1 //===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Dead Loop Deletion Pass. This pass is responsible
10 // for eliminating loops with non-infinite computable trip counts that have no
11 // side effects or volatile instructions, and do not contribute to the
12 // computation of the function's return value.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Scalar/LoopDeletion.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/LoopPass.h"
24 #include "llvm/Analysis/MemorySSA.h"
25 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
26 #include "llvm/IR/Dominators.h"
27 
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Transforms/Scalar.h"
31 #include "llvm/Transforms/Scalar/LoopPassManager.h"
32 #include "llvm/Transforms/Utils/LoopUtils.h"
33 
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "loop-delete"
37 
38 STATISTIC(NumDeleted, "Number of loops deleted");
39 
40 static cl::opt<bool> EnableSymbolicExecution(
41     "loop-deletion-enable-symbolic-execution", cl::Hidden, cl::init(true),
42     cl::desc("Break backedge through symbolic execution of 1st iteration "
43              "attempting to prove that the backedge is never taken"));
44 
45 enum class LoopDeletionResult {
46   Unmodified,
47   Modified,
48   Deleted,
49 };
50 
51 static LoopDeletionResult merge(LoopDeletionResult A, LoopDeletionResult B) {
52   if (A == LoopDeletionResult::Deleted || B == LoopDeletionResult::Deleted)
53     return LoopDeletionResult::Deleted;
54   if (A == LoopDeletionResult::Modified || B == LoopDeletionResult::Modified)
55     return LoopDeletionResult::Modified;
56   return LoopDeletionResult::Unmodified;
57 }
58 
59 /// Determines if a loop is dead.
60 ///
61 /// This assumes that we've already checked for unique exit and exiting blocks,
62 /// and that the code is in LCSSA form.
63 static bool isLoopDead(Loop *L, ScalarEvolution &SE,
64                        SmallVectorImpl<BasicBlock *> &ExitingBlocks,
65                        BasicBlock *ExitBlock, bool &Changed,
66                        BasicBlock *Preheader, LoopInfo &LI) {
67   // Make sure that all PHI entries coming from the loop are loop invariant.
68   // Because the code is in LCSSA form, any values used outside of the loop
69   // must pass through a PHI in the exit block, meaning that this check is
70   // sufficient to guarantee that no loop-variant values are used outside
71   // of the loop.
72   bool AllEntriesInvariant = true;
73   bool AllOutgoingValuesSame = true;
74   if (!L->hasNoExitBlocks()) {
75     for (PHINode &P : ExitBlock->phis()) {
76       Value *incoming = P.getIncomingValueForBlock(ExitingBlocks[0]);
77 
78       // Make sure all exiting blocks produce the same incoming value for the
79       // block. If there are different incoming values for different exiting
80       // blocks, then it is impossible to statically determine which value
81       // should be used.
82       AllOutgoingValuesSame =
83           all_of(makeArrayRef(ExitingBlocks).slice(1), [&](BasicBlock *BB) {
84             return incoming == P.getIncomingValueForBlock(BB);
85           });
86 
87       if (!AllOutgoingValuesSame)
88         break;
89 
90       if (Instruction *I = dyn_cast<Instruction>(incoming))
91         if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator())) {
92           AllEntriesInvariant = false;
93           break;
94         }
95     }
96   }
97 
98   if (Changed)
99     SE.forgetLoopDispositions(L);
100 
101   if (!AllEntriesInvariant || !AllOutgoingValuesSame)
102     return false;
103 
104   // Make sure that no instructions in the block have potential side-effects.
105   // This includes instructions that could write to memory, and loads that are
106   // marked volatile.
107   for (auto &I : L->blocks())
108     if (any_of(*I, [](Instruction &I) {
109           return I.mayHaveSideEffects() && !I.isDroppable();
110         }))
111       return false;
112 
113   // The loop or any of its sub-loops looping infinitely is legal. The loop can
114   // only be considered dead if either
115   // a. the function is mustprogress.
116   // b. all (sub-)loops are mustprogress or have a known trip-count.
117   if (L->getHeader()->getParent()->mustProgress())
118     return true;
119 
120   LoopBlocksRPO RPOT(L);
121   RPOT.perform(&LI);
122   // If the loop contains an irreducible cycle, it may loop infinitely.
