157bd5a02SEugene Zelenko //===- InferAddressSpace.cpp - --------------------------------------------===//
2850657a4SMatt Arsenault //
32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information.
52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6850657a4SMatt Arsenault //
7850657a4SMatt Arsenault //===----------------------------------------------------------------------===//
8850657a4SMatt Arsenault //
9850657a4SMatt Arsenault // CUDA C/C++ includes memory space designation as variable type qualifers (such
10850657a4SMatt Arsenault // as __global__ and __shared__). Knowing the space of a memory access allows
11850657a4SMatt Arsenault // CUDA compilers to emit faster PTX loads and stores. For example, a load from
12850657a4SMatt Arsenault // shared memory can be translated to `ld.shared` which is roughly 10% faster
13850657a4SMatt Arsenault // than a generic `ld` on an NVIDIA Tesla K40c.
14850657a4SMatt Arsenault //
15850657a4SMatt Arsenault // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
16850657a4SMatt Arsenault // compilers must infer the memory space of an address expression from
17850657a4SMatt Arsenault // type-qualified variables.
18850657a4SMatt Arsenault //
19850657a4SMatt Arsenault // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
20850657a4SMatt Arsenault // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
21850657a4SMatt Arsenault // places only type-qualified variables in specific address spaces, and then
22850657a4SMatt Arsenault // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
23850657a4SMatt Arsenault // (so-called the generic address space) for other instructions to use.
24850657a4SMatt Arsenault //
25850657a4SMatt Arsenault // For example, the Clang translates the following CUDA code
26850657a4SMatt Arsenault // __shared__ float a[10];
27850657a4SMatt Arsenault // float v = a[i];
28850657a4SMatt Arsenault // to
29850657a4SMatt Arsenault // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
30850657a4SMatt Arsenault // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
31850657a4SMatt Arsenault // %v = load float, float* %1 ; emits ld.f32
32850657a4SMatt Arsenault // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
33850657a4SMatt Arsenault // redirected to %0 (the generic version of @a).
34850657a4SMatt Arsenault //
35850657a4SMatt Arsenault // The optimization implemented in this file propagates specific address spaces
36850657a4SMatt Arsenault // from type-qualified variable declarations to its users. For example, it
37850657a4SMatt Arsenault // optimizes the above IR to
38850657a4SMatt Arsenault // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
39850657a4SMatt Arsenault // %v = load float addrspace(3)* %1 ; emits ld.shared.f32
40850657a4SMatt Arsenault // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
41850657a4SMatt Arsenault // codegen is able to emit ld.shared.f32 for %v.
42850657a4SMatt Arsenault //
43850657a4SMatt Arsenault // Address space inference works in two steps. First, it uses a data-flow
44850657a4SMatt Arsenault // analysis to infer as many generic pointers as possible to point to only one
45850657a4SMatt Arsenault // specific address space. In the above example, it can prove that %1 only
46850657a4SMatt Arsenault // points to addrspace(3). This algorithm was published in
47850657a4SMatt Arsenault // CUDA: Compiling and optimizing for a GPU platform
48850657a4SMatt Arsenault // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
49850657a4SMatt Arsenault // ICCS 2012
50850657a4SMatt Arsenault //
51850657a4SMatt Arsenault // Then, address space inference replaces all refinable generic pointers with
52850657a4SMatt Arsenault // equivalent specific pointers.
53850657a4SMatt Arsenault //
54850657a4SMatt Arsenault // The major challenge of implementing this optimization is handling PHINodes,
55850657a4SMatt Arsenault // which may create loops in the data flow graph. This brings two complications.
56850657a4SMatt Arsenault //
57850657a4SMatt Arsenault // First, the data flow analysis in Step 1 needs to be circular. For example,
58850657a4SMatt Arsenault // %generic.input = addrspacecast float addrspace(3)* %input to float*
59850657a4SMatt Arsenault // loop:
60850657a4SMatt Arsenault // %y = phi [ %generic.input, %y2 ]
61850657a4SMatt Arsenault // %y2 = getelementptr %y, 1
62850657a4SMatt Arsenault // %v = load %y2
63850657a4SMatt Arsenault // br ..., label %loop, ...
64850657a4SMatt Arsenault // proving %y specific requires proving both %generic.input and %y2 specific,
65850657a4SMatt Arsenault // but proving %y2 specific circles back to %y. To address this complication,
66850657a4SMatt Arsenault // the data flow analysis operates on a lattice:
67850657a4SMatt Arsenault // uninitialized > specific address spaces > generic.
68850657a4SMatt Arsenault // All address expressions (our implementation only considers phi, bitcast,
69850657a4SMatt Arsenault // addrspacecast, and getelementptr) start with the uninitialized address space.
70850657a4SMatt Arsenault // The monotone transfer function moves the address space of a pointer down a
71850657a4SMatt Arsenault // lattice path from uninitialized to specific and then to generic. A join
72850657a4SMatt Arsenault // operation of two different specific address spaces pushes the expression down
73850657a4SMatt Arsenault // to the generic address space. The analysis completes once it reaches a fixed
74850657a4SMatt Arsenault // point.
75850657a4SMatt Arsenault //
76850657a4SMatt Arsenault // Second, IR rewriting in Step 2 also needs to be circular. For example,
77850657a4SMatt Arsenault // converting %y to addrspace(3) requires the compiler to know the converted
78850657a4SMatt Arsenault // %y2, but converting %y2 needs the converted %y. To address this complication,
79850657a4SMatt Arsenault // we break these cycles using "undef" placeholders. When converting an
80850657a4SMatt Arsenault // instruction `I` to a new address space, if its operand `Op` is not converted
81850657a4SMatt Arsenault // yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
82850657a4SMatt Arsenault // For instance, our algorithm first converts %y to
83850657a4SMatt Arsenault // %y' = phi float addrspace(3)* [ %input, undef ]
84850657a4SMatt Arsenault // Then, it converts %y2 to
85850657a4SMatt Arsenault // %y2' = getelementptr %y', 1
86850657a4SMatt Arsenault // Finally, it fixes the undef in %y' so that
87850657a4SMatt Arsenault // %y' = phi float addrspace(3)* [ %input, %y2' ]
88850657a4SMatt Arsenault //
89850657a4SMatt Arsenault //===----------------------------------------------------------------------===//
90850657a4SMatt Arsenault
91c2ef06d3SArthur Eubanks #include "llvm/Transforms/Scalar/InferAddressSpaces.h"
9257bd5a02SEugene Zelenko #include "llvm/ADT/ArrayRef.h"
9357bd5a02SEugene Zelenko #include "llvm/ADT/DenseMap.h"
94850657a4SMatt Arsenault #include "llvm/ADT/DenseSet.h"
95850657a4SMatt Arsenault #include "llvm/ADT/SetVector.h"
9657bd5a02SEugene Zelenko #include "llvm/ADT/SmallVector.h"
97bf225939SMichael Liao #include "llvm/Analysis/AssumptionCache.h"
98850657a4SMatt Arsenault #include "llvm/Analysis/TargetTransformInfo.h"
99bf225939SMichael Liao #include "llvm/Analysis/ValueTracking.h"
10057bd5a02SEugene Zelenko #include "llvm/IR/BasicBlock.h"
10157bd5a02SEugene Zelenko #include "llvm/IR/Constant.h"
10257bd5a02SEugene Zelenko #include "llvm/IR/Constants.h"
103bf225939SMichael Liao #include "llvm/IR/Dominators.h"
104850657a4SMatt Arsenault #include "llvm/IR/Function.h"
1050e8c4bb0SReid Kleckner #include "llvm/IR/IRBuilder.h"
106850657a4SMatt Arsenault #include "llvm/IR/InstIterator.h"
10757bd5a02SEugene Zelenko #include "llvm/IR/Instruction.h"
108850657a4SMatt Arsenault #include "llvm/IR/Instructions.h"
1090e8c4bb0SReid Kleckner #include "llvm/IR/IntrinsicInst.h"
11057bd5a02SEugene Zelenko #include "llvm/IR/Intrinsics.h"
11157bd5a02SEugene Zelenko #include "llvm/IR/LLVMContext.h"
112850657a4SMatt Arsenault #include "llvm/IR/Operator.h"
113c2ef06d3SArthur Eubanks #include "llvm/IR/PassManager.h"
11457bd5a02SEugene Zelenko #include "llvm/IR/Type.h"
11557bd5a02SEugene Zelenko #include "llvm/IR/Use.h"
11657bd5a02SEugene Zelenko #include "llvm/IR/User.h"
11757bd5a02SEugene Zelenko #include "llvm/IR/Value.h"
11857bd5a02SEugene Zelenko #include "llvm/IR/ValueHandle.h"
119bf225939SMichael Liao #include "llvm/InitializePasses.h"
12057bd5a02SEugene Zelenko #include "llvm/Pass.h"
12157bd5a02SEugene Zelenko #include "llvm/Support/Casting.h"
122dccfaacfSMichael Liao #include "llvm/Support/CommandLine.h"
12357bd5a02SEugene Zelenko #include "llvm/Support/Compiler.h"
124850657a4SMatt Arsenault #include "llvm/Support/Debug.h"
12557bd5a02SEugene Zelenko #include "llvm/Support/ErrorHandling.h"
126850657a4SMatt Arsenault #include "llvm/Support/raw_ostream.h"
1276bda14b3SChandler Carruth #include "llvm/Transforms/Scalar.h"
128dccfaacfSMichael Liao #include "llvm/Transforms/Utils/Local.h"
129850657a4SMatt Arsenault #include "llvm/Transforms/Utils/ValueMapper.h"
13057bd5a02SEugene Zelenko #include <cassert>
13157bd5a02SEugene Zelenko #include <iterator>
13257bd5a02SEugene Zelenko #include <limits>
13357bd5a02SEugene Zelenko #include <utility>
13457bd5a02SEugene Zelenko #include <vector>
135850657a4SMatt Arsenault
136850657a4SMatt Arsenault #define DEBUG_TYPE "infer-address-spaces"
137850657a4SMatt Arsenault
138850657a4SMatt Arsenault using namespace llvm;
139850657a4SMatt Arsenault
140dccfaacfSMichael Liao static cl::opt<bool> AssumeDefaultIsFlatAddressSpace(
141dccfaacfSMichael Liao "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden,
142dccfaacfSMichael Liao cl::desc("The default address space is assumed as the flat address space. "
143dccfaacfSMichael Liao "This is mainly for test purpose."));
144dccfaacfSMichael Liao
14557bd5a02SEugene Zelenko static const unsigned UninitializedAddressSpace =
14657bd5a02SEugene Zelenko std::numeric_limits<unsigned>::max();
14757bd5a02SEugene Zelenko
148850657a4SMatt Arsenault namespace {
149850657a4SMatt Arsenault
150850657a4SMatt Arsenault using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
151bf225939SMichael Liao // Different from ValueToAddrSpaceMapTy, where a new addrspace is inferred on
152bf225939SMichael Liao // the *def* of a value, PredicatedAddrSpaceMapTy is map where a new
153bf225939SMichael Liao // addrspace is inferred on the *use* of a pointer. This map is introduced to
154bf225939SMichael Liao // infer addrspace from the addrspace predicate assumption built from assume
155bf225939SMichael Liao // intrinsic. In that scenario, only specific uses (under valid assumption
156bf225939SMichael Liao // context) could be inferred with a new addrspace.
