1 //===- InferAddressSpace.cpp - --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // CUDA C/C++ includes memory space designation as variable type qualifers (such 10 // as __global__ and __shared__). Knowing the space of a memory access allows 11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 12 // shared memory can be translated to `ld.shared` which is roughly 10% faster 13 // than a generic `ld` on an NVIDIA Tesla K40c. 14 // 15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 16 // compilers must infer the memory space of an address expression from 17 // type-qualified variables. 18 // 19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 21 // places only type-qualified variables in specific address spaces, and then 22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 23 // (so-called the generic address space) for other instructions to use. 24 // 25 // For example, the Clang translates the following CUDA code 26 // __shared__ float a[10]; 27 // float v = a[i]; 28 // to 29 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 30 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 31 // %v = load float, float* %1 ; emits ld.f32 32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 33 // redirected to %0 (the generic version of @a). 34 // 35 // The optimization implemented in this file propagates specific address spaces 36 // from type-qualified variable declarations to its users. For example, it 37 // optimizes the above IR to 38 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 39 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 41 // codegen is able to emit ld.shared.f32 for %v. 42 // 43 // Address space inference works in two steps. First, it uses a data-flow 44 // analysis to infer as many generic pointers as possible to point to only one 45 // specific address space. In the above example, it can prove that %1 only 46 // points to addrspace(3). This algorithm was published in 47 // CUDA: Compiling and optimizing for a GPU platform 48 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 49 // ICCS 2012 50 // 51 // Then, address space inference replaces all refinable generic pointers with 52 // equivalent specific pointers. 53 // 54 // The major challenge of implementing this optimization is handling PHINodes, 55 // which may create loops in the data flow graph. This brings two complications. 56 // 57 // First, the data flow analysis in Step 1 needs to be circular. For example, 58 // %generic.input = addrspacecast float addrspace(3)* %input to float* 59 // loop: 60 // %y = phi [ %generic.input, %y2 ] 61 // %y2 = getelementptr %y, 1 62 // %v = load %y2 63 // br ..., label %loop, ... 64 // proving %y specific requires proving both %generic.input and %y2 specific, 65 // but proving %y2 specific circles back to %y. To address this complication, 66 // the data flow analysis operates on a lattice: 67 // uninitialized > specific address spaces > generic. 68 // All address expressions (our implementation only considers phi, bitcast, 69 // addrspacecast, and getelementptr) start with the uninitialized address space. 70 // The monotone transfer function moves the address space of a pointer down a 71 // lattice path from uninitialized to specific and then to generic. A join 72 // operation of two different specific address spaces pushes the expression down 73 // to the generic address space. The analysis completes once it reaches a fixed 74 // point. 75 // 76 // Second, IR rewriting in Step 2 also needs to be circular. For example, 77 // converting %y to addrspace(3) requires the compiler to know the converted 78 // %y2, but converting %y2 needs the converted %y. To address this complication, 79 // we break these cycles using "undef" placeholders. When converting an 80 // instruction `I` to a new address space, if its operand `Op` is not converted 81 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later. 82 // For instance, our algorithm first converts %y to 83 // %y' = phi float addrspace(3)* [ %input, undef ] 84 // Then, it converts %y2 to 85 // %y2' = getelementptr %y', 1 86 // Finally, it fixes the undef in %y' so that 87 // %y' = phi float addrspace(3)* [ %input, %y2' ] 88 // 89 //===----------------------------------------------------------------------===// 90 91 #include "llvm/ADT/ArrayRef.h" 92 #include "llvm/ADT/DenseMap.h" 93 #include "llvm/ADT/DenseSet.h" 94 #include "llvm/ADT/None.h" 95 #include "llvm/ADT/Optional.h" 96 #include "llvm/ADT/SetVector.h" 97 #include "llvm/ADT/SmallVector.h" 98 #include "llvm/Analysis/TargetTransformInfo.h" 99 #include "llvm/Transforms/Utils/Local.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/Function.h" 104 #include "llvm/IR/IRBuilder.h" 105 #include "llvm/IR/InstIterator.h" 106 #include "llvm/IR/Instruction.h" 107 #include "llvm/IR/Instructions.h" 108 #include "llvm/IR/IntrinsicInst.h" 109 #include "llvm/IR/Intrinsics.h" 110 #include "llvm/IR/LLVMContext.h" 111 #include "llvm/IR/Operator.h" 112 #include "llvm/IR/Type.h" 113 #include "llvm/IR/Use.h" 114 #include "llvm/IR/User.h" 115 #include "llvm/IR/Value.h" 116 #include "llvm/IR/ValueHandle.h" 117 #include "llvm/Pass.h" 118 #include "llvm/Support/Casting.