123   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
124     return false;
125 
126   SmallVector<Loop *, 8> WorkList;
127   WorkList.push_back(L);
128   while (!WorkList.empty()) {
129     Loop *Current = WorkList.pop_back_val();
130     if (hasMustProgress(Current))
131       continue;
132 
133     const SCEV *S = SE.getConstantMaxBackedgeTakenCount(Current);
134     if (isa<SCEVCouldNotCompute>(S)) {
135       LLVM_DEBUG(
136           dbgs() << "Could not compute SCEV MaxBackedgeTakenCount and was "
137                     "not required to make progress.\n");
138       return false;
139     }
140     WorkList.append(Current->begin(), Current->end());
141   }
142   return true;
143 }
144 
145 /// This function returns true if there is no viable path from the
146 /// entry block to the header of \p L. Right now, it only does
147 /// a local search to save compile time.
148 static bool isLoopNeverExecuted(Loop *L) {
149   using namespace PatternMatch;
150 
151   auto *Preheader = L->getLoopPreheader();
152   // TODO: We can relax this constraint, since we just need a loop
153   // predecessor.
154   assert(Preheader && "Needs preheader!");
155 
156   if (Preheader->isEntryBlock())
157     return false;
158   // All predecessors of the preheader should have a constant conditional
159   // branch, with the loop's preheader as not-taken.
160   for (auto *Pred: predecessors(Preheader)) {
161     BasicBlock *Taken, *NotTaken;
162     ConstantInt *Cond;
163     if (!match(Pred->getTerminator(),
164                m_Br(m_ConstantInt(Cond), Taken, NotTaken)))
165       return false;
166     if (!Cond->getZExtValue())
167       std::swap(Taken, NotTaken);
168     if (Taken == Preheader)
169       return false;
170   }
171   assert(!pred_empty(Preheader) &&
172          "Preheader should have predecessors at this point!");
173   // All the predecessors have the loop preheader as not-taken target.
174   return true;
175 }
176 
177 static Value *
178 getValueOnFirstIteration(Value *V, DenseMap<Value *, Value *> &FirstIterValue,
179                          const SimplifyQuery &SQ) {
180   // Quick hack: do not flood cache with non-instruction values.
181   if (!isa<Instruction>(V))
182     return V;
183   // Do we already know cached result?
184   auto Existing = FirstIterValue.find(V);
185   if (Existing != FirstIterValue.end())
186     return Existing->second;
187   Value *FirstIterV = nullptr;
188   if (auto *BO = dyn_cast<BinaryOperator>(V)) {
189     Value *LHS =
190         getValueOnFirstIteration(BO->getOperand(0), FirstIterValue, SQ);
191     Value *RHS =
192         getValueOnFirstIteration(BO->getOperand(1), FirstIterValue, SQ);
193     FirstIterV = SimplifyBinOp(BO->getOpcode(), LHS, RHS, SQ);
194   } else if (auto *Cmp = dyn_cast<ICmpInst>(V)) {
195     Value *LHS =
196         getValueOnFirstIteration(Cmp->getOperand(0), FirstIterValue, SQ);
197     Value *RHS =
198         getValueOnFirstIteration(Cmp->getOperand(1), FirstIterValue, SQ);
199     FirstIterV = SimplifyICmpInst(Cmp->getPredicate(), LHS, RHS, SQ);
200   } else if (auto *Select = dyn_cast<SelectInst>(V)) {
201     Value *Cond =
202         getValueOnFirstIteration(Select->getCondition(), FirstIterValue, SQ);
203     if (auto *C = dyn_cast<ConstantInt>(Cond)) {
204       auto *Selected = C->isAllOnesValue() ? Select->getTrueValue()
205                                            : Select->getFalseValue();
206       FirstIterV = getValueOnFirstIteration(Selected, FirstIterValue, SQ);
207     }
208   }
209   if (!FirstIterV)
210     FirstIterV = V;
211   FirstIterValue[V] = FirstIterV;
212   return FirstIterV;
213 }
214 
215 // Try to prove that one of conditions that dominates the latch must exit on 1st
216 // iteration.
217 static bool canProveExitOnFirstIteration(Loop *L, DominatorTree &DT,
218                                          LoopInfo &LI) {
219   // Disabled by option.
