1 //===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // CUDA C/C++ includes memory space designation as variable type qualifers (such 11 // as __global__ and __shared__). Knowing the space of a memory access allows 12 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 13 // shared memory can be translated to `ld.shared` which is roughly 10% faster 14 // than a generic `ld` on an NVIDIA Tesla K40c. 15 // 16 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 17 // compilers must infer the memory space of an address expression from 18 // type-qualified variables. 19 // 20 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 21 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 22 // places only type-qualified variables in specific address spaces, and then 23 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 24 // (so-called the generic address space) for other instructions to use. 25 // 26 // For example, the Clang translates the following CUDA code 27 // __shared__ float a[10]; 28 // float v = a[i]; 29 // to 30 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 31 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 32 // %v = load float, float* %1 ; emits ld.f32 33 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 34 // redirected to %0 (the generic version of @a). 35 // 36 // The optimization implemented in this file propagates specific address spaces 37 // from type-qualified variable declarations to its users. For example, it 38 // optimizes the above IR to 39 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 40 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 41 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 42 // codegen is able to emit ld.shared.f32 for %v. 43 // 44 // Address space inference works in two steps. First, it uses a data-flow 45 // analysis to infer as many generic pointers as possible to point to only one 46 // specific address space. In the above example, it can prove that %1 only 47 // points to addrspace(3). This algorithm was published in 48 // CUDA: Compiling and optimizing for a GPU platform 49 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 50 // ICCS 2012 51 // 52 // Then, address space inference replaces all refinable generic pointers with 53 // equivalent specific pointers. 54 // 55 // The major challenge of implementing this optimization is handling PHINodes, 56 // which may create loops in the data flow graph. This brings two complications. 57 // 58 // First, the data flow analysis in Step 1 needs to be circular. For example, 59 // %generic.input = addrspacecast float addrspace(3)* %input to float* 60 // loop: 61 // %y = phi [ %generic.input, %y2 ] 62 // %y2 = getelementptr %y, 1 63 // %v = load %y2 64 // br ..., label %loop, ... 65 // proving %y specific requires proving both %generic.input and %y2 specific, 66 // but proving %y2 specific circles back to %y. To address this complication, 67 // the data flow analysis operates on a lattice: 68 // uninitialized > specific address spaces > generic. 69 // All address expressions (our implementation only considers phi, bitcast, 70 // addrspacecast, and getelementptr) start with the uninitialized address space. 71 // The monotone transfer function moves the address space of a pointer down a 72 // lattice path from uninitialized to specific and then to generic. A join 73 // operation of two different specific address spaces pushes the expression down 74 // to the generic address space. The analysis completes once it reaches a fixed 75 // point. 76 // 77 // Second, IR rewriting in Step 2 also needs to be circular. For example, 78 // converting %y to addrspace(3) requires the compiler to know the converted 79 // %y2, but converting %y2 needs the converted %y. To address this complication, 80 // we break these cycles using "undef" placeholders. When converting an 81 // instruction `I` to a new address space, if its operand `Op` is not converted 82 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later. 83 // For instance, our algorithm first converts %y to 84 // %y' = phi float addrspace(3)* [ %input, undef ] 85 // Then, it converts %y2 to 86 // %y2' = getelementptr %y', 1 87 // Finally, it fixes the undef in %y' so that 88 // %y' = phi float addrspace(3)* [ %input, %y2' ] 89 // 90 //===----------------------------------------------------------------------===// 91 92 #include "llvm/ADT/DenseSet.h" 93 #include "llvm/ADT/Optional.h" 94 #include "llvm/ADT/SetVector.