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/raw_ostream.h" 123 #include "llvm/Transforms/Scalar.h" 124 #include "llvm/Transforms/Utils/ValueMapper.h" 125 #include <cassert> 126 #include <iterator> 127 #include <limits> 128 #include <utility> 129 #include <vector> 130 131 #define DEBUG_TYPE "infer-address-spaces" 132 133 using namespace llvm; 134 135 static const unsigned UninitializedAddressSpace = 136 std::numeric_limits<unsigned>::max(); 137 138 namespace { 139 140 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 141 using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>; 142 143 /// InferAddressSpaces 144 class InferAddressSpaces : public FunctionPass { 145 const TargetTransformInfo *TTI = nullptr; 146 147 /// Target specific address space which uses of should be replaced if 148 /// possible. 149 unsigned FlatAddrSpace = 0; 150 151 public: 152 static char ID; 153 154 InferAddressSpaces() : 155 FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {} 156 InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {} 157 158 void getAnalysisUsage(AnalysisUsage &AU) const override { 159 AU.setPreservesCFG(); 160 AU.addRequired<TargetTransformInfoWrapperPass>(); 161 } 162 163 bool runOnFunction(Function &F) override; 164 165 private: 166 // Returns the new address space of V if updated; otherwise, returns None. 167 Optional<unsigned> 168 updateAddressSpace(const Value &V, 169 const ValueToAddrSpaceMapTy &InferredAddrSpace) const; 170 171 // Tries to infer the specific address space of each address expression in 172 // Postorder. 173 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 174 ValueToAddrSpaceMapTy *InferredAddrSpace) const; 175 176 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 177 178 Value *cloneInstructionWithNewAddressSpace( 179 Instruction *I, unsigned NewAddrSpace, 180 const ValueToValueMapTy &ValueWithNewAddrSpace, 181 SmallVectorImpl<const Use *> *UndefUsesToFix) const; 182 183 // Changes the flat address expressions in function F to point to specific 184 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 185 // all flat expressions in the use-def graph of function F. 186 bool rewriteWithNewAddressSpaces( 187 const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder, 188 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const; 189 190 void appendsFlatAddressExpressionToPostorderStack( 191 Value *V, PostorderStackTy &PostorderStack, 192 DenseSet<Value *> &Visited) const; 193 194 bool rewriteIntrinsicOperands(IntrinsicInst *II, 195 Value *OldV, Value *NewV) const; 196 void collectRewritableIntrinsicOperands(IntrinsicInst *II, 197 PostorderStackTy &PostorderStack, 198 DenseSet<Value *> &Visited) const; 199 200 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const; 201 202 Value *cloneValueWithNewAddressSpace( 203 Value *V, unsigned NewAddrSpace, 204 const ValueToValueMapTy &ValueWithNewAddrSpace, 205 SmallVectorImpl<const Use *> *UndefUsesToFix) const; 206 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 207 }; 208 209 } // end anonymous namespace 210 211 char InferAddressSpaces::ID = 0; 212 213 namespace llvm { 214 215 void initializeInferAddressSpacesPass(PassRegistry &); 216 217 } // end namespace llvm 218 219 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 220 false, false) 221 222 // Returns true if V is an address expression. 223 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 224 // getelementptr operators. 225 static bool isAddressExpression(const Value &V) { 226 const Operator *Op = dyn_cast<Operator>(&V); 227 if (!Op) 228 return false; 229 230 switch (Op->getOpcode()) { 231 case Instruction::PHI: 232 assert(Op->getType()->isPointerTy()); 233 return true; 234 case Instruction::BitCast: 235 case Instruction::AddrSpaceCast: 236 case Instruction::GetElementPtr: 237 return true; 238 case Instruction::Select: 239 return Op->getType()->isPointerTy(); 240 case Instruction::Call: { 241 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V); 242 return II && II->getIntrinsicID() == Intrinsic::ptrmask; 243 } 244 default: 245 return false; 246 } 247 } 248 249 // Returns the pointer operands of V. 250 // 251 // Precondition: V is an address expression. 