1 //===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // CUDA C/C++ includes memory space designation as variable type qualifers (such 11 // as __global__ and __shared__). Knowing the space of a memory access allows 12 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 13 // shared memory can be translated to `ld.shared` which is roughly 10% faster 14 // than a generic `ld` on an NVIDIA Tesla K40c. 15 // 16 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 17 // compilers must infer the memory space of an address expression from 18 // type-qualified variables. 19 // 20 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 21 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 22 // places only type-qualified variables in specific address spaces, and then 23 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 24 // (so-called the generic address space) for other instructions to use. 25 // 26 // For example, the Clang translates the following CUDA code 27 // __shared__ float a[10]; 28 // float v = a[i]; 29 // to 30 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 31 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 32 // %v = load float, float* %1 ; emits ld.f32 33 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 34 // redirected to %0 (the generic version of @a). 35 // 36 // The optimization implemented in this file propagates specific address spaces 37 // from type-qualified variable declarations to its users. For example, it 38 // optimizes the above IR to 39 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 40 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 41 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 42 // codegen is able to emit ld.shared.f32 for %v. 43 // 44 // Address space inference works in two steps. First, it uses a data-flow 45 // analysis to infer as many generic pointers as possible to point to only one 46 // specific address space. In the above example, it can prove that %1 only 47 // points to addrspace(3). This algorithm was published in 48 // CUDA: Compiling and optimizing for a GPU platform 49 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 50 // ICCS 2012 51 // 52 // Then, address space inference replaces all refinable generic pointers with 53 // equivalent specific pointers. 54 // 55 // The major challenge of implementing this optimization is handling PHINodes, 56 // which may create loops in the data flow graph. This brings two complications. 57 // 58 // First, the data flow analysis in Step 1 needs to be circular. For example, 59 // %generic.input = addrspacecast float addrspace(3)* %input to float* 60 // loop: 61 // %y = phi [ %generic.input, %y2 ] 62 // %y2 = getelementptr %y, 1 63 // %v = load %y2 64 // br ..., label %loop, ... 65 // proving %y specific requires proving both %generic.input and %y2 specific, 66 // but proving %y2 specific circles back to %y. To address this complication, 67 // the data flow analysis operates on a lattice: 68 // uninitialized > specific address spaces > generic. 69 // All address expressions (our implementation only considers phi, bitcast, 70 // addrspacecast, and getelementptr) start with the uninitialized address space. 71 // The monotone transfer function moves the address space of a pointer down a 72 // lattice path from uninitialized to specific and then to generic. A join 73 // operation of two different specific address spaces pushes the expression down 74 // to the generic address space. The analysis completes once it reaches a fixed 75 // point. 76 // 77 // Second, IR rewriting in Step 2 also needs to be circular. For example, 78 // converting %y to addrspace(3) requires the compiler to know the converted 79 // %y2, but converting %y2 needs the converted %y. To address this complication, 80 // we break these cycles using "undef" placeholders. When converting an 81 // instruction `I` to a new address space, if its operand `Op` is not converted 82 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later. 83 // For instance, our algorithm first converts %y to 84 // %y' = phi float addrspace(3)* [ %input, undef ] 85 // Then, it converts %y2 to 86 // %y2' = getelementptr %y', 1 87 // Finally, it fixes the undef in %y' so that 88 // %y' = phi float addrspace(3)* [ %input, %y2' ] 89 // 90 //===----------------------------------------------------------------------===// 91 92 #include "llvm/ADT/DenseSet.h" 93 #include "llvm/ADT/Optional.h" 94 #include "llvm/ADT/SetVector.