1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // If the trip count of a loop is computable, this pass also makes the following
15 // changes:
16 //   1. The exit condition for the loop is canonicalized to compare the
17 //      induction value against the exit value.  This turns loops like:
18 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19 //   2. Any use outside of the loop of an expression derived from the indvar
20 //      is changed to compute the derived value outside of the loop, eliminating
21 //      the dependence on the exit value of the induction variable.  If the only
22 //      purpose of the loop is to compute the exit value of some derived
23 //      expression, this transformation will make the loop dead.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
28 #include "llvm/ADT/APFloat.h"
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/None.h"
33 #include "llvm/ADT/Optional.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/iterator_range.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/LoopPass.h"
41 #include "llvm/Analysis/ScalarEvolution.h"
42 #include "llvm/Analysis/ScalarEvolutionExpander.h"
43 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
44 #include "llvm/Analysis/TargetLibraryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/ConstantRange.h"
50 #include "llvm/IR/Constants.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InstrTypes.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/IR/PassManager.h"
64 #include "llvm/IR/PatternMatch.h"
65 #include "llvm/IR/Type.h"
66 #include "llvm/IR/Use.h"
67 #include "llvm/IR/User.h"
68 #include "llvm/IR/Value.h"
69 #include "llvm/IR/ValueHandle.h"
70 #include "llvm/Pass.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/CommandLine.h"
73 #include "llvm/Support/Compiler.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/MathExtras.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Scalar.h"
79 #include "llvm/Transforms/Scalar/LoopPassManager.h"
80 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
81 #include "llvm/Transforms/Utils/LoopUtils.h"
82 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
83 #include <cassert>
84 #include <cstdint>
85 #include <utility>
86 
87 using namespace llvm;
88 
89 #define DEBUG_TYPE "indvars"
90 
91 STATISTIC(NumWidened     , "Number of indvars widened");
92 STATISTIC(NumReplaced    , "Number of exit values replaced");
93 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
94 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
95 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
96 
97 // Trip count verification can be enabled by default under NDEBUG if we
98 // implement a strong expression equivalence checker in SCEV. Until then, we
99 // use the verify-indvars flag, which may assert in some cases.
100 static cl::opt<bool> VerifyIndvars(
101   "verify-indvars", cl::Hidden,
102   cl::desc("Verify the ScalarEvolution result after running indvars"));
103 
104 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
105 
106 static cl::opt<ReplaceExitVal> ReplaceExitValue(
107     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
108     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
109     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
110                clEnumValN(OnlyCheapRepl, "cheap",
111                           "only replace exit value when the cost is cheap"),
112                clEnumValN(AlwaysRepl, "always",
113                           "always replace exit value whenever possible")));
114 
115 static cl::opt<bool> UsePostIncrementRanges(
116   "indvars-post-increment-ranges", cl::Hidden,
117   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
118   cl::init(true));
119 
120 static cl::opt<bool>
121 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
122             cl::desc("Disable Linear Function Test Replace optimization"));
123 
124 namespace {
125 
126 struct RewritePhi;
127 
128 class IndVarSimplify {
129   LoopInfo *LI;
130   ScalarEvolution *SE;
131   DominatorTree *DT;
132   const DataLayout &DL;
133   TargetLibraryInfo *TLI;
134   const TargetTransformInfo *TTI;
135 
136   SmallVector<WeakTrackingVH, 16> DeadInsts;
137 
138   bool isValidRewrite(Value *FromVal, Value *ToVal);
139 
140   bool handleFloatingPointIV(Loop *L, PHINode *PH);
141   bool rewriteNonIntegerIVs(Loop *L);
142 
143   bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
144 
145   bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
146   bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
147   bool rewriteFirstIterationLoopExitValues(Loop *L);
148 
149   bool linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
150                                  PHINode *IndVar, SCEVExpander &Rewriter);
151 
152   bool sinkUnusedInvariants(Loop *L);
153 
154 public:
155   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
156                  const DataLayout &DL, TargetLibraryInfo *TLI,
157                  TargetTransformInfo *TTI)
158       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {}
159 
160   bool run(Loop *L);
161 };
162 
163 } // end anonymous namespace
164 
165 /// Return true if the SCEV expansion generated by the rewriter can replace the
166 /// original value. SCEV guarantees that it produces the same value, but the way
167 /// it is produced may be illegal IR.  Ideally, this function will only be
168 /// called for verification.
169 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
170   // If an SCEV expression subsumed multiple pointers, its expansion could
171   // reassociate the GEP changing the base pointer. This is illegal because the
172   // final address produced by a GEP chain must be inbounds relative to its
173   // underlying object. Otherwise basic alias analysis, among other things,
174   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
175   // producing an expression involving multiple pointers. Until then, we must
176   // bail out here.
177   //
178   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
179   // because it understands lcssa phis while SCEV does not.
180   Value *FromPtr = FromVal;
181   Value *ToPtr = ToVal;
182   if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
183     FromPtr = GEP->getPointerOperand();
184   }
185   if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
186     ToPtr = GEP->getPointerOperand();
187   }
188   if (FromPtr != FromVal || ToPtr != ToVal) {
189     // Quickly check the common case
190     if (FromPtr == ToPtr)
191       return true;
192 
193     // SCEV may have rewritten an expression that produces the GEP's pointer
194     // operand. That's ok as long as the pointer operand has the same base
195     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
196     // base of a recurrence. This handles the case in which SCEV expansion
197     // converts a pointer type recurrence into a nonrecurrent pointer base
198     // indexed by an integer recurrence.
199 
200     // If the GEP base pointer is a vector of pointers, abort.
201     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
202       return false;
203 
204     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
205     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
206     if (FromBase == ToBase)
207       return true;
208 
209     LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase
210                       << " != " << *ToBase << "\n");
211 
212     return false;
213   }
214   return true;
215 }
216 
217 /// Determine the insertion point for this user. By default, insert immediately
218 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
219 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
220 /// common dominator for the incoming blocks.
221 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
222                                           DominatorTree *DT, LoopInfo *LI) {
223   PHINode *PHI = dyn_cast<PHINode>(User);
224   if (!PHI)
225     return User;
226 
227   Instruction *InsertPt = nullptr;
228   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
229     if (PHI->getIncomingValue(i) != Def)
230       continue;
231 
232     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
233     if (!InsertPt) {
234       InsertPt = InsertBB->getTerminator();
235       continue;
236     }
237     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
238     InsertPt = InsertBB->getTerminator();
239   }
240   assert(InsertPt && "Missing phi operand");
241 
242   auto *DefI = dyn_cast<Instruction>(Def);
243   if (!DefI)
244     return InsertPt;
245 
246   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
247 
248   auto *L = LI->getLoopFor(DefI->getParent());
249   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
250 
251   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
252     if (LI->getLoopFor(DTN->getBlock()) == L)
253       return DTN->getBlock()->getTerminator();
254 
255   llvm_unreachable("DefI dominates InsertPt!");
256 }
257 
258 //===----------------------------------------------------------------------===//
259 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
260 //===----------------------------------------------------------------------===//
261 
262 /// Convert APF to an integer, if possible.
263 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
264   bool isExact = false;
265   // See if we can convert this to an int64_t
266   uint64_t UIntVal;
267   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
268                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
269       !isExact)
270     return false;
271   IntVal = UIntVal;
272   return true;
273 }
274 
275 /// If the loop has floating induction variable then insert corresponding
276 /// integer induction variable if possible.
277 /// For example,
278 /// for(double i = 0; i < 10000; ++i)
279 ///   bar(i)
280 /// is converted into
281 /// for(int i = 0; i < 10000; ++i)
282 ///   bar((double)i);
283 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
284   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
285   unsigned BackEdge     = IncomingEdge^1;
286 
287   // Check incoming value.
288   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
289 
290   int64_t InitValue;
291   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
292     return false;
293 
294   // Check IV increment. Reject this PN if increment operation is not
295   // an add or increment value can not be represented by an integer.
296   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
297   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
298 
299   // If this is not an add of the PHI with a constantfp, or if the constant fp
300   // is not an integer, bail out.
301   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
302   int64_t IncValue;
303   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
304       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
305     return false;
306 
307   // Check Incr uses. One user is PN and the other user is an exit condition
308   // used by the conditional terminator.
309   Value::user_iterator IncrUse = Incr->user_begin();
310   Instruction *U1 = cast<Instruction>(*IncrUse++);
311   if (IncrUse == Incr->user_end()) return false;
312   Instruction *U2 = cast<Instruction>(*IncrUse++);
313   if (IncrUse != Incr->user_end()) return false;
314 
315   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
316   // only used by a branch, we can't transform it.
317   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
318   if (!Compare)
319     Compare = dyn_cast<FCmpInst>(U2);
320   if (!Compare || !Compare->hasOneUse() ||
321       !isa<BranchInst>(Compare->user_back()))
322     return false;
323 
324   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
325 
326   // We need to verify that the branch actually controls the iteration count
327   // of the loop.  If not, the new IV can overflow and no one will notice.
328   // The branch block must be in the loop and one of the successors must be out
329   // of the loop.
330   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
331   if (!L->contains(TheBr->getParent()) ||
332       (L->contains(TheBr->getSuccessor(0)) &&
333        L->contains(TheBr->getSuccessor(1))))
334     return false;
335 
336   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
337   // transform it.
338   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
339   int64_t ExitValue;
340   if (ExitValueVal == nullptr ||
341       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
342     return false;
343 
344   // Find new predicate for integer comparison.
345   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
346   switch (Compare->getPredicate()) {
347   default: return false;  // Unknown comparison.
348   case CmpInst::FCMP_OEQ:
349   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
350   case CmpInst::FCMP_ONE:
351   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
352   case CmpInst::FCMP_OGT:
353   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
354   case CmpInst::FCMP_OGE:
355   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
356   case CmpInst::FCMP_OLT:
357   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
358   case CmpInst::FCMP_OLE:
359   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
360   }
361 
362   // We convert the floating point induction variable to a signed i32 value if
363   // we can.  This is only safe if the comparison will not overflow in a way
364   // that won't be trapped by the integer equivalent operations.  Check for this
365   // now.
366   // TODO: We could use i64 if it is native and the range requires it.
367 
368   // The start/stride/exit values must all fit in signed i32.
369   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
370     return false;
371 
372   // If not actually striding (add x, 0.0), avoid touching the code.
373   if (IncValue == 0)
374     return false;
375 
376   // Positive and negative strides have different safety conditions.
377   if (IncValue > 0) {
378     // If we have a positive stride, we require the init to be less than the
379     // exit value.
380     if (InitValue >= ExitValue)
381       return false;
382 
383     uint32_t Range = uint32_t(ExitValue-InitValue);
384     // Check for infinite loop, either:
385     // while (i <= Exit) or until (i > Exit)
386     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
387       if (++Range == 0) return false;  // Range overflows.
388     }
389 
390     unsigned Leftover = Range % uint32_t(IncValue);
391 
392     // If this is an equality comparison, we require that the strided value
393     // exactly land on the exit value, otherwise the IV condition will wrap
394     // around and do things the fp IV wouldn't.
395     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
396         Leftover != 0)
397       return false;
398 
399     // If the stride would wrap around the i32 before exiting, we can't
400     // transform the IV.