157bf225939SMichael Liao using PredicatedAddrSpaceMapTy =
158bf225939SMichael Liao DenseMap<std::pair<const Value *, const Value *>, unsigned>;
1599a08c307SBenjamin Kramer using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>;
160850657a4SMatt Arsenault
161850657a4SMatt Arsenault class InferAddressSpaces : public FunctionPass {
1628c09e472SSimon Pilgrim unsigned FlatAddrSpace = 0;
163850657a4SMatt Arsenault
164850657a4SMatt Arsenault public:
165850657a4SMatt Arsenault static char ID;
166850657a4SMatt Arsenault
InferAddressSpaces()16766f61260SSven van Haastregt InferAddressSpaces() :
16866f61260SSven van Haastregt FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {}
InferAddressSpaces(unsigned AS)16966f61260SSven van Haastregt InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {}
170850657a4SMatt Arsenault
getAnalysisUsage(AnalysisUsage & AU) const171850657a4SMatt Arsenault void getAnalysisUsage(AnalysisUsage &AU) const override {
172850657a4SMatt Arsenault AU.setPreservesCFG();
173bf225939SMichael Liao AU.addPreserved<DominatorTreeWrapperPass>();
174bf225939SMichael Liao AU.addRequired<AssumptionCacheTracker>();
175850657a4SMatt Arsenault AU.addRequired<TargetTransformInfoWrapperPass>();
176850657a4SMatt Arsenault }
177850657a4SMatt Arsenault
178850657a4SMatt Arsenault bool runOnFunction(Function &F) override;
179c2ef06d3SArthur Eubanks };
180850657a4SMatt Arsenault
181c2ef06d3SArthur Eubanks class InferAddressSpacesImpl {
182bf225939SMichael Liao AssumptionCache &AC;
1832ed030baSpsamolysov-intel const DominatorTree *DT = nullptr;
184c2ef06d3SArthur Eubanks const TargetTransformInfo *TTI = nullptr;
185c2ef06d3SArthur Eubanks const DataLayout *DL = nullptr;
186c2ef06d3SArthur Eubanks
187c2ef06d3SArthur Eubanks /// Target specific address space which uses of should be replaced if
188c2ef06d3SArthur Eubanks /// possible.
189c2ef06d3SArthur Eubanks unsigned FlatAddrSpace = 0;
190c2ef06d3SArthur Eubanks
191bf225939SMichael Liao // Try to update the address space of V. If V is updated, returns true and
192bf225939SMichael Liao // false otherwise.
193bf225939SMichael Liao bool updateAddressSpace(const Value &V,
194bf225939SMichael Liao ValueToAddrSpaceMapTy &InferredAddrSpace,
195bf225939SMichael Liao PredicatedAddrSpaceMapTy &PredicatedAS) const;
196850657a4SMatt Arsenault
197850657a4SMatt Arsenault // Tries to infer the specific address space of each address expression in
198850657a4SMatt Arsenault // Postorder.
199e6bca0eeSSanjoy Das void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
200bf225939SMichael Liao ValueToAddrSpaceMapTy &InferredAddrSpace,
201bf225939SMichael Liao PredicatedAddrSpaceMapTy &PredicatedAS) const;
202850657a4SMatt Arsenault
20372f259b8SMatt Arsenault bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
20472f259b8SMatt Arsenault
205d6671ee9SMatt Arsenault Value *cloneInstructionWithNewAddressSpace(
206d6671ee9SMatt Arsenault Instruction *I, unsigned NewAddrSpace,
207d6671ee9SMatt Arsenault const ValueToValueMapTy &ValueWithNewAddrSpace,
208bf225939SMichael Liao const PredicatedAddrSpaceMapTy &PredicatedAS,
209d6671ee9SMatt Arsenault SmallVectorImpl<const Use *> *UndefUsesToFix) const;
210d6671ee9SMatt Arsenault
211850657a4SMatt Arsenault // Changes the flat address expressions in function F to point to specific
212850657a4SMatt Arsenault // address spaces if InferredAddrSpace says so. Postorder is the postorder of
213850657a4SMatt Arsenault // all flat expressions in the use-def graph of function F.
2142ed030baSpsamolysov-intel bool
2152ed030baSpsamolysov-intel rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
216bf225939SMichael Liao const ValueToAddrSpaceMapTy &InferredAddrSpace,
2172ed030baSpsamolysov-intel const PredicatedAddrSpaceMapTy &PredicatedAS,
2182ed030baSpsamolysov-intel Function *F) const;
219850657a4SMatt Arsenault
220850657a4SMatt Arsenault void appendsFlatAddressExpressionToPostorderStack(
2219a08c307SBenjamin Kramer Value *V, PostorderStackTy &PostorderStack,
2226d7f01e3SMatt Arsenault DenseSet<Value *> &Visited) const;
223850657a4SMatt Arsenault
2246d5a8d48SMatt Arsenault bool rewriteIntrinsicOperands(IntrinsicInst *II,
2256d5a8d48SMatt Arsenault Value *OldV, Value *NewV) const;
2269a08c307SBenjamin Kramer void collectRewritableIntrinsicOperands(IntrinsicInst *II,
2279a08c307SBenjamin Kramer PostorderStackTy &PostorderStack,
2286d7f01e3SMatt Arsenault DenseSet<Value *> &Visited) const;
2296d5a8d48SMatt Arsenault
230e6bca0eeSSanjoy Das std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
2316d5a8d48SMatt Arsenault
232850657a4SMatt Arsenault Value *cloneValueWithNewAddressSpace(
233850657a4SMatt Arsenault Value *V, unsigned NewAddrSpace,
234850657a4SMatt Arsenault const ValueToValueMapTy &ValueWithNewAddrSpace,
235bf225939SMichael Liao const PredicatedAddrSpaceMapTy &PredicatedAS,
236850657a4SMatt Arsenault SmallVectorImpl<const Use *> *UndefUsesToFix) const;
237850657a4SMatt Arsenault unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
238c2ef06d3SArthur Eubanks
239bf225939SMichael Liao unsigned getPredicatedAddrSpace(const Value &V, Value *Opnd) const;
240bf225939SMichael Liao
241c2ef06d3SArthur Eubanks public:
InferAddressSpacesImpl(AssumptionCache & AC,const DominatorTree * DT,const TargetTransformInfo * TTI,unsigned FlatAddrSpace)2422ed030baSpsamolysov-intel InferAddressSpacesImpl(AssumptionCache &AC, const DominatorTree *DT,
243bf225939SMichael Liao const TargetTransformInfo *TTI, unsigned FlatAddrSpace)
244bf225939SMichael Liao : AC(AC), DT(DT), TTI(TTI), FlatAddrSpace(FlatAddrSpace) {}
245c2ef06d3SArthur Eubanks bool run(Function &F);
246850657a4SMatt Arsenault };
24757bd5a02SEugene Zelenko
248850657a4SMatt Arsenault } // end anonymous namespace
249850657a4SMatt Arsenault
250850657a4SMatt Arsenault char InferAddressSpaces::ID = 0;
251850657a4SMatt Arsenault
252bf225939SMichael Liao INITIALIZE_PASS_BEGIN(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
253bf225939SMichael Liao false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)254bf225939SMichael Liao INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
255bf225939SMichael Liao INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
256bf225939SMichael Liao INITIALIZE_PASS_END(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
257850657a4SMatt Arsenault false, false)
258850657a4SMatt Arsenault
259dccfaacfSMichael Liao // Check whether that's no-op pointer bicast using a pair of
260dccfaacfSMichael Liao // `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over
261dccfaacfSMichael Liao // different address spaces.
262dccfaacfSMichael Liao static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL,
263dccfaacfSMichael Liao const TargetTransformInfo *TTI) {
264dccfaacfSMichael Liao assert(I2P->getOpcode() == Instruction::IntToPtr);
265dccfaacfSMichael Liao auto *P2I = dyn_cast<Operator>(I2P->getOperand(0));
266dccfaacfSMichael Liao if (!P2I || P2I->getOpcode() != Instruction::PtrToInt)
267dccfaacfSMichael Liao return false;
268dccfaacfSMichael Liao // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a
269dccfaacfSMichael Liao // no-op cast. Besides checking both of them are no-op casts, as the
270dccfaacfSMichael Liao // reinterpreted pointer may be used in other pointer arithmetic, we also
271dccfaacfSMichael Liao // need to double-check that through the target-specific hook. That ensures
272dccfaacfSMichael Liao // the underlying target also agrees that's a no-op address space cast and
273dccfaacfSMichael Liao // pointer bits are preserved.
274dccfaacfSMichael Liao // The current IR spec doesn't have clear rules on address space casts,
275dccfaacfSMichael Liao // especially a clear definition for pointer bits in non-default address
276dccfaacfSMichael Liao // spaces. It would be undefined if that pointer is dereferenced after an
277dccfaacfSMichael Liao // invalid reinterpret cast. Also, due to the unclearness for the meaning of
278dccfaacfSMichael Liao // bits in non-default address spaces in the current spec, the pointer
279dccfaacfSMichael Liao // arithmetic may also be undefined after invalid pointer reinterpret cast.
280dccfaacfSMichael Liao // However, as we confirm through the target hooks that it's a no-op
281dccfaacfSMichael Liao // addrspacecast, it doesn't matter since the bits should be the same.
28296d3be84SWenju He unsigned P2IOp0AS = P2I->getOperand(0)->getType()->getPointerAddressSpace();
28396d3be84SWenju He unsigned I2PAS = I2P->getType()->getPointerAddressSpace();
284dccfaacfSMichael Liao return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()),
285dccfaacfSMichael Liao I2P->getOperand(0)->getType(), I2P->getType(),
286dccfaacfSMichael Liao DL) &&
287dccfaacfSMichael Liao CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()),
288dccfaacfSMichael Liao P2I->getOperand(0)->getType(), P2I->getType(),
289dccfaacfSMichael Liao DL) &&
29096d3be84SWenju He (P2IOp0AS == I2PAS || TTI->isNoopAddrSpaceCast(P2IOp0AS, I2PAS));
291dccfaacfSMichael Liao }
292dccfaacfSMichael Liao
293850657a4SMatt Arsenault // Returns true if V is an address expression.
294850657a4SMatt Arsenault // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
295850657a4SMatt Arsenault // getelementptr operators.
isAddressExpression(const Value & V,const DataLayout & DL,const TargetTransformInfo * TTI)296dccfaacfSMichael Liao static bool isAddressExpression(const Value &V, const DataLayout &DL,
297dccfaacfSMichael Liao const TargetTransformInfo *TTI) {
298d6671ee9SMatt Arsenault const Operator *Op = dyn_cast<Operator>(&V);
299d6671ee9SMatt Arsenault if (!Op)
300850657a4SMatt Arsenault return false;
301850657a4SMatt Arsenault
302d6671ee9SMatt Arsenault switch (Op->getOpcode()) {
303850657a4SMatt Arsenault case Instruction::PHI:
304d6671ee9SMatt Arsenault assert(Op->getType()->isPointerTy());
305fdf651eeSJoey Gouly return true;
306850657a4SMatt Arsenault case Instruction::BitCast:
307850657a4SMatt Arsenault case Instruction::AddrSpaceCast:
308850657a4SMatt Arsenault case Instruction::GetElementPtr:
309850657a4SMatt Arsenault return true;
31092af1360SJoey Gouly case Instruction::Select:
311d6671ee9SMatt Arsenault return Op->getType()->isPointerTy();
312d6671ee9SMatt Arsenault case Instruction::Call: {
313d6671ee9SMatt Arsenault const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V);
314d6671ee9SMatt Arsenault return II && II->getIntrinsicID() == Intrinsic::ptrmask;
315d6671ee9SMatt Arsenault }
316dccfaacfSMichael Liao case Instruction::IntToPtr:
317dccfaacfSMichael Liao return isNoopPtrIntCastPair(Op, DL, TTI);
318850657a4SMatt Arsenault default:
319f375885aSMichael Liao // That value is an address expression if it has an assumed address space.