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/InstIterator.h" 98 #include "llvm/IR/Instructions.h" 99 #include "llvm/IR/Operator.h" 100 #include "llvm/Support/Debug.h" 101 #include "llvm/Support/raw_ostream.h" 102 #include "llvm/Transforms/Scalar.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include "llvm/Transforms/Utils/ValueMapper.h" 105 106 #define DEBUG_TYPE "infer-address-spaces" 107 108 using namespace llvm; 109 110 namespace { 111 static const unsigned UninitializedAddressSpace = ~0u; 112 113 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 114 115 /// \brief InferAddressSpaces 116 class InferAddressSpaces : public FunctionPass { 117 /// Target specific address space which uses of should be replaced if 118 /// possible. 119 unsigned FlatAddrSpace; 120 121 public: 122 static char ID; 123 124 InferAddressSpaces() : FunctionPass(ID) {} 125 126 void getAnalysisUsage(AnalysisUsage &AU) const override { 127 AU.setPreservesCFG(); 128 AU.addRequired<TargetTransformInfoWrapperPass>(); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 private: 134 // Returns the new address space of V if updated; otherwise, returns None. 135 Optional<unsigned> 136 updateAddressSpace(const Value &V, 137 const ValueToAddrSpaceMapTy &InferredAddrSpace) const; 138 139 // Tries to infer the specific address space of each address expression in 140 // Postorder. 141 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 142 ValueToAddrSpaceMapTy *InferredAddrSpace) const; 143 144 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 145 146 // Changes the flat address expressions in function F to point to specific 147 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 148 // all flat expressions in the use-def graph of function F. 149 bool 150 rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 151 const ValueToAddrSpaceMapTy &InferredAddrSpace, 152 Function *F) const; 153 154 void appendsFlatAddressExpressionToPostorderStack( 155 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack, 156 DenseSet<Value *> &Visited) const; 157 158 bool rewriteIntrinsicOperands(IntrinsicInst *II, 159 Value *OldV, Value *NewV) const; 160 void collectRewritableIntrinsicOperands( 161 IntrinsicInst *II, 162 std::vector<std::pair<Value *, bool>> &PostorderStack, 163 DenseSet<Value *> &Visited) const; 164 165 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const; 166 167 Value *cloneValueWithNewAddressSpace( 168 Value *V, unsigned NewAddrSpace, 169 const ValueToValueMapTy &ValueWithNewAddrSpace, 170 SmallVectorImpl<const Use *> *UndefUsesToFix) const; 171 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 172 }; 173 } // end anonymous namespace 174 175 char InferAddressSpaces::ID = 0; 176 177 namespace llvm { 178 void initializeInferAddressSpacesPass(PassRegistry &); 179 } 180 181 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 182 false, false) 183 184 // Returns true if V is an address expression. 185 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 186 // getelementptr operators. 187 static bool isAddressExpression(const Value &V) { 188 if (!isa<Operator>(V)) 189 return false; 190 191 switch (cast<Operator>(V).getOpcode()) { 192 case Instruction::PHI: 193 case Instruction::BitCast: 194 case Instruction::AddrSpaceCast: 195 case Instruction::GetElementPtr: 196 case Instruction::Select: 197 return true; 198 default: 199 return false; 200 } 201 } 202 203 // Returns the pointer operands of V. 204 // 205 // Precondition: V is an address expression. 206 static SmallVector<Value *, 2> getPointerOperands(const Value &V) { 207 const Operator &Op = cast<Operator>(V); 208 switch (Op.getOpcode()) { 209 case Instruction::PHI: { 210 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 211 return SmallVector<Value *, 2>(IncomingValues.begin(), 212 IncomingValues.end()); 213 } 214 case Instruction::BitCast: 215 case Instruction::AddrSpaceCast: 216 case Instruction::GetElementPtr: 217 return {Op.getOperand(0)}; 218 case Instruction::Select: 219 return {Op.getOperand(1), Op.getOperand(2)}; 220 default: 221 llvm_unreachable("Unexpected instruction type."); 222 } 223 } 224 225 // TODO: Move logic to TTI? 226 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II, 227 Value *OldV, 228 Value *NewV) const { 229 Module *M = II->getParent()->getParent()->getParent(); 230 231 switch (II->getIntrinsicID()) { 232 case Intrinsic::amdgcn_atomic_inc: 233 case