252 static SmallVector<Value *, 2> getPointerOperands(const Value &V) { 253 const Operator &Op = cast<Operator>(V); 254 switch (Op.getOpcode()) { 255 case Instruction::PHI: { 256 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 257 return SmallVector<Value *, 2>(IncomingValues.begin(), 258 IncomingValues.end()); 259 } 260 case Instruction::BitCast: 261 case Instruction::AddrSpaceCast: 262 case Instruction::GetElementPtr: 263 return {Op.getOperand(0)}; 264 case Instruction::Select: 265 return {Op.getOperand(1), Op.getOperand(2)}; 266 case Instruction::Call: { 267 const IntrinsicInst &II = cast<IntrinsicInst>(Op); 268 assert(II.getIntrinsicID() == Intrinsic::ptrmask && 269 "unexpected intrinsic call"); 270 return {II.getArgOperand(0)}; 271 } 272 default: 273 llvm_unreachable("Unexpected instruction type."); 274 } 275 } 276 277 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II, 278 Value *OldV, 279 Value *NewV) const { 280 Module *M = II->getParent()->getParent()->getParent(); 281 282 switch (II->getIntrinsicID()) { 283 case Intrinsic::objectsize: { 284 Type *DestTy = II->getType(); 285 Type *SrcTy = NewV->getType(); 286 Function *NewDecl = 287 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 288 II->setArgOperand(0, NewV); 289 II->setCalledFunction(NewDecl); 290 return true; 291 } 292 case Intrinsic::ptrmask: 293 // This is handled as an address expression, not as a use memory operation. 294 return false; 295 default: { 296 Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 297 if (!Rewrite) 298 return false; 299 if (Rewrite != II) 300 II->replaceAllUsesWith(Rewrite); 301 return true; 302 } 303 } 304 } 305 306 void InferAddressSpaces::collectRewritableIntrinsicOperands( 307 IntrinsicInst *II, PostorderStackTy &PostorderStack, 308 DenseSet<Value *> &Visited) const { 309 auto IID = II->getIntrinsicID(); 310 switch (IID) { 311 case Intrinsic::ptrmask: 312 case Intrinsic::objectsize: 313 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 314 PostorderStack, Visited); 315 break; 316 default: 317 SmallVector<int, 2> OpIndexes; 318 if (TTI->collectFlatAddressOperands(OpIndexes, IID)) { 319 for (int Idx : OpIndexes) { 320 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx), 321 PostorderStack, Visited); 322 } 323 } 324 break; 325 } 326 } 327 328 // Returns all flat address expressions in function F. The elements are 329 // If V is an unvisited flat address expression, appends V to PostorderStack 330 // and marks it as visited. 331 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack( 332 Value *V, PostorderStackTy &PostorderStack, 333 DenseSet<Value *> &Visited) const { 334 assert(V->getType()->isPointerTy()); 335 336 // Generic addressing expressions may be hidden in nested constant 337 // expressions. 338 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 339 // TODO: Look in non-address parts, like icmp operands. 340 if (isAddressExpression(*CE) && Visited.insert(CE).second) 341 PostorderStack.emplace_back(CE, false); 342 343 return; 344 } 345 346 if (isAddressExpression(*V) && 347 V->getType()->getPointerAddressSpace() == FlatAddrSpace) { 348 if (Visited.insert(V).second) { 349 PostorderStack.emplace_back(V, false); 350 351 Operator *Op = cast<Operator>(V); 352 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) { 353 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) { 354 if (isAddressExpression(*CE) && Visited.insert(CE).second) 355 PostorderStack.emplace_back(CE, false); 356 } 357 } 358 } 359 } 360 } 361 362 // Returns all flat address expressions in function F. The elements are ordered 363 // ordered in postorder. 364 std::vector<WeakTrackingVH> 365 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const { 366 // This function implements a non-recursive postorder traversal of a partial 367 // use-def graph of function F. 368 PostorderStackTy PostorderStack; 369 // The set of visited expressions. 370 DenseSet<Value *> Visited; 371 372 auto PushPtrOperand = [&](Value *Ptr) { 373 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, 374 Visited); 375 }; 376 377 // Look at operations that may be interesting accelerate by moving to a known 378 // address space. We aim at generating after loads and stores, but pure 379 // addressing calculations may also be faster. 380 for (Instruction &I : instructions(F)) { 381 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 382 if (!GEP->getType()->isVectorTy()) 383 PushPtrOperand(GEP->getPointerOperand()); 384 } else if (auto *LI = dyn_cast<LoadInst>(&I)) 385 PushPtrOperand(LI->getPointerOperand()); 386 else if (auto *SI = dyn_cast<StoreInst>(&I)) 387 PushPtrOperand(SI->getPointerOperand()); 388 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 389 PushPtrOperand(RMW->getPointerOperand()); 390 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 391 PushPtrOperand(CmpX->getPointerOperand()); 392 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 393 // For memset/memcpy/memmove, any pointer operand can be replaced. 394 PushPtrOperand(MI->getRawDest()); 395 396 // Handle 2nd operand for memcpy/memmove. 