320f375885aSMichael Liao return TTI->getAssumedAddrSpace(&V) != UninitializedAddressSpace;
321850657a4SMatt Arsenault }
322850657a4SMatt Arsenault }
323850657a4SMatt Arsenault
324850657a4SMatt Arsenault // Returns the pointer operands of V.
325850657a4SMatt Arsenault //
326850657a4SMatt Arsenault // Precondition: V is an address expression.
327dccfaacfSMichael Liao static SmallVector<Value *, 2>
getPointerOperands(const Value & V,const DataLayout & DL,const TargetTransformInfo * TTI)328dccfaacfSMichael Liao getPointerOperands(const Value &V, const DataLayout &DL,
329dccfaacfSMichael Liao const TargetTransformInfo *TTI) {
330850657a4SMatt Arsenault const Operator &Op = cast<Operator>(V);
331850657a4SMatt Arsenault switch (Op.getOpcode()) {
332850657a4SMatt Arsenault case Instruction::PHI: {
333850657a4SMatt Arsenault auto IncomingValues = cast<PHINode>(Op).incoming_values();
3342ed030baSpsamolysov-intel return {IncomingValues.begin(), IncomingValues.end()};
335850657a4SMatt Arsenault }
336850657a4SMatt Arsenault case Instruction::BitCast:
337850657a4SMatt Arsenault case Instruction::AddrSpaceCast:
338850657a4SMatt Arsenault case Instruction::GetElementPtr:
339850657a4SMatt Arsenault return {Op.getOperand(0)};
340bdd59e68SMatt Arsenault case Instruction::Select:
341bdd59e68SMatt Arsenault return {Op.getOperand(1), Op.getOperand(2)};
342d6671ee9SMatt Arsenault case Instruction::Call: {
343d6671ee9SMatt Arsenault const IntrinsicInst &II = cast<IntrinsicInst>(Op);
344d6671ee9SMatt Arsenault assert(II.getIntrinsicID() == Intrinsic::ptrmask &&
345d6671ee9SMatt Arsenault "unexpected intrinsic call");
346d6671ee9SMatt Arsenault return {II.getArgOperand(0)};
347d6671ee9SMatt Arsenault }
348dccfaacfSMichael Liao case Instruction::IntToPtr: {
349dccfaacfSMichael Liao assert(isNoopPtrIntCastPair(&Op, DL, TTI));
350dccfaacfSMichael Liao auto *P2I = cast<Operator>(Op.getOperand(0));
351dccfaacfSMichael Liao return {P2I->getOperand(0)};
352dccfaacfSMichael Liao }
353850657a4SMatt Arsenault default:
354850657a4SMatt Arsenault llvm_unreachable("Unexpected instruction type.");
355850657a4SMatt Arsenault }
356850657a4SMatt Arsenault }
357850657a4SMatt Arsenault
rewriteIntrinsicOperands(IntrinsicInst * II,Value * OldV,Value * NewV) const358c2ef06d3SArthur Eubanks bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II,
3596d5a8d48SMatt Arsenault Value *OldV,
3606d5a8d48SMatt Arsenault Value *NewV) const {
3616d5a8d48SMatt Arsenault Module *M = II->getParent()->getParent()->getParent();
3626d5a8d48SMatt Arsenault
3636d5a8d48SMatt Arsenault switch (II->getIntrinsicID()) {
36479f837c2SMatt Arsenault case Intrinsic::objectsize: {
3656d5a8d48SMatt Arsenault Type *DestTy = II->getType();
3666d5a8d48SMatt Arsenault Type *SrcTy = NewV->getType();
367db6e9e89SMatt Arsenault Function *NewDecl =
368db6e9e89SMatt Arsenault Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
3696d5a8d48SMatt Arsenault II->setArgOperand(0, NewV);
3706d5a8d48SMatt Arsenault II->setCalledFunction(NewDecl);
3716d5a8d48SMatt Arsenault return true;
3726d5a8d48SMatt Arsenault }
373d6671ee9SMatt Arsenault case Intrinsic::ptrmask:
374d6671ee9SMatt Arsenault // This is handled as an address expression, not as a use memory operation.
375d6671ee9SMatt Arsenault return false;
376d6671ee9SMatt Arsenault default: {
377d6671ee9SMatt Arsenault Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
378d6671ee9SMatt Arsenault if (!Rewrite)
379d6671ee9SMatt Arsenault return false;
380d6671ee9SMatt Arsenault if (Rewrite != II)
381d6671ee9SMatt Arsenault II->replaceAllUsesWith(Rewrite);
382d6671ee9SMatt Arsenault return true;
383d6671ee9SMatt Arsenault }
3846d5a8d48SMatt Arsenault }
3856d5a8d48SMatt Arsenault }
3866d5a8d48SMatt Arsenault
collectRewritableIntrinsicOperands(IntrinsicInst * II,PostorderStackTy & PostorderStack,DenseSet<Value * > & Visited) const387c2ef06d3SArthur Eubanks void InferAddressSpacesImpl::collectRewritableIntrinsicOperands(
3889a08c307SBenjamin Kramer IntrinsicInst *II, PostorderStackTy &PostorderStack,
3896d7f01e3SMatt Arsenault DenseSet<Value *> &Visited) const {
390dbc1f207SMatt Arsenault auto IID = II->getIntrinsicID();
391dbc1f207SMatt Arsenault switch (IID) {
392d6671ee9SMatt Arsenault case Intrinsic::ptrmask:
3936d5a8d48SMatt Arsenault case Intrinsic::objectsize:
394db6e9e89SMatt Arsenault appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
395db6e9e89SMatt Arsenault PostorderStack, Visited);
3966d5a8d48SMatt Arsenault break;
3976d5a8d48SMatt Arsenault default:
398dbc1f207SMatt Arsenault SmallVector<int, 2> OpIndexes;
399dbc1f207SMatt Arsenault if (TTI->collectFlatAddressOperands(OpIndexes, IID)) {
400dbc1f207SMatt Arsenault for (int Idx : OpIndexes) {
401dbc1f207SMatt Arsenault appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx),
402dbc1f207SMatt Arsenault PostorderStack, Visited);
403dbc1f207SMatt Arsenault }
404dbc1f207SMatt Arsenault }
4056d5a8d48SMatt Arsenault break;
4066d5a8d48SMatt Arsenault }
4076d5a8d48SMatt Arsenault }
4086d5a8d48SMatt Arsenault
4096d5a8d48SMatt Arsenault // Returns all flat address expressions in function F. The elements are
410850657a4SMatt Arsenault // If V is an unvisited flat address expression, appends V to PostorderStack
411850657a4SMatt Arsenault // and marks it as visited.
appendsFlatAddressExpressionToPostorderStack(Value * V,PostorderStackTy & PostorderStack,DenseSet<Value * > & Visited) const412c2ef06d3SArthur Eubanks void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack(
4139a08c307SBenjamin Kramer Value *V, PostorderStackTy &PostorderStack,
4146d7f01e3SMatt Arsenault DenseSet<Value *> &Visited) const {
415850657a4SMatt Arsenault assert(V->getType()->isPointerTy());
416e0f9e984SMatt Arsenault
417e0f9e984SMatt Arsenault // Generic addressing expressions may be hidden in nested constant
418e0f9e984SMatt Arsenault // expressions.
419e0f9e984SMatt Arsenault if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
420e0f9e984SMatt Arsenault // TODO: Look in non-address parts, like icmp operands.
421dccfaacfSMichael Liao if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
4229a08c307SBenjamin Kramer PostorderStack.emplace_back(CE, false);
423e0f9e984SMatt Arsenault
424e0f9e984SMatt Arsenault return;
425e0f9e984SMatt Arsenault }
426e0f9e984SMatt Arsenault
427f375885aSMichael Liao if (V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
428f375885aSMichael Liao isAddressExpression(*V, *DL, TTI)) {
429e0f9e984SMatt Arsenault if (Visited.insert(V).second) {
4309a08c307SBenjamin Kramer PostorderStack.emplace_back(V, false);
431e0f9e984SMatt Arsenault
432e0f9e984SMatt Arsenault Operator *Op = cast<Operator>(V);
433e0f9e984SMatt Arsenault for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
434e0f9e984SMatt Arsenault if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
435dccfaacfSMichael Liao if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
436e0f9e984SMatt Arsenault PostorderStack.emplace_back(CE, false);
437e0f9e984SMatt Arsenault }
438e0f9e984SMatt Arsenault }
439e0f9e984SMatt Arsenault }
440850657a4SMatt Arsenault }
441850657a4SMatt Arsenault }
442850657a4SMatt Arsenault
443850657a4SMatt Arsenault // Returns all flat address expressions in function F. The elements are ordered
4446d5a8d48SMatt Arsenault // ordered in postorder.
445e6bca0eeSSanjoy Das std::vector<WeakTrackingVH>
collectFlatAddressExpressions(Function & F) const446c2ef06d3SArthur Eubanks InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const {
447850657a4SMatt Arsenault // This function implements a non-recursive postorder traversal of a partial
448850657a4SMatt Arsenault // use-def graph of function F.
4499a08c307SBenjamin Kramer PostorderStackTy PostorderStack;
450850657a4SMatt Arsenault // The set of visited expressions.
451850657a4SMatt Arsenault DenseSet<Value *> Visited;
4526c907a9bSMatt Arsenault
4536c907a9bSMatt Arsenault auto PushPtrOperand = [&](Value *Ptr) {
4546d7f01e3SMatt Arsenault appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
4556d7f01e3SMatt Arsenault Visited);
4566c907a9bSMatt Arsenault };
4576c907a9bSMatt Arsenault
458c07bda7bSMatt Arsenault // Look at operations that may be interesting accelerate by moving to a known
459c07bda7bSMatt Arsenault // address space. We aim at generating after loads and stores, but pure
460c07bda7bSMatt Arsenault // addressing calculations may also be faster.
461850657a4SMatt Arsenault for (Instruction &I : instructions(F)) {
462c07bda7bSMatt Arsenault if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
463c07bda7bSMatt Arsenault if (!GEP->getType()->isVectorTy())
464c07bda7bSMatt Arsenault PushPtrOperand(GEP->getPointerOperand());
465c07bda7bSMatt Arsenault } else if (auto *LI = dyn_cast<LoadInst>(&I))
4666c907a9bSMatt Arsenault PushPtrOperand(LI->getPointerOperand());
4676c907a9bSMatt Arsenault else if (auto *SI = dyn_cast<StoreInst>(&I))
4686c907a9bSMatt Arsenault PushPtrOperand(SI->getPointerOperand());
4696c907a9bSMatt Arsenault else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
4706c907a9bSMatt Arsenault PushPtrOperand(RMW->getPointerOperand());
4716c907a9bSMatt Arsenault else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
4726c907a9bSMatt Arsenault PushPtrOperand(CmpX->getPointerOperand());
4736d5a8d48SMatt Arsenault else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
4746d5a8d48SMatt Arsenault // For memset/memcpy/memmove, any pointer operand can be replaced.
4756d5a8d48SMatt Arsenault PushPtrOperand(MI->getRawDest());
4766c907a9bSMatt Arsenault
4776d5a8d48SMatt Arsenault // Handle 2nd operand for memcpy/memmove.