401     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
402       return false;
403   } else {
404     // If we have a negative stride, we require the init to be greater than the
405     // exit value.
406     if (InitValue <= ExitValue)
407       return false;
408 
409     uint32_t Range = uint32_t(InitValue-ExitValue);
410     // Check for infinite loop, either:
411     // while (i >= Exit) or until (i < Exit)
412     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
413       if (++Range == 0) return false;  // Range overflows.
414     }
415 
416     unsigned Leftover = Range % uint32_t(-IncValue);
417 
418     // If this is an equality comparison, we require that the strided value
419     // exactly land on the exit value, otherwise the IV condition will wrap
420     // around and do things the fp IV wouldn't.
421     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
422         Leftover != 0)
423       return false;
424 
425     // If the stride would wrap around the i32 before exiting, we can't
426     // transform the IV.
427     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
428       return false;
429   }
430 
431   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
432 
433   // Insert new integer induction variable.
434   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
435   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
436                       PN->getIncomingBlock(IncomingEdge));
437 
438   Value *NewAdd =
439     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
440                               Incr->getName()+".int", Incr);
441   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
442 
443   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
444                                       ConstantInt::get(Int32Ty, ExitValue),
445                                       Compare->getName());
446 
447   // In the following deletions, PN may become dead and may be deleted.
448   // Use a WeakTrackingVH to observe whether this happens.
449   WeakTrackingVH WeakPH = PN;
450 
451   // Delete the old floating point exit comparison.  The branch starts using the
452   // new comparison.
453   NewCompare->takeName(Compare);
454   Compare->replaceAllUsesWith(NewCompare);
455   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
456 
457   // Delete the old floating point increment.
458   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
459   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
460 
461   // If the FP induction variable still has uses, this is because something else
462   // in the loop uses its value.  In order to canonicalize the induction
463   // variable, we chose to eliminate the IV and rewrite it in terms of an
464   // int->fp cast.
465   //
466   // We give preference to sitofp over uitofp because it is faster on most
467   // platforms.
468   if (WeakPH) {
469     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
470                                  &*PN->getParent()->getFirstInsertionPt());
471     PN->replaceAllUsesWith(Conv);
472     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
473   }
474   return true;
475 }
476 
477 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
478   // First step.  Check to see if there are any floating-point recurrences.
479   // If there are, change them into integer recurrences, permitting analysis by
480   // the SCEV routines.
481   BasicBlock *Header = L->getHeader();
482 
483   SmallVector<WeakTrackingVH, 8> PHIs;
484   for (PHINode &PN : Header->phis())
485     PHIs.push_back(&PN);
486 
487   bool Changed = false;
488   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
489     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
490       Changed |= handleFloatingPointIV(L, PN);
491 
492   // If the loop previously had floating-point IV, ScalarEvolution
493   // may not have been able to compute a trip count. Now that we've done some
494   // re-writing, the trip count may be computable.
495   if (Changed)
496     SE->forgetLoop(L);
497   return Changed;
498 }
499 
500 namespace {
501 
502 // Collect information about PHI nodes which can be transformed in
503 // rewriteLoopExitValues.
504 struct RewritePhi {
505   PHINode *PN;
506 
507   // Ith incoming value.
508   unsigned Ith;
509 
510   // Exit value after expansion.
511   Value *Val;
512 
513   // High Cost when expansion.
514   bool HighCost;
515 
516   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
517       : PN(P), Ith(I), Val(V), HighCost(H) {}
518 };
519 
520 } // end anonymous namespace
521 
522 //===----------------------------------------------------------------------===//
523 // rewriteLoopExitValues - Optimize IV users outside the loop.
524 // As a side effect, reduces the amount of IV processing within the loop.
525 //===----------------------------------------------------------------------===//
526 
527 /// Check to see if this loop has a computable loop-invariant execution count.
528 /// If so, this means that we can compute the final value of any expressions
529 /// that are recurrent in the loop, and substitute the exit values from the loop
530 /// into any instructions outside of the loop that use the final values of the
531 /// current expressions.
532 ///
533 /// This is mostly redundant with the regular IndVarSimplify activities that
534 /// happen later, except that it's more powerful in some cases, because it's
535 /// able to brute-force evaluate arbitrary instructions as long as they have
536 /// constant operands at the beginning of the loop.
537 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
538   // Check a pre-condition.
539   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
540          "Indvars did not preserve LCSSA!");
541 
542   SmallVector<BasicBlock*, 8> ExitBlocks;
543   L->getUniqueExitBlocks(ExitBlocks);
544 
545   SmallVector<RewritePhi, 8> RewritePhiSet;
546   // Find all values that are computed inside the loop, but used outside of it.
547   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
548   // the exit blocks of the loop to find them.
549   for (BasicBlock *ExitBB : ExitBlocks) {
550     // If there are no PHI nodes in this exit block, then no values defined
551     // inside the loop are used on this path, skip it.
552     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
553     if (!PN) continue;
554 
555     unsigned NumPreds = PN->getNumIncomingValues();
556 
557     // Iterate over all of the PHI nodes.
558     BasicBlock::iterator BBI = ExitBB->begin();
559     while ((PN = dyn_cast<PHINode>(BBI++))) {
560       if (PN->use_empty())
561         continue; // dead use, don't replace it
562 
563       if (!SE->isSCEVable(PN->getType()))
564         continue;
565 
566       // It's necessary to tell ScalarEvolution about this explicitly so that
567       // it can walk the def-use list and forget all SCEVs, as it may not be
568       // watching the PHI itself. Once the new exit value is in place, there
569       // may not be a def-use connection between the loop and every instruction
570       // which got a SCEVAddRecExpr for that loop.
571       SE->forgetValue(PN);
572 
573       // Iterate over all of the values in all the PHI nodes.
574       for (unsigned i = 0; i != NumPreds; ++i) {
575         // If the value being merged in is not integer or is not defined
576         // in the loop, skip it.
577         Value *InVal = PN->getIncomingValue(i);
578         if (!isa<Instruction>(InVal))
579           continue;
580 
581         // If this pred is for a subloop, not L itself, skip it.
582         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
583           continue; // The Block is in a subloop, skip it.
584 
585         // Check that InVal is defined in the loop.
586         Instruction *Inst = cast<Instruction>(InVal);
587         if (!L->contains(Inst))
588           continue;
589 
590         // Okay, this instruction has a user outside of the current loop
591         // and varies predictably *inside* the loop.  Evaluate the value it
592         // contains when the loop exits, if possible.
593         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
594         if (!SE->isLoopInvariant(ExitValue, L) ||
595             !isSafeToExpand(ExitValue, *SE))
596           continue;
597 
598         // Computing the value outside of the loop brings no benefit if :
599         //  - it is definitely used inside the loop in a way which can not be
600         //    optimized away.
601         //  - no use outside of the loop can take advantage of hoisting the
602         //    computation out of the loop
603         if (ExitValue->getSCEVType()>=scMulExpr) {
604           bool HasHardInternalUses = false;
605           bool HasSoftExternalUses = false;
606           for (auto *IB : Inst->users()) {
607             Instruction *UseInstr = cast<Instruction>(IB);
608             unsigned Opc = UseInstr->getOpcode();
609             if (L->contains(UseInstr)) {
610               if (Opc == Instruction::Call)
611                 HasHardInternalUses = true;
612             } else {
613               if (Opc == Instruction::PHI) {
614                 // Do not count the Phi as a use. LCSSA may have inserted
615                 // plenty of trivial ones.
616                 for (auto *PB : UseInstr->users()) {
617                   unsigned PhiOpc = cast<Instruction>(PB)->getOpcode();
618                   if (PhiOpc != Instruction::Call &&
619                       PhiOpc != Instruction::Ret) {
620                     HasSoftExternalUses = true;
621                     break;
622                   }
623                 }
624                 continue;
625               }
626               if (Opc != Instruction::Call && Opc != Instruction::Ret) {
627                 HasSoftExternalUses = true;
628                 break;
629               }
630             }
631           }
632           if (HasHardInternalUses && !HasSoftExternalUses)
633             continue;
634         }
635 
636         bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
637         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
638 
639         LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
640                           << '\n'
641                           << "  LoopVal = " << *Inst << "\n");
642 
643         if (!isValidRewrite(Inst, ExitVal)) {
644           DeadInsts.push_back(ExitVal);
645           continue;
646         }
647 
648 #ifndef NDEBUG
649         // If we reuse an instruction from a loop which is neither L nor one of
650         // its containing loops, we end up breaking LCSSA form for this loop by
651         // creating a new use of its instruction.
652         if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
653           if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
654             if (EVL != L)
655               assert(EVL->contains(L) && "LCSSA breach detected!");
656 #endif
657 
658         // Collect all the candidate PHINodes to be rewritten.
659         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
660       }
661     }
662   }
663 
664   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
665 
666   bool Changed = false;
667   // Transformation.
668   for (const RewritePhi &Phi : RewritePhiSet) {
669     PHINode *PN = Phi.PN;
670     Value *ExitVal = Phi.Val;
671 
672     // Only do the rewrite when the ExitValue can be expanded cheaply.
673     // If LoopCanBeDel is true, rewrite exit value aggressively.
674     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
675       DeadInsts.push_back(ExitVal);
676       continue;
677     }
678 
679     Changed = true;
680     ++NumReplaced;
681     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
682     PN->setIncomingValue(Phi.Ith, ExitVal);
683 
684     // If this instruction is dead now, delete it. Don't do it now to avoid
685     // invalidating iterators.
686     if (isInstructionTriviallyDead(Inst, TLI))
687       DeadInsts.push_back(Inst);
688 
689     // Replace PN with ExitVal if that is legal and does not break LCSSA.
690     if (PN->getNumIncomingValues() == 1 &&
691         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
692       PN->replaceAllUsesWith(ExitVal);
693       PN->eraseFromParent();
694     }
695   }
696 
697   // The insertion point instruction may have been deleted; clear it out
698   // so that the rewriter doesn't trip over it later.
699   Rewriter.clearInsertPoint();
700   return Changed;
701 }
702 
703 //===---------------------------------------------------------------------===//
704 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
705 // they will exit at the first iteration.
706 //===---------------------------------------------------------------------===//
707 
708 /// Check to see if this loop has loop invariant conditions which lead to loop
709 /// exits. If so, we know that if the exit path is taken, it is at the first
710 /// loop iteration. This lets us predict exit values of PHI nodes that live in
711 /// loop header.
712 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
713   // Verify the input to the pass is already in LCSSA form.
714   assert(L->isLCSSAForm(*DT));
715 
716   SmallVector<BasicBlock *, 8> ExitBlocks;
717   L->getUniqueExitBlocks(ExitBlocks);
718   auto *LoopHeader = L->getHeader();
719   assert(LoopHeader && "Invalid loop");
720 
721   bool MadeAnyChanges = false;
722   for (auto *ExitBB : ExitBlocks) {
723     // If there are no more PHI nodes in this exit block, then no more
724     // values defined inside the loop are used on this path.
725     for (PHINode &PN : ExitBB->phis()) {
726       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
727            IncomingValIdx != E; ++IncomingValIdx) {
728         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
729 
730         // We currently only support loop exits from loop header. If the
731         // incoming block is not loop header, we need to recursively check
732         // all conditions starting from loop header are loop invariants.