Intrinsic::amdgcn_atomic_dec:{ 234 const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4)); 235 if (!IsVolatile || !IsVolatile->isNullValue()) 236 return false; 237 238 LLVM_FALLTHROUGH; 239 } 240 case Intrinsic::objectsize: { 241 Type *DestTy = II->getType(); 242 Type *SrcTy = NewV->getType(); 243 Function *NewDecl = 244 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 245 II->setArgOperand(0, NewV); 246 II->setCalledFunction(NewDecl); 247 return true; 248 } 249 default: 250 return false; 251 } 252 } 253 254 // TODO: Move logic to TTI? 255 void InferAddressSpaces::collectRewritableIntrinsicOperands( 256 IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack, 257 DenseSet<Value *> &Visited) const { 258 switch (II->getIntrinsicID()) { 259 case Intrinsic::objectsize: 260 case Intrinsic::amdgcn_atomic_inc: 261 case Intrinsic::amdgcn_atomic_dec: 262 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 263 PostorderStack, Visited); 264 break; 265 default: 266 break; 267 } 268 } 269 270 // Returns all flat address expressions in function F. The elements are 271 // If V is an unvisited flat address expression, appends V to PostorderStack 272 // and marks it as visited. 273 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack( 274 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack, 275 DenseSet<Value *> &Visited) const { 276 assert(V->getType()->isPointerTy()); 277 278 // Generic addressing expressions may be hidden in nested constant 279 // expressions. 280 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 281 // TODO: Look in non-address parts, like icmp operands. 282 if (isAddressExpression(*CE) && Visited.insert(CE).second) 283 PostorderStack.push_back(std::make_pair(CE, false)); 284 285 return; 286 } 287 288 if (isAddressExpression(*V) && 289 V->getType()->getPointerAddressSpace() == FlatAddrSpace) { 290 if (Visited.insert(V).second) { 291 PostorderStack.push_back(std::make_pair(V, false)); 292 293 Operator *Op = cast<Operator>(V); 294 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) { 295 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) { 296 if (isAddressExpression(*CE) && Visited.insert(CE).second) 297 PostorderStack.emplace_back(CE, false); 298 } 299 } 300 } 301 } 302 } 303 304 // Returns all flat address expressions in function F. The elements are ordered 305 // ordered in postorder. 306 std::vector<WeakTrackingVH> 307 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const { 308 // This function implements a non-recursive postorder traversal of a partial 309 // use-def graph of function F. 310 std::vector<std::pair<Value *, bool>> PostorderStack; 311 // The set of visited expressions. 312 DenseSet<Value *> Visited; 313 314 auto PushPtrOperand = [&](Value *Ptr) { 315 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, 316 Visited); 317 }; 318 319 // Look at operations that may be interesting accelerate by moving to a known 320 // address space. We aim at generating after loads and stores, but pure 321 // addressing calculations may also be faster. 322 for (Instruction &I : instructions(F)) { 323 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 324 if (!GEP->getType()->isVectorTy()) 325 PushPtrOperand(GEP->getPointerOperand()); 326 } else if (auto *LI = dyn_cast<LoadInst>(&I)) 327 PushPtrOperand(LI->getPointerOperand()); 328 else if (auto *SI = dyn_cast<StoreInst>(&I)) 329 PushPtrOperand(SI->getPointerOperand()); 330 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 331 PushPtrOperand(RMW->getPointerOperand()); 332 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 333 PushPtrOperand(CmpX->getPointerOperand()); 334 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 335 // For memset/memcpy/memmove, any pointer operand can be replaced. 336 PushPtrOperand(MI->getRawDest()); 337 338 // Handle 2nd operand for memcpy/memmove. 339 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 340 PushPtrOperand(MTI->getRawSource()); 341 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 342 collectRewritableIntrinsicOperands(II, PostorderStack, Visited); 343 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 344 // FIXME: Handle vectors of pointers 345 if (Cmp->getOperand(0)->getType()->isPointerTy()) { 346 PushPtrOperand(Cmp->getOperand(0)); 347 PushPtrOperand(Cmp->getOperand(1)); 348 } 349 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) { 350 if (!ASC->getType()->isVectorTy()) 351 PushPtrOperand(ASC->getPointerOperand()); 352 } 353 } 354 355 std::vector<WeakTrackingVH> Postorder; // The resultant postorder. 