS post-dominates RHS, return false; 311 bool operator()(const FusionCandidate &LHS, 312 const FusionCandidate &RHS) const { 313 const DominatorTree *DT = LHS.DT; 314 315 // Do not save PDT to local variable as it is only used in asserts and thus 316 // will trigger an unused variable warning if building without asserts. 317 assert(DT && LHS.PDT && "Expecting valid dominator tree"); 318 319 // Do this compare first so if LHS == RHS, function returns false. 320 if (DT->dominates(RHS.Preheader, LHS.Preheader)) { 321 // RHS dominates LHS 322 // Verify LHS post-dominates RHS 323 assert(LHS.PDT->dominates(LHS.Preheader, RHS.Preheader)); 324 return false; 325 } 326 327 if (DT->dominates(LHS.Preheader, RHS.Preheader)) { 328 // Verify RHS Postdominates LHS 329 assert(LHS.PDT->dominates(RHS.Preheader, LHS.Preheader)); 330 return true; 331 } 332 333 // If LHS does not dominate RHS and RHS does not dominate LHS then there is 334 // no dominance relationship between the two FusionCandidates. Thus, they 335 // should not be in the same set together. 336 llvm_unreachable( 337 "No dominance relationship between these fusion candidates!"); 338 } 339 }; 340 341 namespace { 342 using LoopVector = SmallVector<Loop *, 4>; 343 344 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance 345 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0 346 // dominates FC1 and FC1 post-dominates FC0. 347 // std::set was chosen because we want a sorted data structure with stable 348 // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent 349 // loops by moving intervening code around. When this intervening code contains 350 // loops, those loops will be moved also. The corresponding FusionCandidates 351 // will also need to be moved accordingly. As this is done, having stable 352 // iterators will simplify the logic. Similarly, having an efficient insert that 353 // keeps the FusionCandidateSet sorted will also simplify the implementation. 354 using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>; 355 using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>; 356 } // namespace 357 358 inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, 359 const FusionCandidateSet &CandSet) { 360 for (auto IT : CandSet) 361 OS << IT << "\n"; 362 363 return OS; 364 } 365 366 #if !defined(NDEBUG) 367 static void 368 printFusionCandidates(const FusionCandidateCollection &FusionCandidates) { 369 dbgs() << "Fusion Candidates: \n"; 370 for (const auto &CandidateSet : FusionCandidates) { 371 dbgs() << "*** Fusion Candidate Set ***\n"; 372 dbgs() << CandidateSet; 373 dbgs() << "****************************\n"; 374 } 375 } 376 #endif 377 378 /// Collect all loops in function at the same nest level, starting at the 379 /// outermost level. 380 /// 381 /// This data structure collects all loops at the same nest level for a 382 /// given function (specified by the LoopInfo object). It starts at the 383 /// outermost level. 384 struct LoopDepthTree { 385 using LoopsOnLevelTy = SmallVector<LoopVector, 4>; 386 using iterator = LoopsOnLevelTy::iterator; 387 using const_iterator = LoopsOnLevelTy::const_iterator; 388 389 LoopDepthTree(LoopInfo &LI) : Depth(1) { 390 if (!LI.empty()) 391 LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend())); 392 } 393 394 /// Test whether a given loop has been removed from the function, and thus is 395 /// no longer valid. 396 bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); } 397 398 /// Record that a given loop has been removed from the function and is no 399 /// longer valid. 400 void removeLoop(const Loop *L) { RemovedLoops.insert(L); } 401 402 /// Descend the tree to the next (inner) nesting level 403 void descend() { 404 LoopsOnLevelTy LoopsOnNextLevel; 405 406 for (const LoopVector &LV : *this) 407 for (Loop *L : LV) 408 if (!isRemovedLoop(L) && L->begin() != L->end()) 409 LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end())); 410 411 LoopsOnLevel = LoopsOnNextLevel; 412 RemovedLoops.clear(); 413 Depth++; 414 } 415 416 bool empty() const { return size() == 0; } 417 size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); } 418 unsigned getDepth() const { return Depth; } 419 420 iterator begin() { return LoopsOnLevel.begin(); } 421 iterator end() { return LoopsOnLevel.end(); } 422 const_iterator begin() const { return LoopsOnLevel.begin(); } 423 const_iterator end() const { return LoopsOnLevel.end(); } 424 425 private: 426 /// Set of loops that have been removed from the function and are no longer 427 /// valid. 