733         // Additional support might be added in the future.
734         if (IncomingBB != LoopHeader)
735           continue;
736 
737         // Get condition that leads to the exit path.
738         auto *TermInst = IncomingBB->getTerminator();
739 
740         Value *Cond = nullptr;
741         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
742           // Must be a conditional branch, otherwise the block
743           // should not be in the loop.
744           Cond = BI->getCondition();
745         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
746           Cond = SI->getCondition();
747         else
748           continue;
749 
750         if (!L->isLoopInvariant(Cond))
751           continue;
752 
753         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
754 
755         // Only deal with PHIs.
756         if (!ExitVal)
757           continue;
758 
759         // If ExitVal is a PHI on the loop header, then we know its
760         // value along this exit because the exit can only be taken
761         // on the first iteration.
762         auto *LoopPreheader = L->getLoopPreheader();
763         assert(LoopPreheader && "Invalid loop");
764         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
765         if (PreheaderIdx != -1) {
766           assert(ExitVal->getParent() == LoopHeader &&
767                  "ExitVal must be in loop header");
768           MadeAnyChanges = true;
769           PN.setIncomingValue(IncomingValIdx,
770                               ExitVal->getIncomingValue(PreheaderIdx));
771         }
772       }
773     }
774   }
775   return MadeAnyChanges;
776 }
777 
778 /// Check whether it is possible to delete the loop after rewriting exit
779 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
780 /// aggressively.
781 bool IndVarSimplify::canLoopBeDeleted(
782     Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
783   BasicBlock *Preheader = L->getLoopPreheader();
784   // If there is no preheader, the loop will not be deleted.
785   if (!Preheader)
786     return false;
787 
788   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
789   // We obviate multiple ExitingBlocks case for simplicity.
790   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
791   // after exit value rewriting, we can enhance the logic here.
792   SmallVector<BasicBlock *, 4> ExitingBlocks;
793   L->getExitingBlocks(ExitingBlocks);
794   SmallVector<BasicBlock *, 8> ExitBlocks;
795   L->getUniqueExitBlocks(ExitBlocks);
796   if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
797     return false;
798 
799   BasicBlock *ExitBlock = ExitBlocks[0];
800   BasicBlock::iterator BI = ExitBlock->begin();
801   while (PHINode *P = dyn_cast<PHINode>(BI)) {
802     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
803 
804     // If the Incoming value of P is found in RewritePhiSet, we know it
805     // could be rewritten to use a loop invariant value in transformation
806     // phase later. Skip it in the loop invariant check below.
807     bool found = false;
808     for (const RewritePhi &Phi : RewritePhiSet) {
809       unsigned i = Phi.Ith;
810       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
811         found = true;
812         break;
813       }
814     }
815 
816     Instruction *I;
817     if (!found && (I = dyn_cast<Instruction>(Incoming)))
818       if (!L->hasLoopInvariantOperands(I))
819         return false;
820 
821     ++BI;
822   }
823 
824   for (auto *BB : L->blocks())
825     if (llvm::any_of(*BB, [](Instruction &I) {
826           return I.mayHaveSideEffects();
827         }))
828       return false;
829 
830   return true;
831 }
832 
833 //===----------------------------------------------------------------------===//
834 //  IV Widening - Extend the width of an IV to cover its widest uses.
835 //===----------------------------------------------------------------------===//
836 
837 namespace {
838 
839 // Collect information about induction variables that are used by sign/zero
840 // extend operations. This information is recorded by CollectExtend and provides
841 // the input to WidenIV.
842 struct WideIVInfo {
843   PHINode *NarrowIV = nullptr;
844 
845   // Widest integer type created [sz]ext
846   Type *WidestNativeType = nullptr;
847 
848   // Was a sext user seen before a zext?
849   bool IsSigned = false;
850 };
851 
852 } // end anonymous namespace
853 
854 /// Update information about the induction variable that is extended by this
855 /// sign or zero extend operation. This is used to determine the final width of
856 /// the IV before actually widening it.
857 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
858                         const TargetTransformInfo *TTI) {
859   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
860   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
861     return;
862 
863   Type *Ty = Cast->getType();
864   uint64_t Width = SE->getTypeSizeInBits(Ty);
865   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
866     return;
867 
868   // Check that `Cast` actually extends the induction variable (we rely on this
869   // later).  This takes care of cases where `Cast` is extending a truncation of
870   // the narrow induction variable, and thus can end up being narrower than the
871   // "narrow" induction variable.
872   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
873   if (NarrowIVWidth >= Width)
874     return;
875 
876   // Cast is either an sext or zext up to this point.
877   // We should not widen an indvar if arithmetics on the wider indvar are more
878   // expensive than those on the narrower indvar. We check only the cost of ADD
879   // because at least an ADD is required to increment the induction variable. We
880   // could compute more comprehensively the cost of all instructions on the
881   // induction variable when necessary.
882   if (TTI &&
883       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
884           TTI->getArithmeticInstrCost(Instruction::Add,
885                                       Cast->getOperand(0)->getType())) {
886     return;
887   }
888 
889   if (!WI.WidestNativeType) {
890     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
891     WI.IsSigned = IsSigned;
892     return;
893   }
894 
895   // We extend the IV to satisfy the sign of its first user, arbitrarily.
896   if (WI.IsSigned != IsSigned)
897     return;
898 
899   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
900     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
901 }
902 
903 namespace {
904 
905 /// Record a link in the Narrow IV def-use chain along with the WideIV that
906 /// computes the same value as the Narrow IV def.  This avoids caching Use*
907 /// pointers.
908 struct NarrowIVDefUse {
909   Instruction *NarrowDef = nullptr;
910   Instruction *NarrowUse = nullptr;
911   Instruction *WideDef = nullptr;
912 
913   // True if the narrow def is never negative.  Tracking this information lets
914   // us use a sign extension instead of a zero extension or vice versa, when
915   // profitable and legal.
916   bool NeverNegative = false;
917 
918   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
919                  bool NeverNegative)
920       : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
921         NeverNegative(NeverNegative) {}
922 };
923 
924 /// The goal of this transform is to remove sign and zero extends without
925 /// creating any new induction variables. To do this, it creates a new phi of
926 /// the wider type and redirects all users, either removing extends or inserting
927 /// truncs whenever we stop propagating the type.
928 class WidenIV {
929   // Parameters
930   PHINode *OrigPhi;
931   Type *WideType;
932 
933   // Context
934   LoopInfo        *LI;
935   Loop            *L;
936   ScalarEvolution *SE;
937   DominatorTree   *DT;
938 
939   // Does the module have any calls to the llvm.experimental.guard intrinsic
940   // at all? If not we can avoid scanning instructions looking for guards.
941   bool HasGuards;
942 
943   // Result
944   PHINode *WidePhi = nullptr;
945   Instruction *WideInc = nullptr;
946   const SCEV *WideIncExpr = nullptr;
947   SmallVectorImpl<WeakTrackingVH> &DeadInsts;
948 
949   SmallPtrSet<Instruction *,16> Widened;
950   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
951 
952   enum ExtendKind { ZeroExtended, SignExtended, Unknown };
953 
954   // A map tracking the kind of extension used to widen each narrow IV
955   // and narrow IV user.
956   // Key: pointer to a narrow IV or IV user.
957   // Value: the kind of extension used to widen this Instruction.
958   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
959 
960   using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
961 
962   // A map with control-dependent ranges for post increment IV uses. The key is
963   // a pair of IV def and a use of this def denoting the context. The value is
964   // a ConstantRange representing possible values of the def at the given
965   // context.
966   DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
967 
968   Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
969                                               Instruction *UseI) {
970     DefUserPair Key(Def, UseI);
971     auto It = PostIncRangeInfos.find(Key);
972     return It == PostIncRangeInfos.end()
973                ? Optional<ConstantRange>(None)
974                : Optional<ConstantRange>(It->second);
975   }
976 
977   void calculatePostIncRanges(PHINode *OrigPhi);
978   void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
979 
980   void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
981     DefUserPair Key(Def, UseI);
982     auto It = PostIncRangeInfos.find(Key);
983     if (It == PostIncRangeInfos.end())
984       PostIncRangeInfos.insert({Key, R});
985     else
986       It->second = R.intersectWith(It->second);
987   }
988 
989 public:
990   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
991           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
992           bool HasGuards)
993       : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
994         L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
995         HasGuards(HasGuards), DeadInsts(DI) {
996     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
997     ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
998   }
999 
1000   PHINode *createWideIV(SCEVExpander &Rewriter);
1001 
1002 protected:
1003   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1004                           Instruction *Use);
1005 
1006   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1007   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1008                                      const SCEVAddRecExpr *WideAR);
1009   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1010 
1011   ExtendKind getExtendKind(Instruction *I);
1012 
1013   using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1014 
1015   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1016 
1017   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1018 
1019   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1020                               unsigned OpCode) const;
1021 
1022   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1023 
1024   bool widenLoopCompare(NarrowIVDefUse DU);
1025   bool widenWithVariantLoadUse(NarrowIVDefUse DU);
1026   void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU);
1027 
1028   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1029 };
1030 
1031 } // end anonymous namespace
1032 
1033 /// Perform a quick domtree based check for loop invariance assuming that V is
1034 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this
1035 /// purpose.
1036 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
1037   Instruction *Inst = dyn_cast<Instruction>(V);
1038   if (!Inst)
1039     return true;
1040 
1041   return DT->properlyDominates(Inst->getParent(), L->getHeader());
1042 }
1043 
1044 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1045                                  bool IsSigned, Instruction *Use) {
1046   // Set the debug location and conservative insertion point.
1047   IRBuilder<> Builder(Use);
1048   // Hoist the insertion point into loop preheaders as far as possible.
1049   for (const Loop *L = LI->getLoopFor(Use->getParent());
1050        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
1051        L = L->getParentLoop())
1052     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1053 
1054   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1055                     Builder.CreateZExt(NarrowOper, WideType);
1056 }
1057 
1058 /// Instantiate a wide operation to replace a narrow operation. This only needs
1059 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1060 /// 0 for any operation we decide not to clone.
1061 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
1062                                   const SCEVAddRecExpr *WideAR) {
1063   unsigned Opcode = DU.NarrowUse->getOpcode();
1064   switch (Opcode) {
1065   default:
1066     return nullptr;
1067   case Instruction::Add:
1068   case Instruction::Mul:
1069   case Instruction::UDiv:
1070   case Instruction::Sub:
1071     return cloneArithmeticIVUser(DU, WideAR);
1072 
1073   case Instruction::And:
1074   case Instruction::Or:
1075   case Instruction::Xor:
1076   case Instruction::Shl:
1077   case Instruction::LShr:
1078   case Instruction::AShr:
1079     return cloneBitwiseIVUser(DU);
1080   }
1081 }
1082 
1083 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
1084   Instruction *NarrowUse = DU.NarrowUse;
1085   Instruction *NarrowDef = DU.NarrowDef;
1086   Instruction *WideDef = DU.WideDef;
1087 
1088   LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1089 
1090   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1091   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1092   // invariant and will be folded or hoisted. If it actually comes from a
1093   // widened IV, it should be removed during a future call to widenIVUse.