220   if (!EnableSymbolicExecution)
221     return false;
222 
223   BasicBlock *Predecessor = L->getLoopPredecessor();
224   BasicBlock *Latch = L->getLoopLatch();
225 
226   if (!Predecessor || !Latch)
227     return false;
228 
229   LoopBlocksRPO RPOT(L);
230   RPOT.perform(&LI);
231 
232   // For the optimization to be correct, we need RPOT to have a property that
233   // each block is processed after all its predecessors, which may only be
234   // violated for headers of the current loop and all nested loops. Irreducible
235   // CFG provides multiple ways to break this assumption, so we do not want to
236   // deal with it.
237   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
238     return false;
239 
240   BasicBlock *Header = L->getHeader();
241   // Blocks that are reachable on the 1st iteration.
242   SmallPtrSet<BasicBlock *, 4> LiveBlocks;
243   // Edges that are reachable on the 1st iteration.
244   DenseSet<BasicBlockEdge> LiveEdges;
245   LiveBlocks.insert(Header);
246 
247   SmallPtrSet<BasicBlock *, 4> Visited;
248   auto MarkLiveEdge = [&](BasicBlock *From, BasicBlock *To) {
249     assert(LiveBlocks.count(From) && "Must be live!");
250     assert((LI.isLoopHeader(To) || !Visited.count(To)) &&
251            "Only canonical backedges are allowed. Irreducible CFG?");
252     assert((LiveBlocks.count(To) || !Visited.count(To)) &&
253            "We already discarded this block as dead!");
254     LiveBlocks.insert(To);
255     LiveEdges.insert({ From, To });
256   };
257 
258   auto MarkAllSuccessorsLive = [&](BasicBlock *BB) {
259     for (auto *Succ : successors(BB))
260       MarkLiveEdge(BB, Succ);
261   };
262 
263   // Check if there is only one value coming from all live predecessor blocks.
264   // Note that because we iterate in RPOT, we have already visited all its
265   // (non-latch) predecessors.
266   auto GetSoleInputOnFirstIteration = [&](PHINode & PN)->Value * {
267     BasicBlock *BB = PN.getParent();
268     bool HasLivePreds = false;
269     (void)HasLivePreds;
270     if (BB == Header)
271       return PN.getIncomingValueForBlock(Predecessor);
272     Value *OnlyInput = nullptr;
273     for (auto *Pred : predecessors(BB))
274       if (LiveEdges.count({ Pred, BB })) {
275         HasLivePreds = true;
276         Value *Incoming = PN.getIncomingValueForBlock(Pred);
277         // Skip undefs. If they are present, we can assume they are equal to
278         // the non-undef input.
279         if (isa<UndefValue>(Incoming))
280           continue;
281         // Two inputs.
282         if (OnlyInput && OnlyInput != Incoming)
283           return nullptr;
284         OnlyInput = Incoming;
285       }
286 
287     assert(HasLivePreds && "No live predecessors?");
288     // If all incoming live value were undefs, return undef.
289     return OnlyInput ? OnlyInput : UndefValue::get(PN.getType());
290   };
291   DenseMap<Value *, Value *> FirstIterValue;
292 
293   // Use the following algorithm to prove we never take the latch on the 1st
294   // iteration:
295   // 1. Traverse in topological order, so that whenever we visit a block, all
296   //    its predecessors are already visited.
297   // 2. If we can prove that the block may have only 1 predecessor on the 1st
298   //    iteration, map all its phis onto input from this predecessor.
299   // 3a. If we can prove which successor of out block is taken on the 1st
300   //     iteration, mark this successor live.
301   // 3b. If we cannot prove it, conservatively assume that all successors are
302   //     live.
303   auto &DL = Header->getModule()->getDataLayout();
304   const SimplifyQuery SQ(DL);
305   for (auto *BB : RPOT) {
306     Visited.insert(BB);
307 
308     // This block is not reachable on the 1st iterations.
309     if (!LiveBlocks.count(BB))
310       continue;
311 
312     // Skip inner loops.
313     if (LI.getLoopFor(BB) != L) {
314       MarkAllSuccessorsLive(BB);
315       continue;
316     }
317 
318     // If Phi has only one input from all live input blocks, use it.