428 SmallPtrSet<const Loop *, 8> RemovedLoops; 429 430 /// Depth of the current level, starting at 1 (outermost loops). 431 unsigned Depth; 432 433 /// Vector of loops at the current depth level that have the same parent loop 434 LoopsOnLevelTy LoopsOnLevel; 435 }; 436 437 #ifndef NDEBUG 438 static void printLoopVector(const LoopVector &LV) { 439 dbgs() << "****************************\n"; 440 for (auto L : LV) 441 printLoop(*L, dbgs()); 442 dbgs() << "****************************\n"; 443 } 444 #endif 445 446 struct LoopFuser { 447 private: 448 // Sets of control flow equivalent fusion candidates for a given nest level. 449 FusionCandidateCollection FusionCandidates; 450 451 LoopDepthTree LDT; 452 DomTreeUpdater DTU; 453 454 LoopInfo &LI; 455 DominatorTree &DT; 456 DependenceInfo &DI; 457 ScalarEvolution &SE; 458 PostDominatorTree &PDT; 459 OptimizationRemarkEmitter &ORE; 460 461 public: 462 LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI, 463 ScalarEvolution &SE, PostDominatorTree &PDT, 464 OptimizationRemarkEmitter &ORE, const DataLayout &DL) 465 : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI), 466 DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE) {} 467 468 /// This is the main entry point for loop fusion. It will traverse the 469 /// specified function and collect candidate loops to fuse, starting at the 470 /// outermost nesting level and working inwards. 471 bool fuseLoops(Function &F) { 472 #ifndef NDEBUG 473 if (VerboseFusionDebugging) { 474 LI.print(dbgs()); 475 } 476 #endif 477 478 LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName() 479 << "\n"); 480 bool Changed = false; 481 482 while (!LDT.empty()) { 483 LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth " 484 << LDT.getDepth() << "\n";); 485 486 for (const LoopVector &LV : LDT) { 487 assert(LV.size() > 0 && "Empty loop set was build!"); 488 489 // Skip singleton loop sets as they do not offer fusion opportunities on 490 // this level. 491 if (LV.size() == 1) 492 continue; 493 #ifndef NDEBUG 494 if (VerboseFusionDebugging) { 495 LLVM_DEBUG({ 496 dbgs() << " Visit loop set (#" << LV.size() << "):\n"; 497 printLoopVector(LV); 498 }); 499 } 500 #endif 501 502 collectFusionCandidates(LV); 503 Changed |= fuseCandidates(); 504 } 505 506 // Finished analyzing candidates at this level. 507 // Descend to the next level and clear all of the candidates currently 508 // collected. Note that it will not be possible to fuse any of the 509 // existing candidates with new candidates because the new candidates will 510 // be at a different nest level and thus not be control flow equivalent 511 // with all of the candidates collected so far. 512 LLVM_DEBUG(dbgs() << "Descend one level!\n"); 513 LDT.descend(); 514 FusionCandidates.clear(); 515 } 516 517 if (Changed) 518 LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump();); 519 520 #ifndef NDEBUG 521 assert(DT.verify()); 522 assert(PDT.verify()); 523 LI.verify(DT); 524 SE.verify(); 525 #endif 526 527 LLVM_DEBUG(dbgs() << "Loop Fusion complete\n"); 528 return Changed; 529 } 530 531 private: 532 /// Determine if two fusion candidates are control flow equivalent. 533 /// 534 /// Two fusion candidates are control flow equivalent if when one executes, 535 /// the other is guaranteed to execute. This is determined using dominators 536 /// and post-dominators: if A dominates B and B post-dominates A then A and B 537 /// are control-flow equivalent. 538 bool isControlFlowEquivalent(const FusionCandidate &FC0, 539 const FusionCandidate &FC1) const { 540 assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders"); 541 542 if (DT.dominates(FC0.Preheader, FC1.Preheader)) 543 return PDT.dominates(FC1.Preheader, FC0.Preheader); 544 545 if (DT.dominates(FC1.Preheader, FC0.Preheader)) 546 return PDT.dominates(FC0.Preheader, FC1.Preheader); 547 548 return false; 549 } 550 551 /// Iterate over all loops in the given loop set and identify the loops that 552 /// are eligible for fusion. Place all eligible fusion candidates into Control 553 /// Flow Equivalent sets, sorted by dominance. 554 void collectFusionCandidates(const LoopVector &LV) { 555 for (Loop *L : LV) { 556 FusionCandidate CurrCand(L, &DT, &PDT, ORE); 557 if (!CurrCand.isEligibleForFusion(SE)) 558 continue; 559 560 // Go through each list in FusionCandidates and determine if L is control 561 // flow equivalent with the first loop in that list. If it is, append LV. 562 // If not, go to the next list. 563 // If no suitable list is found, start another list and add it to 564 // FusionCandidates. 