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/IRBuilder.h" 98 #include "llvm/IR/InstIterator.h" 99 #include "llvm/IR/Instructions.h" 100 #include "llvm/IR/IntrinsicInst.h" 101 #include "llvm/IR/Operator.h" 102 #include "llvm/Support/Debug.h" 103 #include "llvm/Support/raw_ostream.h" 104 #include "llvm/Transforms/Scalar.h" 105 #include "llvm/Transforms/Utils/Local.h" 106 #include "llvm/Transforms/Utils/ValueMapper.h" 107 108 #define DEBUG_TYPE "infer-address-spaces" 109 110 using namespace llvm; 111 112 namespace { 113 static const unsigned UninitializedAddressSpace = ~0u; 114 115 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 116 117 /// \brief InferAddressSpaces 118 class InferAddressSpaces : public FunctionPass { 119 /// Target specific address space which uses of should be replaced if 120 /// possible. 121 unsigned FlatAddrSpace; 122 123 public: 124 static char ID; 125 126 InferAddressSpaces() : FunctionPass(ID) {} 127 128 void getAnalysisUsage(AnalysisUsage &AU) const override { 129 AU.setPreservesCFG(); 130 AU.addRequired<TargetTransformInfoWrapperPass>(); 131 } 132 133 bool runOnFunction(Function &F) override; 134 135 private: 136 // Returns the new address space of V if updated; otherwise, returns None. 137 Optional<unsigned> 138 updateAddressSpace(const Value &V, 139 const ValueToAddrSpaceMapTy &InferredAddrSpace) const; 140 141 // Tries to infer the specific address space of each address expression in 142 // Postorder. 143 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 144 ValueToAddrSpaceMapTy *InferredAddrSpace) const; 145 146 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 147 148 // Changes the flat address expressions in function F to point to specific 149 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 150 // all flat expressions in the use-def graph of function F. 151 bool 152 rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 153 const ValueToAddrSpaceMapTy &InferredAddrSpace, 154 Function *F) const; 155 156 void appendsFlatAddressExpressionToPostorderStack( 157 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack, 158 DenseSet<Value *> &Visited) const; 159 160 bool rewriteIntrinsicOperands(IntrinsicInst *II, 161 Value *OldV, Value *NewV) const; 162 void collectRewritableIntrinsicOperands( 163 IntrinsicInst *II, 164 std::vector<std::pair<Value *, bool>> &PostorderStack, 165 DenseSet<Value *> &Visited) const; 166 167 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const; 168 169 Value *cloneValueWithNewAddressSpace( 170 Value *V, unsigned NewAddrSpace, 171 const ValueToValueMapTy &ValueWithNewAddrSpace, 172 SmallVectorImpl<const Use *> *UndefUsesToFix) const; 173 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 174 }; 175 } // end anonymous namespace 176 177 char InferAddressSpaces::ID = 0; 178 179 namespace llvm { 180 void initializeInferAddressSpacesPass(PassRegistry &); 181 } 182 183 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 184 false, false) 185 186 // Returns true if V is an address expression. 187 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 188 // getelementptr operators. 189 static bool isAddressExpression(const Value &V) { 190 if (!isa<Operator>(V)) 191 return false; 192 193 switch (cast<Operator>(V).getOpcode()) { 194 case Instruction::PHI: 195 case Instruction::BitCast: 196 case Instruction::AddrSpaceCast: 197 case Instruction::GetElementPtr: 198 case Instruction::Select: 199 return true; 200 default: 201 return false; 202 } 203 } 204 205 // Returns the pointer operands of V. 206 // 207 // Precondition: V is an address expression. 208 static SmallVector<Value *, 2> getPointerOperands(const Value &V) { 209 const Operator &Op = cast<Operator>(V); 210 switch (Op.getOpcode()) { 211 case Instruction::PHI: { 212 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 213 return SmallVector<Value *, 2>(IncomingValues.begin(), 214 IncomingValues.end()); 215 } 216 case Instruction::BitCast: 217 case Instruction::AddrSpaceCast: 218 case Instruction::GetElementPtr: 219 return {Op.getOperand(0)}; 220 case Instruction::Select: 221 return {Op.getOperand(1), Op.getOperand(2)}; 222 default: 223 llvm_unreachable("Unexpected instruction type."); 224 } 225 } 226 227 // TODO: Move logic to TTI? 228 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II, 229 Value *OldV, 230 Value *NewV) const { 231 Module *M = II->getParent()->getParent()->getParent(); 232 233 switch (II->getIntrinsicID()) { 