1 //===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // CUDA C/C++ includes memory space designation as variable type qualifers (such
11 // as __global__ and __shared__). Knowing the space of a memory access allows
12 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
13 // shared memory can be translated to `ld.shared` which is roughly 10% faster
14 // than a generic `ld` on an NVIDIA Tesla K40c.
15 //
16 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
17 // compilers must infer the memory space of an address expression from
18 // type-qualified variables.
19 //
20 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
21 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
22 // places only type-qualified variables in specific address spaces, and then
23 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
24 // (so-called the generic address space) for other instructions to use.
25 //
26 // For example, the Clang translates the following CUDA code
27 //   __shared__ float a[10];
28 //   float v = a[i];
29 // to
30 //   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
31 //   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
32 //   %v = load float, float* %1 ; emits ld.f32
33 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
34 // redirected to %0 (the generic version of @a).
35 //
36 // The optimization implemented in this file propagates specific address spaces
37 // from type-qualified variable declarations to its users. For example, it
38 // optimizes the above IR to
39 //   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
40 //   %v = load float addrspace(3)* %1 ; emits ld.shared.f32
41 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
42 // codegen is able to emit ld.shared.f32 for %v.
43 //
44 // Address space inference works in two steps. First, it uses a data-flow
45 // analysis to infer as many generic pointers as possible to point to only one
46 // specific address space. In the above example, it can prove that %1 only
47 // points to addrspace(3). This algorithm was published in
48 //   CUDA: Compiling and optimizing for a GPU platform
49 //   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
50 //   ICCS 2012
51 //
52 // Then, address space inference replaces all refinable generic pointers with
53 // equivalent specific pointers.
54 //
55 // The major challenge of implementing this optimization is handling PHINodes,
56 // which may create loops in the data flow graph. This brings two complications.
57 //
58 // First, the data flow analysis in Step 1 needs to be circular. For example,
59 //     %generic.input = addrspacecast float addrspace(3)* %input to float*
60 //   loop:
61 //     %y = phi [ %generic.input, %y2 ]
62 //     %y2 = getelementptr %y, 1
63 //     %v = load %y2
64 //     br ..., label %loop, ...
65 // proving %y specific requires proving both %generic.input and %y2 specific,
66 // but proving %y2 specific circles back to %y. To address this complication,
67 // the data flow analysis operates on a lattice:
68 //   uninitialized > specific address spaces > generic.
69 // All address expressions (our implementation only considers phi, bitcast,
70 // addrspacecast, and getelementptr) start with the uninitialized address space.
71 // The monotone transfer function moves the address space of a pointer down a
72 // lattice path from uninitialized to specific and then to generic. A join
73 // operation of two different specific address spaces pushes the expression down
74 // to the generic address space. The analysis completes once it reaches a fixed
75 // point.
76 //
77 // Second, IR rewriting in Step 2 also needs to be circular. For example,
78 // converting %y to addrspace(3) requires the compiler to know the converted
79 // %y2, but converting %y2 needs the converted %y. To address this complication,
80 // we break these cycles using "undef" placeholders. When converting an
81 // instruction `I` to a new address space, if its operand `Op` is not converted
82 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
83 // For instance, our algorithm first converts %y to
84 //   %y' = phi float addrspace(3)* [ %input, undef ]
85 // Then, it converts %y2 to
86 //   %y2' = getelementptr %y', 1
87 // Finally, it fixes the undef in %y' so that
88 //   %y' = phi float addrspace(3)* [ %input, %y2' ]
89 //
90 //===----------------------------------------------------------------------===//
91 
92 #include "llvm/ADT/DenseSet.h"
93 #include "llvm/ADT/Optional.h"
94 #include "llvm/ADT/SetVector.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/IRBuilder.h"
98 #include "llvm/IR/InstIterator.h"
99 #include "llvm/IR/Instructions.h"
100 #include "llvm/IR/IntrinsicInst.h"
101 #include "llvm/IR/Operator.h"
102 #include "llvm/Support/Debug.h"
103 #include "llvm/Support/raw_ostream.h"
104 #include "llvm/Transforms/Scalar.h"
105 #include "llvm/Transforms/Utils/Local.h"
106 #include "llvm/Transforms/Utils/ValueMapper.h"
107 
108 #define DEBUG_TYPE "infer-address-spaces"
109 
110 using namespace llvm;
111 
112 namespace {
113 static const unsigned UninitializedAddressSpace = ~0u;
114 
115 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
116 
117 /// \brief InferAddressSpaces
118 class InferAddressSpaces : public FunctionPass {
119   /// Target specific address space which uses of should be replaced if
120   /// possible.