565 bool FoundSet = false; 566 567 for (auto &CurrCandSet : FusionCandidates) { 568 if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) { 569 CurrCandSet.insert(CurrCand); 570 FoundSet = true; 571 #ifndef NDEBUG 572 if (VerboseFusionDebugging) 573 LLVM_DEBUG(dbgs() << "Adding " << CurrCand 574 << " to existing candidate set\n"); 575 #endif 576 break; 577 } 578 } 579 if (!FoundSet) { 580 // No set was found. Create a new set and add to FusionCandidates 581 #ifndef NDEBUG 582 if (VerboseFusionDebugging) 583 LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n"); 584 #endif 585 FusionCandidateSet NewCandSet; 586 NewCandSet.insert(CurrCand); 587 FusionCandidates.push_back(NewCandSet); 588 } 589 NumFusionCandidates++; 590 } 591 } 592 593 /// Determine if it is beneficial to fuse two loops. 594 /// 595 /// For now, this method simply returns true because we want to fuse as much 596 /// as possible (primarily to test the pass). This method will evolve, over 597 /// time, to add heuristics for profitability of fusion. 598 bool isBeneficialFusion(const FusionCandidate &FC0, 599 const FusionCandidate &FC1) { 600 return true; 601 } 602 603 /// Determine if two fusion candidates have the same trip count (i.e., they 604 /// execute the same number of iterations). 605 /// 606 /// Note that for now this method simply returns a boolean value because there 607 /// are no mechanisms in loop fusion to handle different trip counts. In the 608 /// future, this behaviour can be extended to adjust one of the loops to make 609 /// the trip counts equal (e.g., loop peeling). When this is added, this 610 /// interface may need to change to return more information than just a 611 /// boolean value. 612 bool identicalTripCounts(const FusionCandidate &FC0, 613 const FusionCandidate &FC1) const { 614 const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L); 615 if (isa<SCEVCouldNotCompute>(TripCount0)) { 616 UncomputableTripCount++; 617 LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!"); 618 return false; 619 } 620 621 const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L); 622 if (isa<SCEVCouldNotCompute>(TripCount1)) { 623 UncomputableTripCount++; 624 LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!"); 625 return false; 626 } 627 LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & " 628 << *TripCount1 << " are " 629 << (TripCount0 == TripCount1 ? "identical" : "different") 630 << "\n"); 631 632 return (TripCount0 == TripCount1); 633 } 634 635 /// Walk each set of control flow equivalent fusion candidates and attempt to 636 /// fuse them. This does a single linear traversal of all candidates in the 637 /// set. The conditions for legal fusion are checked at this point. If a pair 638 /// of fusion candidates passes all legality checks, they are fused together 639 /// and a new fusion candidate is created and added to the FusionCandidateSet. 640 /// The original fusion candidates are then removed, as they are no longer 641 /// valid. 642 bool fuseCandidates() { 643 bool Fused = false; 644 LLVM_DEBUG(printFusionCandidates(FusionCandidates)); 645 for (auto &CandidateSet : FusionCandidates) { 646 if (CandidateSet.size() < 2) 647 continue; 648 649 LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n" 650 << CandidateSet << "\n"); 651 652 for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) { 653 assert(!LDT.isRemovedLoop(FC0->L) && 654 "Should not have removed loops in CandidateSet!"); 655 auto FC1 = FC0; 656 for (++FC1; FC1 != CandidateSet.end(); ++FC1) { 657 assert(!LDT.isRemovedLoop(FC1->L) && 658 "Should not have removed loops in CandidateSet!"); 659 660 LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump(); 661 dbgs() << " with\n"; FC1->dump(); dbgs() << "\n"); 662 663 FC0->verify(); 664 FC1->verify(); 665 666 if (!identicalTripCounts(*FC0, *FC1)) { 667 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip " 668 "counts. Not fusing.\n"); 669 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 670 NonEqualTripCount); 671 continue; 672 } 673 674 if (!isAdjacent(*FC0, *FC1)) { 675 LLVM_DEBUG(dbgs() 676 << "Fusion candidates are not adjacent. Not fusing.