234 case Intrinsic::amdgcn_atomic_inc: 235 case Intrinsic::amdgcn_atomic_dec:{ 236 const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4)); 237 if (!IsVolatile || !IsVolatile->isZero()) 238 return false; 239 240 LLVM_FALLTHROUGH; 241 } 242 case Intrinsic::objectsize: { 243 Type *DestTy = II->getType(); 244 Type *SrcTy = NewV->getType(); 245 Function *NewDecl = 246 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 247 II->setArgOperand(0, NewV); 248 II->setCalledFunction(NewDecl); 249 return true; 250 } 251 default: 252 return false; 253 } 254 } 255 256 // TODO: Move logic to TTI? 257 void InferAddressSpaces::collectRewritableIntrinsicOperands( 258 IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack, 259 DenseSet<Value *> &Visited) const { 260 switch (II->getIntrinsicID()) { 261 case Intrinsic::objectsize: 262 case Intrinsic::amdgcn_atomic_inc: 263 case Intrinsic::amdgcn_atomic_dec: 264 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 265 PostorderStack, Visited); 266 break; 267 default: 268 break; 269 } 270 } 271 272 // Returns all flat address expressions in function F. The elements are 273 // If V is an unvisited flat address expression, appends V to PostorderStack 274 // and marks it as visited. 275 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack( 276 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack, 277 DenseSet<Value *> &Visited) const { 278 assert(V->getType()->isPointerTy()); 279 280 // Generic addressing expressions may be hidden in nested constant 281 // expressions. 282 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 283 // TODO: Look in non-address parts, like icmp operands. 284 if (isAddressExpression(*CE) && Visited.insert(CE).second) 285 PostorderStack.push_back(std::make_pair(CE, false)); 286 287 return; 288 } 289 290 if (isAddressExpression(*V) && 291 V->getType()->getPointerAddressSpace() == FlatAddrSpace) { 292 if (Visited.insert(V).second) { 293 PostorderStack.push_back(std::make_pair(V, false)); 294 295 Operator *Op = cast<Operator>(V); 296 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) { 297 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) { 298 if (isAddressExpression(*CE) && Visited.insert(CE).second) 299 PostorderStack.emplace_back(CE, false); 300 } 301 } 302 } 303 } 304 } 305 306 // Returns all flat address expressions in function F. The elements are ordered 307 // ordered in postorder. 308 std::vector<WeakTrackingVH> 309 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const { 310 // This function implements a non-recursive postorder traversal of a partial 311 // use-def graph of function F. 312 std::vector<std::pair<Value *, bool>> PostorderStack; 313 // The set of visited expressions. 314 DenseSet<Value *> Visited; 315 316 auto PushPtrOperand = [&](Value *Ptr) { 317 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, 318 Visited); 319 }; 320 321 // Look at operations that may be interesting accelerate by moving to a known 322 // address space. We aim at generating after loads and stores, but pure 323 // addressing calculations may also be faster. 324 for (Instruction &I : instructions(F)) { 325 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 326 if (!GEP->getType()->isVectorTy()) 327 PushPtrOperand(GEP->getPointerOperand()); 328 } else if (auto *LI = dyn_cast<LoadInst>(&I)) 329 PushPtrOperand(LI->getPointerOperand()); 330 else if (auto *SI = dyn_cast<StoreInst>(&I)) 331 PushPtrOperand(SI->getPointerOperand()); 332 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 333 PushPtrOperand(RMW->getPointerOperand()); 334 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 335 PushPtrOperand(CmpX->getPointerOperand()); 336 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 337 // For memset/memcpy/memmove, any pointer operand can be replaced. 338 PushPtrOperand(MI->getRawDest()); 339 340 // Handle 2nd operand for memcpy/memmove. 341 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 342 PushPtrOperand(MTI->getRawSource()); 343 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 344 collectRewritableIntrinsicOperands(II, PostorderStack, Visited); 345 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 346 // FIXME: Handle vectors of pointers 347 if (Cmp->getOperand(0)->getType()->isPointerTy()) { 348 PushPtrOperand(Cmp->getOperand(0)); 349 PushPtrOperand(Cmp->getOperand(1)); 350 } 351 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) { 352 if (!ASC->getType()->isVectorTy()) 353 PushPtrOperand(ASC->getPointerOperand()); 354 } 355 } 356 357 std::vector<WeakTrackingVH> Postorder; // The resultant postorder. 