121   unsigned FlatAddrSpace;
122 
123 public:
124   static char ID;
125 
126   InferAddressSpaces() : FunctionPass(ID) {}
127 
128   void getAnalysisUsage(AnalysisUsage &AU) const override {
129     AU.setPreservesCFG();
130     AU.addRequired<TargetTransformInfoWrapperPass>();
131   }
132 
133   bool runOnFunction(Function &F) override;
134 
135 private:
136   // Returns the new address space of V if updated; otherwise, returns None.
137   Optional<unsigned>
138   updateAddressSpace(const Value &V,
139                      const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
140 
141   // Tries to infer the specific address space of each address expression in
142   // Postorder.
143   void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
144                           ValueToAddrSpaceMapTy *InferredAddrSpace) const;
145 
146   bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
147 
148   // Changes the flat address expressions in function F to point to specific
149   // address spaces if InferredAddrSpace says so. Postorder is the postorder of
150   // all flat expressions in the use-def graph of function F.
151   bool
152   rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
153                               const ValueToAddrSpaceMapTy &InferredAddrSpace,
154                               Function *F) const;
155 
156   void appendsFlatAddressExpressionToPostorderStack(
157     Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
158     DenseSet<Value *> &Visited) const;
159 
160   bool rewriteIntrinsicOperands(IntrinsicInst *II,
161                                 Value *OldV, Value *NewV) const;
162   void collectRewritableIntrinsicOperands(
163     IntrinsicInst *II,
164     std::vector<std::pair<Value *, bool>> &PostorderStack,
165     DenseSet<Value *> &Visited) const;
166 
167   std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
168 
169   Value *cloneValueWithNewAddressSpace(
170     Value *V, unsigned NewAddrSpace,
171     const ValueToValueMapTy &ValueWithNewAddrSpace,
172     SmallVectorImpl<const Use *> *UndefUsesToFix) const;
173   unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
174 };
175 } // end anonymous namespace
176 
177 char InferAddressSpaces::ID = 0;
178 
179 namespace llvm {
180 void initializeInferAddressSpacesPass(PassRegistry &);
181 }
182 
183 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
184                 false, false)
185 
186 // Returns true if V is an address expression.
187 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
188 // getelementptr operators.
189 static bool isAddressExpression(const Value &V) {
190   if (!isa<Operator>(V))
191     return false;
192 
193   switch (cast<Operator>(V).getOpcode()) {
194   case Instruction::PHI:
195   case Instruction::BitCast:
196   case Instruction::AddrSpaceCast:
197   case Instruction::GetElementPtr:
198   case Instruction::Select:
199     return true;
200   default:
201     return false;
202   }
203 }
204 
205 // Returns the pointer operands of V.
206 //
207 // Precondition: V is an address expression.
208 static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
209   const Operator &Op = cast<Operator>(V);
210   switch (Op.getOpcode()) {
211   case Instruction::PHI: {
212     auto IncomingValues = cast<PHINode>(Op).incoming_values();
213     return SmallVector<Value *, 2>(IncomingValues.begin(),
214                                    IncomingValues.end());
215   }
216   case Instruction::BitCast:
217   case Instruction::AddrSpaceCast:
218   case Instruction::GetElementPtr:
219     return {Op.getOperand(0)};
220   case Instruction::Select:
221     return {Op.getOperand(1), Op.getOperand(2)};
222   default:
223     llvm_unreachable("Unexpected instruction type.");
224   }
225 }
226 
227 // TODO: Move logic to TTI?
