1 //===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Dead Loop Deletion Pass. This pass is responsible 10 // for eliminating loops with non-infinite computable trip counts that have no 11 // side effects or volatile instructions, and do not contribute to the 12 // computation of the function's return value. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar/LoopDeletion.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/LoopIterator.h" 23 #include "llvm/Analysis/LoopPass.h" 24 #include "llvm/Analysis/MemorySSA.h" 25 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 26 #include "llvm/IR/Dominators.h" 27 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Transforms/Scalar.h" 31 #include "llvm/Transforms/Scalar/LoopPassManager.h" 32 #include "llvm/Transforms/Utils/LoopUtils.h" 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "loop-delete" 37 38 STATISTIC(NumDeleted, "Number of loops deleted"); 39 40 static cl::opt<bool> EnableSymbolicExecution( 41 "loop-deletion-enable-symbolic-execution", cl::Hidden, cl::init(true), 42 cl::desc("Break backedge through symbolic execution of 1st iteration " 43 "attempting to prove that the backedge is never taken")); 44 45 enum class LoopDeletionResult { 46 Unmodified, 47 Modified, 48 Deleted, 49 }; 50 51 static LoopDeletionResult merge(LoopDeletionResult A, LoopDeletionResult B) { 52 if (A == LoopDeletionResult::Deleted || B == LoopDeletionResult::Deleted) 53 return LoopDeletionResult::Deleted; 54 if (A == LoopDeletionResult::Modified || B == LoopDeletionResult::Modified) 55 return LoopDeletionResult::Modified; 56 return LoopDeletionResult::Unmodified; 57 } 58 59 /// Determines if a loop is dead. 60 /// 61 /// This assumes that we've already checked for unique exit and exiting blocks, 62 /// and that the code is in LCSSA form. 63 static bool isLoopDead(Loop *L, ScalarEvolution &SE, 64 SmallVectorImpl<BasicBlock *> &ExitingBlocks, 65 BasicBlock *ExitBlock, bool &Changed, 66 BasicBlock *Preheader, LoopInfo &LI) { 67 // Make sure that all PHI entries coming from the loop are loop invariant. 68 // Because the code is in LCSSA form, any values used outside of the loop 69 // must pass through a PHI in the exit block, meaning that this check is 70 // sufficient to guarantee that no loop-variant values are used outside 71 // of the loop. 72 bool AllEntriesInvariant = true; 73 bool AllOutgoingValuesSame = true; 74 if (!L->hasNoExitBlocks()) { 75 for (PHINode &P : ExitBlock->phis()) { 76 Value *incoming = P.getIncomingValueForBlock(ExitingBlocks[0]); 77 78 // Make sure all exiting blocks produce the same incoming value for the 79 // block. If there are different incoming values for different exiting 80 // blocks, then it is impossible to statically determine which value 81 // should be used. 82 AllOutgoingValuesSame = 83 all_of(makeArrayRef(ExitingBlocks).slice(1), [&](BasicBlock *BB) { 84 return incoming == P.getIncomingValueForBlock(BB); 85 }); 86 87 if (!AllOutgoingValuesSame) 88 break; 89 90 if (Instruction *I = dyn_cast<Instruction>(incoming)) 91 if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator())) { 92 AllEntriesInvariant = false; 93 break; 94 } 95 } 96 } 97 98 if (Changed) 99 SE.forgetLoopDispositions(L); 100 101 if (!AllEntriesInvariant || !AllOutgoingValuesSame) 102 return false; 103 104 // Make sure that no instructions in the block have potential side-effects. 105 // This includes instructions that could write to memory, and loads that are 106 // marked volatile. 107 for (auto &I : L->blocks()) 108 if (any_of(*I, [](Instruction &I) { 109 return I.mayHaveSideEffects() && !I.isDroppable(); 110 })) 111 return false; 112 113 // The loop or any of its sub-loops looping infinitely is legal. The loop can 114 // only be considered dead if either 115 // a. the function is mustprogress. 