1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 28 #include "llvm/ADT/APFloat.h" 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/ArrayRef.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/None.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/STLExtras.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/SmallVector.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/ADT/iterator_range.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/LoopPass.h" 41 #include "llvm/Analysis/ScalarEvolution.h" 42 #include "llvm/Analysis/ScalarEvolutionExpander.h" 43 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 44 #include "llvm/Analysis/TargetLibraryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/ConstantRange.h" 50 #include "llvm/IR/Constants.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/Operator.h" 63 #include "llvm/IR/PassManager.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/IR/Type.h" 66 #include "llvm/IR/Use.h" 67 #include "llvm/IR/User.h" 68 #include "llvm/IR/Value.h" 69 #include "llvm/IR/ValueHandle.h" 70 #include "llvm/Pass.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Compiler.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/MathExtras.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Scalar.h" 79 #include "llvm/Transforms/Scalar/LoopPassManager.h" 80 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 81 #include "llvm/Transforms/Utils/LoopUtils.h" 82 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 83 #include <cassert> 84 #include <cstdint> 85 #include <utility> 86 87 using namespace llvm; 88 89 #define DEBUG_TYPE "indvars" 90 91 STATISTIC(NumWidened , "Number of indvars widened"); 92 STATISTIC(NumReplaced , "Number of exit values replaced"); 93 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 94 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 95 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 96 97 // Trip count verification can be enabled by default under NDEBUG if we 98 // implement a strong expression equivalence checker in SCEV. Until then, we 99 // use the verify-indvars flag, which may assert in some cases. 100 static cl::opt<bool> VerifyIndvars( 101 "verify-indvars", cl::Hidden, 102 cl::desc("Verify the ScalarEvolution result after running indvars")); 103 104 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 105 106 static cl::opt<ReplaceExitVal> ReplaceExitValue( 107 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 108 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 109 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 110 clEnumValN(OnlyCheapRepl, "cheap", 111 "only replace exit value when the cost is cheap"), 112 clEnumValN(AlwaysRepl, "always", 113 "always replace exit value whenever possible"))); 114 115 static cl::opt<bool> UsePostIncrementRanges( 116 "indvars-post-increment-ranges", cl::Hidden, 117 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 118 cl::init(true)); 119 120 static cl::opt<bool> 121 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 122 cl::desc("Disable Linear Function Test Replace optimization")); 123 124 namespace { 125 126 struct RewritePhi; 127 128 class IndVarSimplify { 129 LoopInfo *LI; 130 ScalarEvolution *SE; 131 DominatorTree *DT; 132 const DataLayout &DL; 133 TargetLibraryInfo *TLI; 134 const TargetTransformInfo *TTI; 135 136 SmallVector<WeakTrackingVH, 16> DeadInsts; 137 138 bool isValidRewrite(Value *FromVal, Value *ToVal); 139 140 bool handleFloatingPointIV(Loop *L, PHINode *PH); 141 bool rewriteNonIntegerIVs(Loop *L); 142 143 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 144 145 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 146 bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 147 bool rewriteFirstIterationLoopExitValues(Loop *L); 148 149 bool linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 150 PHINode *IndVar, SCEVExpander &Rewriter); 151 152 bool sinkUnusedInvariants(Loop *L); 153 154 public: 155 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 156 const DataLayout &DL, TargetLibraryInfo *TLI, 157 TargetTransformInfo *TTI) 158 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} 159 160 bool run(Loop *L); 161 }; 162 163 } // end anonymous namespace 164 165 /// Return true if the SCEV expansion generated by the rewriter can replace the 166 /// original value. SCEV guarantees that it produces the same value, but the way 167 /// it is produced may be illegal IR. Ideally, this function will only be 168 /// called for verification. 169 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 170 // If an SCEV expression subsumed multiple pointers, its expansion could 171 // reassociate the GEP changing the base pointer. This is illegal because the 172 // final address produced by a GEP chain must be inbounds relative to its 173 // underlying object. Otherwise basic alias analysis, among other things, 174 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 175 // producing an expression involving multiple pointers. Until then, we must 176 // bail out here. 177 // 178 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 179 // because it understands lcssa phis while SCEV does not. 180 Value *FromPtr = FromVal; 181 Value *ToPtr = ToVal; 182 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 183 FromPtr = GEP->getPointerOperand(); 184 } 185 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 186 ToPtr = GEP->getPointerOperand(); 187 } 188 if (FromPtr != FromVal || ToPtr != ToVal) { 189 // Quickly check the common case 190 if (FromPtr == ToPtr) 191 return true; 192 193 // SCEV may have rewritten an expression that produces the GEP's pointer 194 // operand. That's ok as long as the pointer operand has the same base 195 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 196 // base of a recurrence. This handles the case in which SCEV expansion 197 // converts a pointer type recurrence into a nonrecurrent pointer base 198 // indexed by an integer recurrence. 