356 while (!PostorderStack.empty()) { 357 Value *TopVal = PostorderStack.back().first; 358 // If the operands of the expression on the top are already explored, 359 // adds that expression to the resultant postorder. 360 if (PostorderStack.back().second) { 361 Postorder.push_back(TopVal); 362 PostorderStack.pop_back(); 363 continue; 364 } 365 // Otherwise, adds its operands to the stack and explores them. 366 PostorderStack.back().second = true; 367 for (Value *PtrOperand : getPointerOperands(*TopVal)) { 368 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack, 369 Visited); 370 } 371 } 372 return Postorder; 373 } 374 375 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 376 // of OperandUse.get() in the new address space. If the clone is not ready yet, 377 // returns an undef in the new address space as a placeholder. 378 static Value *operandWithNewAddressSpaceOrCreateUndef( 379 const Use &OperandUse, unsigned NewAddrSpace, 380 const ValueToValueMapTy &ValueWithNewAddrSpace, 381 SmallVectorImpl<const Use *> *UndefUsesToFix) { 382 Value *Operand = OperandUse.get(); 383 384 Type *NewPtrTy = 385 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 386 387 if (Constant *C = dyn_cast<Constant>(Operand)) 388 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); 389 390 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 391 return NewOperand; 392 393 UndefUsesToFix->push_back(&OperandUse); 394 return UndefValue::get(NewPtrTy); 395 } 396 397 // Returns a clone of `I` with its operands converted to those specified in 398 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 399 // operand whose address space needs to be modified might not exist in 400 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and 401 // adds that operand use to UndefUsesToFix so that caller can fix them later. 402 // 403 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 404 // from a pointer whose type already matches. Therefore, this function returns a 405 // Value* instead of an Instruction*. 406 static Value *cloneInstructionWithNewAddressSpace( 407 Instruction *I, unsigned NewAddrSpace, 408 const ValueToValueMapTy &ValueWithNewAddrSpace, 409 SmallVectorImpl<const Use *> *UndefUsesToFix) { 410 Type *NewPtrType = 411 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 412 413 if (I->getOpcode() == Instruction::AddrSpaceCast) { 414 Value *Src = I->getOperand(0); 415 // Because `I` is flat, the source address space must be specific. 416 // Therefore, the inferred address space must be the source space, according 417 // to our algorithm. 418 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 419 if (Src->getType() != NewPtrType) 420 return new BitCastInst(Src, NewPtrType); 421 return Src; 422 } 423 424 // Computes the converted pointer operands. 425 SmallVector<Value *, 4> NewPointerOperands; 426 for (const Use &OperandUse : I->operands()) { 427 if (!OperandUse.get()->getType()->isPointerTy()) 428 NewPointerOperands.push_back(nullptr); 429 else 430 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef( 431 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix)); 432 } 433 434 switch (I->getOpcode()) { 435 case Instruction::BitCast: 436 return new BitCastInst(NewPointerOperands[0], NewPtrType); 437 case Instruction::PHI: { 438 assert(I->getType()->isPointerTy()); 439 PHINode *PHI = cast<PHINode>(I); 440 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 441 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 442 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 443 NewPHI->addIncoming(NewPointerOperands[OperandNo], 444 PHI->getIncomingBlock(Index)); 445 } 446 return NewPHI; 447 } 448 case Instruction::GetElementPtr: { 449 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 450 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 451 GEP->getSourceElementType(), NewPointerOperands[0], 452 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end())); 453 NewGEP->setIsInBounds(GEP->isInBounds()); 454 return NewGEP; 455 } 456 case Instruction::Select: { 457 assert(I->getType()->isPointerTy()); 458 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 459 NewPointerOperands[2], "", nullptr, I); 460 } 461 default: 462 llvm_unreachable("Unexpected opcode"); 463 } 464 } 465 466 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 467 // constant expression `CE` with its operands replaced as specified in 468 // ValueWithNewAddrSpace. 