358 while (!PostorderStack.empty()) { 359 Value *TopVal = PostorderStack.back().first; 360 // If the operands of the expression on the top are already explored, 361 // adds that expression to the resultant postorder. 362 if (PostorderStack.back().second) { 363 if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace) 364 Postorder.push_back(TopVal); 365 PostorderStack.pop_back(); 366 continue; 367 } 368 // Otherwise, adds its operands to the stack and explores them. 369 PostorderStack.back().second = true; 370 for (Value *PtrOperand : getPointerOperands(*TopVal)) { 371 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack, 372 Visited); 373 } 374 } 375 return Postorder; 376 } 377 378 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 379 // of OperandUse.get() in the new address space. If the clone is not ready yet, 380 // returns an undef in the new address space as a placeholder. 381 static Value *operandWithNewAddressSpaceOrCreateUndef( 382 const Use &OperandUse, unsigned NewAddrSpace, 383 const ValueToValueMapTy &ValueWithNewAddrSpace, 384 SmallVectorImpl<const Use *> *UndefUsesToFix) { 385 Value *Operand = OperandUse.get(); 386 387 Type *NewPtrTy = 388 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 389 390 if (Constant *C = dyn_cast<Constant>(Operand)) 391 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); 392 393 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 394 return NewOperand; 395 396 UndefUsesToFix->push_back(&OperandUse); 397 return UndefValue::get(NewPtrTy); 398 } 399 400 // Returns a clone of `I` with its operands converted to those specified in 401 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 402 // operand whose address space needs to be modified might not exist in 403 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and 404 // adds that operand use to UndefUsesToFix so that caller can fix them later. 405 // 406 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 407 // from a pointer whose type already matches. Therefore, this function returns a 408 // Value* instead of an Instruction*. 409 static Value *cloneInstructionWithNewAddressSpace( 410 Instruction *I, unsigned NewAddrSpace, 411 const ValueToValueMapTy &ValueWithNewAddrSpace, 412 SmallVectorImpl<const Use *> *UndefUsesToFix) { 413 Type *NewPtrType = 414 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 415 416 if (I->getOpcode() == Instruction::AddrSpaceCast) { 417 Value *Src = I->getOperand(0); 418 // Because `I` is flat, the source address space must be specific. 419 // Therefore, the inferred address space must be the source space, according 420 // to our algorithm. 421 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 422 if (Src->getType() != NewPtrType) 423 return new BitCastInst(Src, NewPtrType); 424 return Src; 425 } 426 427 // Computes the converted pointer operands. 428 SmallVector<Value *, 4> NewPointerOperands; 429 for (const Use &OperandUse : I->operands()) { 430 if (!OperandUse.get()->getType()->isPointerTy()) 431 NewPointerOperands.push_back(nullptr); 432 else 433 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef( 434 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix)); 435 } 436 437 switch (I->getOpcode()) { 438 case Instruction::BitCast: 439 return new BitCastInst(NewPointerOperands[0], NewPtrType); 440 case Instruction::PHI: { 441 assert(I->getType()->isPointerTy()); 442 PHINode *PHI = cast<PHINode>(I); 443 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 444 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 445 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 446 NewPHI->addIncoming(NewPointerOperands[OperandNo], 447 PHI->getIncomingBlock(Index)); 448 } 449 return NewPHI; 450 } 451 case Instruction::GetElementPtr: { 452 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 453 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 454 GEP->getSourceElementType(), NewPointerOperands[0], 455 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end())); 456 NewGEP->setIsInBounds(GEP->isInBounds()); 457 return NewGEP; 458 } 459 case Instruction::Select: { 460 assert(I->getType()->isPointerTy()); 461 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 462 NewPointerOperands[2], "", nullptr, I); 463 } 464 default: 465 llvm_unreachable("Unexpected opcode"); 466 } 467 } 468 469 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 470 // constant expression `CE` with its operands replaced as specified in 471 // ValueWithNewAddrSpace. 