\n"); 677 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent); 678 continue; 679 } 680 681 // For now we skip fusing if the second candidate has any instructions 682 // in the preheader. This is done because we currently do not have the 683 // safety checks to determine if it is save to move the preheader of 684 // the second candidate past the body of the first candidate. Once 685 // these checks are added, this condition can be removed. 686 if (!isEmptyPreheader(*FC1)) { 687 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty " 688 "preheader. Not fusing.\n"); 689 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 690 NonEmptyPreheader); 691 continue; 692 } 693 694 if (!dependencesAllowFusion(*FC0, *FC1)) { 695 LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n"); 696 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 697 InvalidDependencies); 698 continue; 699 } 700 701 bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1); 702 LLVM_DEBUG(dbgs() 703 << "\tFusion appears to be " 704 << (BeneficialToFuse ? "" : "un") << "profitable!\n"); 705 if (!BeneficialToFuse) { 706 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 707 FusionNotBeneficial); 708 continue; 709 } 710 // All analysis has completed and has determined that fusion is legal 711 // and profitable. At this point, start transforming the code and 712 // perform fusion. 713 714 LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and " 715 << *FC1 << "\n"); 716 717 // Report fusion to the Optimization Remarks. 718 // Note this needs to be done *before* performFusion because 719 // performFusion will change the original loops, making it not 720 // possible to identify them after fusion is complete. 721 reportLoopFusion<OptimizationRemark>(*FC0, *FC1, FuseCounter); 722 723 FusionCandidate FusedCand(performFusion(*FC0, *FC1), &DT, &PDT, ORE); 724 FusedCand.verify(); 725 assert(FusedCand.isEligibleForFusion(SE) && 726 "Fused candidate should be eligible for fusion!"); 727 728 // Notify the loop-depth-tree that these loops are not valid objects 729 LDT.removeLoop(FC1->L); 730 731 CandidateSet.erase(FC0); 732 CandidateSet.erase(FC1); 733 734 auto InsertPos = CandidateSet.insert(FusedCand); 735 736 assert(InsertPos.second && 737 "Unable to insert TargetCandidate in CandidateSet!"); 738 739 // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations 740 // of the FC1 loop will attempt to fuse the new (fused) loop with the 741 // remaining candidates in the current candidate set. 742 FC0 = FC1 = InsertPos.first; 743 744 LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet 745 << "\n"); 746 747 Fused = true; 748 } 749 } 750 } 751 return Fused; 752 } 753 754 /// Rewrite all additive recurrences in a SCEV to use a new loop. 755 class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> { 756 public: 757 AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL, 758 bool UseMax = true) 759 : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL), 760 NewL(NewL) {} 761 762 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 763 const Loop *ExprL = Expr->getLoop(); 764 SmallVector<const SCEV *, 2> Operands; 765 if (ExprL == &OldL) { 766 Operands.append(Expr->op_begin(), Expr->op_end()); 767 return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags()); 768 } 769 770 if (OldL.contains(ExprL)) { 771 bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE)); 772 if (!UseMax || !Pos || !Expr->isAffine()) { 773 Valid = false; 774 return Expr; 775 } 776 return visit(Expr->getStart()); 777 } 778 779 for (const SCEV *Op : Expr->operands()) 780 Operands.push_back(visit(Op)); 781 return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags()); 782 } 783 784 bool wasValidSCEV() const { return Valid; } 785 786 private: 787 bool Valid, UseMax; 788 const Loop &OldL, &NewL; 789 }; 790 791 /// Return false if the access functions of \p I0 and \p I1 could cause 792 /// a negative dependence. 793 bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0, 794 Instruction &I1, bool EqualIsInvalid) { 795 Value *Ptr0 = getLoadStorePointerOperand(&I0); 796 Value *Ptr1 = getLoadStorePointerOperand(&I1); 797 if (!Ptr0 || !Ptr1) 798 return false; 799 800 const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0); 801 const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1); 802 #ifndef NDEBUG 803 if (VerboseFusionDebugging) 804 LLVM_DEBUG(dbgs() << " Access function check: " << *SCEVPtr0 << " vs " 805 << *SCEVPtr1 << "\n"); 806 #endif 807 AddRecLoopReplacer Rewriter(SE, L0, L1); 808 SCEVPtr0 = Rewriter.visit(SCEVPtr0); 809 #ifndef NDEBUG 810 if (VerboseFusionDebugging) 811 LLVM_DEBUG(dbgs() << " Access function after rewrite: " << *SCEVPtr0 812 << " [Valid: " << Rewriter.wasValidSCEV() << "]\n"); 813 #endif 814 if (!Rewriter.wasValidSCEV()) 815 return false; 816 817 // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by 818 // L0) and the other is not. We could check if it is monotone and test 819 // the beginning and end value instead. 