469 static Value *cloneConstantExprWithNewAddressSpace( 470 ConstantExpr *CE, unsigned NewAddrSpace, 471 const ValueToValueMapTy &ValueWithNewAddrSpace) { 472 Type *TargetType = 473 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 474 475 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 476 // Because CE is flat, the source address space must be specific. 477 // Therefore, the inferred address space must be the source space according 478 // to our algorithm. 479 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 480 NewAddrSpace); 481 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 482 } 483 484 if (CE->getOpcode() == Instruction::BitCast) { 485 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) 486 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); 487 return ConstantExpr::getAddrSpaceCast(CE, TargetType); 488 } 489 490 if (CE->getOpcode() == Instruction::Select) { 491 Constant *Src0 = CE->getOperand(1); 492 Constant *Src1 = CE->getOperand(2); 493 if (Src0->getType()->getPointerAddressSpace() == 494 Src1->getType()->getPointerAddressSpace()) { 495 496 return ConstantExpr::getSelect( 497 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType), 498 ConstantExpr::getAddrSpaceCast(Src1, TargetType)); 499 } 500 } 501 502 // Computes the operands of the new constant expression. 503 bool IsNew = false; 504 SmallVector<Constant *, 4> NewOperands; 505 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 506 Constant *Operand = CE->getOperand(Index); 507 // If the address space of `Operand` needs to be modified, the new operand 508 // with the new address space should already be in ValueWithNewAddrSpace 509 // because (1) the constant expressions we consider (i.e. addrspacecast, 510 // bitcast, and getelementptr) do not incur cycles in the data flow graph 511 // and (2) this function is called on constant expressions in postorder. 512 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 513 IsNew = true; 514 NewOperands.push_back(cast<Constant>(NewOperand)); 515 } else { 516 // Otherwise, reuses the old operand. 517 NewOperands.push_back(Operand); 518 } 519 } 520 521 // If !IsNew, we will replace the Value with itself. However, replaced values 522 // are assumed to wrapped in a addrspace cast later so drop it now. 523 if (!IsNew) 524 return nullptr; 525 526 if (CE->getOpcode() == Instruction::GetElementPtr) { 527 // Needs to specify the source type while constructing a getelementptr 528 // constant expression. 529 return CE->getWithOperands( 530 NewOperands, TargetType, /*OnlyIfReduced=*/false, 531 NewOperands[0]->getType()->getPointerElementType()); 532 } 533 534 return CE->getWithOperands(NewOperands, TargetType); 535 } 536 537 // Returns a clone of the value `V`, with its operands replaced as specified in 538 // ValueWithNewAddrSpace. This function is called on every flat address 539 // expression whose address space needs to be modified, in postorder. 540 // 541 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix. 542 Value *InferAddressSpaces::cloneValueWithNewAddressSpace( 543 Value *V, unsigned NewAddrSpace, 544 const ValueToValueMapTy &ValueWithNewAddrSpace, 545 SmallVectorImpl<const Use *> *UndefUsesToFix) const { 546 // All values in Postorder are flat address expressions. 547 assert(isAddressExpression(*V) && 548 V->getType()->getPointerAddressSpace() == FlatAddrSpace); 549 550 if (Instruction *I = dyn_cast<Instruction>(V)) { 551 Value *NewV = cloneInstructionWithNewAddressSpace( 552 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix); 553 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) { 554 if (NewI->getParent() == nullptr) { 555 NewI->insertBefore(I); 556 NewI->takeName(I); 557 } 558 } 559 return NewV; 560 } 561 562 return cloneConstantExprWithNewAddressSpace( 563 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace); 564 } 565 566 // Defines the join operation on the address space lattice (see the file header 567 // comments). 