472 static Value *cloneConstantExprWithNewAddressSpace( 473 ConstantExpr *CE, unsigned NewAddrSpace, 474 const ValueToValueMapTy &ValueWithNewAddrSpace) { 475 Type *TargetType = 476 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 477 478 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 479 // Because CE is flat, the source address space must be specific. 480 // Therefore, the inferred address space must be the source space according 481 // to our algorithm. 482 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 483 NewAddrSpace); 484 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 485 } 486 487 if (CE->getOpcode() == Instruction::BitCast) { 488 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) 489 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); 490 return ConstantExpr::getAddrSpaceCast(CE, TargetType); 491 } 492 493 if (CE->getOpcode() == Instruction::Select) { 494 Constant *Src0 = CE->getOperand(1); 495 Constant *Src1 = CE->getOperand(2); 496 if (Src0->getType()->getPointerAddressSpace() == 497 Src1->getType()->getPointerAddressSpace()) { 498 499 return ConstantExpr::getSelect( 500 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType), 501 ConstantExpr::getAddrSpaceCast(Src1, TargetType)); 502 } 503 } 504 505 // Computes the operands of the new constant expression. 506 bool IsNew = false; 507 SmallVector<Constant *, 4> NewOperands; 508 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 509 Constant *Operand = CE->getOperand(Index); 510 // If the address space of `Operand` needs to be modified, the new operand 511 // with the new address space should already be in ValueWithNewAddrSpace 512 // because (1) the constant expressions we consider (i.e. addrspacecast, 513 // bitcast, and getelementptr) do not incur cycles in the data flow graph 514 // and (2) this function is called on constant expressions in postorder. 515 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 516 IsNew = true; 517 NewOperands.push_back(cast<Constant>(NewOperand)); 518 } else { 519 // Otherwise, reuses the old operand. 520 NewOperands.push_back(Operand); 521 } 522 } 523 524 // If !IsNew, we will replace the Value with itself. However, replaced values 525 // are assumed to wrapped in a addrspace cast later so drop it now. 526 if (!IsNew) 527 return nullptr; 528 529 if (CE->getOpcode() == Instruction::GetElementPtr) { 530 // Needs to specify the source type while constructing a getelementptr 531 // constant expression. 532 return CE->getWithOperands( 533 NewOperands, TargetType, /*OnlyIfReduced=*/false, 534 NewOperands[0]->getType()->getPointerElementType()); 535 } 536 537 return CE->getWithOperands(NewOperands, TargetType); 538 } 539 540 // Returns a clone of the value `V`, with its operands replaced as specified in 541 // ValueWithNewAddrSpace. This function is called on every flat address 542 // expression whose address space needs to be modified, in postorder. 543 // 544 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix. 545 Value *InferAddressSpaces::cloneValueWithNewAddressSpace( 546 Value *V, unsigned NewAddrSpace, 547 const ValueToValueMapTy &ValueWithNewAddrSpace, 548 SmallVectorImpl<const Use *> *UndefUsesToFix) const { 549 // All values in Postorder are flat address expressions. 550 assert(isAddressExpression(*V) && 551 V->getType()->getPointerAddressSpace() == FlatAddrSpace); 552 553 if (Instruction *I = dyn_cast<Instruction>(V)) { 554 Value *NewV = cloneInstructionWithNewAddressSpace( 555 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix); 556 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) { 557 if (NewI->getParent() == nullptr) { 558 NewI->insertBefore(I); 559 NewI->takeName(I); 560 } 561 } 562 return NewV; 563 } 564 565 return cloneConstantExprWithNewAddressSpace( 566 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace); 567 } 568 569 // Defines the join operation on the address space lattice (see the file header 570 // comments). 