116 // b. all (sub-)loops are mustprogress or have a known trip-count. 117 if (L->getHeader()->getParent()->mustProgress()) 118 return true; 119 120 LoopBlocksRPO RPOT(L); 121 RPOT.perform(&LI); 122 // If the loop contains an irreducible cycle, it may loop infinitely. 123 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 124 return false; 125 126 SmallVector<Loop *, 8> WorkList; 127 WorkList.push_back(L); 128 while (!WorkList.empty()) { 129 Loop *Current = WorkList.pop_back_val(); 130 if (hasMustProgress(Current)) 131 continue; 132 133 const SCEV *S = SE.getConstantMaxBackedgeTakenCount(Current); 134 if (isa<SCEVCouldNotCompute>(S)) { 135 LLVM_DEBUG( 136 dbgs() << "Could not compute SCEV MaxBackedgeTakenCount and was " 137 "not required to make progress.\n"); 138 return false; 139 } 140 WorkList.append(Current->begin(), Current->end()); 141 } 142 return true; 143 } 144 145 /// This function returns true if there is no viable path from the 146 /// entry block to the header of \p L. Right now, it only does 147 /// a local search to save compile time. 148 static bool isLoopNeverExecuted(Loop *L) { 149 using namespace PatternMatch; 150 151 auto *Preheader = L->getLoopPreheader(); 152 // TODO: We can relax this constraint, since we just need a loop 153 // predecessor. 154 assert(Preheader && "Needs preheader!"); 155 156 if (Preheader->isEntryBlock()) 157 return false; 158 // All predecessors of the preheader should have a constant conditional 159 // branch, with the loop's preheader as not-taken. 160 for (auto *Pred: predecessors(Preheader)) { 161 BasicBlock *Taken, *NotTaken; 162 ConstantInt *Cond; 163 if (!match(Pred->getTerminator(), 164 m_Br(m_ConstantInt(Cond), Taken, NotTaken))) 165 return false; 166 if (!Cond->getZExtValue()) 167 std::swap(Taken, NotTaken); 168 if (Taken == Preheader) 169 return false; 170 } 171 assert(!pred_empty(Preheader) && 172 "Preheader should have predecessors at this point!"); 173 // All the predecessors have the loop preheader as not-taken target. 174 return true; 175 } 176 177 static Value * 178 getValueOnFirstIteration(Value *V, DenseMap<Value *, Value *> &FirstIterValue, 179 const SimplifyQuery &SQ) { 180 // Quick hack: do not flood cache with non-instruction values. 181 if (!isa<Instruction>(V)) 182 return V; 183 // Do we already know cached result? 184 auto Existing = FirstIterValue.find(V); 185 if (Existing != FirstIterValue.end()) 186 return Existing->second; 187 Value *FirstIterV = nullptr; 188 if (auto *BO = dyn_cast<BinaryOperator>(V)) { 189 Value *LHS = 190 getValueOnFirstIteration(BO->getOperand(0), FirstIterValue, SQ); 191 Value *RHS = 192 getValueOnFirstIteration(BO->getOperand(1), FirstIterValue, SQ); 193 FirstIterV = SimplifyBinOp(BO->getOpcode(), LHS, RHS, SQ); 194 } else if (auto *Cmp = dyn_cast<ICmpInst>(V)) { 195 Value *LHS = 196 getValueOnFirstIteration(Cmp->getOperand(0), FirstIterValue, SQ); 197 Value *RHS = 198 getValueOnFirstIteration(Cmp->getOperand(1), FirstIterValue, SQ); 199 FirstIterV = SimplifyICmpInst(Cmp->getPredicate(), LHS, RHS, SQ); 200 } 201 if (!FirstIterV) 202 FirstIterV = V; 203 FirstIterValue[V] = FirstIterV; 204 return FirstIterV; 205 } 206 207 // Try to prove that one of conditions that dominates the latch must exit on 1st 208 // iteration. 209 static bool canProveExitOnFirstIteration(Loop *L, DominatorTree &DT, 210 LoopInfo &LI) { 211 // Disabled by option. 