228 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
229                                                   Value *OldV,
230                                                   Value *NewV) const {
231   Module *M = II->getParent()->getParent()->getParent();
232 
233   switch (II->getIntrinsicID()) {
234   case Intrinsic::amdgcn_atomic_inc:
235   case Intrinsic::amdgcn_atomic_dec:{
236     const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4));
237     if (!IsVolatile || !IsVolatile->isZero())
238       return false;
239 
240     LLVM_FALLTHROUGH;
241   }
242   case Intrinsic::objectsize: {
243     Type *DestTy = II->getType();
244     Type *SrcTy = NewV->getType();
245     Function *NewDecl =
246         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
247     II->setArgOperand(0, NewV);
248     II->setCalledFunction(NewDecl);
249     return true;
250   }
251   default:
252     return false;
253   }
254 }
255 
256 // TODO: Move logic to TTI?
257 void InferAddressSpaces::collectRewritableIntrinsicOperands(
258     IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack,
259     DenseSet<Value *> &Visited) const {
260   switch (II->getIntrinsicID()) {
261   case Intrinsic::objectsize:
262   case Intrinsic::amdgcn_atomic_inc:
263   case Intrinsic::amdgcn_atomic_dec:
264     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
265                                                  PostorderStack, Visited);
266     break;
267   default:
268     break;
269   }
270 }
271 
272 // Returns all flat address expressions in function F. The elements are
273 // If V is an unvisited flat address expression, appends V to PostorderStack
274 // and marks it as visited.
275 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
276     Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
277     DenseSet<Value *> &Visited) const {
278   assert(V->getType()->isPointerTy());
279 
280   // Generic addressing expressions may be hidden in nested constant
281   // expressions.
282   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
283     // TODO: Look in non-address parts, like icmp operands.
284     if (isAddressExpression(*CE) && Visited.insert(CE).second)
285       PostorderStack.push_back(std::make_pair(CE, false));
286 
287     return;
288   }
289 
290   if (isAddressExpression(*V) &&
291       V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
292     if (Visited.insert(V).second) {
293       PostorderStack.push_back(std::make_pair(V, false));
294 
295       Operator *Op = cast<Operator>(V);
296       for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
297         if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
298           if (isAddressExpression(*CE) && Visited.insert(CE).second)
299             PostorderStack.emplace_back(CE, false);
300         }
301       }
302     }
303   }
304 }
305 
306 // Returns all flat address expressions in function F. The elements are ordered
307 // ordered in postorder.
308 std::vector<WeakTrackingVH>
309 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
310   // This function implements a non-recursive postorder traversal of a partial
311   // use-def graph of function F.
312   std::vector<std::pair<Value *, bool>> PostorderStack;
313   // The set of visited expressions.
314   DenseSet<Value *> Visited;
315 
316   auto PushPtrOperand = [&](Value *Ptr) {
317     appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
318                                                  Visited);
319   };
320 
321   // Look at operations that may be interesting accelerate by moving to a known
322   // address space. We aim at generating after loads and stores, but pure
323   // addressing calculations may also be faster.
324   for (Instruction &I : instructions(F)) {
325     if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
326       if (!GEP->getType()->isVectorTy())
327         PushPtrOperand(GEP->getPointerOperand());
328     } else if (auto *LI = dyn_cast<LoadInst>(&I))
329       PushPtrOperand(LI->getPointerOperand());
330     else if (auto *SI = dyn_cast<StoreInst>(&I))
331       PushPtrOperand(SI->getPointerOperand());
332     else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
333       PushPtrOperand(RMW->getPointerOperand());
334     else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
335       PushPtrOperand(CmpX->getPointerOperand());
336     else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
337       // For memset/memcpy/memmove, any pointer operand can be replaced.
338       PushPtrOperand(MI->getRawDest());
339 
340       // Handle 2nd operand for memcpy/memmove.
341       if (auto *MTI = dyn_cast<MemTransferInst>(MI))
342         PushPtrOperand(MTI->getRawSource());
343     } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
344       collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
345     else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
346       // FIXME: Handle vectors of pointers
347       if (Cmp->getOperand(0)->getType()->isPointerTy()) {
348         PushPtrOperand(Cmp->getOperand(0));
349         PushPtrOperand(Cmp->getOperand(1));
350       }
351     } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
352       if (!ASC->getType()->isVectorTy())
353         PushPtrOperand(ASC->getPointerOperand());
354     }
355   }
356 
357   std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
358   while (!PostorderStack.empty()) {
359     Value *TopVal = PostorderStack.back().first;
360     // If the operands of the expression on the top are already explored,
361     // adds that expression to the resultant postorder.