820 821 BasicBlock *L0Header = L0.getHeader(); 822 auto HasNonLinearDominanceRelation = [&](const SCEV *S) { 823 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S); 824 if (!AddRec) 825 return false; 826 return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) && 827 !DT.dominates(AddRec->getLoop()->getHeader(), L0Header); 828 }; 829 if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation)) 830 return false; 831 832 ICmpInst::Predicate Pred = 833 EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE; 834 bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1); 835 #ifndef NDEBUG 836 if (VerboseFusionDebugging) 837 LLVM_DEBUG(dbgs() << " Relation: " << *SCEVPtr0 838 << (IsAlwaysGE ? " >= " : " may < ") << *SCEVPtr1 839 << "\n"); 840 #endif 841 return IsAlwaysGE; 842 } 843 844 /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in 845 /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses 846 /// specified by @p DepChoice are used to determine this. 847 bool dependencesAllowFusion(const FusionCandidate &FC0, 848 const FusionCandidate &FC1, Instruction &I0, 849 Instruction &I1, bool AnyDep, 850 FusionDependenceAnalysisChoice DepChoice) { 851 #ifndef NDEBUG 852 if (VerboseFusionDebugging) { 853 LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : " 854 << DepChoice << "\n"); 855 } 856 #endif 857 switch (DepChoice) { 858 case FUSION_DEPENDENCE_ANALYSIS_SCEV: 859 return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep); 860 case FUSION_DEPENDENCE_ANALYSIS_DA: { 861 auto DepResult = DI.depends(&I0, &I1, true); 862 if (!DepResult) 863 return true; 864 #ifndef NDEBUG 865 if (VerboseFusionDebugging) { 866 LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs()); 867 dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: " 868 << (DepResult->isOrdered() ? "true" : "false") 869 << "]\n"); 870 LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels() 871 << "\n"); 872 } 873 #endif 874 875 if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor()) 876 LLVM_DEBUG( 877 dbgs() << "TODO: Implement pred/succ dependence handling!\n"); 878 879 // TODO: Can we actually use the dependence info analysis here? 880 return false; 881 } 882 883 case FUSION_DEPENDENCE_ANALYSIS_ALL: 884 return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep, 885 FUSION_DEPENDENCE_ANALYSIS_SCEV) || 886 dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep, 887 FUSION_DEPENDENCE_ANALYSIS_DA); 888 } 889 890 llvm_unreachable("Unknown fusion dependence analysis choice!"); 891 } 892 893 /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused. 894 bool dependencesAllowFusion(const FusionCandidate &FC0, 895 const FusionCandidate &FC1) { 896 LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1 897 << "\n"); 898 assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth()); 899 assert(DT.dominates(FC0.Preheader, FC1.Preheader)); 900 901 for (Instruction *WriteL0 : FC0.MemWrites) { 902 for (Instruction *WriteL1 : FC1.MemWrites) 903 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1, 904 /* AnyDep */ false, 905 FusionDependenceAnalysis)) { 906 InvalidDependencies++; 907 return false; 908 } 909 for (Instruction *ReadL1 : FC1.MemReads) 910 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1, 911 /* AnyDep */ false, 912 FusionDependenceAnalysis)) { 913 InvalidDependencies++; 914 return false; 915 } 916 } 917 918 for (Instruction *WriteL1 : FC1.MemWrites) { 919 for (Instruction *WriteL0 : FC0.MemWrites) 920 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1, 921 /* AnyDep */ false, 922 FusionDependenceAnalysis)) { 923 InvalidDependencies++; 924 return false; 925 } 926 for (Instruction *ReadL0 : FC0.MemReads) 927 if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1, 928 /* AnyDep */ false, 929 FusionDependenceAnalysis)) { 930 InvalidDependencies++; 931 return false; 932 } 933 } 934 935 // Walk through all uses in FC1. For each use, find the reaching def. If the 936 // def is located in FC0 then it is is not safe to fuse. 937 for (BasicBlock *BB : FC1.L->blocks()) 938 for (Instruction &I : *BB) 939 for (auto &Op : I.operands()) 940 if (Instruction *Def = dyn_cast<Instruction>(Op)) 941 if (FC0.L->contains(Def->getParent())) { 942 InvalidDependencies++; 943 return false; 944 } 945 946 return true; 947 } 948 949 /// Determine if the exit block of \p FC0 is the preheader of \p FC1. In this 950 /// case, there is no code in between the two fusion candidates, thus making 951 /// them adjacent. 