397 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 398 PushPtrOperand(MTI->getRawSource()); 399 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 400 collectRewritableIntrinsicOperands(II, PostorderStack, Visited); 401 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 402 // FIXME: Handle vectors of pointers 403 if (Cmp->getOperand(0)->getType()->isPointerTy()) { 404 PushPtrOperand(Cmp->getOperand(0)); 405 PushPtrOperand(Cmp->getOperand(1)); 406 } 407 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) { 408 if (!ASC->getType()->isVectorTy()) 409 PushPtrOperand(ASC->getPointerOperand()); 410 } 411 } 412 413 std::vector<WeakTrackingVH> Postorder; // The resultant postorder. 414 while (!PostorderStack.empty()) { 415 Value *TopVal = PostorderStack.back().getPointer(); 416 // If the operands of the expression on the top are already explored, 417 // adds that expression to the resultant postorder. 418 if (PostorderStack.back().getInt()) { 419 if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace) 420 Postorder.push_back(TopVal); 421 PostorderStack.pop_back(); 422 continue; 423 } 424 // Otherwise, adds its operands to the stack and explores them. 425 PostorderStack.back().setInt(true); 426 for (Value *PtrOperand : getPointerOperands(*TopVal)) { 427 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack, 428 Visited); 429 } 430 } 431 return Postorder; 432 } 433 434 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 435 // of OperandUse.get() in the new address space. If the clone is not ready yet, 436 // returns an undef in the new address space as a placeholder. 437 static Value *operandWithNewAddressSpaceOrCreateUndef( 438 const Use &OperandUse, unsigned NewAddrSpace, 439 const ValueToValueMapTy &ValueWithNewAddrSpace, 440 SmallVectorImpl<const Use *> *UndefUsesToFix) { 441 Value *Operand = OperandUse.get(); 442 443 Type *NewPtrTy = 444 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 445 446 if (Constant *C = dyn_cast<Constant>(Operand)) 447 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); 448 449 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 450 return NewOperand; 451 452 UndefUsesToFix->push_back(&OperandUse); 453 return UndefValue::get(NewPtrTy); 454 } 455 456 // Returns a clone of `I` with its operands converted to those specified in 457 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 458 // operand whose address space needs to be modified might not exist in 459 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and 460 // adds that operand use to UndefUsesToFix so that caller can fix them later. 461 // 462 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 463 // from a pointer whose type already matches. Therefore, this function returns a 464 // Value* instead of an Instruction*. 465 // 466 // This may also return nullptr in the case the instruction could not be 467 // rewritten. 468 Value *InferAddressSpaces::cloneInstructionWithNewAddressSpace( 469 Instruction *I, unsigned NewAddrSpace, 470 const ValueToValueMapTy &ValueWithNewAddrSpace, 471 SmallVectorImpl<const Use *> *UndefUsesToFix) const { 472 Type *NewPtrType = 473 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 474 475 if (I->getOpcode() == Instruction::AddrSpaceCast) { 476 Value *Src = I->getOperand(0); 477 // Because `I` is flat, the source address space must be specific. 478 // Therefore, the inferred address space must be the source space, according 479 // to our algorithm. 480 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 481 if (Src->getType() != NewPtrType) 482 return new BitCastInst(Src, NewPtrType); 483 return Src; 484 } 485 486 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 487 // Technically the intrinsic ID is a pointer typed argument, so specially 488 // handle calls early. 489 assert(II->getIntrinsicID() == Intrinsic::ptrmask); 490 Value *NewPtr = operandWithNewAddressSpaceOrCreateUndef( 491 II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace, 492 UndefUsesToFix); 493 Value *Rewrite = 494 TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr); 495 if (Rewrite) { 496 assert(Rewrite != II && "cannot modify this pointer operation in place"); 497 return Rewrite; 498 } 499 500 return nullptr; 501 } 502 503 // Computes the converted pointer operands. 504 SmallVector<Value *, 4> NewPointerOperands; 505 for (const Use &OperandUse : I->operands()) { 506 if (!OperandUse.get()->getType()->isPointerTy()) 507 NewPointerOperands.push_back(nullptr); 508 else 509 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef( 510 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix)); 511 } 512 513 switch (I->getOpcode()) { 514 case Instruction::BitCast: 515 return new BitCastInst(NewPointerOperands[0], NewPtrType); 516 case Instruction::PHI: { 517 assert(I->getType()->isPointerTy()); 518 PHINode *PHI = cast<PHINode>(I); 519 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 520 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 521 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 522 NewPHI->addIncoming(NewPointerOperands[OperandNo], 523 PHI->getIncomingBlock(Index)); 524 } 525 return NewPHI; 526 } 527 case Instruction::GetElementPtr: { 528 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 529 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 530 GEP->getSourceElementType(), NewPointerOperands[0], 531 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end())); 532 NewGEP->setIsInBounds(GEP->isInBounds()); 533 return NewGEP; 534 } 535 case Instruction::Select: 536 assert(I->getType()->isPointerTy()); 537 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 538 NewPointerOperands[2], "", nullptr, I); 539 default: 540 llvm_unreachable("Unexpected opcode"); 541 } 542 } 543 544 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 545 // constant expression `CE` with its operands replaced as specified in 546 // ValueWithNewAddrSpace. 