571 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1, 572 unsigned AS2) const { 573 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 574 return FlatAddrSpace; 575 576 if (AS1 == UninitializedAddressSpace) 577 return AS2; 578 if (AS2 == UninitializedAddressSpace) 579 return AS1; 580 581 // The join of two different specific address spaces is flat. 582 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 583 } 584 585 bool InferAddressSpaces::runOnFunction(Function &F) { 586 if (skipFunction(F)) 587 return false; 588 589 const TargetTransformInfo &TTI = 590 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 591 FlatAddrSpace = TTI.getFlatAddressSpace(); 592 if (FlatAddrSpace == UninitializedAddressSpace) 593 return false; 594 595 // Collects all flat address expressions in postorder. 596 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F); 597 598 // Runs a data-flow analysis to refine the address spaces of every expression 599 // in Postorder. 600 ValueToAddrSpaceMapTy InferredAddrSpace; 601 inferAddressSpaces(Postorder, &InferredAddrSpace); 602 603 // Changes the address spaces of the flat address expressions who are inferred 604 // to point to a specific address space. 605 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F); 606 } 607 608 // Constants need to be tracked through RAUW to handle cases with nested 609 // constant expressions, so wrap values in WeakTrackingVH. 610 void InferAddressSpaces::inferAddressSpaces( 611 ArrayRef<WeakTrackingVH> Postorder, 612 ValueToAddrSpaceMapTy *InferredAddrSpace) const { 613 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 614 // Initially, all expressions are in the uninitialized address space. 615 for (Value *V : Postorder) 616 (*InferredAddrSpace)[V] = UninitializedAddressSpace; 617 618 while (!Worklist.empty()) { 619 Value *V = Worklist.pop_back_val(); 620 621 // Tries to update the address space of the stack top according to the 622 // address spaces of its operands. 623 DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n'); 624 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace); 625 if (!NewAS.hasValue()) 626 continue; 627 // If any updates are made, grabs its users to the worklist because 628 // their address spaces can also be possibly updated. 629 DEBUG(dbgs() << " to " << NewAS.getValue() << '\n'); 630 (*InferredAddrSpace)[V] = NewAS.getValue(); 631 632 for (Value *User : V->users()) { 633 // Skip if User is already in the worklist. 634 if (Worklist.count(User)) 635 continue; 636 637 auto Pos = InferredAddrSpace->find(User); 638 // Our algorithm only updates the address spaces of flat address 639 // expressions, which are those in InferredAddrSpace. 640 if (Pos == InferredAddrSpace->end()) 641 continue; 642 643 // Function updateAddressSpace moves the address space down a lattice 644 // path. Therefore, nothing to do if User is already inferred as flat (the 645 // bottom element in the lattice). 646 if (Pos->second == FlatAddrSpace) 647 continue; 648 649 Worklist.insert(User); 650 } 651 } 652 } 653 654 Optional<unsigned> InferAddressSpaces::updateAddressSpace( 655 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const { 656 assert(InferredAddrSpace.count(&V)); 657 658 // The new inferred address space equals the join of the address spaces 659 // of all its pointer operands. 660 unsigned NewAS = UninitializedAddressSpace; 661 662 const Operator &Op = cast<Operator>(V); 663 if (Op.getOpcode() == Instruction::Select) { 664 Value *Src0 = Op.getOperand(1); 665 Value *Src1 = Op.getOperand(2); 666 667 auto I = InferredAddrSpace.find(Src0); 668 unsigned Src0AS = (I != InferredAddrSpace.end()) ? 669 I->second : Src0->getType()->getPointerAddressSpace(); 670 671 auto J = InferredAddrSpace.find(Src1); 672 unsigned Src1AS = (J != InferredAddrSpace.end()) ? 673 J->second : Src1->getType()->getPointerAddressSpace(); 674 675 auto *C0 = dyn_cast<Constant>(Src0); 676 auto *C1 = dyn_cast<Constant>(Src1); 677 678 // If one of the inputs is a constant, we may be able to do a constant 679 // addrspacecast of it. Defer inferring the address space until the input 680 // address space is known. 681 if ((C1 && Src0AS == UninitializedAddressSpace) || 682 (C0 && Src1AS == UninitializedAddressSpace)) 683 return None; 684 685 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) 686 NewAS = Src1AS; 687 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) 688 NewAS = Src0AS; 689 else 690 NewAS = joinAddressSpaces(Src0AS, Src1AS); 691 } else { 692 for (Value *PtrOperand : getPointerOperands(V)) { 693 auto I = InferredAddrSpace.find(PtrOperand); 694 unsigned OperandAS = I != InferredAddrSpace.end() ? 