1 //===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Dead Loop Deletion Pass. This pass is responsible
11 // for eliminating loops with non-infinite computable trip counts that have no
12 // side effects or volatile instructions, and do not contribute to the
13 // computation of the function's return value.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Scalar.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/ScalarEvolution.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/Transforms/Utils/LoopUtils.h"
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "loop-delete"
28 
29 STATISTIC(NumDeleted, "Number of loops deleted");
30 
31 namespace {
32   class LoopDeletion : public LoopPass {
33   public:
34     static char ID; // Pass ID, replacement for typeid
35     LoopDeletion() : LoopPass(ID) {
36       initializeLoopDeletionPass(*PassRegistry::getPassRegistry());
37     }
38 
39     // Possibly eliminate loop L if it is dead.
40     bool runOnLoop(Loop *L, LPPassManager &) override;
41 
42     void getAnalysisUsage(AnalysisUsage &AU) const override {
43       getLoopAnalysisUsage(AU);
44     }
45 
46   private:
47     bool isLoopDead(Loop *L, SmallVectorImpl<BasicBlock *> &exitingBlocks,
48                     SmallVectorImpl<BasicBlock *> &exitBlocks,
49                     bool &Changed, BasicBlock *Preheader);
50 
51   };
52 }
53 
54 char LoopDeletion::ID = 0;
55 INITIALIZE_PASS_BEGIN(LoopDeletion, "loop-deletion",
56                 "Delete dead loops", false, false)
57 INITIALIZE_PASS_DEPENDENCY(LoopPass)
58 INITIALIZE_PASS_END(LoopDeletion, "loop-deletion",
59                 "Delete dead loops", false, false)
60 
61 Pass *llvm::createLoopDeletionPass() {
62   return new LoopDeletion();
63 }
64 
65 /// isLoopDead - Determined if a loop is dead.  This assumes that we've already
66 /// checked for unique exit and exiting blocks, and that the code is in LCSSA
67 /// form.
68 bool LoopDeletion::isLoopDead(Loop *L,
69                               SmallVectorImpl<BasicBlock *> &exitingBlocks,
70                               SmallVectorImpl<BasicBlock *> &exitBlocks,
71                               bool &Changed, BasicBlock *Preheader) {
72   BasicBlock *exitBlock = exitBlocks[0];
73 
74   // Make sure that all PHI entries coming from the loop are loop invariant.
75   // Because the code is in LCSSA form, any values used outside of the loop
76   // must pass through a PHI in the exit block, meaning that this check is
77   // sufficient to guarantee that no loop-variant values are used outside
78   // of the loop.
79   BasicBlock::iterator BI = exitBlock->begin();
80   while (PHINode *P = dyn_cast<PHINode>(BI)) {
81     Value *incoming = P->getIncomingValueForBlock(exitingBlocks[0]);
82 
83     // Make sure all exiting blocks produce the same incoming value for the exit
84     // block.  If there are different incoming values for different exiting
85     // blocks, then it is impossible to statically determine which value should
86     // be used.
87     for (unsigned i = 1, e = exitingBlocks.size(); i < e; ++i) {
88       if (incoming != P->getIncomingValueForBlock(exitingBlocks[i]))
89         return false;
90     }
91 
92     if (Instruction *I = dyn_cast<Instruction>(incoming))
93       if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator()))
94         return false;
95 
96     ++BI;
97   }
98 
99   // Make sure that no instructions in the block have potential side-effects.
100   // This includes instructions that could write to memory, and loads that are
101   // marked volatile.  This could be made more aggressive by using aliasing
102   // information to identify readonly and readnone calls.
103   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
104        LI != LE; ++LI) {
105     for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
106          BI != BE; ++BI) {
107       if (BI->mayHaveSideEffects())
108         return false;
109     }
110   }
111 
112   return true;
113 }
114 
115 /// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
116 /// observable behavior of the program other than finite running time.  Note
117 /// we do ensure that this never remove a loop that might be infinite, as doing
118 /// so could change the halting/non-halting nature of a program.
119 /// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
120 /// in order to make various safety checks work.
121 bool LoopDeletion::runOnLoop(Loop *L, LPPassManager &) {
122   if (skipOptnoneFunction(L))
123     return false;
124 
125   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
126   assert(L->isLCSSAForm(DT) && "Expected LCSSA!");
127 
128   // We can only remove the loop if there is a preheader that we can
129   // branch from after removing it.
130   BasicBlock *preheader = L->getLoopPreheader();
131   if (!preheader)
132     return false;
133 
134   // If LoopSimplify form is not available, stay out of trouble.