362     if (PostorderStack.back().second) {
363       if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
364         Postorder.push_back(TopVal);
365       PostorderStack.pop_back();
366       continue;
367     }
368     // Otherwise, adds its operands to the stack and explores them.
369     PostorderStack.back().second = true;
370     for (Value *PtrOperand : getPointerOperands(*TopVal)) {
371       appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
372                                                    Visited);
373     }
374   }
375   return Postorder;
376 }
377 
378 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
379 // of OperandUse.get() in the new address space. If the clone is not ready yet,
380 // returns an undef in the new address space as a placeholder.
381 static Value *operandWithNewAddressSpaceOrCreateUndef(
382     const Use &OperandUse, unsigned NewAddrSpace,
383     const ValueToValueMapTy &ValueWithNewAddrSpace,
384     SmallVectorImpl<const Use *> *UndefUsesToFix) {
385   Value *Operand = OperandUse.get();
386 
387   Type *NewPtrTy =
388       Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
389 
390   if (Constant *C = dyn_cast<Constant>(Operand))
391     return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
392 
393   if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
394     return NewOperand;
395 
396   UndefUsesToFix->push_back(&OperandUse);
397   return UndefValue::get(NewPtrTy);
398 }
399 
400 // Returns a clone of `I` with its operands converted to those specified in
401 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
402 // operand whose address space needs to be modified might not exist in
403 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
404 // adds that operand use to UndefUsesToFix so that caller can fix them later.
405 //
406 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
407 // from a pointer whose type already matches. Therefore, this function returns a
408 // Value* instead of an Instruction*.
409 static Value *cloneInstructionWithNewAddressSpace(
410     Instruction *I, unsigned NewAddrSpace,
411     const ValueToValueMapTy &ValueWithNewAddrSpace,
412     SmallVectorImpl<const Use *> *UndefUsesToFix) {
413   Type *NewPtrType =
414       I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
415 
416   if (I->getOpcode() == Instruction::AddrSpaceCast) {
417     Value *Src = I->getOperand(0);
418     // Because `I` is flat, the source address space must be specific.
419     // Therefore, the inferred address space must be the source space, according
420     // to our algorithm.
421     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
422     if (Src->getType() != NewPtrType)
423       return new BitCastInst(Src, NewPtrType);
424     return Src;
425   }
426 
427   // Computes the converted pointer operands.
428   SmallVector<Value *, 4> NewPointerOperands;
429   for (const Use &OperandUse : I->operands()) {
430     if (!OperandUse.get()->getType()->isPointerTy())
431       NewPointerOperands.push_back(nullptr);
432     else
433       NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
434                                      OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
435   }
436 
437   switch (I->getOpcode()) {
438   case Instruction::BitCast:
439     return new BitCastInst(NewPointerOperands[0], NewPtrType);
440   case Instruction::PHI: {
441     assert(I->getType()->isPointerTy());
442     PHINode *PHI = cast<PHINode>(I);
443     PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
444     for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
445       unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
446       NewPHI->addIncoming(NewPointerOperands[OperandNo],
447                           PHI->getIncomingBlock(Index));
448     }
449     return NewPHI;
450   }
451   case Instruction::GetElementPtr: {
452     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
453     GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
454         GEP->getSourceElementType(), NewPointerOperands[0],
455         SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
456     NewGEP->setIsInBounds(GEP->isInBounds());
457     return NewGEP;
458   }
459   case Instruction::Select: {
460     assert(I->getType()->isPointerTy());
461     return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
462                               NewPointerOperands[2], "", nullptr, I);
463   }
464   default:
465     llvm_unreachable("Unexpected opcode");
466   }
467 }
468 
469 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
470 // constant expression `CE` with its operands replaced as specified in
471 // ValueWithNewAddrSpace.
472 static Value *cloneConstantExprWithNewAddressSpace(
473   ConstantExpr *CE, unsigned NewAddrSpace,
474   const ValueToValueMapTy &ValueWithNewAddrSpace) {
475   Type *TargetType =
476     CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
477 
478   if (CE->getOpcode() == Instruction::AddrSpaceCast) {
479     // Because CE is flat, the source address space must be specific.