547 static Value *cloneConstantExprWithNewAddressSpace( 548 ConstantExpr *CE, unsigned NewAddrSpace, 549 const ValueToValueMapTy &ValueWithNewAddrSpace) { 550 Type *TargetType = 551 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 552 553 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 554 // Because CE is flat, the source address space must be specific. 555 // Therefore, the inferred address space must be the source space according 556 // to our algorithm. 557 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 558 NewAddrSpace); 559 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 560 } 561 562 if (CE->getOpcode() == Instruction::BitCast) { 563 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) 564 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); 565 return ConstantExpr::getAddrSpaceCast(CE, TargetType); 566 } 567 568 if (CE->getOpcode() == Instruction::Select) { 569 Constant *Src0 = CE->getOperand(1); 570 Constant *Src1 = CE->getOperand(2); 571 if (Src0->getType()->getPointerAddressSpace() == 572 Src1->getType()->getPointerAddressSpace()) { 573 574 return ConstantExpr::getSelect( 575 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType), 576 ConstantExpr::getAddrSpaceCast(Src1, TargetType)); 577 } 578 } 579 580 // Computes the operands of the new constant expression. 581 bool IsNew = false; 582 SmallVector<Constant *, 4> NewOperands; 583 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 584 Constant *Operand = CE->getOperand(Index); 585 // If the address space of `Operand` needs to be modified, the new operand 586 // with the new address space should already be in ValueWithNewAddrSpace 587 // because (1) the constant expressions we consider (i.e. addrspacecast, 588 // bitcast, and getelementptr) do not incur cycles in the data flow graph 589 // and (2) this function is called on constant expressions in postorder. 590 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 591 IsNew = true; 592 NewOperands.push_back(cast<Constant>(NewOperand)); 593 continue; 594 } 595 if (auto CExpr = dyn_cast<ConstantExpr>(Operand)) 596 if (Value *NewOperand = cloneConstantExprWithNewAddressSpace( 597 CExpr, NewAddrSpace, ValueWithNewAddrSpace)) { 598 IsNew = true; 599 NewOperands.push_back(cast<Constant>(NewOperand)); 600 continue; 601 } 602 // Otherwise, reuses the old operand. 603 NewOperands.push_back(Operand); 604 } 605 606 // If !IsNew, we will replace the Value with itself. However, replaced values 607 // are assumed to wrapped in a addrspace cast later so drop it now. 608 if (!IsNew) 609 return nullptr; 610 611 if (CE->getOpcode() == Instruction::GetElementPtr) { 612 // Needs to specify the source type while constructing a getelementptr 613 // constant expression. 614 return CE->getWithOperands( 615 NewOperands, TargetType, /*OnlyIfReduced=*/false, 616 NewOperands[0]->getType()->getPointerElementType()); 617 } 618 619 return CE->getWithOperands(NewOperands, TargetType); 620 } 621 622 // Returns a clone of the value `V`, with its operands replaced as specified in 623 // ValueWithNewAddrSpace. This function is called on every flat address 624 // expression whose address space needs to be modified, in postorder. 625 // 626 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix. 627 Value *InferAddressSpaces::cloneValueWithNewAddressSpace( 628 Value *V, unsigned NewAddrSpace, 629 const ValueToValueMapTy &ValueWithNewAddrSpace, 630 SmallVectorImpl<const Use *> *UndefUsesToFix) const { 631 // All values in Postorder are flat address expressions. 632 assert(isAddressExpression(*V) && 633 V->getType()->getPointerAddressSpace() == FlatAddrSpace); 634 635 if (Instruction *I = dyn_cast<Instruction>(V)) { 636 Value *NewV = cloneInstructionWithNewAddressSpace( 637 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix); 638 if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) { 639 if (NewI->getParent() == nullptr) { 640 NewI->insertBefore(I); 641 NewI->takeName(I); 642 } 643 } 644 return NewV; 645 } 646 647 return cloneConstantExprWithNewAddressSpace( 648 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace); 649 } 650 651 // Defines the join operation on the address space lattice (see the file header 652 // comments). 