4786d5a8d48SMatt Arsenault if (auto *MTI = dyn_cast<MemTransferInst>(MI))
4796d5a8d48SMatt Arsenault PushPtrOperand(MTI->getRawSource());
4806d5a8d48SMatt Arsenault } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
4816d7f01e3SMatt Arsenault collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
48272f259b8SMatt Arsenault else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
48372f259b8SMatt Arsenault // FIXME: Handle vectors of pointers
48472f259b8SMatt Arsenault if (Cmp->getOperand(0)->getType()->isPointerTy()) {
48572f259b8SMatt Arsenault PushPtrOperand(Cmp->getOperand(0));
48672f259b8SMatt Arsenault PushPtrOperand(Cmp->getOperand(1));
48772f259b8SMatt Arsenault }
488a1e73405SMatt Arsenault } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
489a1e73405SMatt Arsenault if (!ASC->getType()->isVectorTy())
490a1e73405SMatt Arsenault PushPtrOperand(ASC->getPointerOperand());
491dccfaacfSMichael Liao } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) {
492dccfaacfSMichael Liao if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI))
493dccfaacfSMichael Liao PushPtrOperand(
494ae983de6SReshabh Sharma cast<Operator>(I2P->getOperand(0))->getOperand(0));
49572f259b8SMatt Arsenault }
496850657a4SMatt Arsenault }
497850657a4SMatt Arsenault
498e6bca0eeSSanjoy Das std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
499850657a4SMatt Arsenault while (!PostorderStack.empty()) {
5009a08c307SBenjamin Kramer Value *TopVal = PostorderStack.back().getPointer();
501850657a4SMatt Arsenault // If the operands of the expression on the top are already explored,
502850657a4SMatt Arsenault // adds that expression to the resultant postorder.
5039a08c307SBenjamin Kramer if (PostorderStack.back().getInt()) {
504b909f11aSYaxun Liu if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
505e0f9e984SMatt Arsenault Postorder.push_back(TopVal);
506850657a4SMatt Arsenault PostorderStack.pop_back();
507850657a4SMatt Arsenault continue;
508850657a4SMatt Arsenault }
509850657a4SMatt Arsenault // Otherwise, adds its operands to the stack and explores them.
5109a08c307SBenjamin Kramer PostorderStack.back().setInt(true);
511f375885aSMichael Liao // Skip values with an assumed address space.
512f375885aSMichael Liao if (TTI->getAssumedAddrSpace(TopVal) == UninitializedAddressSpace) {
513dccfaacfSMichael Liao for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) {
5146d7f01e3SMatt Arsenault appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
5156d7f01e3SMatt Arsenault Visited);
516850657a4SMatt Arsenault }
517850657a4SMatt Arsenault }
518f375885aSMichael Liao }
519850657a4SMatt Arsenault return Postorder;
520850657a4SMatt Arsenault }
521850657a4SMatt Arsenault
522850657a4SMatt Arsenault // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
523850657a4SMatt Arsenault // of OperandUse.get() in the new address space. If the clone is not ready yet,
524850657a4SMatt Arsenault // returns an undef in the new address space as a placeholder.
operandWithNewAddressSpaceOrCreateUndef(const Use & OperandUse,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace,const PredicatedAddrSpaceMapTy & PredicatedAS,SmallVectorImpl<const Use * > * UndefUsesToFix)525850657a4SMatt Arsenault static Value *operandWithNewAddressSpaceOrCreateUndef(
526850657a4SMatt Arsenault const Use &OperandUse, unsigned NewAddrSpace,
527850657a4SMatt Arsenault const ValueToValueMapTy &ValueWithNewAddrSpace,
528bf225939SMichael Liao const PredicatedAddrSpaceMapTy &PredicatedAS,
529850657a4SMatt Arsenault SmallVectorImpl<const Use *> *UndefUsesToFix) {
530850657a4SMatt Arsenault Value *Operand = OperandUse.get();
53130083609SMatt Arsenault
5329a7afae4SArthur Eubanks Type *NewPtrTy = PointerType::getWithSamePointeeType(
5339a7afae4SArthur Eubanks cast<PointerType>(Operand->getType()), NewAddrSpace);
53430083609SMatt Arsenault
53530083609SMatt Arsenault if (Constant *C = dyn_cast<Constant>(Operand))
53630083609SMatt Arsenault return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
53730083609SMatt Arsenault
538850657a4SMatt Arsenault if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
539850657a4SMatt Arsenault return NewOperand;
540850657a4SMatt Arsenault
541bf225939SMichael Liao Instruction *Inst = cast<Instruction>(OperandUse.getUser());
542bf225939SMichael Liao auto I = PredicatedAS.find(std::make_pair(Inst, Operand));
543bf225939SMichael Liao if (I != PredicatedAS.end()) {
544bf225939SMichael Liao // Insert an addrspacecast on that operand before the user.
545bf225939SMichael Liao unsigned NewAS = I->second;
546bf225939SMichael Liao Type *NewPtrTy = PointerType::getWithSamePointeeType(
547bf225939SMichael Liao cast<PointerType>(Operand->getType()), NewAS);
548bf225939SMichael Liao auto *NewI = new AddrSpaceCastInst(Operand, NewPtrTy);
549bf225939SMichael Liao NewI->insertBefore(Inst);
550bf225939SMichael Liao return NewI;
551bf225939SMichael Liao }
552bf225939SMichael Liao
553850657a4SMatt Arsenault UndefUsesToFix->push_back(&OperandUse);
55430083609SMatt Arsenault return UndefValue::get(NewPtrTy);
555850657a4SMatt Arsenault }
556850657a4SMatt Arsenault
557850657a4SMatt Arsenault // Returns a clone of `I` with its operands converted to those specified in
558850657a4SMatt Arsenault // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
559850657a4SMatt Arsenault // operand whose address space needs to be modified might not exist in
560850657a4SMatt Arsenault // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
561850657a4SMatt Arsenault // adds that operand use to UndefUsesToFix so that caller can fix them later.
562850657a4SMatt Arsenault //
563850657a4SMatt Arsenault // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
564850657a4SMatt Arsenault // from a pointer whose type already matches. Therefore, this function returns a
565850657a4SMatt Arsenault // Value* instead of an Instruction*.
566d6671ee9SMatt Arsenault //
567d6671ee9SMatt Arsenault // This may also return nullptr in the case the instruction could not be
568d6671ee9SMatt Arsenault // rewritten.
cloneInstructionWithNewAddressSpace(Instruction * I,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace,const PredicatedAddrSpaceMapTy & PredicatedAS,SmallVectorImpl<const Use * > * UndefUsesToFix) const569c2ef06d3SArthur Eubanks Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace(
570850657a4SMatt Arsenault Instruction *I, unsigned NewAddrSpace,
571850657a4SMatt Arsenault const ValueToValueMapTy &ValueWithNewAddrSpace,
572bf225939SMichael Liao const PredicatedAddrSpaceMapTy &PredicatedAS,
573d6671ee9SMatt Arsenault SmallVectorImpl<const Use *> *UndefUsesToFix) const {
5749a7afae4SArthur Eubanks Type *NewPtrType = PointerType::getWithSamePointeeType(
5759a7afae4SArthur Eubanks cast<PointerType>(I->getType()), NewAddrSpace);
576850657a4SMatt Arsenault
577850657a4SMatt Arsenault if (I->getOpcode() == Instruction::AddrSpaceCast) {
578850657a4SMatt Arsenault Value *Src = I->getOperand(0);
579850657a4SMatt Arsenault // Because `I` is flat, the source address space must be specific.
580850657a4SMatt Arsenault // Therefore, the inferred address space must be the source space, according
581850657a4SMatt Arsenault // to our algorithm.
582850657a4SMatt Arsenault assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
583850657a4SMatt Arsenault if (Src->getType() != NewPtrType)
584850657a4SMatt Arsenault return new BitCastInst(Src, NewPtrType);
585850657a4SMatt Arsenault return Src;
586850657a4SMatt Arsenault }
587850657a4SMatt Arsenault
588d6671ee9SMatt Arsenault if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
589d6671ee9SMatt Arsenault // Technically the intrinsic ID is a pointer typed argument, so specially
590d6671ee9SMatt Arsenault // handle calls early.
591d6671ee9SMatt Arsenault assert(II->getIntrinsicID() == Intrinsic::ptrmask);
592d6671ee9SMatt Arsenault Value *NewPtr = operandWithNewAddressSpaceOrCreateUndef(
593d6671ee9SMatt Arsenault II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace,
594bf225939SMichael Liao PredicatedAS, UndefUsesToFix);
595d6671ee9SMatt Arsenault Value *Rewrite =
596d6671ee9SMatt Arsenault TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr);
597d6671ee9SMatt Arsenault if (Rewrite) {
598d6671ee9SMatt Arsenault assert(Rewrite != II && "cannot modify this pointer operation in place");
599d6671ee9SMatt Arsenault return Rewrite;
600d6671ee9SMatt Arsenault }
601d6671ee9SMatt Arsenault
602d6671ee9SMatt Arsenault return nullptr;
603d6671ee9SMatt Arsenault }
604d6671ee9SMatt Arsenault
605f375885aSMichael Liao unsigned AS = TTI->getAssumedAddrSpace(I);
606f375885aSMichael Liao if (AS != UninitializedAddressSpace) {
607f375885aSMichael Liao // For the assumed address space, insert an `addrspacecast` to make that
608f375885aSMichael Liao // explicit.
6099a7afae4SArthur Eubanks Type *NewPtrTy = PointerType::getWithSamePointeeType(
6109a7afae4SArthur Eubanks cast<PointerType>(I->getType()), AS);
611f375885aSMichael Liao auto *NewI = new AddrSpaceCastInst(I, NewPtrTy);
612f375885aSMichael Liao NewI->insertAfter(I);
613f375885aSMichael Liao return NewI;
614f375885aSMichael Liao }
615f375885aSMichael Liao
616850657a4SMatt Arsenault // Computes the converted pointer operands.
617850657a4SMatt Arsenault SmallVector<Value *, 4> NewPointerOperands;
618850657a4SMatt Arsenault for (const Use &OperandUse : I->operands()) {
619850657a4SMatt Arsenault if (!OperandUse.get()->getType()->isPointerTy())
620850657a4SMatt Arsenault NewPointerOperands.push_back(nullptr);
621850657a4SMatt Arsenault else
622850657a4SMatt Arsenault NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
623bf225939SMichael Liao OperandUse, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS,
624bf225939SMichael Liao UndefUsesToFix));
625850657a4SMatt Arsenault }
626850657a4SMatt Arsenault
627850657a4SMatt Arsenault switch (I->getOpcode()) {
628850657a4SMatt Arsenault case Instruction::BitCast:
629850657a4SMatt Arsenault return new BitCastInst(NewPointerOperands[0], NewPtrType);
630850657a4SMatt Arsenault case Instruction::PHI: {
631850657a4SMatt Arsenault assert(I->getType()->isPointerTy());
632850657a4SMatt Arsenault PHINode *PHI = cast<PHINode>(I);
633850657a4SMatt Arsenault PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
634850657a4SMatt Arsenault for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
635850657a4SMatt Arsenault unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
636850657a4SMatt Arsenault NewPHI->addIncoming(NewPointerOperands[OperandNo],
637850657a4SMatt Arsenault PHI->getIncomingBlock(Index));
638850657a4SMatt Arsenault }
639850657a4SMatt Arsenault return NewPHI;
640850657a4SMatt Arsenault }
641850657a4SMatt Arsenault case Instruction::GetElementPtr: {
642850657a4SMatt Arsenault GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
643850657a4SMatt Arsenault GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
644850657a4SMatt Arsenault GEP->getSourceElementType(), NewPointerOperands[0],
6455d2529f2SKazu Hirata SmallVector<Value *, 4>(GEP->indices()));
646850657a4SMatt Arsenault NewGEP->setIsInBounds(GEP->isInBounds());
647850657a4SMatt Arsenault return NewGEP;
648850657a4SMatt Arsenault }
64957bd5a02SEugene Zelenko case Instruction::Select:
650bdd59e68SMatt Arsenault assert(I->getType()->isPointerTy());
651bdd59e68SMatt Arsenault return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
652bdd59e68SMatt Arsenault NewPointerOperands[2], "", nullptr, I);
653dccfaacfSMichael Liao case Instruction::IntToPtr: {
654dccfaacfSMichael Liao assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI));
655dccfaacfSMichael Liao Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0);
65652fbb786SMatt Arsenault if (Src->getType() == NewPtrType)
657dccfaacfSMichael Liao return Src;
65852fbb786SMatt Arsenault
65952fbb786SMatt Arsenault // If we had a no-op inttoptr/ptrtoint pair, we may still have inferred a
66052fbb786SMatt Arsenault // source address space from a generic pointer source need to insert a cast
66152fbb786SMatt Arsenault // back.