1094   bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1095   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1096                    ? WideDef
1097                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1098                                       IsSigned, NarrowUse);
1099   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1100                    ? WideDef
1101                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1102                                       IsSigned, NarrowUse);
1103 
1104   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1105   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1106                                         NarrowBO->getName());
1107   IRBuilder<> Builder(NarrowUse);
1108   Builder.Insert(WideBO);
1109   WideBO->copyIRFlags(NarrowBO);
1110   return WideBO;
1111 }
1112 
1113 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
1114                                             const SCEVAddRecExpr *WideAR) {
1115   Instruction *NarrowUse = DU.NarrowUse;
1116   Instruction *NarrowDef = DU.NarrowDef;
1117   Instruction *WideDef = DU.WideDef;
1118 
1119   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1120 
1121   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1122 
1123   // We're trying to find X such that
1124   //
1125   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1126   //
1127   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1128   // and check using SCEV if any of them are correct.
1129 
1130   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1131   // correct solution to X.
1132   auto GuessNonIVOperand = [&](bool SignExt) {
1133     const SCEV *WideLHS;
1134     const SCEV *WideRHS;
1135 
1136     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1137       if (SignExt)
1138         return SE->getSignExtendExpr(S, Ty);
1139       return SE->getZeroExtendExpr(S, Ty);
1140     };
1141 
1142     if (IVOpIdx == 0) {
1143       WideLHS = SE->getSCEV(WideDef);
1144       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1145       WideRHS = GetExtend(NarrowRHS, WideType);
1146     } else {
1147       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1148       WideLHS = GetExtend(NarrowLHS, WideType);
1149       WideRHS = SE->getSCEV(WideDef);
1150     }
1151 
1152     // WideUse is "WideDef `op.wide` X" as described in the comment.
1153     const SCEV *WideUse = nullptr;
1154 
1155     switch (NarrowUse->getOpcode()) {
1156     default:
1157       llvm_unreachable("No other possibility!");
1158 
1159     case Instruction::Add:
1160       WideUse = SE->getAddExpr(WideLHS, WideRHS);
1161       break;
1162 
1163     case Instruction::Mul:
1164       WideUse = SE->getMulExpr(WideLHS, WideRHS);
1165       break;
1166 
1167     case Instruction::UDiv:
1168       WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1169       break;
1170 
1171     case Instruction::Sub:
1172       WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1173       break;
1174     }
1175 
1176     return WideUse == WideAR;
1177   };
1178 
1179   bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1180   if (!GuessNonIVOperand(SignExtend)) {
1181     SignExtend = !SignExtend;
1182     if (!GuessNonIVOperand(SignExtend))
1183       return nullptr;
1184   }
1185 
1186   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1187                    ? WideDef
1188                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1189                                       SignExtend, NarrowUse);
1190   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1191                    ? WideDef
1192                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1193                                       SignExtend, NarrowUse);
1194 
1195   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1196   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1197                                         NarrowBO->getName());
1198 
1199   IRBuilder<> Builder(NarrowUse);
1200   Builder.Insert(WideBO);
1201   WideBO->copyIRFlags(NarrowBO);
1202   return WideBO;
1203 }
1204 
1205 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1206   auto It = ExtendKindMap.find(I);
1207   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1208   return It->second;
1209 }
1210 
1211 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1212                                      unsigned OpCode) const {
1213   if (OpCode == Instruction::Add)
1214     return SE->getAddExpr(LHS, RHS);
1215   if (OpCode == Instruction::Sub)
1216     return SE->getMinusSCEV(LHS, RHS);
1217   if (OpCode == Instruction::Mul)
1218     return SE->getMulExpr(LHS, RHS);
1219 
1220   llvm_unreachable("Unsupported opcode.");
1221 }
1222 
1223 /// No-wrap operations can transfer sign extension of their result to their
1224 /// operands. Generate the SCEV value for the widened operation without
1225 /// actually modifying the IR yet. If the expression after extending the
1226 /// operands is an AddRec for this loop, return the AddRec and the kind of
1227 /// extension used.
1228 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1229   // Handle the common case of add<nsw/nuw>
1230   const unsigned OpCode = DU.NarrowUse->getOpcode();
1231   // Only Add/Sub/Mul instructions supported yet.
1232   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1233       OpCode != Instruction::Mul)
1234     return {nullptr, Unknown};
1235 
1236   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1237   // if extending the other will lead to a recurrence.
1238   const unsigned ExtendOperIdx =
1239       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1240   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1241 
1242   const SCEV *ExtendOperExpr = nullptr;
1243   const OverflowingBinaryOperator *OBO =
1244     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1245   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1246   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1247     ExtendOperExpr = SE->getSignExtendExpr(
1248       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1249   else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1250     ExtendOperExpr = SE->getZeroExtendExpr(
1251       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1252   else
1253     return {nullptr, Unknown};
1254 
1255   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1256   // flags. This instruction may be guarded by control flow that the no-wrap
1257   // behavior depends on. Non-control-equivalent instructions can be mapped to
1258   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1259   // semantics to those operations.
1260   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1261   const SCEV *rhs = ExtendOperExpr;
1262 
1263   // Let's swap operands to the initial order for the case of non-commutative
1264   // operations, like SUB. See PR21014.
1265   if (ExtendOperIdx == 0)
1266     std::swap(lhs, rhs);
1267   const SCEVAddRecExpr *AddRec =
1268       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1269 
1270   if (!AddRec || AddRec->getLoop() != L)
1271     return {nullptr, Unknown};
1272 
1273   return {AddRec, ExtKind};
1274 }
1275 
1276 /// Is this instruction potentially interesting for further simplification after
1277 /// widening it's type? In other words, can the extend be safely hoisted out of
1278 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1279 /// so, return the extended recurrence and the kind of extension used. Otherwise
1280 /// return {nullptr, Unknown}.
1281 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) {
1282   if (!SE->isSCEVable(DU.NarrowUse->getType()))
1283     return {nullptr, Unknown};
1284 
1285   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1286   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1287       SE->getTypeSizeInBits(WideType)) {
1288     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1289     // index. So don't follow this use.
1290     return {nullptr, Unknown};
1291   }
1292 
1293   const SCEV *WideExpr;
1294   ExtendKind ExtKind;
1295   if (DU.NeverNegative) {
1296     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1297     if (isa<SCEVAddRecExpr>(WideExpr))
1298       ExtKind = SignExtended;
1299     else {
1300       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1301       ExtKind = ZeroExtended;
1302     }
1303   } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1304     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1305     ExtKind = SignExtended;
1306   } else {
1307     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1308     ExtKind = ZeroExtended;
1309   }
1310   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1311   if (!AddRec || AddRec->getLoop() != L)
1312     return {nullptr, Unknown};
1313   return {AddRec, ExtKind};
1314 }
1315 
1316 /// This IV user cannot be widen. Replace this use of the original narrow IV
1317 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1318 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1319   LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1320                     << *DU.NarrowUse << "\n");
1321   IRBuilder<> Builder(
1322       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1323   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1324   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1325 }
1326 
1327 /// If the narrow use is a compare instruction, then widen the compare
1328 //  (and possibly the other operand).  The extend operation is hoisted into the
1329 // loop preheader as far as possible.
1330 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1331   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1332   if (!Cmp)
1333     return false;
1334 
1335   // We can legally widen the comparison in the following two cases:
1336   //
1337   //  - The signedness of the IV extension and comparison match
1338   //
1339   //  - The narrow IV is always positive (and thus its sign extension is equal
1340   //    to its zero extension).  For instance, let's say we're zero extending
1341   //    %narrow for the following use
1342   //
1343   //      icmp slt i32 %narrow, %val   ... (A)
1344   //
1345   //    and %narrow is always positive.  Then
1346   //
1347   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1348   //          == icmp slt i32 zext(%narrow), sext(%val)
1349   bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1350   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1351     return false;
1352 
1353   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1354   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1355   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1356   assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1357 
1358   // Widen the compare instruction.
1359   IRBuilder<> Builder(
1360       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1361   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1362 
1363   // Widen the other operand of the compare, if necessary.
1364   if (CastWidth < IVWidth) {
1365     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1366     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1367   }
1368   return true;
1369 }
1370 
1371 /// If the narrow use is an instruction whose two operands are the defining
1372 /// instruction of DU and a load instruction, then we have the following:
1373 /// if the load is hoisted outside the loop, then we do not reach this function
1374 /// as scalar evolution analysis works fine in widenIVUse with variables
1375 /// hoisted outside the loop and efficient code is subsequently generated by
1376 /// not emitting truncate instructions. But when the load is not hoisted
1377 /// (whether due to limitation in alias analysis or due to a true legality),
1378 /// then scalar evolution can not proceed with loop variant values and
1379 /// inefficient code is generated. This function handles the non-hoisted load
1380 /// special case by making the optimization generate the same type of code for
1381 /// hoisted and non-hoisted load (widen use and eliminate sign extend
1382 /// instruction). This special case is important especially when the induction
1383 /// variables are affecting addressing mode in code generation.
1384 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) {
1385   Instruction *NarrowUse = DU.NarrowUse;
1386   Instruction *NarrowDef = DU.NarrowDef;
1387   Instruction *WideDef = DU.WideDef;
1388 
1389   // Handle the common case of add<nsw/nuw>
1390   const unsigned OpCode = NarrowUse->getOpcode();
1391   // Only Add/Sub/Mul instructions are supported.
1392   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1393       OpCode != Instruction::Mul)
1394     return false;
1395 
1396   // The operand that is not defined by NarrowDef of DU. Let's call it the
1397   // other operand.
1398   unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0;
1399   assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef &&
1400          "bad DU");
1401 
1402   const SCEV *ExtendOperExpr = nullptr;
1403   const OverflowingBinaryOperator *OBO =
1404     cast<OverflowingBinaryOperator>(NarrowUse);
1405   ExtendKind ExtKind = getExtendKind(NarrowDef);
1406   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1407     ExtendOperExpr = SE->getSignExtendExpr(
1408       SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1409   else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1410     ExtendOperExpr = SE->getZeroExtendExpr(
1411       SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1412   else
1413     return false;
1414 
1415   // We are interested in the other operand being a load instruction.
1416   // But, we should look into relaxing this restriction later on.
1417   auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx));
1418   if (I && I->getOpcode() != Instruction::Load)
1419     return false;
1420 
1421   // Verifying that Defining operand is an AddRec
1422   const SCEV *Op1 = SE->getSCEV(WideDef);
1423   const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1424   if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1425     return false;
1426   // Verifying that other operand is an Extend.
1427   if (ExtKind == SignExtended) {
1428     if (!isa<SCEVSignExtendExpr>(ExtendOperExpr))
1429       return false;
1430   } else {
1431     if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr))
1432       return false;
1433   }
1434 
1435   if (ExtKind == SignExtended) {
1436     for (Use &U : NarrowUse->uses()) {
1437       SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1438       if (!User || User->getType() != WideType)
1439         return false;
1440     }
1441   } else { // ExtKind == ZeroExtended
1442     for (Use &U : NarrowUse->uses()) {
1443       ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1444       if (!User || User->getType() != WideType)
1445         return false;
1446     }
1447   }
1448 
1449   return true;
1450 }
1451 
1452 /// Special Case for widening with variant Loads (see
1453 /// WidenIV::widenWithVariantLoadUse). This is the code generation part.