212 if (!EnableSymbolicExecution) 213 return false; 214 215 BasicBlock *Predecessor = L->getLoopPredecessor(); 216 BasicBlock *Latch = L->getLoopLatch(); 217 218 if (!Predecessor || !Latch) 219 return false; 220 221 LoopBlocksRPO RPOT(L); 222 RPOT.perform(&LI); 223 224 // For the optimization to be correct, we need RPOT to have a property that 225 // each block is processed after all its predecessors, which may only be 226 // violated for headers of the current loop and all nested loops. Irreducible 227 // CFG provides multiple ways to break this assumption, so we do not want to 228 // deal with it. 229 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 230 return false; 231 232 BasicBlock *Header = L->getHeader(); 233 // Blocks that are reachable on the 1st iteration. 234 SmallPtrSet<BasicBlock *, 4> LiveBlocks; 235 // Edges that are reachable on the 1st iteration. 236 DenseSet<BasicBlockEdge> LiveEdges; 237 LiveBlocks.insert(Header); 238 239 SmallPtrSet<BasicBlock *, 4> Visited; 240 auto MarkLiveEdge = [&](BasicBlock *From, BasicBlock *To) { 241 assert(LiveBlocks.count(From) && "Must be live!"); 242 assert((LI.isLoopHeader(To) || !Visited.count(To)) && 243 "Only canonical backedges are allowed. Irreducible CFG?"); 244 assert((LiveBlocks.count(To) || !Visited.count(To)) && 245 "We already discarded this block as dead!"); 246 LiveBlocks.insert(To); 247 LiveEdges.insert({ From, To }); 248 }; 249 250 auto MarkAllSuccessorsLive = [&](BasicBlock *BB) { 251 for (auto *Succ : successors(BB)) 252 MarkLiveEdge(BB, Succ); 253 }; 254 255 // Check if there is only one value coming from all live predecessor blocks. 256 // Note that because we iterate in RPOT, we have already visited all its 257 // (non-latch) predecessors. 258 auto GetSoleInputOnFirstIteration = [&](PHINode & PN)->Value * { 259 BasicBlock *BB = PN.getParent(); 260 bool HasLivePreds = false; 261 (void)HasLivePreds; 262 if (BB == Header) 263 return PN.getIncomingValueForBlock(Predecessor); 264 Value *OnlyInput = nullptr; 265 for (auto *Pred : predecessors(BB)) 266 if (LiveEdges.count({ Pred, BB })) { 267 HasLivePreds = true; 268 Value *Incoming = PN.getIncomingValueForBlock(Pred); 269 // Skip undefs. If they are present, we can assume they are equal to 270 // the non-undef input. 271 if (isa<UndefValue>(Incoming)) 272 continue; 273 // Two inputs. 274 if (OnlyInput && OnlyInput != Incoming) 275 return nullptr; 276 OnlyInput = Incoming; 277 } 278 279 assert(HasLivePreds && "No live predecessors?"); 280 // If all incoming live value were undefs, return undef. 281 return OnlyInput ? OnlyInput : UndefValue::get(PN.getType()); 282 }; 283 DenseMap<Value *, Value *> FirstIterValue; 284 285 // Use the following algorithm to prove we never take the latch on the 1st 286 // iteration: 287 // 1. Traverse in topological order, so that whenever we visit a block, all 288 // its predecessors are already visited. 289 // 2. If we can prove that the block may have only 1 predecessor on the 1st 290 // iteration, map all its phis onto input from this predecessor. 291 // 3a. If we can prove which successor of out block is taken on the 1st 292 // iteration, mark this successor live. 293 // 3b. If we cannot prove it, conservatively assume that all successors are 294 // live. 295 auto &DL = Header->getModule()->getDataLayout(); 296 const SimplifyQuery SQ(DL); 297 for (auto *BB : RPOT) { 298 Visited.insert(BB); 299 300 // This block is not reachable on the 1st iterations. 301 if (!LiveBlocks.count(BB)) 302 continue; 303 304 // Skip inner loops. 