66252fbb786SMatt Arsenault return CastInst::CreatePointerBitCastOrAddrSpaceCast(Src, NewPtrType);
663dccfaacfSMichael Liao }
664850657a4SMatt Arsenault default:
665850657a4SMatt Arsenault llvm_unreachable("Unexpected opcode");
666850657a4SMatt Arsenault }
667850657a4SMatt Arsenault }
668850657a4SMatt Arsenault
669850657a4SMatt Arsenault // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
670850657a4SMatt Arsenault // constant expression `CE` with its operands replaced as specified in
671850657a4SMatt Arsenault // ValueWithNewAddrSpace.
cloneConstantExprWithNewAddressSpace(ConstantExpr * CE,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace,const DataLayout * DL,const TargetTransformInfo * TTI)672850657a4SMatt Arsenault static Value *cloneConstantExprWithNewAddressSpace(
673850657a4SMatt Arsenault ConstantExpr *CE, unsigned NewAddrSpace,
674dccfaacfSMichael Liao const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL,
675dccfaacfSMichael Liao const TargetTransformInfo *TTI) {
676b988d69eSArtem Belevich Type *TargetType = CE->getType()->isPointerTy()
677b988d69eSArtem Belevich ? PointerType::getWithSamePointeeType(
678b988d69eSArtem Belevich cast<PointerType>(CE->getType()), NewAddrSpace)
679b988d69eSArtem Belevich : CE->getType();
680850657a4SMatt Arsenault
681850657a4SMatt Arsenault if (CE->getOpcode() == Instruction::AddrSpaceCast) {
682850657a4SMatt Arsenault // Because CE is flat, the source address space must be specific.
683850657a4SMatt Arsenault // Therefore, the inferred address space must be the source space according
684850657a4SMatt Arsenault // to our algorithm.
685850657a4SMatt Arsenault assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
686850657a4SMatt Arsenault NewAddrSpace);
687850657a4SMatt Arsenault return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
688850657a4SMatt Arsenault }
689850657a4SMatt Arsenault
690c18b6774SMatt Arsenault if (CE->getOpcode() == Instruction::BitCast) {
691c18b6774SMatt Arsenault if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
692c18b6774SMatt Arsenault return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
693c18b6774SMatt Arsenault return ConstantExpr::getAddrSpaceCast(CE, TargetType);
694c18b6774SMatt Arsenault }
695c18b6774SMatt Arsenault
69630083609SMatt Arsenault if (CE->getOpcode() == Instruction::Select) {
69730083609SMatt Arsenault Constant *Src0 = CE->getOperand(1);
69830083609SMatt Arsenault Constant *Src1 = CE->getOperand(2);
69930083609SMatt Arsenault if (Src0->getType()->getPointerAddressSpace() ==
70030083609SMatt Arsenault Src1->getType()->getPointerAddressSpace()) {
70130083609SMatt Arsenault
70230083609SMatt Arsenault return ConstantExpr::getSelect(
70330083609SMatt Arsenault CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
70430083609SMatt Arsenault ConstantExpr::getAddrSpaceCast(Src1, TargetType));
70530083609SMatt Arsenault }
70630083609SMatt Arsenault }
70730083609SMatt Arsenault
708dccfaacfSMichael Liao if (CE->getOpcode() == Instruction::IntToPtr) {
709dccfaacfSMichael Liao assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI));
710dccfaacfSMichael Liao Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0);
711dccfaacfSMichael Liao assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
712dccfaacfSMichael Liao return ConstantExpr::getBitCast(Src, TargetType);
713dccfaacfSMichael Liao }
714dccfaacfSMichael Liao
715850657a4SMatt Arsenault // Computes the operands of the new constant expression.
71662fb8498SNirav Dave bool IsNew = false;
717850657a4SMatt Arsenault SmallVector<Constant *, 4> NewOperands;
718850657a4SMatt Arsenault for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
719850657a4SMatt Arsenault Constant *Operand = CE->getOperand(Index);
720850657a4SMatt Arsenault // If the address space of `Operand` needs to be modified, the new operand
721850657a4SMatt Arsenault // with the new address space should already be in ValueWithNewAddrSpace
722850657a4SMatt Arsenault // because (1) the constant expressions we consider (i.e. addrspacecast,
723850657a4SMatt Arsenault // bitcast, and getelementptr) do not incur cycles in the data flow graph
724850657a4SMatt Arsenault // and (2) this function is called on constant expressions in postorder.
725850657a4SMatt Arsenault if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
72662fb8498SNirav Dave IsNew = true;
727850657a4SMatt Arsenault NewOperands.push_back(cast<Constant>(NewOperand));
728b284414aSMichael Liao continue;
729b284414aSMichael Liao }
7302ed030baSpsamolysov-intel if (auto *CExpr = dyn_cast<ConstantExpr>(Operand))
731b284414aSMichael Liao if (Value *NewOperand = cloneConstantExprWithNewAddressSpace(
732dccfaacfSMichael Liao CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) {
733b284414aSMichael Liao IsNew = true;
734b284414aSMichael Liao NewOperands.push_back(cast<Constant>(NewOperand));
735b284414aSMichael Liao continue;
736b284414aSMichael Liao }
737850657a4SMatt Arsenault // Otherwise, reuses the old operand.
738850657a4SMatt Arsenault NewOperands.push_back(Operand);
739850657a4SMatt Arsenault }
740850657a4SMatt Arsenault
74162fb8498SNirav Dave // If !IsNew, we will replace the Value with itself. However, replaced values
7422ed030baSpsamolysov-intel // are assumed to wrapped in an addrspacecast cast later so drop it now.
74362fb8498SNirav Dave if (!IsNew)
74462fb8498SNirav Dave return nullptr;
74562fb8498SNirav Dave
746850657a4SMatt Arsenault if (CE->getOpcode() == Instruction::GetElementPtr) {
747850657a4SMatt Arsenault // Needs to specify the source type while constructing a getelementptr
748850657a4SMatt Arsenault // constant expression.
749ae27c57bSArthur Eubanks return CE->getWithOperands(NewOperands, TargetType, /*OnlyIfReduced=*/false,
750ae27c57bSArthur Eubanks cast<GEPOperator>(CE)->getSourceElementType());
751850657a4SMatt Arsenault }
752850657a4SMatt Arsenault
753850657a4SMatt Arsenault return CE->getWithOperands(NewOperands, TargetType);
754850657a4SMatt Arsenault }
755850657a4SMatt Arsenault
756850657a4SMatt Arsenault // Returns a clone of the value `V`, with its operands replaced as specified in
757850657a4SMatt Arsenault // ValueWithNewAddrSpace. This function is called on every flat address
758850657a4SMatt Arsenault // expression whose address space needs to be modified, in postorder.
759850657a4SMatt Arsenault //
760850657a4SMatt Arsenault // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
cloneValueWithNewAddressSpace(Value * V,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace,const PredicatedAddrSpaceMapTy & PredicatedAS,SmallVectorImpl<const Use * > * UndefUsesToFix) const761c2ef06d3SArthur Eubanks Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace(
762850657a4SMatt Arsenault Value *V, unsigned NewAddrSpace,
763850657a4SMatt Arsenault const ValueToValueMapTy &ValueWithNewAddrSpace,
764bf225939SMichael Liao const PredicatedAddrSpaceMapTy &PredicatedAS,
765850657a4SMatt Arsenault SmallVectorImpl<const Use *> *UndefUsesToFix) const {
766850657a4SMatt Arsenault // All values in Postorder are flat address expressions.
767f375885aSMichael Liao assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
768f375885aSMichael Liao isAddressExpression(*V, *DL, TTI));
769850657a4SMatt Arsenault
770850657a4SMatt Arsenault if (Instruction *I = dyn_cast<Instruction>(V)) {
771850657a4SMatt Arsenault Value *NewV = cloneInstructionWithNewAddressSpace(
772bf225939SMichael Liao I, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, UndefUsesToFix);
773d6671ee9SMatt Arsenault if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) {
774850657a4SMatt Arsenault if (NewI->getParent() == nullptr) {
775850657a4SMatt Arsenault NewI->insertBefore(I);
776850657a4SMatt Arsenault NewI->takeName(I);
777850657a4SMatt Arsenault }
778850657a4SMatt Arsenault }
779850657a4SMatt Arsenault return NewV;
780850657a4SMatt Arsenault }
781850657a4SMatt Arsenault
782850657a4SMatt Arsenault return cloneConstantExprWithNewAddressSpace(
783dccfaacfSMichael Liao cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI);
784850657a4SMatt Arsenault }
785850657a4SMatt Arsenault
786850657a4SMatt Arsenault // Defines the join operation on the address space lattice (see the file header
787850657a4SMatt Arsenault // comments).
joinAddressSpaces(unsigned AS1,unsigned AS2) const788c2ef06d3SArthur Eubanks unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1,
789850657a4SMatt Arsenault unsigned AS2) const {
790850657a4SMatt Arsenault if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
791850657a4SMatt Arsenault return FlatAddrSpace;
792850657a4SMatt Arsenault
793973c4aebSMatt Arsenault if (AS1 == UninitializedAddressSpace)
794850657a4SMatt Arsenault return AS2;
795973c4aebSMatt Arsenault if (AS2 == UninitializedAddressSpace)
796850657a4SMatt Arsenault return AS1;
797850657a4SMatt Arsenault
798850657a4SMatt Arsenault // The join of two different specific address spaces is flat.
799850657a4SMatt Arsenault return (AS1 == AS2) ? AS1 : FlatAddrSpace;
800850657a4SMatt Arsenault }
801850657a4SMatt Arsenault
run(Function & F)802c2ef06d3SArthur Eubanks bool InferAddressSpacesImpl::run(Function &F) {
803dccfaacfSMichael Liao DL = &F.getParent()->getDataLayout();
804dccfaacfSMichael Liao
805dccfaacfSMichael Liao if (AssumeDefaultIsFlatAddressSpace)
806dccfaacfSMichael Liao FlatAddrSpace = 0;
80766f61260SSven van Haastregt
80866f61260SSven van Haastregt if (FlatAddrSpace == UninitializedAddressSpace) {
809dbc1f207SMatt Arsenault FlatAddrSpace = TTI->getFlatAddressSpace();
810973c4aebSMatt Arsenault if (FlatAddrSpace == UninitializedAddressSpace)
811850657a4SMatt Arsenault return false;
81266f61260SSven van Haastregt }
813850657a4SMatt Arsenault
814850657a4SMatt Arsenault // Collects all flat address expressions in postorder.
815e6bca0eeSSanjoy Das std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
816850657a4SMatt Arsenault
817850657a4SMatt Arsenault // Runs a data-flow analysis to refine the address spaces of every expression
818850657a4SMatt Arsenault // in Postorder.
819850657a4SMatt Arsenault ValueToAddrSpaceMapTy InferredAddrSpace;
820bf225939SMichael Liao PredicatedAddrSpaceMapTy PredicatedAS;
821bf225939SMichael Liao inferAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS);
822850657a4SMatt Arsenault
823850657a4SMatt Arsenault // Changes the address spaces of the flat address expressions who are inferred
824850657a4SMatt Arsenault // to point to a specific address space.