568 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1, 569 unsigned AS2) const { 570 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 571 return FlatAddrSpace; 572 573 if (AS1 == UninitializedAddressSpace) 574 return AS2; 575 if (AS2 == UninitializedAddressSpace) 576 return AS1; 577 578 // The join of two different specific address spaces is flat. 579 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 580 } 581 582 bool InferAddressSpaces::runOnFunction(Function &F) { 583 if (skipFunction(F)) 584 return false; 585 586 const TargetTransformInfo &TTI = 587 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 588 FlatAddrSpace = TTI.getFlatAddressSpace(); 589 if (FlatAddrSpace == UninitializedAddressSpace) 590 return false; 591 592 // Collects all flat address expressions in postorder. 593 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F); 594 595 // Runs a data-flow analysis to refine the address spaces of every expression 596 // in Postorder. 597 ValueToAddrSpaceMapTy InferredAddrSpace; 598 inferAddressSpaces(Postorder, &InferredAddrSpace); 599 600 // Changes the address spaces of the flat address expressions who are inferred 601 // to point to a specific address space. 602 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F); 603 } 604 605 // Constants need to be tracked through RAUW to handle cases with nested 606 // constant expressions, so wrap values in WeakTrackingVH. 607 void InferAddressSpaces::inferAddressSpaces( 608 ArrayRef<WeakTrackingVH> Postorder, 609 ValueToAddrSpaceMapTy *InferredAddrSpace) const { 610 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 611 // Initially, all expressions are in the uninitialized address space. 612 for (Value *V : Postorder) 613 (*InferredAddrSpace)[V] = UninitializedAddressSpace; 614 615 while (!Worklist.empty()) { 616 Value *V = Worklist.pop_back_val(); 617 618 // Tries to update the address space of the stack top according to the 619 // address spaces of its operands. 620 DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n'); 621 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace); 622 if (!NewAS.hasValue()) 623 continue; 624 // If any updates are made, grabs its users to the worklist because 625 // their address spaces can also be possibly updated. 626 DEBUG(dbgs() << " to " << NewAS.getValue() << '\n'); 627 (*InferredAddrSpace)[V] = NewAS.getValue(); 628 629 for (Value *User : V->users()) { 630 // Skip if User is already in the worklist. 631 if (Worklist.count(User)) 632 continue; 633 634 auto Pos = InferredAddrSpace->find(User); 635 // Our algorithm only updates the address spaces of flat address 636 // expressions, which are those in InferredAddrSpace. 637 if (Pos == InferredAddrSpace->end()) 638 continue; 639 640 // Function updateAddressSpace moves the address space down a lattice 641 // path. Therefore, nothing to do if User is already inferred as flat (the 642 // bottom element in the lattice). 643 if (Pos->second == FlatAddrSpace) 644 continue; 645 646 Worklist.insert(User); 647 } 648 } 649 } 650 651 Optional<unsigned> InferAddressSpaces::updateAddressSpace( 652 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const { 653 assert(InferredAddrSpace.count(&V)); 654 655 // The new inferred address space equals the join of the address spaces 656 // of all its pointer operands. 657 unsigned NewAS = UninitializedAddressSpace; 658 659 const Operator &Op = cast<Operator>(V); 660 if (Op.getOpcode() == Instruction::Select) { 661 Value *Src0 = Op.getOperand(1); 662 Value *Src1 = Op.getOperand(2); 663 664 auto I = InferredAddrSpace.find(Src0); 665 unsigned Src0AS = (I != InferredAddrSpace.end()) ? 666 I->second : Src0->getType()->getPointerAddressSpace(); 667 668 auto J = InferredAddrSpace.find(Src1); 669 unsigned Src1AS = (J != InferredAddrSpace.end()) ? 670 J->second : Src1->getType()->getPointerAddressSpace(); 671 672 auto *C0 = dyn_cast<Constant>(Src0); 673 auto *C1 = dyn_cast<Constant>(Src1); 674 675 // If one of the inputs is a constant, we may be able to do a constant 676 // addrspacecast of it. Defer inferring the address space until the input 677 // address space is known. 678 if ((C1 && Src0AS == UninitializedAddressSpace) || 679 (C0 && Src1AS == UninitializedAddressSpace)) 680 return None; 681 682 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) 683 NewAS = Src1AS; 684 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) 685 NewAS = Src0AS; 686 else 687 NewAS = joinAddressSpaces(Src0AS, Src1AS); 688 } else { 689 for (Value *PtrOperand : getPointerOperands(V)) { 690 auto I = InferredAddrSpace.find(PtrOperand); 691 unsigned OperandAS = I != InferredAddrSpace.end() ? 