305 if (LI.getLoopFor(BB) != L) { 306 MarkAllSuccessorsLive(BB); 307 continue; 308 } 309 310 // If Phi has only one input from all live input blocks, use it. 311 for (auto &PN : BB->phis()) { 312 if (!PN.getType()->isIntegerTy()) 313 continue; 314 auto *Incoming = GetSoleInputOnFirstIteration(PN); 315 if (Incoming && DT.dominates(Incoming, BB->getTerminator())) { 316 Value *FirstIterV = 317 getValueOnFirstIteration(Incoming, FirstIterValue, SQ); 318 FirstIterValue[&PN] = FirstIterV; 319 } 320 } 321 322 using namespace PatternMatch; 323 Value *Cond; 324 BasicBlock *IfTrue, *IfFalse; 325 auto *Term = BB->getTerminator(); 326 if (match(Term, m_Br(m_Value(Cond), 327 m_BasicBlock(IfTrue), m_BasicBlock(IfFalse)))) { 328 auto *ICmp = dyn_cast<ICmpInst>(Cond); 329 if (!ICmp || !ICmp->getType()->isIntegerTy()) { 330 MarkAllSuccessorsLive(BB); 331 continue; 332 } 333 334 // Can we prove constant true or false for this condition? 335 auto *KnownCondition = getValueOnFirstIteration(ICmp, FirstIterValue, SQ); 336 if (KnownCondition == ICmp) { 337 // Failed to simplify. 338 MarkAllSuccessorsLive(BB); 339 continue; 340 } 341 if (isa<UndefValue>(KnownCondition)) { 342 // TODO: According to langref, branching by undef is undefined behavior. 343 // It means that, theoretically, we should be able to just continue 344 // without marking any successors as live. However, we are not certain 345 // how correct our compiler is at handling such cases. So we are being 346 // very conservative here. 347 // 348 // If there is a non-loop successor, always assume this branch leaves the 349 // loop. Otherwise, arbitrarily take IfTrue. 350 // 351 // Once we are certain that branching by undef is handled correctly by 352 // other transforms, we should not mark any successors live here. 353 if (L->contains(IfTrue) && L->contains(IfFalse)) 354 MarkLiveEdge(BB, IfTrue); 355 continue; 356 } 357 auto *ConstCondition = dyn_cast<ConstantInt>(KnownCondition); 358 if (!ConstCondition) { 359 // Non-constant condition, cannot analyze any further. 360 MarkAllSuccessorsLive(BB); 361 continue; 362 } 363 if (ConstCondition->isAllOnesValue()) 364 MarkLiveEdge(BB, IfTrue); 365 else 366 MarkLiveEdge(BB, IfFalse); 367 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 368 auto *SwitchValue = SI->getCondition(); 369 auto *SwitchValueOnFirstIter = 370 getValueOnFirstIteration(SwitchValue, FirstIterValue, SQ); 371 auto *ConstSwitchValue = dyn_cast<ConstantInt>(SwitchValueOnFirstIter); 372 if (!ConstSwitchValue) { 373 MarkAllSuccessorsLive(BB); 374 continue; 375 } 376 auto CaseIterator = SI->findCaseValue(ConstSwitchValue); 377 MarkLiveEdge(BB, CaseIterator->getCaseSuccessor()); 378 } else { 379 MarkAllSuccessorsLive(BB); 380 continue; 381 } 382 } 383 384 // We can break the latch if it wasn't live. 385 return !LiveEdges.count({ Latch, Header }); 386 } 387 388 /// If we can prove the backedge is untaken, remove it. This destroys the 389 /// loop, but leaves the (now trivially loop invariant) control flow and 390 /// side effects (if any) in place. 391 static LoopDeletionResult 392 breakBackedgeIfNotTaken(Loop *L, DominatorTree &DT, ScalarEvolution &SE, 393 LoopInfo &LI, MemorySSA *MSSA, 394 OptimizationRemarkEmitter &ORE) { 395 assert(L->isLCSSAForm(DT) && "Expected LCSSA!"); 396 397 if (!L->getLoopLatch()) 398 return LoopDeletionResult::Unmodified; 399 400 auto *BTC = SE.getSymbolicMaxBackedgeTakenCount(L); 401 if (BTC->isZero()) { 402 // SCEV knows this backedge isn't taken! 403 breakLoopBackedge(L, DT, SE, LI, MSSA); 404 return LoopDeletionResult::Deleted; 405 } 406 407 // If SCEV leaves open the possibility of a zero trip count, see if 408 // symbolically evaluating the first iteration lets us prove the backedge 409 // unreachable. 