319     for (auto &PN : BB->phis()) {
320       if (!PN.getType()->isIntegerTy())
321         continue;
322       auto *Incoming = GetSoleInputOnFirstIteration(PN);
323       if (Incoming && DT.dominates(Incoming, BB->getTerminator())) {
324         Value *FirstIterV =
325             getValueOnFirstIteration(Incoming, FirstIterValue, SQ);
326         FirstIterValue[&PN] = FirstIterV;
327       }
328     }
329 
330     using namespace PatternMatch;
331     Value *Cond;
332     BasicBlock *IfTrue, *IfFalse;
333     auto *Term = BB->getTerminator();
334     if (match(Term, m_Br(m_Value(Cond),
335                          m_BasicBlock(IfTrue), m_BasicBlock(IfFalse)))) {
336       auto *ICmp = dyn_cast<ICmpInst>(Cond);
337       if (!ICmp || !ICmp->getType()->isIntegerTy()) {
338         MarkAllSuccessorsLive(BB);
339         continue;
340       }
341 
342       // Can we prove constant true or false for this condition?
343       auto *KnownCondition = getValueOnFirstIteration(ICmp, FirstIterValue, SQ);
344       if (KnownCondition == ICmp) {
345         // Failed to simplify.
346         MarkAllSuccessorsLive(BB);
347         continue;
348       }
349       if (isa<UndefValue>(KnownCondition)) {
350         // TODO: According to langref, branching by undef is undefined behavior.
351         // It means that, theoretically, we should be able to just continue
352         // without marking any successors as live. However, we are not certain
353         // how correct our compiler is at handling such cases. So we are being
354         // very conservative here.
355         //
356         // If there is a non-loop successor, always assume this branch leaves the
357         // loop. Otherwise, arbitrarily take IfTrue.
358         //
359         // Once we are certain that branching by undef is handled correctly by
360         // other transforms, we should not mark any successors live here.
361         if (L->contains(IfTrue) && L->contains(IfFalse))
362           MarkLiveEdge(BB, IfTrue);
363         continue;
364       }
365       auto *ConstCondition = dyn_cast<ConstantInt>(KnownCondition);
366       if (!ConstCondition) {
367         // Non-constant condition, cannot analyze any further.
368         MarkAllSuccessorsLive(BB);
369         continue;
370       }
371       if (ConstCondition->isAllOnesValue())
372         MarkLiveEdge(BB, IfTrue);
373       else
374         MarkLiveEdge(BB, IfFalse);
375     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
376       auto *SwitchValue = SI->getCondition();
377       auto *SwitchValueOnFirstIter =
378           getValueOnFirstIteration(SwitchValue, FirstIterValue, SQ);
379       auto *ConstSwitchValue = dyn_cast<ConstantInt>(SwitchValueOnFirstIter);
380       if (!ConstSwitchValue) {
381         MarkAllSuccessorsLive(BB);
382         continue;
383       }
384       auto CaseIterator = SI->findCaseValue(ConstSwitchValue);
385       MarkLiveEdge(BB, CaseIterator->getCaseSuccessor());
386     } else {
387       MarkAllSuccessorsLive(BB);
388       continue;
389     }
390   }
391 
392   // We can break the latch if it wasn't live.
393   return !LiveEdges.count({ Latch, Header });
394 }
395 
396 /// If we can prove the backedge is untaken, remove it.  This destroys the
397 /// loop, but leaves the (now trivially loop invariant) control flow and
398 /// side effects (if any) in place.
399 static LoopDeletionResult
400 breakBackedgeIfNotTaken(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
401                         LoopInfo &LI, MemorySSA *MSSA,
402                         OptimizationRemarkEmitter &ORE) {
403   assert(L->isLCSSAForm(DT) && "Expected LCSSA!");
404 
405   if (!L->getLoopLatch())
406     return LoopDeletionResult::Unmodified;
407 
408   auto *BTC = SE.getSymbolicMaxBackedgeTakenCount(L);
409   if (BTC->isZero()) {
410     // SCEV knows this backedge isn't taken!
411     breakLoopBackedge(L, DT, SE, LI, MSSA);
412     return LoopDeletionResult::Deleted;
413   }
414 
415   // If SCEV leaves open the possibility of a zero trip count, see if
416   // symbolically evaluating the first iteration lets us prove the backedge
417   // unreachable.