1454 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) {
1455   Instruction *NarrowUse = DU.NarrowUse;
1456   Instruction *NarrowDef = DU.NarrowDef;
1457   Instruction *WideDef = DU.WideDef;
1458 
1459   ExtendKind ExtKind = getExtendKind(NarrowDef);
1460 
1461   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1462 
1463   // Generating a widening use instruction.
1464   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1465                    ? WideDef
1466                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1467                                       ExtKind, NarrowUse);
1468   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1469                    ? WideDef
1470                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1471                                       ExtKind, NarrowUse);
1472 
1473   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1474   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1475                                         NarrowBO->getName());
1476   IRBuilder<> Builder(NarrowUse);
1477   Builder.Insert(WideBO);
1478   WideBO->copyIRFlags(NarrowBO);
1479 
1480   if (ExtKind == SignExtended)
1481     ExtendKindMap[NarrowUse] = SignExtended;
1482   else
1483     ExtendKindMap[NarrowUse] = ZeroExtended;
1484 
1485   // Update the Use.
1486   if (ExtKind == SignExtended) {
1487     for (Use &U : NarrowUse->uses()) {
1488       SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1489       if (User && User->getType() == WideType) {
1490         LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1491                           << *WideBO << "\n");
1492         ++NumElimExt;
1493         User->replaceAllUsesWith(WideBO);
1494         DeadInsts.emplace_back(User);
1495       }
1496     }
1497   } else { // ExtKind == ZeroExtended
1498     for (Use &U : NarrowUse->uses()) {
1499       ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1500       if (User && User->getType() == WideType) {
1501         LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1502                           << *WideBO << "\n");
1503         ++NumElimExt;
1504         User->replaceAllUsesWith(WideBO);
1505         DeadInsts.emplace_back(User);
1506       }
1507     }
1508   }
1509 }
1510 
1511 /// Determine whether an individual user of the narrow IV can be widened. If so,
1512 /// return the wide clone of the user.
1513 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1514   assert(ExtendKindMap.count(DU.NarrowDef) &&
1515          "Should already know the kind of extension used to widen NarrowDef");
1516 
1517   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1518   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1519     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1520       // For LCSSA phis, sink the truncate outside the loop.
1521       // After SimplifyCFG most loop exit targets have a single predecessor.
1522       // Otherwise fall back to a truncate within the loop.
1523       if (UsePhi->getNumOperands() != 1)
1524         truncateIVUse(DU, DT, LI);
1525       else {
1526         // Widening the PHI requires us to insert a trunc.  The logical place
1527         // for this trunc is in the same BB as the PHI.  This is not possible if
1528         // the BB is terminated by a catchswitch.
1529         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1530           return nullptr;
1531 
1532         PHINode *WidePhi =
1533           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1534                           UsePhi);
1535         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1536         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1537         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1538         UsePhi->replaceAllUsesWith(Trunc);
1539         DeadInsts.emplace_back(UsePhi);
1540         LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1541                           << *WidePhi << "\n");
1542       }
1543       return nullptr;
1544     }
1545   }
1546 
1547   // This narrow use can be widened by a sext if it's non-negative or its narrow
1548   // def was widended by a sext. Same for zext.
1549   auto canWidenBySExt = [&]() {
1550     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1551   };
1552   auto canWidenByZExt = [&]() {
1553     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1554   };
1555 
1556   // Our raison d'etre! Eliminate sign and zero extension.
1557   if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1558       (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1559     Value *NewDef = DU.WideDef;
1560     if (DU.NarrowUse->getType() != WideType) {
1561       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1562       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1563       if (CastWidth < IVWidth) {
1564         // The cast isn't as wide as the IV, so insert a Trunc.
1565         IRBuilder<> Builder(DU.NarrowUse);
1566         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1567       }
1568       else {
1569         // A wider extend was hidden behind a narrower one. This may induce
1570         // another round of IV widening in which the intermediate IV becomes
1571         // dead. It should be very rare.
1572         LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1573                           << " not wide enough to subsume " << *DU.NarrowUse
1574                           << "\n");
1575         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1576         NewDef = DU.NarrowUse;
1577       }
1578     }
1579     if (NewDef != DU.NarrowUse) {
1580       LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1581                         << " replaced by " << *DU.WideDef << "\n");
1582       ++NumElimExt;
1583       DU.NarrowUse->replaceAllUsesWith(NewDef);
1584       DeadInsts.emplace_back(DU.NarrowUse);
1585     }
1586     // Now that the extend is gone, we want to expose it's uses for potential
1587     // further simplification. We don't need to directly inform SimplifyIVUsers
1588     // of the new users, because their parent IV will be processed later as a
1589     // new loop phi. If we preserved IVUsers analysis, we would also want to
1590     // push the uses of WideDef here.
1591 
1592     // No further widening is needed. The deceased [sz]ext had done it for us.
1593     return nullptr;
1594   }
1595 
1596   // Does this user itself evaluate to a recurrence after widening?
1597   WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1598   if (!WideAddRec.first)
1599     WideAddRec = getWideRecurrence(DU);
1600 
1601   assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1602   if (!WideAddRec.first) {
1603     // If use is a loop condition, try to promote the condition instead of
1604     // truncating the IV first.
1605     if (widenLoopCompare(DU))
1606       return nullptr;
1607 
1608     // We are here about to generate a truncate instruction that may hurt
1609     // performance because the scalar evolution expression computed earlier
1610     // in WideAddRec.first does not indicate a polynomial induction expression.
1611     // In that case, look at the operands of the use instruction to determine
1612     // if we can still widen the use instead of truncating its operand.
1613     if (widenWithVariantLoadUse(DU)) {
1614       widenWithVariantLoadUseCodegen(DU);
1615       return nullptr;
1616     }
1617 
1618     // This user does not evaluate to a recurrence after widening, so don't
1619     // follow it. Instead insert a Trunc to kill off the original use,
1620     // eventually isolating the original narrow IV so it can be removed.
1621     truncateIVUse(DU, DT, LI);
1622     return nullptr;
1623   }
1624   // Assume block terminators cannot evaluate to a recurrence. We can't to
1625   // insert a Trunc after a terminator if there happens to be a critical edge.
1626   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1627          "SCEV is not expected to evaluate a block terminator");
1628 
1629   // Reuse the IV increment that SCEVExpander created as long as it dominates
1630   // NarrowUse.
1631   Instruction *WideUse = nullptr;
1632   if (WideAddRec.first == WideIncExpr &&
1633       Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1634     WideUse = WideInc;
1635   else {
1636     WideUse = cloneIVUser(DU, WideAddRec.first);
1637     if (!WideUse)
1638       return nullptr;
1639   }
1640   // Evaluation of WideAddRec ensured that the narrow expression could be
1641   // extended outside the loop without overflow. This suggests that the wide use
1642   // evaluates to the same expression as the extended narrow use, but doesn't
1643   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1644   // where it fails, we simply throw away the newly created wide use.
1645   if (WideAddRec.first != SE->getSCEV(WideUse)) {
1646     LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1647                       << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1648                       << "\n");
1649     DeadInsts.emplace_back(WideUse);
1650     return nullptr;
1651   }
1652 
1653   ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1654   // Returning WideUse pushes it on the worklist.
1655   return WideUse;
1656 }
1657 
1658 /// Add eligible users of NarrowDef to NarrowIVUsers.
1659 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1660   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1661   bool NonNegativeDef =
1662       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1663                            SE->getConstant(NarrowSCEV->getType(), 0));
1664   for (User *U : NarrowDef->users()) {
1665     Instruction *NarrowUser = cast<Instruction>(U);
1666 
1667     // Handle data flow merges and bizarre phi cycles.
1668     if (!Widened.insert(NarrowUser).second)
1669       continue;
1670 
1671     bool NonNegativeUse = false;
1672     if (!NonNegativeDef) {
1673       // We might have a control-dependent range information for this context.
1674       if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1675         NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1676     }
1677 
1678     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1679                                NonNegativeDef || NonNegativeUse);
1680   }
1681 }
1682 
1683 /// Process a single induction variable. First use the SCEVExpander to create a
1684 /// wide induction variable that evaluates to the same recurrence as the
1685 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1686 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1687 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1688 ///
1689 /// It would be simpler to delete uses as they are processed, but we must avoid
1690 /// invalidating SCEV expressions.
1691 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1692   // Is this phi an induction variable?
1693   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1694   if (!AddRec)
1695     return nullptr;
1696 
1697   // Widen the induction variable expression.
1698   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1699                                ? SE->getSignExtendExpr(AddRec, WideType)
1700                                : SE->getZeroExtendExpr(AddRec, WideType);
1701 
1702   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1703          "Expect the new IV expression to preserve its type");
1704 
1705   // Can the IV be extended outside the loop without overflow?
1706   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1707   if (!AddRec || AddRec->getLoop() != L)
1708     return nullptr;
1709 
1710   // An AddRec must have loop-invariant operands. Since this AddRec is
1711   // materialized by a loop header phi, the expression cannot have any post-loop
1712   // operands, so they must dominate the loop header.
1713   assert(
1714       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1715       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1716       "Loop header phi recurrence inputs do not dominate the loop");
1717 
1718   // Iterate over IV uses (including transitive ones) looking for IV increments
1719   // of the form 'add nsw %iv, <const>'. For each increment and each use of
1720   // the increment calculate control-dependent range information basing on
1721   // dominating conditions inside of the loop (e.g. a range check inside of the
1722   // loop). Calculated ranges are stored in PostIncRangeInfos map.
1723   //
1724   // Control-dependent range information is later used to prove that a narrow
1725   // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1726   // this on demand because when pushNarrowIVUsers needs this information some
1727   // of the dominating conditions might be already widened.
1728   if (UsePostIncrementRanges)
1729     calculatePostIncRanges(OrigPhi);
1730 
1731   // The rewriter provides a value for the desired IV expression. This may
1732   // either find an existing phi or materialize a new one. Either way, we
1733   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1734   // of the phi-SCC dominates the loop entry.
1735   Instruction *InsertPt = &L->getHeader()->front();
1736   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1737 
1738   // Remembering the WideIV increment generated by SCEVExpander allows
1739   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1740   // employ a general reuse mechanism because the call above is the only call to
1741   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1742   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1743     WideInc =
1744       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1745     WideIncExpr = SE->getSCEV(WideInc);
1746     // Propagate the debug location associated with the original loop increment
1747     // to the new (widened) increment.
1748     auto *OrigInc =
1749       cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1750     WideInc->setDebugLoc(OrigInc->getDebugLoc());
1751   }
1752 
1753   LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1754   ++NumWidened;
1755 
1756   // Traverse the def-use chain using a worklist starting at the original IV.
1757   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1758 
1759   Widened.insert(OrigPhi);
1760   pushNarrowIVUsers(OrigPhi, WidePhi);
1761 
1762   while (!NarrowIVUsers.empty()) {
1763     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1764 
1765     // Process a def-use edge. This may replace the use, so don't hold a
1766     // use_iterator across it.
1767     Instruction *WideUse = widenIVUse(DU, Rewriter);
1768 
1769     // Follow all def-use edges from the previous narrow use.