8252ed030baSpsamolysov-intel return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS,
8262ed030baSpsamolysov-intel &F);
827850657a4SMatt Arsenault }
828850657a4SMatt Arsenault
829e0f9e984SMatt Arsenault // Constants need to be tracked through RAUW to handle cases with nested
830e6bca0eeSSanjoy Das // constant expressions, so wrap values in WeakTrackingVH.
inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,ValueToAddrSpaceMapTy & InferredAddrSpace,PredicatedAddrSpaceMapTy & PredicatedAS) const831c2ef06d3SArthur Eubanks void InferAddressSpacesImpl::inferAddressSpaces(
832e6bca0eeSSanjoy Das ArrayRef<WeakTrackingVH> Postorder,
833bf225939SMichael Liao ValueToAddrSpaceMapTy &InferredAddrSpace,
834bf225939SMichael Liao PredicatedAddrSpaceMapTy &PredicatedAS) const {
835850657a4SMatt Arsenault SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
836850657a4SMatt Arsenault // Initially, all expressions are in the uninitialized address space.
837850657a4SMatt Arsenault for (Value *V : Postorder)
838bf225939SMichael Liao InferredAddrSpace[V] = UninitializedAddressSpace;
839850657a4SMatt Arsenault
840850657a4SMatt Arsenault while (!Worklist.empty()) {
841850657a4SMatt Arsenault Value *V = Worklist.pop_back_val();
842850657a4SMatt Arsenault
843bf225939SMichael Liao // Try to update the address space of the stack top according to the
844850657a4SMatt Arsenault // address spaces of its operands.
845bf225939SMichael Liao if (!updateAddressSpace(*V, InferredAddrSpace, PredicatedAS))
846850657a4SMatt Arsenault continue;
847850657a4SMatt Arsenault
848850657a4SMatt Arsenault for (Value *User : V->users()) {
849850657a4SMatt Arsenault // Skip if User is already in the worklist.
850850657a4SMatt Arsenault if (Worklist.count(User))
851850657a4SMatt Arsenault continue;
852850657a4SMatt Arsenault
853bf225939SMichael Liao auto Pos = InferredAddrSpace.find(User);
854850657a4SMatt Arsenault // Our algorithm only updates the address spaces of flat address
855850657a4SMatt Arsenault // expressions, which are those in InferredAddrSpace.
856bf225939SMichael Liao if (Pos == InferredAddrSpace.end())
857850657a4SMatt Arsenault continue;
858850657a4SMatt Arsenault
859850657a4SMatt Arsenault // Function updateAddressSpace moves the address space down a lattice
860850657a4SMatt Arsenault // path. Therefore, nothing to do if User is already inferred as flat (the
861850657a4SMatt Arsenault // bottom element in the lattice).
862850657a4SMatt Arsenault if (Pos->second == FlatAddrSpace)
863850657a4SMatt Arsenault continue;
864850657a4SMatt Arsenault
865850657a4SMatt Arsenault Worklist.insert(User);
866850657a4SMatt Arsenault }
867850657a4SMatt Arsenault }
868850657a4SMatt Arsenault }
869850657a4SMatt Arsenault
getPredicatedAddrSpace(const Value & V,Value * Opnd) const870bf225939SMichael Liao unsigned InferAddressSpacesImpl::getPredicatedAddrSpace(const Value &V,
871bf225939SMichael Liao Value *Opnd) const {
872bf225939SMichael Liao const Instruction *I = dyn_cast<Instruction>(&V);
873bf225939SMichael Liao if (!I)
874bf225939SMichael Liao return UninitializedAddressSpace;
875bf225939SMichael Liao
876bf225939SMichael Liao Opnd = Opnd->stripInBoundsOffsets();
877bf225939SMichael Liao for (auto &AssumeVH : AC.assumptionsFor(Opnd)) {
878bf225939SMichael Liao if (!AssumeVH)
879bf225939SMichael Liao continue;
880bf225939SMichael Liao CallInst *CI = cast<CallInst>(AssumeVH);
881bf225939SMichael Liao if (!isValidAssumeForContext(CI, I, DT))
882bf225939SMichael Liao continue;
883bf225939SMichael Liao
884bf225939SMichael Liao const Value *Ptr;
885bf225939SMichael Liao unsigned AS;
886bf225939SMichael Liao std::tie(Ptr, AS) = TTI->getPredicatedAddrSpace(CI->getArgOperand(0));
887bf225939SMichael Liao if (Ptr)
888bf225939SMichael Liao return AS;
889bf225939SMichael Liao }
890bf225939SMichael Liao
891bf225939SMichael Liao return UninitializedAddressSpace;
892bf225939SMichael Liao }
893bf225939SMichael Liao
updateAddressSpace(const Value & V,ValueToAddrSpaceMapTy & InferredAddrSpace,PredicatedAddrSpaceMapTy & PredicatedAS) const894bf225939SMichael Liao bool InferAddressSpacesImpl::updateAddressSpace(
895bf225939SMichael Liao const Value &V, ValueToAddrSpaceMapTy &InferredAddrSpace,
896bf225939SMichael Liao PredicatedAddrSpaceMapTy &PredicatedAS) const {
897850657a4SMatt Arsenault assert(InferredAddrSpace.count(&V));
898850657a4SMatt Arsenault
899bf225939SMichael Liao LLVM_DEBUG(dbgs() << "Updating the address space of\n " << V << '\n');
900bf225939SMichael Liao
901850657a4SMatt Arsenault // The new inferred address space equals the join of the address spaces
902850657a4SMatt Arsenault // of all its pointer operands.
903973c4aebSMatt Arsenault unsigned NewAS = UninitializedAddressSpace;
90430083609SMatt Arsenault
90530083609SMatt Arsenault const Operator &Op = cast<Operator>(V);
90630083609SMatt Arsenault if (Op.getOpcode() == Instruction::Select) {
90730083609SMatt Arsenault Value *Src0 = Op.getOperand(1);
90830083609SMatt Arsenault Value *Src1 = Op.getOperand(2);
90930083609SMatt Arsenault
91030083609SMatt Arsenault auto I = InferredAddrSpace.find(Src0);
91130083609SMatt Arsenault unsigned Src0AS = (I != InferredAddrSpace.end()) ?
91230083609SMatt Arsenault I->second : Src0->getType()->getPointerAddressSpace();
91330083609SMatt Arsenault
91430083609SMatt Arsenault auto J = InferredAddrSpace.find(Src1);
91530083609SMatt Arsenault unsigned Src1AS = (J != InferredAddrSpace.end()) ?
91630083609SMatt Arsenault J->second : Src1->getType()->getPointerAddressSpace();
91730083609SMatt Arsenault
91830083609SMatt Arsenault auto *C0 = dyn_cast<Constant>(Src0);
91930083609SMatt Arsenault auto *C1 = dyn_cast<Constant>(Src1);
92030083609SMatt Arsenault
92130083609SMatt Arsenault // If one of the inputs is a constant, we may be able to do a constant
92230083609SMatt Arsenault // addrspacecast of it. Defer inferring the address space until the input
92330083609SMatt Arsenault // address space is known.
92430083609SMatt Arsenault if ((C1 && Src0AS == UninitializedAddressSpace) ||
92530083609SMatt Arsenault (C0 && Src1AS == UninitializedAddressSpace))
926bf225939SMichael Liao return false;
92730083609SMatt Arsenault
92830083609SMatt Arsenault if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
92930083609SMatt Arsenault NewAS = Src1AS;
93030083609SMatt Arsenault else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
93130083609SMatt Arsenault NewAS = Src0AS;
93230083609SMatt Arsenault else
93330083609SMatt Arsenault NewAS = joinAddressSpaces(Src0AS, Src1AS);
93430083609SMatt Arsenault } else {
935f375885aSMichael Liao unsigned AS = TTI->getAssumedAddrSpace(&V);
936f375885aSMichael Liao if (AS != UninitializedAddressSpace) {
937f375885aSMichael Liao // Use the assumed address space directly.
938f375885aSMichael Liao NewAS = AS;
939f375885aSMichael Liao } else {
940f375885aSMichael Liao // Otherwise, infer the address space from its pointer operands.
941dccfaacfSMichael Liao for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) {
942517a290eSMatt Arsenault auto I = InferredAddrSpace.find(PtrOperand);
943bf225939SMichael Liao unsigned OperandAS;
944bf225939SMichael Liao if (I == InferredAddrSpace.end()) {
945bf225939SMichael Liao OperandAS = PtrOperand->getType()->getPointerAddressSpace();
946bf225939SMichael Liao if (OperandAS == FlatAddrSpace) {
947bf225939SMichael Liao // Check AC for assumption dominating V.
948bf225939SMichael Liao unsigned AS = getPredicatedAddrSpace(V, PtrOperand);
949bf225939SMichael Liao if (AS != UninitializedAddressSpace) {
950bf225939SMichael Liao LLVM_DEBUG(dbgs()
951bf225939SMichael Liao << " deduce operand AS from the predicate addrspace "
952bf225939SMichael Liao << AS << '\n');
953bf225939SMichael Liao OperandAS = AS;
954bf225939SMichael Liao // Record this use with the predicated AS.
955bf225939SMichael Liao PredicatedAS[std::make_pair(&V, PtrOperand)] = OperandAS;
956bf225939SMichael Liao }
957bf225939SMichael Liao }
958bf225939SMichael Liao } else
959bf225939SMichael Liao OperandAS = I->second;
960850657a4SMatt Arsenault
961850657a4SMatt Arsenault // join(flat, *) = flat. So we can break if NewAS is already flat.
962517a290eSMatt Arsenault NewAS = joinAddressSpaces(NewAS, OperandAS);
963850657a4SMatt Arsenault if (NewAS == FlatAddrSpace)
964850657a4SMatt Arsenault break;
965850657a4SMatt Arsenault }
96630083609SMatt Arsenault }
967f375885aSMichael Liao }
968850657a4SMatt Arsenault
969850657a4SMatt Arsenault unsigned OldAS = InferredAddrSpace.lookup(&V);
970850657a4SMatt Arsenault assert(OldAS != FlatAddrSpace);
971850657a4SMatt Arsenault if (OldAS == NewAS)
972bf225939SMichael Liao return false;
973bf225939SMichael Liao
974bf225939SMichael Liao // If any updates are made, grabs its users to the worklist because
975bf225939SMichael Liao // their address spaces can also be possibly updated.