653 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1, 654 unsigned AS2) const { 655 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 656 return FlatAddrSpace; 657 658 if (AS1 == UninitializedAddressSpace) 659 return AS2; 660 if (AS2 == UninitializedAddressSpace) 661 return AS1; 662 663 // The join of two different specific address spaces is flat. 664 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 665 } 666 667 bool InferAddressSpaces::runOnFunction(Function &F) { 668 if (skipFunction(F)) 669 return false; 670 671 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 672 673 if (FlatAddrSpace == UninitializedAddressSpace) { 674 FlatAddrSpace = TTI->getFlatAddressSpace(); 675 if (FlatAddrSpace == UninitializedAddressSpace) 676 return false; 677 } 678 679 // Collects all flat address expressions in postorder. 680 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F); 681 682 // Runs a data-flow analysis to refine the address spaces of every expression 683 // in Postorder. 684 ValueToAddrSpaceMapTy InferredAddrSpace; 685 inferAddressSpaces(Postorder, &InferredAddrSpace); 686 687 // Changes the address spaces of the flat address expressions who are inferred 688 // to point to a specific address space. 689 return rewriteWithNewAddressSpaces(*TTI, Postorder, InferredAddrSpace, &F); 690 } 691 692 // Constants need to be tracked through RAUW to handle cases with nested 693 // constant expressions, so wrap values in WeakTrackingVH. 694 void InferAddressSpaces::inferAddressSpaces( 695 ArrayRef<WeakTrackingVH> Postorder, 696 ValueToAddrSpaceMapTy *InferredAddrSpace) const { 697 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 698 // Initially, all expressions are in the uninitialized address space. 699 for (Value *V : Postorder) 700 (*InferredAddrSpace)[V] = UninitializedAddressSpace; 701 702 while (!Worklist.empty()) { 703 Value *V = Worklist.pop_back_val(); 704 705 // Tries to update the address space of the stack top according to the 706 // address spaces of its operands. 707 LLVM_DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n'); 708 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace); 709 if (!NewAS.hasValue()) 710 continue; 711 // If any updates are made, grabs its users to the worklist because 712 // their address spaces can also be possibly updated. 713 LLVM_DEBUG(dbgs() << " to " << NewAS.getValue() << '\n'); 714 (*InferredAddrSpace)[V] = NewAS.getValue(); 715 716 for (Value *User : V->users()) { 717 // Skip if User is already in the worklist. 718 if (Worklist.count(User)) 719 continue; 720 721 auto Pos = InferredAddrSpace->find(User); 722 // Our algorithm only updates the address spaces of flat address 723 // expressions, which are those in InferredAddrSpace. 724 if (Pos == InferredAddrSpace->end()) 725 continue; 726 727 // Function updateAddressSpace moves the address space down a lattice 728 // path. Therefore, nothing to do if User is already inferred as flat (the 729 // bottom element in the lattice). 730 if (Pos->second == FlatAddrSpace) 731 continue; 732 733 Worklist.insert(User); 734 } 735 } 736 } 737 738 Optional<unsigned> InferAddressSpaces::updateAddressSpace( 739 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const { 740 assert(InferredAddrSpace.count(&V)); 741 742 // The new inferred address space equals the join of the address spaces 743 // of all its pointer operands. 744 unsigned NewAS = UninitializedAddressSpace; 745 746 const Operator &Op = cast<Operator>(V); 747 if (Op.getOpcode() == Instruction::Select) { 748 Value *Src0 = Op.getOperand(1); 749 Value *Src1 = Op.getOperand(2); 750 751 auto I = InferredAddrSpace.find(Src0); 752 unsigned Src0AS = (I != InferredAddrSpace.end()) ? 753 I->second : Src0->getType()->getPointerAddressSpace(); 754 755 auto J = InferredAddrSpace.find(Src1); 756 unsigned Src1AS = (J != InferredAddrSpace.end()) ? 757 J->second : Src1->getType()->getPointerAddressSpace(); 758 759 auto *C0 = dyn_cast<Constant>(Src0); 760 auto *C1 = dyn_cast<Constant>(Src1); 761 762 // If one of the inputs is a constant, we may be able to do a constant 763 // addrspacecast of it. Defer inferring the address space until the input 764 // address space is known. 765 if ((C1 && Src0AS == UninitializedAddressSpace) || 766 (C0 && Src1AS == UninitializedAddressSpace)) 767 return None; 768 769 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) 770 NewAS = Src1AS; 771 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) 772 NewAS = Src0AS; 773 else 774 NewAS = joinAddressSpaces(Src0AS, Src1AS); 775 } else { 776 for (Value *PtrOperand : getPointerOperands(V)) { 777 auto I = InferredAddrSpace.find(PtrOperand); 778 unsigned OperandAS = I != InferredAddrSpace.end() ? 