199 200 // If the GEP base pointer is a vector of pointers, abort. 201 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 202 return false; 203 204 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 205 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 206 if (FromBase == ToBase) 207 return true; 208 209 LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase 210 << " != " << *ToBase << "\n"); 211 212 return false; 213 } 214 return true; 215 } 216 217 /// Determine the insertion point for this user. By default, insert immediately 218 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 219 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 220 /// common dominator for the incoming blocks. 221 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 222 DominatorTree *DT, LoopInfo *LI) { 223 PHINode *PHI = dyn_cast<PHINode>(User); 224 if (!PHI) 225 return User; 226 227 Instruction *InsertPt = nullptr; 228 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 229 if (PHI->getIncomingValue(i) != Def) 230 continue; 231 232 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 233 if (!InsertPt) { 234 InsertPt = InsertBB->getTerminator(); 235 continue; 236 } 237 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 238 InsertPt = InsertBB->getTerminator(); 239 } 240 assert(InsertPt && "Missing phi operand"); 241 242 auto *DefI = dyn_cast<Instruction>(Def); 243 if (!DefI) 244 return InsertPt; 245 246 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 247 248 auto *L = LI->getLoopFor(DefI->getParent()); 249 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 250 251 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 252 if (LI->getLoopFor(DTN->getBlock()) == L) 253 return DTN->getBlock()->getTerminator(); 254 255 llvm_unreachable("DefI dominates InsertPt!"); 256 } 257 258 //===----------------------------------------------------------------------===// 259 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 260 //===----------------------------------------------------------------------===// 261 262 /// Convert APF to an integer, if possible. 263 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 264 bool isExact = false; 265 // See if we can convert this to an int64_t 266 uint64_t UIntVal; 267 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 268 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 269 !isExact) 270 return false; 271 IntVal = UIntVal; 272 return true; 273 } 274 275 /// If the loop has floating induction variable then insert corresponding 276 /// integer induction variable if possible. 277 /// For example, 278 /// for(double i = 0; i < 10000; ++i) 279 /// bar(i) 280 /// is converted into 281 /// for(int i = 0; i < 10000; ++i) 282 /// bar((double)i); 283 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 284 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 285 unsigned BackEdge = IncomingEdge^1; 286 287 // Check incoming value. 288 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 289 290 int64_t InitValue; 291 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 292 return false; 293 294 // Check IV increment. Reject this PN if increment operation is not 295 // an add or increment value can not be represented by an integer. 296 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 297 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; 298 299 // If this is not an add of the PHI with a constantfp, or if the constant fp 300 // is not an integer, bail out. 301 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 302 int64_t IncValue; 303 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 304 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 305 return false; 306 307 // Check Incr uses. One user is PN and the other user is an exit condition 308 // used by the conditional terminator. 309 Value::user_iterator IncrUse = Incr->user_begin(); 310 Instruction *U1 = cast<Instruction>(*IncrUse++); 311 if (IncrUse == Incr->user_end()) return false; 312 Instruction *U2 = cast<Instruction>(*IncrUse++); 313 if (IncrUse != Incr->user_end()) return false; 314 315 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 316 // only used by a branch, we can't transform it. 317 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 318 if (!Compare) 319 Compare = dyn_cast<FCmpInst>(U2); 320 if (!Compare || !Compare->hasOneUse() || 321 !isa<BranchInst>(Compare->user_back())) 322 return false; 323 324 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 325 326 // We need to verify that the branch actually controls the iteration count 327 // of the loop. If not, the new IV can overflow and no one will notice. 328 // The branch block must be in the loop and one of the successors must be out 329 // of the loop. 330 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 331 if (!L->contains(TheBr->getParent()) || 332 (L->contains(TheBr->getSuccessor(0)) && 333 L->contains(TheBr->getSuccessor(1)))) 334 return false; 335 336 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 337 // transform it. 338 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 339 int64_t ExitValue; 340 if (ExitValueVal == nullptr || 341 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 342 return false; 343 344 // Find new predicate for integer comparison. 345 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 346 switch (Compare->getPredicate()) { 347 default: return false; // Unknown comparison. 