1770     if (WideUse)
1771       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1772 
1773     // widenIVUse may have removed the def-use edge.
1774     if (DU.NarrowDef->use_empty())
1775       DeadInsts.emplace_back(DU.NarrowDef);
1776   }
1777 
1778   // Attach any debug information to the new PHI. Since OrigPhi and WidePHI
1779   // evaluate the same recurrence, we can just copy the debug info over.
1780   SmallVector<DbgValueInst *, 1> DbgValues;
1781   llvm::findDbgValues(DbgValues, OrigPhi);
1782   auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(),
1783                                      ValueAsMetadata::get(WidePhi));
1784   for (auto &DbgValue : DbgValues)
1785     DbgValue->setOperand(0, MDPhi);
1786   return WidePhi;
1787 }
1788 
1789 /// Calculates control-dependent range for the given def at the given context
1790 /// by looking at dominating conditions inside of the loop
1791 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1792                                     Instruction *NarrowUser) {
1793   using namespace llvm::PatternMatch;
1794 
1795   Value *NarrowDefLHS;
1796   const APInt *NarrowDefRHS;
1797   if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1798                                  m_APInt(NarrowDefRHS))) ||
1799       !NarrowDefRHS->isNonNegative())
1800     return;
1801 
1802   auto UpdateRangeFromCondition = [&] (Value *Condition,
1803                                        bool TrueDest) {
1804     CmpInst::Predicate Pred;
1805     Value *CmpRHS;
1806     if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1807                                  m_Value(CmpRHS))))
1808       return;
1809 
1810     CmpInst::Predicate P =
1811             TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1812 
1813     auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1814     auto CmpConstrainedLHSRange =
1815             ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1816     auto NarrowDefRange =
1817             CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS);
1818 
1819     updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
1820   };
1821 
1822   auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
1823     if (!HasGuards)
1824       return;
1825 
1826     for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
1827                                      Ctx->getParent()->rend())) {
1828       Value *C = nullptr;
1829       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
1830         UpdateRangeFromCondition(C, /*TrueDest=*/true);
1831     }
1832   };
1833 
1834   UpdateRangeFromGuards(NarrowUser);
1835 
1836   BasicBlock *NarrowUserBB = NarrowUser->getParent();
1837   // If NarrowUserBB is statically unreachable asking dominator queries may
1838   // yield surprising results. (e.g. the block may not have a dom tree node)
1839   if (!DT->isReachableFromEntry(NarrowUserBB))
1840     return;
1841 
1842   for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
1843        L->contains(DTB->getBlock());
1844        DTB = DTB->getIDom()) {
1845     auto *BB = DTB->getBlock();
1846     auto *TI = BB->getTerminator();
1847     UpdateRangeFromGuards(TI);
1848 
1849     auto *BI = dyn_cast<BranchInst>(TI);
1850     if (!BI || !BI->isConditional())
1851       continue;
1852 
1853     auto *TrueSuccessor = BI->getSuccessor(0);
1854     auto *FalseSuccessor = BI->getSuccessor(1);
1855 
1856     auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
1857       return BBE.isSingleEdge() &&
1858              DT->dominates(BBE, NarrowUser->getParent());
1859     };
1860 
1861     if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
1862       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
1863 
1864     if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
1865       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
1866   }
1867 }
1868 
1869 /// Calculates PostIncRangeInfos map for the given IV
1870 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
1871   SmallPtrSet<Instruction *, 16> Visited;
1872   SmallVector<Instruction *, 6> Worklist;
1873   Worklist.push_back(OrigPhi);
1874   Visited.insert(OrigPhi);
1875 
1876   while (!Worklist.empty()) {
1877     Instruction *NarrowDef = Worklist.pop_back_val();
1878 
1879     for (Use &U : NarrowDef->uses()) {
1880       auto *NarrowUser = cast<Instruction>(U.getUser());
1881 
1882       // Don't go looking outside the current loop.
1883       auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
1884       if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
1885         continue;
1886 
1887       if (!Visited.insert(NarrowUser).second)
1888         continue;
1889 
1890       Worklist.push_back(NarrowUser);
1891 
1892       calculatePostIncRange(NarrowDef, NarrowUser);
1893     }
1894   }
1895 }
1896 
1897 //===----------------------------------------------------------------------===//
1898 //  Live IV Reduction - Minimize IVs live across the loop.
1899 //===----------------------------------------------------------------------===//
1900 
1901 //===----------------------------------------------------------------------===//
1902 //  Simplification of IV users based on SCEV evaluation.
1903 //===----------------------------------------------------------------------===//
1904 
1905 namespace {
1906 
1907 class IndVarSimplifyVisitor : public IVVisitor {
1908   ScalarEvolution *SE;
1909   const TargetTransformInfo *TTI;
1910   PHINode *IVPhi;
1911 
1912 public:
1913   WideIVInfo WI;
1914 
1915   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1916                         const TargetTransformInfo *TTI,
1917                         const DominatorTree *DTree)
1918     : SE(SCEV), TTI(TTI), IVPhi(IV) {
1919     DT = DTree;
1920     WI.NarrowIV = IVPhi;
1921   }
1922 
1923   // Implement the interface used by simplifyUsersOfIV.
1924   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1925 };
1926 
1927 } // end anonymous namespace
1928 
1929 /// Iteratively perform simplification on a worklist of IV users. Each
1930 /// successive simplification may push more users which may themselves be
1931 /// candidates for simplification.
1932 ///
1933 /// Sign/Zero extend elimination is interleaved with IV simplification.
1934 bool IndVarSimplify::simplifyAndExtend(Loop *L,
1935                                        SCEVExpander &Rewriter,
1936                                        LoopInfo *LI) {
1937   SmallVector<WideIVInfo, 8> WideIVs;
1938 
1939   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
1940           Intrinsic::getName(Intrinsic::experimental_guard));
1941   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
1942 
1943   SmallVector<PHINode*, 8> LoopPhis;
1944   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1945     LoopPhis.push_back(cast<PHINode>(I));
1946   }
1947   // Each round of simplification iterates through the SimplifyIVUsers worklist
1948   // for all current phis, then determines whether any IVs can be
1949   // widened. Widening adds new phis to LoopPhis, inducing another round of
1950   // simplification on the wide IVs.
1951   bool Changed = false;
1952   while (!LoopPhis.empty()) {
1953     // Evaluate as many IV expressions as possible before widening any IVs. This
1954     // forces SCEV to set no-wrap flags before evaluating sign/zero
1955     // extension. The first time SCEV attempts to normalize sign/zero extension,
1956     // the result becomes final. So for the most predictable results, we delay
1957     // evaluation of sign/zero extend evaluation until needed, and avoid running
1958     // other SCEV based analysis prior to simplifyAndExtend.
1959     do {
1960       PHINode *CurrIV = LoopPhis.pop_back_val();
1961 
1962       // Information about sign/zero extensions of CurrIV.
1963       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1964 
1965       Changed |=
1966           simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor);
1967 
1968       if (Visitor.WI.WidestNativeType) {
1969         WideIVs.push_back(Visitor.WI);
1970       }
1971     } while(!LoopPhis.empty());
1972 
1973     for (; !WideIVs.empty(); WideIVs.pop_back()) {
1974       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards);
1975       if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1976         Changed = true;
1977         LoopPhis.push_back(WidePhi);
1978       }
1979     }
1980   }
1981   return Changed;
1982 }
1983 
1984 //===----------------------------------------------------------------------===//
1985 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1986 //===----------------------------------------------------------------------===//
1987 
1988 /// Return true if this loop's backedge taken count expression can be safely and
1989 /// cheaply expanded into an instruction sequence that can be used by
1990 /// linearFunctionTestReplace.
1991 ///
1992 /// TODO: This fails for pointer-type loop counters with greater than one byte
1993 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
1994 /// we could skip this check in the case that the LFTR loop counter (chosen by
1995 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
1996 /// the loop test to an inequality test by checking the target data's alignment
1997 /// of element types (given that the initial pointer value originates from or is
1998 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1999 /// However, we don't yet have a strong motivation for converting loop tests
2000 /// into inequality tests.
2001 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
2002                                         SCEVExpander &Rewriter) {
2003   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2004   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
2005       BackedgeTakenCount->isZero())
2006     return false;
2007 
2008   if (!L->getExitingBlock())
2009     return false;
2010 
2011   // Can't rewrite non-branch yet.
2012   if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
2013     return false;
2014 
2015   if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
2016     return false;
2017 
2018   return true;
2019 }
2020 
2021 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi.
2022 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
2023   Instruction *IncI = dyn_cast<Instruction>(IncV);
2024   if (!IncI)
2025     return nullptr;
2026 
2027   switch (IncI->getOpcode()) {
2028   case Instruction::Add:
2029   case Instruction::Sub:
2030     break;
2031   case Instruction::GetElementPtr:
2032     // An IV counter must preserve its type.
2033     if (IncI->getNumOperands() == 2)
2034       break;
2035     LLVM_FALLTHROUGH;
2036   default:
2037     return nullptr;
2038   }
2039 
2040   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
2041   if (Phi && Phi->getParent() == L->getHeader()) {
2042     if (isLoopInvariant(IncI->getOperand(1), L, DT))
2043       return Phi;
2044     return nullptr;
2045   }
2046   if (IncI->getOpcode() == Instruction::GetElementPtr)
2047     return nullptr;
2048 
2049   // Allow add/sub to be commuted.
2050   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
2051   if (Phi && Phi->getParent() == L->getHeader()) {
2052     if (isLoopInvariant(IncI->getOperand(0), L, DT))
2053       return Phi;
2054   }
2055   return nullptr;
2056 }
2057 
2058 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
2059 static ICmpInst *getLoopTest(Loop *L) {
2060   assert(L->getExitingBlock() && "expected loop exit");
2061 
2062   BasicBlock *LatchBlock = L->getLoopLatch();
2063   // Don't bother with LFTR if the loop is not properly simplified.
2064   if (!LatchBlock)
2065     return nullptr;
2066 
2067   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
2068   assert(BI && "expected exit branch");
2069 
2070   return dyn_cast<ICmpInst>(BI->getCondition());
2071 }
2072 
2073 /// linearFunctionTestReplace policy. Return true unless we can show that the
2074 /// current exit test is already sufficiently canonical.
2075 static bool needsLFTR(Loop *L, DominatorTree *DT) {
2076   // Do LFTR to simplify the exit condition to an ICMP.
2077   ICmpInst *Cond = getLoopTest(L);
2078   if (!Cond)
2079     return true;
2080 
2081   // Do LFTR to simplify the exit ICMP to EQ/NE
2082   ICmpInst::Predicate Pred = Cond->getPredicate();
2083   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
2084     return true;
2085 
2086   // Look for a loop invariant RHS
2087   Value *LHS = Cond->getOperand(0);
2088   Value *RHS = Cond->getOperand(1);
2089   if (!isLoopInvariant(RHS, L, DT)) {
2090     if (!isLoopInvariant(LHS, L, DT))
2091       return true;
2092     std::swap(LHS, RHS);
2093   }
2094   // Look for a simple IV counter LHS
2095   PHINode *Phi = dyn_cast<PHINode>(LHS);
2096   if (!Phi)
2097     Phi = getLoopPhiForCounter(LHS, L, DT);
2098 
2099   if (!Phi)
2100     return true;
2101 
2102   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
2103   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
2104   if (Idx < 0)
2105     return true;
2106 
2107   // Do LFTR if the exit condition's IV is *not* a simple counter.