692 I->second : PtrOperand->getType()->getPointerAddressSpace(); 693 694 // join(flat, *) = flat. So we can break if NewAS is already flat. 695 NewAS = joinAddressSpaces(NewAS, OperandAS); 696 if (NewAS == FlatAddrSpace) 697 break; 698 } 699 } 700 701 unsigned OldAS = InferredAddrSpace.lookup(&V); 702 assert(OldAS != FlatAddrSpace); 703 if (OldAS == NewAS) 704 return None; 705 return NewAS; 706 } 707 708 /// \p returns true if \p U is the pointer operand of a memory instruction with 709 /// a single pointer operand that can have its address space changed by simply 710 /// mutating the use to a new value. 711 static bool isSimplePointerUseValidToReplace(Use &U) { 712 User *Inst = U.getUser(); 713 unsigned OpNo = U.getOperandNo(); 714 715 if (auto *LI = dyn_cast<LoadInst>(Inst)) 716 return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile(); 717 718 if (auto *SI = dyn_cast<StoreInst>(Inst)) 719 return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile(); 720 721 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 722 return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile(); 723 724 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 725 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && 726 !CmpX->isVolatile(); 727 } 728 729 return false; 730 } 731 732 /// Update memory intrinsic uses that require more complex processing than 733 /// simple memory instructions. Thse require re-mangling and may have multiple 734 /// pointer operands. 735 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, 736 Value *NewV) { 737 IRBuilder<> B(MI); 738 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 739 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 740 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 741 742 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 743 B.CreateMemSet(NewV, MSI->getValue(), 744 MSI->getLength(), MSI->getAlignment(), 745 false, // isVolatile 746 TBAA, ScopeMD, NoAliasMD); 747 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 748 Value *Src = MTI->getRawSource(); 749 Value *Dest = MTI->getRawDest(); 750 751 // Be careful in case this is a self-to-self copy. 752 if (Src == OldV) 753 Src = NewV; 754 755 if (Dest == OldV) 756 Dest = NewV; 757 758 if (isa<MemCpyInst>(MTI)) { 759 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 760 B.CreateMemCpy(Dest, Src, MTI->getLength(), 761 MTI->getAlignment(), 762 false, // isVolatile 763 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 764 } else { 765 assert(isa<MemMoveInst>(MTI)); 766 B.CreateMemMove(Dest, Src, MTI->getLength(), 767 MTI->getAlignment(), 768 false, // isVolatile 769 TBAA, ScopeMD, NoAliasMD); 770 } 771 } else 772 llvm_unreachable("unhandled MemIntrinsic"); 773 774 MI->eraseFromParent(); 775 return true; 776 } 777 778 // \p returns true if it is OK to change the address space of constant \p C with 779 // a ConstantExpr addrspacecast. 780 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const { 781 assert(NewAS != UninitializedAddressSpace); 782 783 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 784 if (SrcAS == NewAS || isa<UndefValue>(C)) 785 return true; 786 787 // Prevent illegal casts between different non-flat address spaces. 788 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 789 return false; 790 791 if (isa<ConstantPointerNull>(C)) 792 return true; 793 794 if (auto *Op = dyn_cast<Operator>(C)) { 795 // If we already have a constant addrspacecast, it should be safe to cast it 796 // off. 797 if (Op->getOpcode() == Instruction::AddrSpaceCast) 798 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS); 799 800 if (Op->getOpcode() == Instruction::IntToPtr && 801 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 802 return true; 803 } 804 805 return false; 806 } 807 808 static Value::use_iterator skipToNextUser(Value::use_iterator I, 809 Value::use_iterator End) { 810 User *CurUser = I->getUser(); 811 ++I; 812 813 while (I != End && I->getUser() == CurUser) 814 ++I; 815 816 return I; 817 } 818 819 bool InferAddressSpaces::rewriteWithNewAddressSpaces( 820 ArrayRef<WeakTrackingVH> Postorder, 821 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const { 822 // For each address expression to be modified, creates a clone of it with its 823 // pointer operands converted to the new address space. Since the pointer 824 // operands are converted, the clone is naturally in the new address space by 825 // construction. 