418   if (isa<SCEVCouldNotCompute>(BTC) || !SE.isKnownNonZero(BTC))
419     if (canProveExitOnFirstIteration(L, DT, LI)) {
420       breakLoopBackedge(L, DT, SE, LI, MSSA);
421       return LoopDeletionResult::Deleted;
422     }
423 
424   return LoopDeletionResult::Unmodified;
425 }
426 
427 /// Remove a loop if it is dead.
428 ///
429 /// A loop is considered dead either if it does not impact the observable
430 /// behavior of the program other than finite running time, or if it is
431 /// required to make progress by an attribute such as 'mustprogress' or
432 /// 'llvm.loop.mustprogress' and does not make any. This may remove
433 /// infinite loops that have been required to make progress.
434 ///
435 /// This entire process relies pretty heavily on LoopSimplify form and LCSSA in
436 /// order to make various safety checks work.
437 ///
438 /// \returns true if any changes were made. This may mutate the loop even if it
439 /// is unable to delete it due to hoisting trivially loop invariant
440 /// instructions out of the loop.
441 static LoopDeletionResult deleteLoopIfDead(Loop *L, DominatorTree &DT,
442                                            ScalarEvolution &SE, LoopInfo &LI,
443                                            MemorySSA *MSSA,
444                                            OptimizationRemarkEmitter &ORE) {
445   assert(L->isLCSSAForm(DT) && "Expected LCSSA!");
446 
447   // We can only remove the loop if there is a preheader that we can branch from
448   // after removing it. Also, if LoopSimplify form is not available, stay out
449   // of trouble.
450   BasicBlock *Preheader = L->getLoopPreheader();
451   if (!Preheader || !L->hasDedicatedExits()) {
452     LLVM_DEBUG(
453         dbgs()
454         << "Deletion requires Loop with preheader and dedicated exits.\n");
455     return LoopDeletionResult::Unmodified;
456   }
457 
458   BasicBlock *ExitBlock = L->getUniqueExitBlock();
459 
460   if (ExitBlock && isLoopNeverExecuted(L)) {
461     LLVM_DEBUG(dbgs() << "Loop is proven to never execute, delete it!");
462     // We need to forget the loop before setting the incoming values of the exit
463     // phis to undef, so we properly invalidate the SCEV expressions for those
464     // phis.
465     SE.forgetLoop(L);
466     // Set incoming value to undef for phi nodes in the exit block.
467     for (PHINode &P : ExitBlock->phis()) {
468       std::fill(P.incoming_values().begin(), P.incoming_values().end(),
469                 UndefValue::get(P.getType()));
470     }
471     ORE.emit([&]() {
472       return OptimizationRemark(DEBUG_TYPE, "NeverExecutes", L->getStartLoc(),
473                                 L->getHeader())
474              << "Loop deleted because it never executes";
475     });
476     deleteDeadLoop(L, &DT, &SE, &LI, MSSA);
477     ++NumDeleted;
478     return LoopDeletionResult::Deleted;
479   }
480 
481   // The remaining checks below are for a loop being dead because all statements
482   // in the loop are invariant.
483   SmallVector<BasicBlock *, 4> ExitingBlocks;
484   L->getExitingBlocks(ExitingBlocks);
485 
486   // We require that the loop has at most one exit block. Otherwise, we'd be in
487   // the situation of needing to be able to solve statically which exit block
488   // will be branched to, or trying to preserve the branching logic in a loop
489   // invariant manner.
490   if (!ExitBlock && !L->hasNoExitBlocks()) {
491     LLVM_DEBUG(dbgs() << "Deletion requires at most one exit block.\n");
492     return LoopDeletionResult::Unmodified;
493   }
494   // Finally, we have to check that the loop really is dead.