480     // Therefore, the inferred address space must be the source space according
481     // to our algorithm.
482     assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
483            NewAddrSpace);
484     return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
485   }
486 
487   if (CE->getOpcode() == Instruction::BitCast) {
488     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
489       return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
490     return ConstantExpr::getAddrSpaceCast(CE, TargetType);
491   }
492 
493   if (CE->getOpcode() == Instruction::Select) {
494     Constant *Src0 = CE->getOperand(1);
495     Constant *Src1 = CE->getOperand(2);
496     if (Src0->getType()->getPointerAddressSpace() ==
497         Src1->getType()->getPointerAddressSpace()) {
498 
499       return ConstantExpr::getSelect(
500           CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
501           ConstantExpr::getAddrSpaceCast(Src1, TargetType));
502     }
503   }
504 
505   // Computes the operands of the new constant expression.
506   bool IsNew = false;
507   SmallVector<Constant *, 4> NewOperands;
508   for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
509     Constant *Operand = CE->getOperand(Index);
510     // If the address space of `Operand` needs to be modified, the new operand
511     // with the new address space should already be in ValueWithNewAddrSpace
512     // because (1) the constant expressions we consider (i.e. addrspacecast,
513     // bitcast, and getelementptr) do not incur cycles in the data flow graph
514     // and (2) this function is called on constant expressions in postorder.
515     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
516       IsNew = true;
517       NewOperands.push_back(cast<Constant>(NewOperand));
518     } else {
519       // Otherwise, reuses the old operand.
520       NewOperands.push_back(Operand);
521     }
522   }
523 
524   // If !IsNew, we will replace the Value with itself. However, replaced values
525   // are assumed to wrapped in a addrspace cast later so drop it now.
526   if (!IsNew)
527     return nullptr;
528 
529   if (CE->getOpcode() == Instruction::GetElementPtr) {
530     // Needs to specify the source type while constructing a getelementptr
531     // constant expression.
532     return CE->getWithOperands(
533       NewOperands, TargetType, /*OnlyIfReduced=*/false,
534       NewOperands[0]->getType()->getPointerElementType());
535   }
536 
537   return CE->getWithOperands(NewOperands, TargetType);
538 }
539 
540 // Returns a clone of the value `V`, with its operands replaced as specified in
541 // ValueWithNewAddrSpace. This function is called on every flat address
542 // expression whose address space needs to be modified, in postorder.
543 //
544 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
545 Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
546   Value *V, unsigned NewAddrSpace,
547   const ValueToValueMapTy &ValueWithNewAddrSpace,
548   SmallVectorImpl<const Use *> *UndefUsesToFix) const {
549   // All values in Postorder are flat address expressions.
550   assert(isAddressExpression(*V) &&
551          V->getType()->getPointerAddressSpace() == FlatAddrSpace);
552 
553   if (Instruction *I = dyn_cast<Instruction>(V)) {
554     Value *NewV = cloneInstructionWithNewAddressSpace(
555       I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
556     if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
557       if (NewI->getParent() == nullptr) {
558         NewI->insertBefore(I);
559         NewI->takeName(I);
560       }
561     }
562     return NewV;
563   }
564 
565   return cloneConstantExprWithNewAddressSpace(
566     cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
567 }
568 
569 // Defines the join operation on the address space lattice (see the file header
570 // comments).
571 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
572                                                unsigned AS2) const {
573   if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
574     return FlatAddrSpace;
575 
576   if (AS1 == UninitializedAddressSpace)
577     return AS2;
578   if (AS2 == UninitializedAddressSpace)
579     return AS1;
580 
581   // The join of two different specific address spaces is flat.
582   return (AS1 == AS2) ? AS1 : FlatAddrSpace;
583 }
584 
585 bool InferAddressSpaces::runOnFunction(Function &F) {
586   if (skipFunction(F))
587     return false;
588 
589   const TargetTransformInfo &TTI =
590       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
591   FlatAddrSpace = TTI.getFlatAddressSpace();
592   if (FlatAddrSpace == UninitializedAddressSpace)
593     return false;
594 
595   // Collects all flat address expressions in postorder.
596   std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
597 
598   // Runs a data-flow analysis to refine the address spaces of every expression
599   // in Postorder.