952 bool isAdjacent(const FusionCandidate &FC0, 953 const FusionCandidate &FC1) const { 954 return FC0.ExitBlock == FC1.Preheader; 955 } 956 957 bool isEmptyPreheader(const FusionCandidate &FC) const { 958 return FC.Preheader->size() == 1; 959 } 960 961 /// Fuse two fusion candidates, creating a new fused loop. 962 /// 963 /// This method contains the mechanics of fusing two loops, represented by \p 964 /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1 965 /// postdominates \p FC0 (making them control flow equivalent). It also 966 /// assumes that the other conditions for fusion have been met: adjacent, 967 /// identical trip counts, and no negative distance dependencies exist that 968 /// would prevent fusion. Thus, there is no checking for these conditions in 969 /// this method. 970 /// 971 /// Fusion is performed by rewiring the CFG to update successor blocks of the 972 /// components of tho loop. Specifically, the following changes are done: 973 /// 974 /// 1. The preheader of \p FC1 is removed as it is no longer necessary 975 /// (because it is currently only a single statement block). 976 /// 2. The latch of \p FC0 is modified to jump to the header of \p FC1. 977 /// 3. The latch of \p FC1 i modified to jump to the header of \p FC0. 978 /// 4. All blocks from \p FC1 are removed from FC1 and added to FC0. 979 /// 980 /// All of these modifications are done with dominator tree updates, thus 981 /// keeping the dominator (and post dominator) information up-to-date. 982 /// 983 /// This can be improved in the future by actually merging blocks during 984 /// fusion. For example, the preheader of \p FC1 can be merged with the 985 /// preheader of \p FC0. This would allow loops with more than a single 986 /// statement in the preheader to be fused. Similarly, the latch blocks of the 987 /// two loops could also be fused into a single block. This will require 988 /// analysis to prove it is safe to move the contents of the block past 989 /// existing code, which currently has not been implemented. 990 Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) { 991 assert(FC0.isValid() && FC1.isValid() && 992 "Expecting valid fusion candidates"); 993 994 LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump(); 995 dbgs() << "Fusion Candidate 1: \n"; FC1.dump();); 996 997 assert(FC1.Preheader == FC0.ExitBlock); 998 assert(FC1.Preheader->size() == 1 && 999 FC1.Preheader->getSingleSuccessor() == FC1.Header); 1000 1001 // Remember the phi nodes originally in the header of FC0 in order to rewire 1002 // them later. However, this is only necessary if the new loop carried 1003 // values might not dominate the exiting branch. While we do not generally 1004 // test if this is the case but simply insert intermediate phi nodes, we 1005 // need to make sure these intermediate phi nodes have different 1006 // predecessors. To this end, we filter the special case where the exiting 1007 // block is the latch block of the first loop. Nothing needs to be done 1008 // anyway as all loop carried values dominate the latch and thereby also the 1009 // exiting branch. 1010 SmallVector<PHINode *, 8> OriginalFC0PHIs; 1011 if (FC0.ExitingBlock != FC0.Latch) 1012 for (PHINode &PHI : FC0.Header->phis()) 1013 OriginalFC0PHIs.push_back(&PHI); 1014 1015 // Replace incoming blocks for header PHIs first. 1016 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader); 1017 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch); 1018 1019 // Then modify the control flow and update DT and PDT. 1020 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates; 1021 1022 // The old exiting block of the first loop (FC0) has to jump to the header 1023 // of the second as we need to execute the code in the second header block 1024 // regardless of the trip count. That is, if the trip count is 0, so the 1025 // back edge is never taken, we still have to execute both loop headers, 1026 // especially (but not only!) if the second is a do-while style loop. 1027 // However, doing so might