495   bool Changed = false;
496   if (!isLoopDead(L, SE, ExitingBlocks, ExitBlock, Changed, Preheader, LI)) {
497     LLVM_DEBUG(dbgs() << "Loop is not invariant, cannot delete.\n");
498     return Changed ? LoopDeletionResult::Modified
499                    : LoopDeletionResult::Unmodified;
500   }
501 
502   LLVM_DEBUG(dbgs() << "Loop is invariant, delete it!");
503   ORE.emit([&]() {
504     return OptimizationRemark(DEBUG_TYPE, "Invariant", L->getStartLoc(),
505                               L->getHeader())
506            << "Loop deleted because it is invariant";
507   });
508   deleteDeadLoop(L, &DT, &SE, &LI, MSSA);
509   ++NumDeleted;
510 
511   return LoopDeletionResult::Deleted;
512 }
513 
514 PreservedAnalyses LoopDeletionPass::run(Loop &L, LoopAnalysisManager &AM,
515                                         LoopStandardAnalysisResults &AR,
516                                         LPMUpdater &Updater) {
517 
518   LLVM_DEBUG(dbgs() << "Analyzing Loop for deletion: ");
519   LLVM_DEBUG(L.dump());
520   std::string LoopName = std::string(L.getName());
521   // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
522   // pass. Function analyses need to be preserved across loop transformations
523   // but ORE cannot be preserved (see comment before the pass definition).
524   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
525   auto Result = deleteLoopIfDead(&L, AR.DT, AR.SE, AR.LI, AR.MSSA, ORE);
526 
527   // If we can prove the backedge isn't taken, just break it and be done.  This
528   // leaves the loop structure in place which means it can handle dispatching
529   // to the right exit based on whatever loop invariant structure remains.
530   if (Result != LoopDeletionResult::Deleted)
531     Result = merge(Result, breakBackedgeIfNotTaken(&L, AR.DT, AR.SE, AR.LI,
532                                                    AR.MSSA, ORE));
533 
534   if (Result == LoopDeletionResult::Unmodified)
535     return PreservedAnalyses::all();
536 
537   if (Result == LoopDeletionResult::Deleted)
538     Updater.markLoopAsDeleted(L, LoopName);
539 
540   auto PA = getLoopPassPreservedAnalyses();
541   if (AR.MSSA)
542     PA.preserve<MemorySSAAnalysis>();
543   return PA;
544 }
545 
546 namespace {
547 class LoopDeletionLegacyPass : public LoopPass {
548 public:
549   static char ID; // Pass ID, replacement for typeid
550   LoopDeletionLegacyPass() : LoopPass(ID) {
551     initializeLoopDeletionLegacyPassPass(*PassRegistry::getPassRegistry());
552   }
553 
554   // Possibly eliminate loop L if it is dead.
555   bool runOnLoop(Loop *L, LPPassManager &) override;
556 
557   void getAnalysisUsage(AnalysisUsage &AU) const override {
558     AU.addPreserved<MemorySSAWrapperPass>();
559     getLoopAnalysisUsage(AU);
560   }
561 };
562 }
563 
564 char LoopDeletionLegacyPass::ID = 0;
565 INITIALIZE_PASS_BEGIN(LoopDeletionLegacyPass, "loop-deletion",
566                       "Delete dead loops", false, false)
567 INITIALIZE_PASS_DEPENDENCY(LoopPass)
568 INITIALIZE_PASS_END(LoopDeletionLegacyPass, "loop-deletion",
569                     "Delete dead loops", false, false)
570 
571 Pass *llvm::createLoopDeletionPass() { return new LoopDeletionLegacyPass(); }
572 
573 bool LoopDeletionLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
574   if (skipLoop(L))
575     return false;
576   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
577   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
578   LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
579   auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
580   MemorySSA *MSSA = nullptr;
581   if (MSSAAnalysis)
582     MSSA = &MSSAAnalysis->getMSSA();
583   // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
584   // pass.  Function analyses need to be preserved across loop transformations
585   // but ORE cannot be preserved (see comment before the pass definition).
586   OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
587 
588   LLVM_DEBUG(dbgs() << "Analyzing Loop for deletion: ");
589   LLVM_DEBUG(L->dump());
590 
591   LoopDeletionResult Result = deleteLoopIfDead(L, DT, SE, LI, MSSA, ORE);
592 
593   // If we can prove the backedge isn't taken, just break it and be done.  This
594   // leaves the loop structure in place which means it can handle dispatching
595   // to the right exit based on whatever loop invariant structure remains.
596   if (Result != LoopDeletionResult::Deleted)
597     Result = merge(Result, breakBackedgeIfNotTaken(L, DT, SE, LI, MSSA, ORE));
598 
599   if (Result == LoopDeletionResult::Deleted)
600     LPM.markLoopAsDeleted(*L);
601 
602   return Result != LoopDeletionResult::Unmodified;
603 }
604