826 ValueToValueMapTy ValueWithNewAddrSpace; 827 SmallVector<const Use *, 32> UndefUsesToFix; 828 for (Value* V : Postorder) { 829 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 830 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 831 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace( 832 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix); 833 } 834 } 835 836 if (ValueWithNewAddrSpace.empty()) 837 return false; 838 839 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace. 840 for (const Use *UndefUse : UndefUsesToFix) { 841 User *V = UndefUse->getUser(); 842 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V)); 843 unsigned OperandNo = UndefUse->getOperandNo(); 844 assert(isa<UndefValue>(NewV->getOperand(OperandNo))); 845 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get())); 846 } 847 848 SmallVector<Instruction *, 16> DeadInstructions; 849 850 // Replaces the uses of the old address expressions with the new ones. 851 for (const WeakTrackingVH &WVH : Postorder) { 852 assert(WVH && "value was unexpectedly deleted"); 853 Value *V = WVH; 854 Value *NewV = ValueWithNewAddrSpace.lookup(V); 855 if (NewV == nullptr) 856 continue; 857 858 DEBUG(dbgs() << "Replacing the uses of " << *V 859 << "\n with\n " << *NewV << '\n'); 860 861 if (Constant *C = dyn_cast<Constant>(V)) { 862 Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 863 C->getType()); 864 if (C != Replace) { 865 DEBUG(dbgs() << "Inserting replacement const cast: " 866 << Replace << ": " << *Replace << '\n'); 867 C->replaceAllUsesWith(Replace); 868 V = Replace; 869 } 870 } 871 872 Value::use_iterator I, E, Next; 873 for (I = V->use_begin(), E = V->use_end(); I != E; ) { 874 Use &U = *I; 875 876 // Some users may see the same pointer operand in multiple operands. Skip 877 // to the next instruction. 878 I = skipToNextUser(I, E); 879 880 if (isSimplePointerUseValidToReplace(U)) { 881 // If V is used as the pointer operand of a compatible memory operation, 882 // sets the pointer operand to NewV. This replacement does not change 883 // the element type, so the resultant load/store is still valid. 884 U.set(NewV); 885 continue; 886 } 887 888 User *CurUser = U.getUser(); 889 // Handle more complex cases like intrinsic that need to be remangled. 890 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 891 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 892 continue; 893 } 894 895 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 896 if (rewriteIntrinsicOperands(II, V, NewV)) 897 continue; 898 } 899 900 if (isa<Instruction>(CurUser)) { 901 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { 902 // If we can infer that both pointers are in the same addrspace, 903 // transform e.g. 904 // %cmp = icmp eq float* %p, %q 905 // into 906 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 907 908 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 909 int SrcIdx = U.getOperandNo(); 910 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 911 Value *OtherSrc = Cmp->getOperand(OtherIdx); 912 913 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 914 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 915 Cmp->setOperand(OtherIdx, OtherNewV); 916 Cmp->setOperand(SrcIdx, NewV); 917 continue; 918 } 919 } 920 921 // Even if the type mismatches, we can cast the constant. 922 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 923 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 924 Cmp->setOperand(SrcIdx, NewV); 925 Cmp->setOperand(OtherIdx, 926 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType())); 927 continue; 928 } 929 } 930 } 931 932 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) { 933 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 934 if (ASC->getDestAddressSpace() == NewAS) { 935 ASC->replaceAllUsesWith(NewV); 936 DeadInstructions.push_back(ASC); 937 continue; 938 } 939 } 940 941 // Otherwise, replaces the use with flat(NewV). 942 if (Instruction *I = dyn_cast<Instruction>(V)) { 943 BasicBlock::iterator InsertPos = std::next(I->getIterator()); 944 while (isa<PHINode>(InsertPos)) 945 ++InsertPos; 946 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos)); 947 } else { 948 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 949 V->getType())); 950 } 951 } 952 } 953 954 if (V->use_empty()) { 955 if (Instruction *I = dyn_cast<Instruction>(V)) 956 DeadInstructions.push_back(I); 957 } 958 } 959 960 for (Instruction *I : DeadInstructions) 961 RecursivelyDeleteTriviallyDeadInstructions(I); 962 963 return true; 964 } 965 966 FunctionPass *llvm::createInferAddressSpacesPass() { 967 return new InferAddressSpaces(); 968 } 969