976bf225939SMichael Liao LLVM_DEBUG(dbgs() << " to " << NewAS << '\n');
977bf225939SMichael Liao InferredAddrSpace[&V] = NewAS;
978bf225939SMichael Liao return true;
979850657a4SMatt Arsenault }
980850657a4SMatt Arsenault
9816c907a9bSMatt Arsenault /// \p returns true if \p U is the pointer operand of a memory instruction with
9826c907a9bSMatt Arsenault /// a single pointer operand that can have its address space changed by simply
983cb8f6328SArtem Belevich /// mutating the use to a new value. If the memory instruction is volatile,
984cb8f6328SArtem Belevich /// return true only if the target allows the memory instruction to be volatile
985cb8f6328SArtem Belevich /// in the new address space.
isSimplePointerUseValidToReplace(const TargetTransformInfo & TTI,Use & U,unsigned AddrSpace)986cb8f6328SArtem Belevich static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI,
987cb8f6328SArtem Belevich Use &U, unsigned AddrSpace) {
9886c907a9bSMatt Arsenault User *Inst = U.getUser();
9896c907a9bSMatt Arsenault unsigned OpNo = U.getOperandNo();
990cb8f6328SArtem Belevich bool VolatileIsAllowed = false;
991cb8f6328SArtem Belevich if (auto *I = dyn_cast<Instruction>(Inst))
992cb8f6328SArtem Belevich VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace);
9936c907a9bSMatt Arsenault
9946c907a9bSMatt Arsenault if (auto *LI = dyn_cast<LoadInst>(Inst))
995cb8f6328SArtem Belevich return OpNo == LoadInst::getPointerOperandIndex() &&
996cb8f6328SArtem Belevich (VolatileIsAllowed || !LI->isVolatile());
9976c907a9bSMatt Arsenault
9986c907a9bSMatt Arsenault if (auto *SI = dyn_cast<StoreInst>(Inst))
999cb8f6328SArtem Belevich return OpNo == StoreInst::getPointerOperandIndex() &&
1000cb8f6328SArtem Belevich (VolatileIsAllowed || !SI->isVolatile());
10016c907a9bSMatt Arsenault
10026c907a9bSMatt Arsenault if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
1003cb8f6328SArtem Belevich return OpNo == AtomicRMWInst::getPointerOperandIndex() &&
1004cb8f6328SArtem Belevich (VolatileIsAllowed || !RMW->isVolatile());
10056c907a9bSMatt Arsenault
100657bd5a02SEugene Zelenko if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
10076c907a9bSMatt Arsenault return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
1008cb8f6328SArtem Belevich (VolatileIsAllowed || !CmpX->isVolatile());
10096c907a9bSMatt Arsenault
10106c907a9bSMatt Arsenault return false;
10116c907a9bSMatt Arsenault }
10126c907a9bSMatt Arsenault
10136d5a8d48SMatt Arsenault /// Update memory intrinsic uses that require more complex processing than
10142ed030baSpsamolysov-intel /// simple memory instructions. These require re-mangling and may have multiple
10156d5a8d48SMatt Arsenault /// pointer operands.
handleMemIntrinsicPtrUse(MemIntrinsic * MI,Value * OldV,Value * NewV)1016db6e9e89SMatt Arsenault static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
1017db6e9e89SMatt Arsenault Value *NewV) {
10186d5a8d48SMatt Arsenault IRBuilder<> B(MI);
10196d5a8d48SMatt Arsenault MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
10206d5a8d48SMatt Arsenault MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
10216d5a8d48SMatt Arsenault MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
10226d5a8d48SMatt Arsenault
10236d5a8d48SMatt Arsenault if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
1024*dc9c2eacSGuillaume Chatelet B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), MSI->getDestAlign(),
10256d5a8d48SMatt Arsenault false, // isVolatile
10266d5a8d48SMatt Arsenault TBAA, ScopeMD, NoAliasMD);
10276d5a8d48SMatt Arsenault } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
10286d5a8d48SMatt Arsenault Value *Src = MTI->getRawSource();
10296d5a8d48SMatt Arsenault Value *Dest = MTI->getRawDest();
10306d5a8d48SMatt Arsenault
10316d5a8d48SMatt Arsenault // Be careful in case this is a self-to-self copy.
10326d5a8d48SMatt Arsenault if (Src == OldV)
10336d5a8d48SMatt Arsenault Src = NewV;
10346d5a8d48SMatt Arsenault
10356d5a8d48SMatt Arsenault if (Dest == OldV)
10366d5a8d48SMatt Arsenault Dest = NewV;
10376d5a8d48SMatt Arsenault
103837b6e03cSJon Roelofs if (isa<MemCpyInlineInst>(MTI)) {
103937b6e03cSJon Roelofs MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
104037b6e03cSJon Roelofs B.CreateMemCpyInline(Dest, MTI->getDestAlign(), Src,
104137b6e03cSJon Roelofs MTI->getSourceAlign(), MTI->getLength(),
104237b6e03cSJon Roelofs false, // isVolatile
104337b6e03cSJon Roelofs TBAA, TBAAStruct, ScopeMD, NoAliasMD);
104437b6e03cSJon Roelofs } else if (isa<MemCpyInst>(MTI)) {
10456d5a8d48SMatt Arsenault MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1046531c1161SGuillaume Chatelet B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
10475fdf08f7SDaniel Neilson MTI->getLength(),
10486d5a8d48SMatt Arsenault false, // isVolatile
10496d5a8d48SMatt Arsenault TBAA, TBAAStruct, ScopeMD, NoAliasMD);
10506d5a8d48SMatt Arsenault } else {
10516d5a8d48SMatt Arsenault assert(isa<MemMoveInst>(MTI));
1052531c1161SGuillaume Chatelet B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
10535fdf08f7SDaniel Neilson MTI->getLength(),
10546d5a8d48SMatt Arsenault false, // isVolatile
10556d5a8d48SMatt Arsenault TBAA, ScopeMD, NoAliasMD);
10566d5a8d48SMatt Arsenault }
10576d5a8d48SMatt Arsenault } else
10586d5a8d48SMatt Arsenault llvm_unreachable("unhandled MemIntrinsic");
10596d5a8d48SMatt Arsenault
10606d5a8d48SMatt Arsenault MI->eraseFromParent();
10616d5a8d48SMatt Arsenault return true;
10626d5a8d48SMatt Arsenault }
10636d5a8d48SMatt Arsenault
106472f259b8SMatt Arsenault // \p returns true if it is OK to change the address space of constant \p C with
106572f259b8SMatt Arsenault // a ConstantExpr addrspacecast.
isSafeToCastConstAddrSpace(Constant * C,unsigned NewAS) const1066c2ef06d3SArthur Eubanks bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C,
1067c2ef06d3SArthur Eubanks unsigned NewAS) const {
106830083609SMatt Arsenault assert(NewAS != UninitializedAddressSpace);
106930083609SMatt Arsenault
10702a46d810SMatt Arsenault unsigned SrcAS = C->getType()->getPointerAddressSpace();
10712a46d810SMatt Arsenault if (SrcAS == NewAS || isa<UndefValue>(C))
107272f259b8SMatt Arsenault return true;
107372f259b8SMatt Arsenault
10742a46d810SMatt Arsenault // Prevent illegal casts between different non-flat address spaces.
10752a46d810SMatt Arsenault if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
10762a46d810SMatt Arsenault return false;
10772a46d810SMatt Arsenault
10782a46d810SMatt Arsenault if (isa<ConstantPointerNull>(C))
107972f259b8SMatt Arsenault return true;
108072f259b8SMatt Arsenault
108172f259b8SMatt Arsenault if (auto *Op = dyn_cast<Operator>(C)) {
108272f259b8SMatt Arsenault // If we already have a constant addrspacecast, it should be safe to cast it
108372f259b8SMatt Arsenault // off.
108472f259b8SMatt Arsenault if (Op->getOpcode() == Instruction::AddrSpaceCast)
108572f259b8SMatt Arsenault return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
108672f259b8SMatt Arsenault
108772f259b8SMatt Arsenault if (Op->getOpcode() == Instruction::IntToPtr &&
108872f259b8SMatt Arsenault Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
108972f259b8SMatt Arsenault return true;
109072f259b8SMatt Arsenault }
109172f259b8SMatt Arsenault
109272f259b8SMatt Arsenault return false;
109372f259b8SMatt Arsenault }
109472f259b8SMatt Arsenault
skipToNextUser(Value::use_iterator I,Value::use_iterator End)10956d5a8d48SMatt Arsenault static Value::use_iterator skipToNextUser(Value::use_iterator I,
10966d5a8d48SMatt Arsenault Value::use_iterator End) {
10976d5a8d48SMatt Arsenault User *CurUser = I->getUser();
10986d5a8d48SMatt Arsenault ++I;
10996d5a8d48SMatt Arsenault
11006d5a8d48SMatt Arsenault while (I != End && I->getUser() == CurUser)
11016d5a8d48SMatt Arsenault ++I;
11026d5a8d48SMatt Arsenault
11036d5a8d48SMatt Arsenault return I;
11046d5a8d48SMatt Arsenault }
11056d5a8d48SMatt Arsenault
rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,const ValueToAddrSpaceMapTy & InferredAddrSpace,const PredicatedAddrSpaceMapTy & PredicatedAS,Function * F) const1106c2ef06d3SArthur Eubanks bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces(
11072ed030baSpsamolysov-intel ArrayRef<WeakTrackingVH> Postorder,
1108bf225939SMichael Liao const ValueToAddrSpaceMapTy &InferredAddrSpace,
1109bf225939SMichael Liao const PredicatedAddrSpaceMapTy &PredicatedAS, Function *F) const {
1110850657a4SMatt Arsenault // For each address expression to be modified, creates a clone of it with its
1111850657a4SMatt Arsenault // pointer operands converted to the new address space. Since the pointer
1112850657a4SMatt Arsenault // operands are converted, the clone is naturally in the new address space by
1113850657a4SMatt Arsenault // construction.
1114850657a4SMatt Arsenault ValueToValueMapTy ValueWithNewAddrSpace;
1115850657a4SMatt Arsenault SmallVector<const Use *, 32> UndefUsesToFix;
1116850657a4SMatt Arsenault for (Value* V : Postorder) {
1117850657a4SMatt Arsenault unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
11187d6ca2ecSMatt Arsenault
11197d6ca2ecSMatt Arsenault // In some degenerate cases (e.g. invalid IR in unreachable code), we may
11207d6ca2ecSMatt Arsenault // not even infer the value to have its original address space.
11217d6ca2ecSMatt Arsenault if (NewAddrSpace == UninitializedAddressSpace)
11227d6ca2ecSMatt Arsenault continue;
11237d6ca2ecSMatt Arsenault
1124850657a4SMatt Arsenault if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
1125bf225939SMichael Liao Value *New =
1126bf225939SMichael Liao cloneValueWithNewAddressSpace(V, NewAddrSpace, ValueWithNewAddrSpace,
1127bf225939SMichael Liao PredicatedAS, &UndefUsesToFix);
1128d6671ee9SMatt Arsenault if (New)
1129d6671ee9SMatt Arsenault ValueWithNewAddrSpace[V] = New;
1130850657a4SMatt Arsenault }
1131850657a4SMatt Arsenault }
1132850657a4SMatt Arsenault
1133850657a4SMatt Arsenault if (ValueWithNewAddrSpace.empty())
1134850657a4SMatt Arsenault return false;
1135850657a4SMatt Arsenault
1136850657a4SMatt Arsenault // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
1137850657a4SMatt Arsenault for (const Use *UndefUse : UndefUsesToFix) {
1138850657a4SMatt Arsenault User *V = UndefUse->getUser();
1139d6671ee9SMatt Arsenault User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V));
1140d6671ee9SMatt Arsenault if (!NewV)
1141d6671ee9SMatt Arsenault continue;
1142d6671ee9SMatt Arsenault
1143850657a4SMatt Arsenault unsigned OperandNo = UndefUse->getOperandNo();
1144850657a4SMatt Arsenault assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
1145850657a4SMatt Arsenault NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
1146850657a4SMatt Arsenault }
1147850657a4SMatt Arsenault
1148c20ccd2cSMatt Arsenault SmallVector<Instruction *, 16> DeadInstructions;
1149c20ccd2cSMatt Arsenault
1150850657a4SMatt Arsenault // Replaces the uses of the old address expressions with the new ones.