695 I->second : PtrOperand->getType()->getPointerAddressSpace(); 696 697 // join(flat, *) = flat. So we can break if NewAS is already flat. 698 NewAS = joinAddressSpaces(NewAS, OperandAS); 699 if (NewAS == FlatAddrSpace) 700 break; 701 } 702 } 703 704 unsigned OldAS = InferredAddrSpace.lookup(&V); 705 assert(OldAS != FlatAddrSpace); 706 if (OldAS == NewAS) 707 return None; 708 return NewAS; 709 } 710 711 /// \p returns true if \p U is the pointer operand of a memory instruction with 712 /// a single pointer operand that can have its address space changed by simply 713 /// mutating the use to a new value. 714 static bool isSimplePointerUseValidToReplace(Use &U) { 715 User *Inst = U.getUser(); 716 unsigned OpNo = U.getOperandNo(); 717 718 if (auto *LI = dyn_cast<LoadInst>(Inst)) 719 return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile(); 720 721 if (auto *SI = dyn_cast<StoreInst>(Inst)) 722 return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile(); 723 724 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 725 return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile(); 726 727 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 728 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && 729 !CmpX->isVolatile(); 730 } 731 732 return false; 733 } 734 735 /// Update memory intrinsic uses that require more complex processing than 736 /// simple memory instructions. Thse require re-mangling and may have multiple 737 /// pointer operands. 738 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, 739 Value *NewV) { 740 IRBuilder<> B(MI); 741 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 742 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 743 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 744 745 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 746 B.CreateMemSet(NewV, MSI->getValue(), 747 MSI->getLength(), MSI->getAlignment(), 748 false, // isVolatile 749 TBAA, ScopeMD, NoAliasMD); 750 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 751 Value *Src = MTI->getRawSource(); 752 Value *Dest = MTI->getRawDest(); 753 754 // Be careful in case this is a self-to-self copy. 755 if (Src == OldV) 756 Src = NewV; 757 758 if (Dest == OldV) 759 Dest = NewV; 760 761 if (isa<MemCpyInst>(MTI)) { 762 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 763 B.CreateMemCpy(Dest, Src, MTI->getLength(), 764 MTI->getAlignment(), 765 false, // isVolatile 766 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 767 } else { 768 assert(isa<MemMoveInst>(MTI)); 769 B.CreateMemMove(Dest, Src, MTI->getLength(), 770 MTI->getAlignment(), 771 false, // isVolatile 772 TBAA, ScopeMD, NoAliasMD); 773 } 774 } else 775 llvm_unreachable("unhandled MemIntrinsic"); 776 777 MI->eraseFromParent(); 778 return true; 779 } 780 781 // \p returns true if it is OK to change the address space of constant \p C with 782 // a ConstantExpr addrspacecast. 783 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const { 784 assert(NewAS != UninitializedAddressSpace); 785 786 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 787 if (SrcAS == NewAS || isa<UndefValue>(C)) 788 return true; 789 790 // Prevent illegal casts between different non-flat address spaces. 791 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 792 return false; 793 794 if (isa<ConstantPointerNull>(C)) 795 return true; 796 797 if (auto *Op = dyn_cast<Operator>(C)) { 798 // If we already have a constant addrspacecast, it should be safe to cast it 799 // off. 800 if (Op->getOpcode() == Instruction::AddrSpaceCast) 801 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS); 802 803 if (Op->getOpcode() == Instruction::IntToPtr && 804 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 805 return true; 806 } 807 808 return false; 809 } 810 811 static Value::use_iterator skipToNextUser(Value::use_iterator I, 812 Value::use_iterator End) { 813 User *CurUser = I->getUser(); 814 ++I; 815 816 while (I != End && I->getUser() == CurUser) 817 ++I; 818 819 return I; 820 } 821 822 bool InferAddressSpaces::rewriteWithNewAddressSpaces( 823 ArrayRef<WeakTrackingVH> Postorder, 824 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const { 825 // For each address expression to be modified, creates a clone of it with its 826 // pointer operands converted to the new address space. Since the pointer 827 // operands are converted, the clone is naturally in the new address space by 828 // construction. 