invalidate the phi nodes of the first loop as 1028 // the new values do only need to dominate their latch and not the exiting 1029 // predicate. To remedy this potential problem we always introduce phi 1030 // nodes in the header of the second loop later that select the loop carried 1031 // value, if the second header was reached through an old latch of the 1032 // first, or undef otherwise. This is sound as exiting the first implies the 1033 // second will exit too, __without__ taking the back-edge. [Their 1034 // trip-counts are equal after all. 1035 // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go 1036 // to FC1.Header? I think this is basically what the three sequences are 1037 // trying to accomplish; however, doing this directly in the CFG may mean 1038 // the DT/PDT becomes invalid 1039 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader, 1040 FC1.Header); 1041 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1042 DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader)); 1043 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1044 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header)); 1045 1046 // The pre-header of L1 is not necessary anymore. 1047 assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader)); 1048 FC1.Preheader->getTerminator()->eraseFromParent(); 1049 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader); 1050 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1051 DominatorTree::Delete, FC1.Preheader, FC1.Header)); 1052 1053 // Moves the phi nodes from the second to the first loops header block. 1054 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) { 1055 if (SE.isSCEVable(PHI->getType())) 1056 SE.forgetValue(PHI); 1057 if (PHI->hasNUsesOrMore(1)) 1058 PHI->moveBefore(&*FC0.Header->getFirstInsertionPt()); 1059 else 1060 PHI->eraseFromParent(); 1061 } 1062 1063 // Introduce new phi nodes in the second loop header to ensure 1064 // exiting the first and jumping to the header of the second does not break 1065 // the SSA property of the phis originally in the first loop. See also the 1066 // comment above. 1067 Instruction *L1HeaderIP = &FC1.Header->front(); 1068 for (PHINode *LCPHI : OriginalFC0PHIs) { 1069 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch); 1070 assert(L1LatchBBIdx >= 0 && 1071 "Expected loop carried value to be rewired at this point!"); 1072 1073 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx); 1074 1075 PHINode *L1HeaderPHI = PHINode::Create( 1076 LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP); 1077 L1HeaderPHI->addIncoming(LCV, FC0.Latch); 1078 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()), 1079 FC0.ExitingBlock); 1080 1081 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI); 1082 } 1083 1084 // Replace latch terminator destinations. 1085 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header); 1086 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header); 1087 1088 // If FC0.Latch and FC0.ExitingBlock are the same then we have already 1089 // performed the updates above. 1090 if (FC0.Latch != FC0.ExitingBlock) 1091 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1092 DominatorTree::Insert, FC0.Latch, FC1.Header)); 1093 1094 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1095 FC0.Latch, FC0.Header)); 1096 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert, 1097 FC1.Latch, FC0.Header)); 1098 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1099 FC1.Latch, FC1.Header)); 1100 1101 // Update DT/PDT 1102 DTU.applyUpdates(TreeUpdates); 1103 1104 LI.removeBlock(FC1.Preheader); 1105 DTU.deleteBB(FC1.Preheader); 1106 DTU.flush(); 1107 1108 // Is there a way to keep SE up-to-date so we don't need to forget the loops 1109 // and rebuild the information in subsequent passes of fusion? 1110 SE.forgetLoop(FC1.L); 1111 SE.forgetLoop(FC0.L); 1112 1113 // Merge the loops. 1114 SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(), 1115 FC1.L->block_end()); 1116 for (BasicBlock *BB : Blocks) { 1117 FC0.L->addBlockEntry(BB); 1118 FC1.L->removeBlockFromLoop(BB); 1119 if (LI.getLoopFor(BB) != FC1.L) 1120 continue; 1121 LI.changeLoopFor(BB, FC0.L); 1122 } 1123 while (!FC1.L->empty()) { 1124 const auto &ChildLoopIt = FC1.L->begin(); 1125 Loop *ChildLoop = *ChildLoopIt; 1126 FC1.L->removeChildLoop(ChildLoopIt); 1127 FC0.L->addChildLoop(ChildLoop); 1128 } 1129 1130 // Delete the now empty loop L1. 