779 I->second : PtrOperand->getType()->getPointerAddressSpace(); 780 781 // join(flat, *) = flat. So we can break if NewAS is already flat. 782 NewAS = joinAddressSpaces(NewAS, OperandAS); 783 if (NewAS == FlatAddrSpace) 784 break; 785 } 786 } 787 788 unsigned OldAS = InferredAddrSpace.lookup(&V); 789 assert(OldAS != FlatAddrSpace); 790 if (OldAS == NewAS) 791 return None; 792 return NewAS; 793 } 794 795 /// \p returns true if \p U is the pointer operand of a memory instruction with 796 /// a single pointer operand that can have its address space changed by simply 797 /// mutating the use to a new value. If the memory instruction is volatile, 798 /// return true only if the target allows the memory instruction to be volatile 799 /// in the new address space. 800 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI, 801 Use &U, unsigned AddrSpace) { 802 User *Inst = U.getUser(); 803 unsigned OpNo = U.getOperandNo(); 804 bool VolatileIsAllowed = false; 805 if (auto *I = dyn_cast<Instruction>(Inst)) 806 VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace); 807 808 if (auto *LI = dyn_cast<LoadInst>(Inst)) 809 return OpNo == LoadInst::getPointerOperandIndex() && 810 (VolatileIsAllowed || !LI->isVolatile()); 811 812 if (auto *SI = dyn_cast<StoreInst>(Inst)) 813 return OpNo == StoreInst::getPointerOperandIndex() && 814 (VolatileIsAllowed || !SI->isVolatile()); 815 816 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 817 return OpNo == AtomicRMWInst::getPointerOperandIndex() && 818 (VolatileIsAllowed || !RMW->isVolatile()); 819 820 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) 821 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && 822 (VolatileIsAllowed || !CmpX->isVolatile()); 823 824 return false; 825 } 826 827 /// Update memory intrinsic uses that require more complex processing than 828 /// simple memory instructions. Thse require re-mangling and may have multiple 829 /// pointer operands. 830 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, 831 Value *NewV) { 832 IRBuilder<> B(MI); 833 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 834 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 835 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 836 837 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 838 B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), 839 MaybeAlign(MSI->getDestAlignment()), 840 false, // isVolatile 841 TBAA, ScopeMD, NoAliasMD); 842 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 843 Value *Src = MTI->getRawSource(); 844 Value *Dest = MTI->getRawDest(); 845 846 // Be careful in case this is a self-to-self copy. 847 if (Src == OldV) 848 Src = NewV; 849 850 if (Dest == OldV) 851 Dest = NewV; 852 853 if (isa<MemCpyInst>(MTI)) { 854 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 855 B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(), 856 MTI->getLength(), 857 false, // isVolatile 858 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 859 } else { 860 assert(isa<MemMoveInst>(MTI)); 861 B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(), 862 MTI->getLength(), 863 false, // isVolatile 864 TBAA, ScopeMD, NoAliasMD); 865 } 866 } else 867 llvm_unreachable("unhandled MemIntrinsic"); 868 869 MI->eraseFromParent(); 870 return true; 871 } 872 873 // \p returns true if it is OK to change the address space of constant \p C with 874 // a ConstantExpr addrspacecast. 875 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const { 876 assert(NewAS != UninitializedAddressSpace); 877 878 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 879 if (SrcAS == NewAS || isa<UndefValue>(C)) 880 return true; 881 882 // Prevent illegal casts between different non-flat address spaces. 883 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 884 return false; 885 886 if (isa<ConstantPointerNull>(C)) 887 return true; 888 889 if (auto *Op = dyn_cast<Operator>(C)) { 890 // If we already have a constant addrspacecast, it should be safe to cast it 891 // off. 892 if (Op->getOpcode() == Instruction::AddrSpaceCast) 893 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS); 894 895 if (Op->getOpcode() == Instruction::IntToPtr && 896 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 897 return true; 898 } 899 900 return false; 901 } 902 903 static Value::use_iterator skipToNextUser(Value::use_iterator I, 904 Value::use_iterator End) { 905 User *CurUser = I->getUser(); 906 ++I; 907 908 while (I != End && I->getUser() == CurUser) 909 ++I; 910 911 return I; 912 } 913 914 bool InferAddressSpaces::rewriteWithNewAddressSpaces( 915 const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder, 916 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const { 917 // For each address expression to be modified, creates a clone of it with its 918 // pointer operands converted to the new address space. Since the pointer 919 // operands are converted, the clone is naturally in the new address space by 920 // construction. 