410 if (isa<SCEVCouldNotCompute>(BTC) || !SE.isKnownNonZero(BTC)) 411 if (canProveExitOnFirstIteration(L, DT, LI)) { 412 breakLoopBackedge(L, DT, SE, LI, MSSA); 413 return LoopDeletionResult::Deleted; 414 } 415 416 return LoopDeletionResult::Unmodified; 417 } 418 419 /// Remove a loop if it is dead. 420 /// 421 /// A loop is considered dead either if it does not impact the observable 422 /// behavior of the program other than finite running time, or if it is 423 /// required to make progress by an attribute such as 'mustprogress' or 424 /// 'llvm.loop.mustprogress' and does not make any. This may remove 425 /// infinite loops that have been required to make progress. 426 /// 427 /// This entire process relies pretty heavily on LoopSimplify form and LCSSA in 428 /// order to make various safety checks work. 429 /// 430 /// \returns true if any changes were made. This may mutate the loop even if it 431 /// is unable to delete it due to hoisting trivially loop invariant 432 /// instructions out of the loop. 433 static LoopDeletionResult deleteLoopIfDead(Loop *L, DominatorTree &DT, 434 ScalarEvolution &SE, LoopInfo &LI, 435 MemorySSA *MSSA, 436 OptimizationRemarkEmitter &ORE) { 437 assert(L->isLCSSAForm(DT) && "Expected LCSSA!"); 438 439 // We can only remove the loop if there is a preheader that we can branch from 440 // after removing it. Also, if LoopSimplify form is not available, stay out 441 // of trouble. 442 BasicBlock *Preheader = L->getLoopPreheader(); 443 if (!Preheader || !L->hasDedicatedExits()) { 444 LLVM_DEBUG( 445 dbgs() 446 << "Deletion requires Loop with preheader and dedicated exits.\n"); 447 return LoopDeletionResult::Unmodified; 448 } 449 450 BasicBlock *ExitBlock = L->getUniqueExitBlock(); 451 452 if (ExitBlock && isLoopNeverExecuted(L)) { 453 LLVM_DEBUG(dbgs() << "Loop is proven to never execute, delete it!"); 454 // We need to forget the loop before setting the incoming values of the exit 455 // phis to undef, so we properly invalidate the SCEV expressions for those 456 // phis. 457 SE.forgetLoop(L); 458 // Set incoming value to undef for phi nodes in the exit block. 459 for (PHINode &P : ExitBlock->phis()) { 460 std::fill(P.incoming_values().begin(), P.incoming_values().end(), 461 UndefValue::get(P.getType())); 462 } 463 ORE.emit([&]() { 464 return OptimizationRemark(DEBUG_TYPE, "NeverExecutes", L->getStartLoc(), 465 L->getHeader()) 466 << "Loop deleted because it never executes"; 467 }); 468 deleteDeadLoop(L, &DT, &SE, &LI, MSSA); 469 ++NumDeleted; 470 return LoopDeletionResult::Deleted; 471 } 472 473 // The remaining checks below are for a loop being dead because all statements 474 // in the loop are invariant. 475 SmallVector<BasicBlock *, 4> ExitingBlocks; 476 L->getExitingBlocks(ExitingBlocks); 477 478 // We require that the loop has at most one exit block. Otherwise, we'd be in 479 // the situation of needing to be able to solve statically which exit block 480 // will be branched to, or trying to preserve the branching logic in a loop 481 // invariant manner. 482 if (!ExitBlock && !L->hasNoExitBlocks()) { 483 LLVM_DEBUG(dbgs() << "Deletion requires at most one exit block.\n"); 484 return LoopDeletionResult::Unmodified; 485 } 486 // Finally, we have to check that the loop really is dead. 487 bool Changed = false; 488 if (!isLoopDead(L, SE, ExitingBlocks, ExitBlock, Changed, Preheader, LI)) { 489 LLVM_DEBUG(dbgs() << "Loop is not invariant, cannot delete.