600   ValueToAddrSpaceMapTy InferredAddrSpace;
601   inferAddressSpaces(Postorder, &InferredAddrSpace);
602 
603   // Changes the address spaces of the flat address expressions who are inferred
604   // to point to a specific address space.
605   return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F);
606 }
607 
608 // Constants need to be tracked through RAUW to handle cases with nested
609 // constant expressions, so wrap values in WeakTrackingVH.
610 void InferAddressSpaces::inferAddressSpaces(
611     ArrayRef<WeakTrackingVH> Postorder,
612     ValueToAddrSpaceMapTy *InferredAddrSpace) const {
613   SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
614   // Initially, all expressions are in the uninitialized address space.
615   for (Value *V : Postorder)
616     (*InferredAddrSpace)[V] = UninitializedAddressSpace;
617 
618   while (!Worklist.empty()) {
619     Value *V = Worklist.pop_back_val();
620 
621     // Tries to update the address space of the stack top according to the
622     // address spaces of its operands.
623     DEBUG(dbgs() << "Updating the address space of\n  " << *V << '\n');
624     Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
625     if (!NewAS.hasValue())
626       continue;
627     // If any updates are made, grabs its users to the worklist because
628     // their address spaces can also be possibly updated.
629     DEBUG(dbgs() << "  to " << NewAS.getValue() << '\n');
630     (*InferredAddrSpace)[V] = NewAS.getValue();
631 
632     for (Value *User : V->users()) {
633       // Skip if User is already in the worklist.
634       if (Worklist.count(User))
635         continue;
636 
637       auto Pos = InferredAddrSpace->find(User);
638       // Our algorithm only updates the address spaces of flat address
639       // expressions, which are those in InferredAddrSpace.
640       if (Pos == InferredAddrSpace->end())
641         continue;
642 
643       // Function updateAddressSpace moves the address space down a lattice
644       // path. Therefore, nothing to do if User is already inferred as flat (the
645       // bottom element in the lattice).
646       if (Pos->second == FlatAddrSpace)
647         continue;
648 
649       Worklist.insert(User);
650     }
651   }
652 }
653 
654 Optional<unsigned> InferAddressSpaces::updateAddressSpace(
655     const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
656   assert(InferredAddrSpace.count(&V));
657 
658   // The new inferred address space equals the join of the address spaces
659   // of all its pointer operands.
660   unsigned NewAS = UninitializedAddressSpace;
661 
662   const Operator &Op = cast<Operator>(V);
663   if (Op.getOpcode() == Instruction::Select) {
664     Value *Src0 = Op.getOperand(1);
665     Value *Src1 = Op.getOperand(2);
666 
667     auto I = InferredAddrSpace.find(Src0);
668     unsigned Src0AS = (I != InferredAddrSpace.end()) ?
669       I->second : Src0->getType()->getPointerAddressSpace();
670 
671     auto J = InferredAddrSpace.find(Src1);
672     unsigned Src1AS = (J != InferredAddrSpace.end()) ?
673       J->second : Src1->getType()->getPointerAddressSpace();
674 
675     auto *C0 = dyn_cast<Constant>(Src0);
676     auto *C1 = dyn_cast<Constant>(Src1);
677 
678     // If one of the inputs is a constant, we may be able to do a constant
679     // addrspacecast of it. Defer inferring the address space until the input
680     // address space is known.
681     if ((C1 && Src0AS == UninitializedAddressSpace) ||
682         (C0 && Src1AS == UninitializedAddressSpace))
683       return None;
684 
685     if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
686       NewAS = Src1AS;
687     else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
688       NewAS = Src0AS;
689     else
690       NewAS = joinAddressSpaces(Src0AS, Src1AS);
691   } else {
692     for (Value *PtrOperand : getPointerOperands(V)) {
693       auto I = InferredAddrSpace.find(PtrOperand);
694       unsigned OperandAS = I != InferredAddrSpace.end() ?
695         I->second : PtrOperand->getType()->getPointerAddressSpace();
696 
697       // join(flat, *) = flat. So we can break if NewAS is already flat.