829 ValueToValueMapTy ValueWithNewAddrSpace; 830 SmallVector<const Use *, 32> UndefUsesToFix; 831 for (Value* V : Postorder) { 832 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 833 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 834 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace( 835 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix); 836 } 837 } 838 839 if (ValueWithNewAddrSpace.empty()) 840 return false; 841 842 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace. 843 for (const Use *UndefUse : UndefUsesToFix) { 844 User *V = UndefUse->getUser(); 845 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V)); 846 unsigned OperandNo = UndefUse->getOperandNo(); 847 assert(isa<UndefValue>(NewV->getOperand(OperandNo))); 848 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get())); 849 } 850 851 SmallVector<Instruction *, 16> DeadInstructions; 852 853 // Replaces the uses of the old address expressions with the new ones. 854 for (const WeakTrackingVH &WVH : Postorder) { 855 assert(WVH && "value was unexpectedly deleted"); 856 Value *V = WVH; 857 Value *NewV = ValueWithNewAddrSpace.lookup(V); 858 if (NewV == nullptr) 859 continue; 860 861 DEBUG(dbgs() << "Replacing the uses of " << *V 862 << "\n with\n " << *NewV << '\n'); 863 864 if (Constant *C = dyn_cast<Constant>(V)) { 865 Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 866 C->getType()); 867 if (C != Replace) { 868 DEBUG(dbgs() << "Inserting replacement const cast: " 869 << Replace << ": " << *Replace << '\n'); 870 C->replaceAllUsesWith(Replace); 871 V = Replace; 872 } 873 } 874 875 Value::use_iterator I, E, Next; 876 for (I = V->use_begin(), E = V->use_end(); I != E; ) { 877 Use &U = *I; 878 879 // Some users may see the same pointer operand in multiple operands. Skip 880 // to the next instruction. 881 I = skipToNextUser(I, E); 882 883 if (isSimplePointerUseValidToReplace(U)) { 884 // If V is used as the pointer operand of a compatible memory operation, 885 // sets the pointer operand to NewV. This replacement does not change 886 // the element type, so the resultant load/store is still valid. 887 U.set(NewV); 888 continue; 889 } 890 891 User *CurUser = U.getUser(); 892 // Handle more complex cases like intrinsic that need to be remangled. 893 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 894 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 895 continue; 896 } 897 898 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 899 if (rewriteIntrinsicOperands(II, V, NewV)) 900 continue; 901 } 902 903 if (isa<Instruction>(CurUser)) { 904 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { 905 // If we can infer that both pointers are in the same addrspace, 906 // transform e.g. 907 // %cmp = icmp eq float* %p, %q 908 // into 909 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 910 911 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 912 int SrcIdx = U.getOperandNo(); 913 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 914 Value *OtherSrc = Cmp->getOperand(OtherIdx); 915 916 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 917 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 918 Cmp->setOperand(OtherIdx, OtherNewV); 919 Cmp->setOperand(SrcIdx, NewV); 920 continue; 921 } 922 } 923 924 // Even if the type mismatches, we can cast the constant. 925 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 926 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 927 Cmp->setOperand(SrcIdx, NewV); 928 Cmp->setOperand(OtherIdx, 929 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType())); 930 continue; 931 } 932 } 933 } 934 935 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) { 936 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 937 if (ASC->getDestAddressSpace() == NewAS) { 938 ASC->replaceAllUsesWith(NewV); 939 DeadInstructions.push_back(ASC); 940 continue; 941 } 942 } 943 944 // Otherwise, replaces the use with flat(NewV). 945 if (Instruction *I = dyn_cast<Instruction>(V)) { 946 BasicBlock::iterator InsertPos = std::next(I->getIterator()); 947 while (isa<PHINode>(InsertPos)) 948 ++InsertPos; 949 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos)); 950 } else { 951 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 952 V->getType())); 953 } 954 } 955 } 956 957 if (V->use_empty()) { 958 if (Instruction *I = dyn_cast<Instruction>(V)) 959 DeadInstructions.push_back(I); 960 } 961 } 962 963 for (Instruction *I : DeadInstructions) 964 RecursivelyDeleteTriviallyDeadInstructions(I); 965 966 return true; 967 } 968 969 FunctionPass *llvm::createInferAddressSpacesPass() { 970 return new InferAddressSpaces(); 971 } 972