135   if (!L->hasDedicatedExits())
136     return false;
137 
138   // We can't remove loops that contain subloops.  If the subloops were dead,
139   // they would already have been removed in earlier executions of this pass.
140   if (L->begin() != L->end())
141     return false;
142 
143   SmallVector<BasicBlock*, 4> exitingBlocks;
144   L->getExitingBlocks(exitingBlocks);
145 
146   SmallVector<BasicBlock*, 4> exitBlocks;
147   L->getUniqueExitBlocks(exitBlocks);
148 
149   // We require that the loop only have a single exit block.  Otherwise, we'd
150   // be in the situation of needing to be able to solve statically which exit
151   // block will be branched to, or trying to preserve the branching logic in
152   // a loop invariant manner.
153   if (exitBlocks.size() != 1)
154     return false;
155 
156   // Finally, we have to check that the loop really is dead.
157   bool Changed = false;
158   if (!isLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
159     return Changed;
160 
161   // Don't remove loops for which we can't solve the trip count.
162   // They could be infinite, in which case we'd be changing program behavior.
163   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
164   const SCEV *S = SE.getMaxBackedgeTakenCount(L);
165   if (isa<SCEVCouldNotCompute>(S))
166     return Changed;
167 
168   // Now that we know the removal is safe, remove the loop by changing the
169   // branch from the preheader to go to the single exit block.
170   BasicBlock *exitBlock = exitBlocks[0];
171 
172   // Because we're deleting a large chunk of code at once, the sequence in which
173   // we remove things is very important to avoid invalidation issues.  Don't
174   // mess with this unless you have good reason and know what you're doing.
175 
176   // Tell ScalarEvolution that the loop is deleted. Do this before
177   // deleting the loop so that ScalarEvolution can look at the loop
178   // to determine what it needs to clean up.
179   SE.forgetLoop(L);
180 
181   // Connect the preheader directly to the exit block.
182   TerminatorInst *TI = preheader->getTerminator();
183   TI->replaceUsesOfWith(L->getHeader(), exitBlock);
184 
185   // Rewrite phis in the exit block to get their inputs from
186   // the preheader instead of the exiting block.
187   BasicBlock *exitingBlock = exitingBlocks[0];
188   BasicBlock::iterator BI = exitBlock->begin();
189   while (PHINode *P = dyn_cast<PHINode>(BI)) {
190     int j = P->getBasicBlockIndex(exitingBlock);
191     assert(j >= 0 && "Can't find exiting block in exit block's phi node!");
192     P->setIncomingBlock(j, preheader);
193     for (unsigned i = 1; i < exitingBlocks.size(); ++i)
194       P->removeIncomingValue(exitingBlocks[i]);
195     ++BI;
196   }
197 
198   // Update the dominator tree and remove the instructions and blocks that will
199   // be deleted from the reference counting scheme.
200   SmallVector<DomTreeNode*, 8> ChildNodes;
201   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
202        LI != LE; ++LI) {
203     // Move all of the block's children to be children of the preheader, which
204     // allows us to remove the domtree entry for the block.
205     ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end());
206     for (SmallVectorImpl<DomTreeNode *>::iterator DI = ChildNodes.begin(),
207          DE = ChildNodes.end(); DI != DE; ++DI) {
208       DT.changeImmediateDominator(*DI, DT[preheader]);
209     }
210 
211     ChildNodes.clear();
212     DT.eraseNode(*LI);
213 
214     // Remove the block from the reference counting scheme, so that we can
215     // delete it freely later.
216     (*LI)->dropAllReferences();
217   }
218 
219   // Erase the instructions and the blocks without having to worry
220   // about ordering because we already dropped the references.
221   // NOTE: This iteration is safe because erasing the block does not remove its
222   // entry from the loop's block list.  We do that in the next section.
223   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
224        LI != LE; ++LI)
225     (*LI)->eraseFromParent();
226 
227   // Finally, the blocks from loopinfo.  This has to happen late because
228   // otherwise our loop iterators won't work.
229   LoopInfo &loopInfo = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
230   SmallPtrSet<BasicBlock*, 8> blocks;
231   blocks.insert(L->block_begin(), L->block_end());
232   for (BasicBlock *BB : blocks)
233     loopInfo.removeBlock(BB);
234 
235   // The last step is to update LoopInfo now that we've eliminated this loop.
236   loopInfo.markAsRemoved(L);
237   Changed = true;
238 
239   ++NumDeleted;
240 
241   return Changed;
242 }
243