698       NewAS = joinAddressSpaces(NewAS, OperandAS);
699       if (NewAS == FlatAddrSpace)
700         break;
701     }
702   }
703 
704   unsigned OldAS = InferredAddrSpace.lookup(&V);
705   assert(OldAS != FlatAddrSpace);
706   if (OldAS == NewAS)
707     return None;
708   return NewAS;
709 }
710 
711 /// \p returns true if \p U is the pointer operand of a memory instruction with
712 /// a single pointer operand that can have its address space changed by simply
713 /// mutating the use to a new value.
714 static bool isSimplePointerUseValidToReplace(Use &U) {
715   User *Inst = U.getUser();
716   unsigned OpNo = U.getOperandNo();
717 
718   if (auto *LI = dyn_cast<LoadInst>(Inst))
719     return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile();
720 
721   if (auto *SI = dyn_cast<StoreInst>(Inst))
722     return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile();
723 
724   if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
725     return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile();
726 
727   if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
728     return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
729            !CmpX->isVolatile();
730   }
731 
732   return false;
733 }
734 
735 /// Update memory intrinsic uses that require more complex processing than
736 /// simple memory instructions. Thse require re-mangling and may have multiple
737 /// pointer operands.
738 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
739                                      Value *NewV) {
740   IRBuilder<> B(MI);
741   MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
742   MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
743   MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
744 
745   if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
746     B.CreateMemSet(NewV, MSI->getValue(),
747                    MSI->getLength(), MSI->getAlignment(),
748                    false, // isVolatile
749                    TBAA, ScopeMD, NoAliasMD);
750   } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
751     Value *Src = MTI->getRawSource();
752     Value *Dest = MTI->getRawDest();
753 
754     // Be careful in case this is a self-to-self copy.
755     if (Src == OldV)
756       Src = NewV;
757 
758     if (Dest == OldV)
759       Dest = NewV;
760 
761     if (isa<MemCpyInst>(MTI)) {
762       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
763       B.CreateMemCpy(Dest, Src, MTI->getLength(),
764                      MTI->getAlignment(),
765                      false, // isVolatile
766                      TBAA, TBAAStruct, ScopeMD, NoAliasMD);
767     } else {
768       assert(isa<MemMoveInst>(MTI));
769       B.CreateMemMove(Dest, Src, MTI->getLength(),
770                       MTI->getAlignment(),
771                       false, // isVolatile
772                       TBAA, ScopeMD, NoAliasMD);
773     }
774   } else
775     llvm_unreachable("unhandled MemIntrinsic");
776 
777   MI->eraseFromParent();
778   return true;
779 }
780 
781 // \p returns true if it is OK to change the address space of constant \p C with
782 // a ConstantExpr addrspacecast.
783 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
784   assert(NewAS != UninitializedAddressSpace);
785 
786   unsigned SrcAS = C->getType()->getPointerAddressSpace();
787   if (SrcAS == NewAS || isa<UndefValue>(C))
788     return true;
789 
790   // Prevent illegal casts between different non-flat address spaces.
791   if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
792     return false;
793 
794   if (isa<ConstantPointerNull>(C))
795     return true;
796 
797   if (auto *Op = dyn_cast<Operator>(C)) {
798     // If we already have a constant addrspacecast, it should be safe to cast it
799     // off.
800     if (Op->getOpcode() == Instruction::AddrSpaceCast)
801       return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
802 
803     if (Op->getOpcode() == Instruction::IntToPtr &&
804         Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
805       return true;
806   }
807 
808   return false;
809 }
810 
811 static Value::use_iterator skipToNextUser(Value::use_iterator I,
812                                           Value::use_iterator End) {
813   User *CurUser = I->getUser();
814   ++I;
815 
816   while (I != End && I->getUser() == CurUser)
817     ++I;
818 
819   return I;
820 }
821 
822 bool InferAddressSpaces::rewriteWithNewAddressSpaces(
823     ArrayRef<WeakTrackingVH> Postorder,
824     const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
825   // For each address expression to be modified, creates a clone of it with its
826   // pointer operands converted to the new address space. Since the pointer
827   // operands are converted, the clone is naturally in the new address space by
828   // construction.