2108   Value *IncV = Phi->getIncomingValue(Idx);
2109   return Phi != getLoopPhiForCounter(IncV, L, DT);
2110 }
2111 
2112 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
2113 /// down to checking that all operands are constant and listing instructions
2114 /// that may hide undef.
2115 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
2116                                unsigned Depth) {
2117   if (isa<Constant>(V))
2118     return !isa<UndefValue>(V);
2119 
2120   if (Depth >= 6)
2121     return false;
2122 
2123   // Conservatively handle non-constant non-instructions. For example, Arguments
2124   // may be undef.
2125   Instruction *I = dyn_cast<Instruction>(V);
2126   if (!I)
2127     return false;
2128 
2129   // Load and return values may be undef.
2130   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
2131     return false;
2132 
2133   // Optimistically handle other instructions.
2134   for (Value *Op : I->operands()) {
2135     if (!Visited.insert(Op).second)
2136       continue;
2137     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
2138       return false;
2139   }
2140   return true;
2141 }
2142 
2143 /// Return true if the given value is concrete. We must prove that undef can
2144 /// never reach it.
2145 ///
2146 /// TODO: If we decide that this is a good approach to checking for undef, we
2147 /// may factor it into a common location.
2148 static bool hasConcreteDef(Value *V) {
2149   SmallPtrSet<Value*, 8> Visited;
2150   Visited.insert(V);
2151   return hasConcreteDefImpl(V, Visited, 0);
2152 }
2153 
2154 /// Return true if this IV has any uses other than the (soon to be rewritten)
2155 /// loop exit test.
2156 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
2157   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2158   Value *IncV = Phi->getIncomingValue(LatchIdx);
2159 
2160   for (User *U : Phi->users())
2161     if (U != Cond && U != IncV) return false;
2162 
2163   for (User *U : IncV->users())
2164     if (U != Cond && U != Phi) return false;
2165   return true;
2166 }
2167 
2168 /// Find an affine IV in canonical form.
2169 ///
2170 /// BECount may be an i8* pointer type. The pointer difference is already
2171 /// valid count without scaling the address stride, so it remains a pointer
2172 /// expression as far as SCEV is concerned.
2173 ///
2174 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
2175 ///
2176 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
2177 ///
2178 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
2179 /// This is difficult in general for SCEV because of potential overflow. But we
2180 /// could at least handle constant BECounts.
2181 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
2182                                 ScalarEvolution *SE, DominatorTree *DT) {
2183   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
2184 
2185   Value *Cond =
2186     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
2187 
2188   // Loop over all of the PHI nodes, looking for a simple counter.
2189   PHINode *BestPhi = nullptr;
2190   const SCEV *BestInit = nullptr;
2191   BasicBlock *LatchBlock = L->getLoopLatch();
2192   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
2193   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2194 
2195   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
2196     PHINode *Phi = cast<PHINode>(I);
2197     if (!SE->isSCEVable(Phi->getType()))
2198       continue;
2199 
2200     // Avoid comparing an integer IV against a pointer Limit.
2201     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
2202       continue;
2203 
2204     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
2205     if (!AR || AR->getLoop() != L || !AR->isAffine())
2206       continue;
2207 
2208     // AR may be a pointer type, while BECount is an integer type.
2209     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
2210     // AR may not be a narrower type, or we may never exit.
2211     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
2212     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
2213       continue;
2214 
2215     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
2216     if (!Step || !Step->isOne())
2217       continue;
2218 
2219     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2220     Value *IncV = Phi->getIncomingValue(LatchIdx);
2221     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
2222       continue;
2223 
2224     // Avoid reusing a potentially undef value to compute other values that may
2225     // have originally had a concrete definition.
2226     if (!hasConcreteDef(Phi)) {
2227       // We explicitly allow unknown phis as long as they are already used by
2228       // the loop test. In this case we assume that performing LFTR could not
2229       // increase the number of undef users.
2230       if (ICmpInst *Cond = getLoopTest(L)) {
2231         if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) &&
2232             Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
2233           continue;
2234         }
2235       }
2236     }
2237     const SCEV *Init = AR->getStart();
2238 
2239     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
2240       // Don't force a live loop counter if another IV can be used.
2241       if (AlmostDeadIV(Phi, LatchBlock, Cond))
2242         continue;
2243 
2244       // Prefer to count-from-zero. This is a more "canonical" counter form. It
2245       // also prefers integer to pointer IVs.
2246       if (BestInit->isZero() != Init->isZero()) {
2247         if (BestInit->isZero())
2248           continue;
2249       }
2250       // If two IVs both count from zero or both count from nonzero then the
2251       // narrower is likely a dead phi that has been widened. Use the wider phi
2252       // to allow the other to be eliminated.
2253       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
2254         continue;
2255     }
2256     BestPhi = Phi;
2257     BestInit = Init;
2258   }
2259   return BestPhi;
2260 }
2261 
2262 /// Help linearFunctionTestReplace by generating a value that holds the RHS of
2263 /// the new loop test.
2264 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
2265                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
2266   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2267   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
2268   const SCEV *IVInit = AR->getStart();
2269 
2270   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
2271   // finds a valid pointer IV. Sign extend BECount in order to materialize a
2272   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
2273   // the existing GEPs whenever possible.
2274   if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) {
2275     // IVOffset will be the new GEP offset that is interpreted by GEP as a
2276     // signed value. IVCount on the other hand represents the loop trip count,
2277     // which is an unsigned value. FindLoopCounter only allows induction
2278     // variables that have a positive unit stride of one. This means we don't
2279     // have to handle the case of negative offsets (yet) and just need to zero
2280     // extend IVCount.
2281     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
2282     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
2283 
2284     // Expand the code for the iteration count.
2285     assert(SE->isLoopInvariant(IVOffset, L) &&
2286            "Computed iteration count is not loop invariant!");
2287     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2288     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
2289 
2290     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
2291     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
2292     // We could handle pointer IVs other than i8*, but we need to compensate for
2293     // gep index scaling. See canExpandBackedgeTakenCount comments.
2294     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
2295                              cast<PointerType>(GEPBase->getType())
2296                                  ->getElementType())->isOne() &&
2297            "unit stride pointer IV must be i8*");
2298 
2299     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2300     return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit");
2301   } else {
2302     // In any other case, convert both IVInit and IVCount to integers before
2303     // comparing. This may result in SCEV expansion of pointers, but in practice
2304     // SCEV will fold the pointer arithmetic away as such:
2305     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
2306     //
2307     // Valid Cases: (1) both integers is most common; (2) both may be pointers
2308     // for simple memset-style loops.
2309     //
2310     // IVInit integer and IVCount pointer would only occur if a canonical IV
2311     // were generated on top of case #2, which is not expected.
2312 
2313     const SCEV *IVLimit = nullptr;
2314     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
2315     // For non-zero Start, compute IVCount here.
2316     if (AR->getStart()->isZero())
2317       IVLimit = IVCount;
2318     else {
2319       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
2320       const SCEV *IVInit = AR->getStart();
2321 
2322       // For integer IVs, truncate the IV before computing IVInit + BECount.
2323       if (SE->getTypeSizeInBits(IVInit->getType())
2324           > SE->getTypeSizeInBits(IVCount->getType()))
2325         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
2326 
2327       IVLimit = SE->getAddExpr(IVInit, IVCount);
2328     }
2329     // Expand the code for the iteration count.
2330     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2331     IRBuilder<> Builder(BI);
2332     assert(SE->isLoopInvariant(IVLimit, L) &&
2333            "Computed iteration count is not loop invariant!");
2334     // Ensure that we generate the same type as IndVar, or a smaller integer
2335     // type. In the presence of null pointer values, we have an integer type
2336     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
2337     Type *LimitTy = IVCount->getType()->isPointerTy() ?
2338       IndVar->getType() : IVCount->getType();
2339     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
2340   }
2341 }
2342 
2343 /// This method rewrites the exit condition of the loop to be a canonical !=
2344 /// comparison against the incremented loop induction variable.  This pass is
2345 /// able to rewrite the exit tests of any loop where the SCEV analysis can
2346 /// determine a loop-invariant trip count of the loop, which is actually a much
2347 /// broader range than just linear tests.
2348 bool IndVarSimplify::
2349 linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
2350                           PHINode *IndVar, SCEVExpander &Rewriter) {
2351   assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
2352 
2353   // Initialize CmpIndVar and IVCount to their preincremented values.
2354   Value *CmpIndVar = IndVar;
2355   const SCEV *IVCount = BackedgeTakenCount;
2356 
2357   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
2358 
2359   // If the exiting block is the same as the backedge block, we prefer to
2360   // compare against the post-incremented value, otherwise we must compare
2361   // against the preincremented value.
2362   if (L->getExitingBlock() == L->getLoopLatch()) {
2363     // Add one to the "backedge-taken" count to get the trip count.
2364     // This addition may overflow, which is valid as long as the comparison is
2365     // truncated to BackedgeTakenCount->getType().
2366     IVCount = SE->getAddExpr(BackedgeTakenCount,
2367                              SE->getOne(BackedgeTakenCount->getType()));
2368     // The BackedgeTaken expression contains the number of times that the
2369     // backedge branches to the loop header.  This is one less than the
2370     // number of times the loop executes, so use the incremented indvar.
2371     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
2372   }
2373 
2374   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
2375   assert(ExitCnt->getType()->isPointerTy() ==
2376              IndVar->getType()->isPointerTy() &&
2377          "genLoopLimit missed a cast");
2378 
2379   // Insert a new icmp_ne or icmp_eq instruction before the branch.
2380   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2381   ICmpInst::Predicate P;
2382   if (L->contains(BI->getSuccessor(0)))
2383     P = ICmpInst::ICMP_NE;
2384   else
2385     P = ICmpInst::ICMP_EQ;
2386 
2387   LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
2388                     << "      LHS:" << *CmpIndVar << '\n'
2389                     << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
2390                     << "\n"
2391                     << "      RHS:\t" << *ExitCnt << "\n"
2392                     << "  IVCount:\t" << *IVCount << "\n");
2393 
2394   IRBuilder<> Builder(BI);
2395 
2396   // The new loop exit condition should reuse the debug location of the
2397   // original loop exit condition.
2398   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
2399     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
2400 
2401   // LFTR can ignore IV overflow and truncate to the width of
2402   // BECount. This avoids materializing the add(zext(add)) expression.
2403   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
2404   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
2405   if (CmpIndVarSize > ExitCntSize) {
2406     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2407     const SCEV *ARStart = AR->getStart();
2408     const SCEV *ARStep = AR->getStepRecurrence(*SE);
2409     // For constant IVCount, avoid truncation.
2410     if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
2411       const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
2412       APInt Count = cast<SCEVConstant>(IVCount)->getAPInt();
2413       // Note that the post-inc value of BackedgeTakenCount may have overflowed
2414       // above such that IVCount is now zero.