1151e6bca0eeSSanjoy Das for (const WeakTrackingVH &WVH : Postorder) {
1152e0f9e984SMatt Arsenault assert(WVH && "value was unexpectedly deleted");
1153e0f9e984SMatt Arsenault Value *V = WVH;
1154850657a4SMatt Arsenault Value *NewV = ValueWithNewAddrSpace.lookup(V);
1155850657a4SMatt Arsenault if (NewV == nullptr)
1156850657a4SMatt Arsenault continue;
1157850657a4SMatt Arsenault
1158d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n "
1159d34e60caSNicola Zaghen << *NewV << '\n');
1160850657a4SMatt Arsenault
1161e0f9e984SMatt Arsenault if (Constant *C = dyn_cast<Constant>(V)) {
1162e0f9e984SMatt Arsenault Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
1163e0f9e984SMatt Arsenault C->getType());
1164e0f9e984SMatt Arsenault if (C != Replace) {
1165d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
1166d34e60caSNicola Zaghen << ": " << *Replace << '\n');
1167e0f9e984SMatt Arsenault C->replaceAllUsesWith(Replace);
1168e0f9e984SMatt Arsenault V = Replace;
1169e0f9e984SMatt Arsenault }
1170e0f9e984SMatt Arsenault }
1171e0f9e984SMatt Arsenault
11726d5a8d48SMatt Arsenault Value::use_iterator I, E, Next;
11736d5a8d48SMatt Arsenault for (I = V->use_begin(), E = V->use_end(); I != E; ) {
11746d5a8d48SMatt Arsenault Use &U = *I;
11756d5a8d48SMatt Arsenault
11766d5a8d48SMatt Arsenault // Some users may see the same pointer operand in multiple operands. Skip
11776d5a8d48SMatt Arsenault // to the next instruction.
11786d5a8d48SMatt Arsenault I = skipToNextUser(I, E);
11796d5a8d48SMatt Arsenault
1180cb8f6328SArtem Belevich if (isSimplePointerUseValidToReplace(
11812ed030baSpsamolysov-intel *TTI, U, V->getType()->getPointerAddressSpace())) {
11826c907a9bSMatt Arsenault // If V is used as the pointer operand of a compatible memory operation,
11836c907a9bSMatt Arsenault // sets the pointer operand to NewV. This replacement does not change
11846c907a9bSMatt Arsenault // the element type, so the resultant load/store is still valid.
11856d5a8d48SMatt Arsenault U.set(NewV);
11866d5a8d48SMatt Arsenault continue;
11876d5a8d48SMatt Arsenault }
11886d5a8d48SMatt Arsenault
11896d5a8d48SMatt Arsenault User *CurUser = U.getUser();
1190f375885aSMichael Liao // Skip if the current user is the new value itself.
1191f375885aSMichael Liao if (CurUser == NewV)
1192f375885aSMichael Liao continue;
11936d5a8d48SMatt Arsenault // Handle more complex cases like intrinsic that need to be remangled.
11946d5a8d48SMatt Arsenault if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
11956d5a8d48SMatt Arsenault if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
11966d5a8d48SMatt Arsenault continue;
11976d5a8d48SMatt Arsenault }
11986d5a8d48SMatt Arsenault
11996d5a8d48SMatt Arsenault if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
12006d5a8d48SMatt Arsenault if (rewriteIntrinsicOperands(II, V, NewV))
12016d5a8d48SMatt Arsenault continue;
12026d5a8d48SMatt Arsenault }
12036d5a8d48SMatt Arsenault
12046d5a8d48SMatt Arsenault if (isa<Instruction>(CurUser)) {
120572f259b8SMatt Arsenault if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
120672f259b8SMatt Arsenault // If we can infer that both pointers are in the same addrspace,
120772f259b8SMatt Arsenault // transform e.g.
120872f259b8SMatt Arsenault // %cmp = icmp eq float* %p, %q
120972f259b8SMatt Arsenault // into
121072f259b8SMatt Arsenault // %cmp = icmp eq float addrspace(3)* %new_p, %new_q
121172f259b8SMatt Arsenault
121272f259b8SMatt Arsenault unsigned NewAS = NewV->getType()->getPointerAddressSpace();
121372f259b8SMatt Arsenault int SrcIdx = U.getOperandNo();
121472f259b8SMatt Arsenault int OtherIdx = (SrcIdx == 0) ? 1 : 0;
121572f259b8SMatt Arsenault Value *OtherSrc = Cmp->getOperand(OtherIdx);
121672f259b8SMatt Arsenault
121772f259b8SMatt Arsenault if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
121872f259b8SMatt Arsenault if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
121972f259b8SMatt Arsenault Cmp->setOperand(OtherIdx, OtherNewV);
122072f259b8SMatt Arsenault Cmp->setOperand(SrcIdx, NewV);
122172f259b8SMatt Arsenault continue;
122272f259b8SMatt Arsenault }
122372f259b8SMatt Arsenault }
122472f259b8SMatt Arsenault
122572f259b8SMatt Arsenault // Even if the type mismatches, we can cast the constant.
122672f259b8SMatt Arsenault if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
122772f259b8SMatt Arsenault if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
122872f259b8SMatt Arsenault Cmp->setOperand(SrcIdx, NewV);
122972f259b8SMatt Arsenault Cmp->setOperand(OtherIdx,
123072f259b8SMatt Arsenault ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
123172f259b8SMatt Arsenault continue;
123272f259b8SMatt Arsenault }
123372f259b8SMatt Arsenault }
123472f259b8SMatt Arsenault }
123572f259b8SMatt Arsenault
1236a1e73405SMatt Arsenault if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
1237a1e73405SMatt Arsenault unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1238a1e73405SMatt Arsenault if (ASC->getDestAddressSpace() == NewAS) {
1239ae27c57bSArthur Eubanks if (!cast<PointerType>(ASC->getType())
1240ae27c57bSArthur Eubanks ->hasSameElementTypeAs(
1241ae27c57bSArthur Eubanks cast<PointerType>(NewV->getType()))) {
124226b14c3eSAustin Kerbow BasicBlock::iterator InsertPos;
124326b14c3eSAustin Kerbow if (Instruction *NewVInst = dyn_cast<Instruction>(NewV))
124426b14c3eSAustin Kerbow InsertPos = std::next(NewVInst->getIterator());
124526b14c3eSAustin Kerbow else if (Instruction *VInst = dyn_cast<Instruction>(V))
124626b14c3eSAustin Kerbow InsertPos = std::next(VInst->getIterator());
124726b14c3eSAustin Kerbow else
124826b14c3eSAustin Kerbow InsertPos = ASC->getIterator();
124926b14c3eSAustin Kerbow
1250d23f23d8SYaxun Liu NewV = CastInst::Create(Instruction::BitCast, NewV,
125126b14c3eSAustin Kerbow ASC->getType(), "", &*InsertPos);
1252d23f23d8SYaxun Liu }
1253a1e73405SMatt Arsenault ASC->replaceAllUsesWith(NewV);
1254c20ccd2cSMatt Arsenault DeadInstructions.push_back(ASC);
1255a1e73405SMatt Arsenault continue;
1256a1e73405SMatt Arsenault }
1257a1e73405SMatt Arsenault }
1258a1e73405SMatt Arsenault
1259850657a4SMatt Arsenault // Otherwise, replaces the use with flat(NewV).
12600bb25b46SAustin Kerbow if (Instruction *VInst = dyn_cast<Instruction>(V)) {
12611df203d7SMatt Arsenault // Don't create a copy of the original addrspacecast.
12621df203d7SMatt Arsenault if (U == V && isa<AddrSpaceCastInst>(V))
12631df203d7SMatt Arsenault continue;
12641df203d7SMatt Arsenault
12650bb25b46SAustin Kerbow // Insert the addrspacecast after NewV.
12660bb25b46SAustin Kerbow BasicBlock::iterator InsertPos;
12670bb25b46SAustin Kerbow if (Instruction *NewVInst = dyn_cast<Instruction>(NewV))
12680bb25b46SAustin Kerbow InsertPos = std::next(NewVInst->getIterator());
12690bb25b46SAustin Kerbow else
12700bb25b46SAustin Kerbow InsertPos = std::next(VInst->getIterator());
12710bb25b46SAustin Kerbow
1272850657a4SMatt Arsenault while (isa<PHINode>(InsertPos))
1273850657a4SMatt Arsenault ++InsertPos;
12746d5a8d48SMatt Arsenault U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
1275850657a4SMatt Arsenault } else {
12766d5a8d48SMatt Arsenault U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
1277850657a4SMatt Arsenault V->getType()));
1278850657a4SMatt Arsenault }
1279850657a4SMatt Arsenault }
1280850657a4SMatt Arsenault }
12816d5a8d48SMatt Arsenault
1282c20ccd2cSMatt Arsenault if (V->use_empty()) {
1283c20ccd2cSMatt Arsenault if (Instruction *I = dyn_cast<Instruction>(V))
1284c20ccd2cSMatt Arsenault DeadInstructions.push_back(I);
1285850657a4SMatt Arsenault }
1286c20ccd2cSMatt Arsenault }
1287c20ccd2cSMatt Arsenault
1288c20ccd2cSMatt Arsenault for (Instruction *I : DeadInstructions)
1289c20ccd2cSMatt Arsenault RecursivelyDeleteTriviallyDeadInstructions(I);
1290850657a4SMatt Arsenault
1291850657a4SMatt Arsenault return true;
1292850657a4SMatt Arsenault }
1293850657a4SMatt Arsenault
runOnFunction(Function & F)1294c2ef06d3SArthur Eubanks bool InferAddressSpaces::runOnFunction(Function &F) {
1295c2ef06d3SArthur Eubanks if (skipFunction(F))
1296c2ef06d3SArthur Eubanks return false;
1297c2ef06d3SArthur Eubanks
1298bf225939SMichael Liao auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1299bf225939SMichael Liao DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
1300c2ef06d3SArthur Eubanks return InferAddressSpacesImpl(
1301bf225939SMichael Liao getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), DT,
1302c2ef06d3SArthur Eubanks &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
1303c2ef06d3SArthur Eubanks FlatAddrSpace)
1304c2ef06d3SArthur Eubanks .run(F);
1305c2ef06d3SArthur Eubanks }
1306c2ef06d3SArthur Eubanks
createInferAddressSpacesPass(unsigned AddressSpace)130766f61260SSven van Haastregt FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) {
130866f61260SSven van Haastregt return new InferAddressSpaces(AddressSpace);
1309850657a4SMatt Arsenault }
1310c2ef06d3SArthur Eubanks
InferAddressSpacesPass()1311c2ef06d3SArthur Eubanks InferAddressSpacesPass::InferAddressSpacesPass()
1312c2ef06d3SArthur Eubanks : FlatAddrSpace(UninitializedAddressSpace) {}
InferAddressSpacesPass(unsigned AddressSpace)1313c2ef06d3SArthur Eubanks InferAddressSpacesPass::InferAddressSpacesPass(unsigned AddressSpace)
1314c2ef06d3SArthur Eubanks : FlatAddrSpace(AddressSpace) {}
1315c2ef06d3SArthur Eubanks
run(Function & F,FunctionAnalysisManager & AM)1316c2ef06d3SArthur Eubanks PreservedAnalyses InferAddressSpacesPass::run(Function &F,
1317c2ef06d3SArthur Eubanks FunctionAnalysisManager &AM) {
1318c2ef06d3SArthur Eubanks bool Changed =
1319bf225939SMichael Liao InferAddressSpacesImpl(AM.getResult<AssumptionAnalysis>(F),
1320bf225939SMichael Liao AM.getCachedResult<DominatorTreeAnalysis>(F),
1321bf225939SMichael Liao &AM.getResult<TargetIRAnalysis>(F), FlatAddrSpace)
1322c2ef06d3SArthur Eubanks .run(F);
1323c2ef06d3SArthur Eubanks if (Changed) {
1324c2ef06d3SArthur Eubanks PreservedAnalyses PA;
1325c2ef06d3SArthur Eubanks PA.preserveSet<CFGAnalyses>();
1326bf225939SMichael Liao PA.preserve<DominatorTreeAnalysis>();
1327c2ef06d3SArthur Eubanks return PA;
1328c2ef06d3SArthur Eubanks }
1329c2ef06d3SArthur Eubanks return PreservedAnalyses::all();
1330c2ef06d3SArthur Eubanks }
1331