829   ValueToValueMapTy ValueWithNewAddrSpace;
830   SmallVector<const Use *, 32> UndefUsesToFix;
831   for (Value* V : Postorder) {
832     unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
833     if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
834       ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
835         V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
836     }
837   }
838 
839   if (ValueWithNewAddrSpace.empty())
840     return false;
841 
842   // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
843   for (const Use *UndefUse : UndefUsesToFix) {
844     User *V = UndefUse->getUser();
845     User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
846     unsigned OperandNo = UndefUse->getOperandNo();
847     assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
848     NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
849   }
850 
851   SmallVector<Instruction *, 16> DeadInstructions;
852 
853   // Replaces the uses of the old address expressions with the new ones.
854   for (const WeakTrackingVH &WVH : Postorder) {
855     assert(WVH && "value was unexpectedly deleted");
856     Value *V = WVH;
857     Value *NewV = ValueWithNewAddrSpace.lookup(V);
858     if (NewV == nullptr)
859       continue;
860 
861     DEBUG(dbgs() << "Replacing the uses of " << *V
862                  << "\n  with\n  " << *NewV << '\n');
863 
864     if (Constant *C = dyn_cast<Constant>(V)) {
865       Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
866                                                          C->getType());
867       if (C != Replace) {
868         DEBUG(dbgs() << "Inserting replacement const cast: "
869               << Replace << ": " << *Replace << '\n');
870         C->replaceAllUsesWith(Replace);
871         V = Replace;
872       }
873     }
874 
875     Value::use_iterator I, E, Next;
876     for (I = V->use_begin(), E = V->use_end(); I != E; ) {
877       Use &U = *I;
878 
879       // Some users may see the same pointer operand in multiple operands. Skip
880       // to the next instruction.
881       I = skipToNextUser(I, E);
882 
883       if (isSimplePointerUseValidToReplace(U)) {
884         // If V is used as the pointer operand of a compatible memory operation,
885         // sets the pointer operand to NewV. This replacement does not change
886         // the element type, so the resultant load/store is still valid.
887         U.set(NewV);
888         continue;
889       }
890 
891       User *CurUser = U.getUser();
892       // Handle more complex cases like intrinsic that need to be remangled.
893       if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
894         if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
895           continue;
896       }
897 
898       if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
899         if (rewriteIntrinsicOperands(II, V, NewV))
900           continue;
901       }
902 
903       if (isa<Instruction>(CurUser)) {
904         if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
905           // If we can infer that both pointers are in the same addrspace,
906           // transform e.g.
907           //   %cmp = icmp eq float* %p, %q
908           // into
909           //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q
910 
911           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
912           int SrcIdx = U.getOperandNo();
913           int OtherIdx = (SrcIdx == 0) ? 1 : 0;
914           Value *OtherSrc = Cmp->getOperand(OtherIdx);
915 
916           if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
917             if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
918               Cmp->setOperand(OtherIdx, OtherNewV);
919               Cmp->setOperand(SrcIdx, NewV);
920               continue;
921             }
922           }
923 
924           // Even if the type mismatches, we can cast the constant.
925           if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
926             if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
927               Cmp->setOperand(SrcIdx, NewV);
928               Cmp->setOperand(OtherIdx,
929                 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
930               continue;
931             }
932           }
933         }
934 
935         if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
936           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
937           if (ASC->getDestAddressSpace() == NewAS) {
938             ASC->replaceAllUsesWith(NewV);
939             DeadInstructions.push_back(ASC);
940             continue;
941           }
942         }
943 
944         // Otherwise, replaces the use with flat(NewV).
945         if (Instruction *I = dyn_cast<Instruction>(V)) {
946           BasicBlock::iterator InsertPos = std::next(I->getIterator());
947           while (isa<PHINode>(InsertPos))
948             ++InsertPos;
949           U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
950         } else {
951           U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
952                                                V->getType()));
953         }
954       }
955     }
956 
957     if (V->use_empty()) {
958       if (Instruction *I = dyn_cast<Instruction>(V))
959         DeadInstructions.push_back(I);
960     }
961   }
962 
963   for (Instruction *I : DeadInstructions)
964     RecursivelyDeleteTriviallyDeadInstructions(I);
965 
966   return true;
967 }
968 
969 FunctionPass *llvm::createInferAddressSpacesPass() {
970   return new InferAddressSpaces();
971 }
972