2415       if (IVCount != BackedgeTakenCount && Count == 0) {
2416         Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
2417         ++Count;
2418       }
2419       else
2420         Count = Count.zext(CmpIndVarSize);
2421       APInt NewLimit;
2422       if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
2423         NewLimit = Start - Count;
2424       else
2425         NewLimit = Start + Count;
2426       ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
2427 
2428       LLVM_DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
2429     } else {
2430       // We try to extend trip count first. If that doesn't work we truncate IV.
2431       // Zext(trunc(IV)) == IV implies equivalence of the following two:
2432       // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If
2433       // one of the two holds, extend the trip count, otherwise we truncate IV.
2434       bool Extended = false;
2435       const SCEV *IV = SE->getSCEV(CmpIndVar);
2436       const SCEV *ZExtTrunc =
2437            SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2438                                                      ExitCnt->getType()),
2439                                  CmpIndVar->getType());
2440 
2441       if (ZExtTrunc == IV) {
2442         Extended = true;
2443         ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
2444                                      "wide.trip.count");
2445       } else {
2446         const SCEV *SExtTrunc =
2447           SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2448                                                     ExitCnt->getType()),
2449                                 CmpIndVar->getType());
2450         if (SExtTrunc == IV) {
2451           Extended = true;
2452           ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
2453                                        "wide.trip.count");
2454         }
2455       }
2456 
2457       if (!Extended)
2458         CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
2459                                         "lftr.wideiv");
2460     }
2461   }
2462   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
2463   Value *OrigCond = BI->getCondition();
2464   // It's tempting to use replaceAllUsesWith here to fully replace the old
2465   // comparison, but that's not immediately safe, since users of the old
2466   // comparison may not be dominated by the new comparison. Instead, just
2467   // update the branch to use the new comparison; in the common case this
2468   // will make old comparison dead.
2469   BI->setCondition(Cond);
2470   DeadInsts.push_back(OrigCond);
2471 
2472   ++NumLFTR;
2473   return true;
2474 }
2475 
2476 //===----------------------------------------------------------------------===//
2477 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2478 //===----------------------------------------------------------------------===//
2479 
2480 /// If there's a single exit block, sink any loop-invariant values that
2481 /// were defined in the preheader but not used inside the loop into the
2482 /// exit block to reduce register pressure in the loop.
2483 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
2484   BasicBlock *ExitBlock = L->getExitBlock();
2485   if (!ExitBlock) return false;
2486 
2487   BasicBlock *Preheader = L->getLoopPreheader();
2488   if (!Preheader) return false;
2489 
2490   bool MadeAnyChanges = false;
2491   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
2492   BasicBlock::iterator I(Preheader->getTerminator());
2493   while (I != Preheader->begin()) {
2494     --I;
2495     // New instructions were inserted at the end of the preheader.
2496     if (isa<PHINode>(I))
2497       break;
2498 
2499     // Don't move instructions which might have side effects, since the side
2500     // effects need to complete before instructions inside the loop.  Also don't
2501     // move instructions which might read memory, since the loop may modify
2502     // memory. Note that it's okay if the instruction might have undefined
2503     // behavior: LoopSimplify guarantees that the preheader dominates the exit
2504     // block.
2505     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2506       continue;
2507 
2508     // Skip debug info intrinsics.
2509     if (isa<DbgInfoIntrinsic>(I))
2510       continue;
2511 
2512     // Skip eh pad instructions.
2513     if (I->isEHPad())
2514       continue;
2515 
2516     // Don't sink alloca: we never want to sink static alloca's out of the
2517     // entry block, and correctly sinking dynamic alloca's requires
2518     // checks for stacksave/stackrestore intrinsics.
2519     // FIXME: Refactor this check somehow?
2520     if (isa<AllocaInst>(I))
2521       continue;
2522 
2523     // Determine if there is a use in or before the loop (direct or
2524     // otherwise).
2525     bool UsedInLoop = false;
2526     for (Use &U : I->uses()) {
2527       Instruction *User = cast<Instruction>(U.getUser());
2528       BasicBlock *UseBB = User->getParent();
2529       if (PHINode *P = dyn_cast<PHINode>(User)) {
2530         unsigned i =
2531           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2532         UseBB = P->getIncomingBlock(i);
2533       }
2534       if (UseBB == Preheader || L->contains(UseBB)) {
2535         UsedInLoop = true;
2536         break;
2537       }
2538     }
2539 
2540     // If there is, the def must remain in the preheader.
2541     if (UsedInLoop)
2542       continue;
2543 
2544     // Otherwise, sink it to the exit block.
2545     Instruction *ToMove = &*I;
2546     bool Done = false;
2547 
2548     if (I != Preheader->begin()) {
2549       // Skip debug info intrinsics.
2550       do {
2551         --I;
2552       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2553 
2554       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2555         Done = true;
2556     } else {
2557       Done = true;
2558     }
2559 
2560     MadeAnyChanges = true;
2561     ToMove->moveBefore(*ExitBlock, InsertPt);
2562     if (Done) break;
2563     InsertPt = ToMove->getIterator();
2564   }
2565 
2566   return MadeAnyChanges;
2567 }
2568 
2569 //===----------------------------------------------------------------------===//
2570 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
2571 //===----------------------------------------------------------------------===//
2572 
2573 bool IndVarSimplify::run(Loop *L) {
2574   // We need (and expect!) the incoming loop to be in LCSSA.
2575   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2576          "LCSSA required to run indvars!");
2577   bool Changed = false;
2578 
2579   // If LoopSimplify form is not available, stay out of trouble. Some notes:
2580   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2581   //    canonicalization can be a pessimization without LSR to "clean up"
2582   //    afterwards.
2583   //  - We depend on having a preheader; in particular,
2584   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2585   //    and we're in trouble if we can't find the induction variable even when
2586   //    we've manually inserted one.
2587   //  - LFTR relies on having a single backedge.
2588   if (!L->isLoopSimplifyForm())
2589     return false;
2590 
2591   // If there are any floating-point recurrences, attempt to
2592   // transform them to use integer recurrences.
2593   Changed |= rewriteNonIntegerIVs(L);
2594 
2595   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2596 
2597   // Create a rewriter object which we'll use to transform the code with.
2598   SCEVExpander Rewriter(*SE, DL, "indvars");
2599 #ifndef NDEBUG
2600   Rewriter.setDebugType(DEBUG_TYPE);
2601 #endif
2602 
2603   // Eliminate redundant IV users.
2604   //
2605   // Simplification works best when run before other consumers of SCEV. We
2606   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2607   // other expressions involving loop IVs have been evaluated. This helps SCEV
2608   // set no-wrap flags before normalizing sign/zero extension.
2609   Rewriter.disableCanonicalMode();
2610   Changed |= simplifyAndExtend(L, Rewriter, LI);
2611 
2612   // Check to see if this loop has a computable loop-invariant execution count.
2613   // If so, this means that we can compute the final value of any expressions
2614   // that are recurrent in the loop, and substitute the exit values from the
2615   // loop into any instructions outside of the loop that use the final values of
2616   // the current expressions.
2617   //
2618   if (ReplaceExitValue != NeverRepl &&
2619       !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2620     Changed |= rewriteLoopExitValues(L, Rewriter);
2621 
2622   // Eliminate redundant IV cycles.
2623   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2624 
2625   // If we have a trip count expression, rewrite the loop's exit condition
2626   // using it.  We can currently only handle loops with a single exit.
2627   if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) &&
2628       needsLFTR(L, DT)) {
2629     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
2630     if (IndVar) {
2631       // Check preconditions for proper SCEVExpander operation. SCEV does not
2632       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2633       // pass that uses the SCEVExpander must do it. This does not work well for
2634       // loop passes because SCEVExpander makes assumptions about all loops,
2635       // while LoopPassManager only forces the current loop to be simplified.
2636       //
2637       // FIXME: SCEV expansion has no way to bail out, so the caller must
2638       // explicitly check any assumptions made by SCEV. Brittle.
2639       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2640       if (!AR || AR->getLoop()->getLoopPreheader())
2641         Changed |= linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
2642                                              Rewriter);
2643     }
2644   }
2645   // Clear the rewriter cache, because values that are in the rewriter's cache
2646   // can be deleted in the loop below, causing the AssertingVH in the cache to
2647   // trigger.
2648   Rewriter.clear();
2649 
2650   // Now that we're done iterating through lists, clean up any instructions
2651   // which are now dead.
2652   while (!DeadInsts.empty())
2653     if (Instruction *Inst =
2654             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2655       Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2656 
2657   // The Rewriter may not be used from this point on.
2658 
2659   // Loop-invariant instructions in the preheader that aren't used in the
2660   // loop may be sunk below the loop to reduce register pressure.
2661   Changed |= sinkUnusedInvariants(L);
2662 
2663   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2664   // trip count and therefore can further simplify exit values in addition to
2665   // rewriteLoopExitValues.
2666   Changed |= rewriteFirstIterationLoopExitValues(L);
2667 
2668   // Clean up dead instructions.
2669   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2670 
2671   // Check a post-condition.
2672   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2673          "Indvars did not preserve LCSSA!");
2674 
2675   // Verify that LFTR, and any other change have not interfered with SCEV's
2676   // ability to compute trip count.
2677 #ifndef NDEBUG
2678   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2679     SE->forgetLoop(L);
2680     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2681     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2682         SE->getTypeSizeInBits(NewBECount->getType()))
2683       NewBECount = SE->getTruncateOrNoop(NewBECount,
2684                                          BackedgeTakenCount->getType());
2685     else
2686       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2687                                                  NewBECount->getType());
2688     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2689   }
2690 #endif
2691 
2692   return Changed;
2693 }
2694 
2695 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
2696                                           LoopStandardAnalysisResults &AR,
2697                                           LPMUpdater &) {
2698   Function *F = L.getHeader()->getParent();
2699   const DataLayout &DL = F->getParent()->getDataLayout();
2700 
2701   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI);
2702   if (!IVS.run(&L))
2703     return PreservedAnalyses::all();
2704 
2705   auto PA = getLoopPassPreservedAnalyses();
2706   PA.preserveSet<CFGAnalyses>();
2707   return PA;
2708 }
2709 
2710 namespace {
2711 
2712 struct IndVarSimplifyLegacyPass : public LoopPass {
2713   static char ID; // Pass identification, replacement for typeid
2714 
2715   IndVarSimplifyLegacyPass() : LoopPass(ID) {
2716     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2717   }
2718 
2719   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2720     if (skipLoop(L))
2721       return false;
2722 
2723     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2724     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2725     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2726     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2727     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
2728     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2729     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2730     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2731 
2732     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI);
2733     return IVS.run(L);
2734   }
2735 
2736   void getAnalysisUsage(AnalysisUsage &AU) const override {
2737     AU.setPreservesCFG();
2738     getLoopAnalysisUsage(AU);
2739   }
2740 };
2741 
2742 } // end anonymous namespace
2743 
2744 char IndVarSimplifyLegacyPass::ID = 0;
2745 
2746 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2747                       "Induction Variable Simplification", false, false)
2748 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2749 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2750                     "Induction Variable Simplification", false, false)
2751 
2752 Pass *llvm::createIndVarSimplifyPass() {
2753   return new IndVarSimplifyLegacyPass();
2754 }
2755