\n"); 490 return Changed ? LoopDeletionResult::Modified 491 : LoopDeletionResult::Unmodified; 492 } 493 494 LLVM_DEBUG(dbgs() << "Loop is invariant, delete it!"); 495 ORE.emit([&]() { 496 return OptimizationRemark(DEBUG_TYPE, "Invariant", L->getStartLoc(), 497 L->getHeader()) 498 << "Loop deleted because it is invariant"; 499 }); 500 deleteDeadLoop(L, &DT, &SE, &LI, MSSA); 501 ++NumDeleted; 502 503 return LoopDeletionResult::Deleted; 504 } 505 506 PreservedAnalyses LoopDeletionPass::run(Loop &L, LoopAnalysisManager &AM, 507 LoopStandardAnalysisResults &AR, 508 LPMUpdater &Updater) { 509 510 LLVM_DEBUG(dbgs() << "Analyzing Loop for deletion: "); 511 LLVM_DEBUG(L.dump()); 512 std::string LoopName = std::string(L.getName()); 513 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis 514 // pass. Function analyses need to be preserved across loop transformations 515 // but ORE cannot be preserved (see comment before the pass definition). 516 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 517 auto Result = deleteLoopIfDead(&L, AR.DT, AR.SE, AR.LI, AR.MSSA, ORE); 518 519 // If we can prove the backedge isn't taken, just break it and be done. This 520 // leaves the loop structure in place which means it can handle dispatching 521 // to the right exit based on whatever loop invariant structure remains. 522 if (Result != LoopDeletionResult::Deleted) 523 Result = merge(Result, breakBackedgeIfNotTaken(&L, AR.DT, AR.SE, AR.LI, 524 AR.MSSA, ORE)); 525 526 if (Result == LoopDeletionResult::Unmodified) 527 return PreservedAnalyses::all(); 528 529 if (Result == LoopDeletionResult::Deleted) 530 Updater.markLoopAsDeleted(L, LoopName); 531 532 auto PA = getLoopPassPreservedAnalyses(); 533 if (AR.MSSA) 534 PA.preserve<MemorySSAAnalysis>(); 535 return PA; 536 } 537 538 namespace { 539 class LoopDeletionLegacyPass : public LoopPass { 540 public: 541 static char ID; // Pass ID, replacement for typeid 542 LoopDeletionLegacyPass() : LoopPass(ID) { 543 initializeLoopDeletionLegacyPassPass(*PassRegistry::getPassRegistry()); 544 } 545 546 // Possibly eliminate loop L if it is dead. 547 bool runOnLoop(Loop *L, LPPassManager &) override; 548 549 void getAnalysisUsage(AnalysisUsage &AU) const override { 550 AU.addPreserved<MemorySSAWrapperPass>(); 551 getLoopAnalysisUsage(AU); 552 } 553 }; 554 } 555 556 char LoopDeletionLegacyPass::ID = 0; 557 INITIALIZE_PASS_BEGIN(LoopDeletionLegacyPass, "loop-deletion", 558 "Delete dead loops", false, false) 559 INITIALIZE_PASS_DEPENDENCY(LoopPass) 560 INITIALIZE_PASS_END(LoopDeletionLegacyPass, "loop-deletion", 561 "Delete dead loops", false, false) 562 563 Pass *llvm::createLoopDeletionPass() { return new LoopDeletionLegacyPass(); } 564 565 bool LoopDeletionLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 566 if (skipLoop(L)) 567 return false; 568 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 569 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 570 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 571 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 572 MemorySSA *MSSA = nullptr; 573 if (MSSAAnalysis) 574 MSSA = &MSSAAnalysis->getMSSA(); 575 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 576 // pass. Function analyses need to be preserved across loop transformations 577 // but ORE cannot be preserved (see comment before the pass definition). 578 OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); 579 580 LLVM_DEBUG(dbgs() << "Analyzing Loop for deletion: "); 581 LLVM_DEBUG(L->dump()); 582 583 LoopDeletionResult Result = deleteLoopIfDead(L, DT, SE, LI, MSSA, ORE); 584 585 // If we can prove the backedge isn't taken, just break it and be done. This 586 // leaves the loop structure in place which means it can handle dispatching 587 // to the right exit based on whatever loop invariant structure remains. 588 if (Result != LoopDeletionResult::Deleted) 589 Result = merge(Result, breakBackedgeIfNotTaken(L, DT, SE, LI, MSSA, ORE)); 590 591 if (Result == LoopDeletionResult::Deleted) 592 LPM.markLoopAsDeleted(*L); 593 594 return Result != LoopDeletionResult::Unmodified; 595 } 596