921 ValueToValueMapTy ValueWithNewAddrSpace; 922 SmallVector<const Use *, 32> UndefUsesToFix; 923 for (Value* V : Postorder) { 924 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 925 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 926 Value *New = cloneValueWithNewAddressSpace( 927 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix); 928 if (New) 929 ValueWithNewAddrSpace[V] = New; 930 } 931 } 932 933 if (ValueWithNewAddrSpace.empty()) 934 return false; 935 936 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace. 937 for (const Use *UndefUse : UndefUsesToFix) { 938 User *V = UndefUse->getUser(); 939 User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V)); 940 if (!NewV) 941 continue; 942 943 unsigned OperandNo = UndefUse->getOperandNo(); 944 assert(isa<UndefValue>(NewV->getOperand(OperandNo))); 945 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get())); 946 } 947 948 SmallVector<Instruction *, 16> DeadInstructions; 949 950 // Replaces the uses of the old address expressions with the new ones. 951 for (const WeakTrackingVH &WVH : Postorder) { 952 assert(WVH && "value was unexpectedly deleted"); 953 Value *V = WVH; 954 Value *NewV = ValueWithNewAddrSpace.lookup(V); 955 if (NewV == nullptr) 956 continue; 957 958 LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n " 959 << *NewV << '\n'); 960 961 if (Constant *C = dyn_cast<Constant>(V)) { 962 Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 963 C->getType()); 964 if (C != Replace) { 965 LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace 966 << ": " << *Replace << '\n'); 967 C->replaceAllUsesWith(Replace); 968 V = Replace; 969 } 970 } 971 972 Value::use_iterator I, E, Next; 973 for (I = V->use_begin(), E = V->use_end(); I != E; ) { 974 Use &U = *I; 975 976 // Some users may see the same pointer operand in multiple operands. Skip 977 // to the next instruction. 978 I = skipToNextUser(I, E); 979 980 if (isSimplePointerUseValidToReplace( 981 TTI, U, V->getType()->getPointerAddressSpace())) { 982 // If V is used as the pointer operand of a compatible memory operation, 983 // sets the pointer operand to NewV. This replacement does not change 984 // the element type, so the resultant load/store is still valid. 985 U.set(NewV); 986 continue; 987 } 988 989 User *CurUser = U.getUser(); 990 // Handle more complex cases like intrinsic that need to be remangled. 991 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 992 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 993 continue; 994 } 995 996 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 997 if (rewriteIntrinsicOperands(II, V, NewV)) 998 continue; 999 } 1000 1001 if (isa<Instruction>(CurUser)) { 1002 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { 1003 // If we can infer that both pointers are in the same addrspace, 1004 // transform e.g. 1005 // %cmp = icmp eq float* %p, %q 1006 // into 1007 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 1008 1009 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1010 int SrcIdx = U.getOperandNo(); 1011 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 1012 Value *OtherSrc = Cmp->getOperand(OtherIdx); 1013 1014 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 1015 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 1016 Cmp->setOperand(OtherIdx, OtherNewV); 1017 Cmp->setOperand(SrcIdx, NewV); 1018 continue; 1019 } 1020 } 1021 1022 // Even if the type mismatches, we can cast the constant. 1023 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 1024 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 1025 Cmp->setOperand(SrcIdx, NewV); 1026 Cmp->setOperand(OtherIdx, 1027 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType())); 1028 continue; 1029 } 1030 } 1031 } 1032 1033 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) { 1034 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1035 if (ASC->getDestAddressSpace() == NewAS) { 1036 if (ASC->getType()->getPointerElementType() != 1037 NewV->getType()->getPointerElementType()) { 1038 NewV = CastInst::Create(Instruction::BitCast, NewV, 1039 ASC->getType(), "", ASC); 1040 } 1041 ASC->replaceAllUsesWith(NewV); 1042 DeadInstructions.push_back(ASC); 1043 continue; 1044 } 1045 } 1046 1047 // Otherwise, replaces the use with flat(NewV). 1048 if (Instruction *Inst = dyn_cast<Instruction>(V)) { 1049 // Don't create a copy of the original addrspacecast. 1050 if (U == V && isa<AddrSpaceCastInst>(V)) 1051 continue; 1052 1053 BasicBlock::iterator InsertPos = std::next(Inst->getIterator()); 1054 while (isa<PHINode>(InsertPos)) 1055 ++InsertPos; 1056 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos)); 1057 } else { 1058 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 1059 V->getType())); 1060 } 1061 } 1062 } 1063 1064 if (V->use_empty()) { 1065 if (Instruction *I = dyn_cast<Instruction>(V)) 1066 DeadInstructions.push_back(I); 1067 } 1068 } 1069 1070 for (Instruction *I : DeadInstructions) 1071 RecursivelyDeleteTriviallyDeadInstructions(I); 1072 1073 return true; 1074 } 1075 1076 FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) { 1077 return new InferAddressSpaces(AddressSpace); 1078 } 1079