1131 LI.erase(FC1.L); 1132 1133 #ifndef NDEBUG 1134 assert(!verifyFunction(*FC0.Header->getParent(), &errs())); 1135 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1136 assert(PDT.verify()); 1137 LI.verify(DT); 1138 SE.verify(); 1139 #endif 1140 1141 FuseCounter++; 1142 1143 LLVM_DEBUG(dbgs() << "Fusion done:\n"); 1144 1145 return FC0.L; 1146 } 1147 1148 /// Report details on loop fusion opportunities. 1149 /// 1150 /// This template function can be used to report both successful and missed 1151 /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should 1152 /// be one of: 1153 /// - OptimizationRemarkMissed to report when loop fusion is unsuccessful 1154 /// given two valid fusion candidates. 1155 /// - OptimizationRemark to report successful fusion of two fusion 1156 /// candidates. 1157 /// The remarks will be printed using the form: 1158 /// <path/filename>:<line number>:<column number>: [<function name>]: 1159 /// <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description> 1160 template <typename RemarkKind> 1161 void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1, 1162 llvm::Statistic &Stat) { 1163 assert(FC0.Preheader && FC1.Preheader && 1164 "Expecting valid fusion candidates"); 1165 using namespace ore; 1166 ++Stat; 1167 ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(), 1168 FC0.Preheader) 1169 << "[" << FC0.Preheader->getParent()->getName() 1170 << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName())) 1171 << " and " << NV("Cand2", StringRef(FC1.Preheader->getName())) 1172 << ": " << Stat.getDesc()); 1173 } 1174 }; 1175 1176 struct LoopFuseLegacy : public FunctionPass { 1177 1178 static char ID; 1179 1180 LoopFuseLegacy() : FunctionPass(ID) { 1181 initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry()); 1182 } 1183 1184 void getAnalysisUsage(AnalysisUsage &AU) const override { 1185 AU.addRequiredID(LoopSimplifyID); 1186 AU.addRequired<ScalarEvolutionWrapperPass>(); 1187 AU.addRequired<LoopInfoWrapperPass>(); 1188 AU.addRequired<DominatorTreeWrapperPass>(); 1189 AU.addRequired<PostDominatorTreeWrapperPass>(); 1190 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1191 AU.addRequired<DependenceAnalysisWrapperPass>(); 1192 1193 AU.addPreserved<ScalarEvolutionWrapperPass>(); 1194 AU.addPreserved<LoopInfoWrapperPass>(); 1195 AU.addPreserved<DominatorTreeWrapperPass>(); 1196 AU.addPreserved<PostDominatorTreeWrapperPass>(); 1197 } 1198 1199 bool runOnFunction(Function &F) override { 1200 if (skipFunction(F)) 1201 return false; 1202 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1203 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1204 auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 1205 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1206 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 1207 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1208 1209 const DataLayout &DL = F.getParent()->getDataLayout(); 1210 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL); 1211 return LF.fuseLoops(F); 1212 } 1213 }; 1214 1215 PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) { 1216 auto &LI = AM.getResult<LoopAnalysis>(F); 1217 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1218 auto &DI = AM.getResult<DependenceAnalysis>(F); 1219 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1220 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 1221 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1222 1223 const DataLayout &DL = F.getParent()->getDataLayout(); 1224 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL); 1225 bool Changed = LF.fuseLoops(F); 1226 if (!Changed) 1227 return PreservedAnalyses::all(); 1228 1229 PreservedAnalyses PA; 1230 PA.preserve<DominatorTreeAnalysis>(); 1231 PA.preserve<PostDominatorTreeAnalysis>(); 1232 PA.preserve<ScalarEvolutionAnalysis>(); 1233 PA.preserve<LoopAnalysis>(); 1234 return PA; 1235 } 1236 1237 char LoopFuseLegacy::ID = 0; 1238 1239 INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, 1240 false) 1241 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 1242 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 1243 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1244 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1245 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1246 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1247 INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false) 1248 1249 FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); } 1250