348 case CmpInst::FCMP_OEQ: 349 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 350 case CmpInst::FCMP_ONE: 351 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 352 case CmpInst::FCMP_OGT: 353 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 354 case CmpInst::FCMP_OGE: 355 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 356 case CmpInst::FCMP_OLT: 357 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 358 case CmpInst::FCMP_OLE: 359 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 360 } 361 362 // We convert the floating point induction variable to a signed i32 value if 363 // we can. This is only safe if the comparison will not overflow in a way 364 // that won't be trapped by the integer equivalent operations. Check for this 365 // now. 366 // TODO: We could use i64 if it is native and the range requires it. 367 368 // The start/stride/exit values must all fit in signed i32. 369 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 370 return false; 371 372 // If not actually striding (add x, 0.0), avoid touching the code. 373 if (IncValue == 0) 374 return false; 375 376 // Positive and negative strides have different safety conditions. 377 if (IncValue > 0) { 378 // If we have a positive stride, we require the init to be less than the 379 // exit value. 380 if (InitValue >= ExitValue) 381 return false; 382 383 uint32_t Range = uint32_t(ExitValue-InitValue); 384 // Check for infinite loop, either: 385 // while (i <= Exit) or until (i > Exit) 386 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 387 if (++Range == 0) return false; // Range overflows. 388 } 389 390 unsigned Leftover = Range % uint32_t(IncValue); 391 392 // If this is an equality comparison, we require that the strided value 393 // exactly land on the exit value, otherwise the IV condition will wrap 394 // around and do things the fp IV wouldn't. 395 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 396 Leftover != 0) 397 return false; 398 399 // If the stride would wrap around the i32 before exiting, we can't 400 // transform the IV. 401 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 402 return false; 403 } else { 404 // If we have a negative stride, we require the init to be greater than the 405 // exit value. 406 if (InitValue <= ExitValue) 407 return false; 408 409 uint32_t Range = uint32_t(InitValue-ExitValue); 410 // Check for infinite loop, either: 411 // while (i >= Exit) or until (i < Exit) 412 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 413 if (++Range == 0) return false; // Range overflows. 414 } 415 416 unsigned Leftover = Range % uint32_t(-IncValue); 417 418 // If this is an equality comparison, we require that the strided value 419 // exactly land on the exit value, otherwise the IV condition will wrap 420 // around and do things the fp IV wouldn't. 421 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 422 Leftover != 0) 423 return false; 424 425 // If the stride would wrap around the i32 before exiting, we can't 426 // transform the IV. 427 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 428 return false; 429 } 430 431 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 432 433 // Insert new integer induction variable. 434 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 435 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 436 PN->getIncomingBlock(IncomingEdge)); 437 438 Value *NewAdd = 439 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 440 Incr->getName()+".int", Incr); 441 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 442 443 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 444 ConstantInt::get(Int32Ty, ExitValue), 445 Compare->getName()); 446 447 // In the following deletions, PN may become dead and may be deleted. 448 // Use a WeakTrackingVH to observe whether this happens. 449 WeakTrackingVH WeakPH = PN; 450 451 // Delete the old floating point exit comparison. The branch starts using the 452 // new comparison. 453 NewCompare->takeName(Compare); 454 Compare->replaceAllUsesWith(NewCompare); 455 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 456 457 // Delete the old floating point increment. 458 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 459 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 460 461 // If the FP induction variable still has uses, this is because something else 462 // in the loop uses its value. In order to canonicalize the induction 463 // variable, we chose to eliminate the IV and rewrite it in terms of an 464 // int->fp cast. 465 // 466 // We give preference to sitofp over uitofp because it is faster on most 467 // platforms. 468 if (WeakPH) { 469 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 470 &*PN->getParent()->getFirstInsertionPt()); 471 PN->replaceAllUsesWith(Conv); 472 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 473 } 474 return true; 475 } 476 477 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 478 // First step. Check to see if there are any floating-point recurrences. 479 // If there are, change them into integer recurrences, permitting analysis by 480 // the SCEV routines. 481 BasicBlock *Header = L->getHeader(); 482 483 SmallVector<WeakTrackingVH, 8> PHIs; 484 for (PHINode &PN : Header->phis()) 485 PHIs.push_back(&PN); 486 487 bool Changed = false; 488 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 489 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 490 Changed |= handleFloatingPointIV(L, PN); 491 492 // If the loop previously had floating-point IV, ScalarEvolution 493 // may not have been able to compute a trip count. Now that we've done some 494 // re-writing, the trip count may be computable. 495 if (Changed) 496 SE->forgetLoop(L); 497 return Changed; 498 } 499 500 namespace { 501 502 // Collect information about PHI nodes which can be transformed in 503 // rewriteLoopExitValues. 504 struct RewritePhi { 505 PHINode *PN; 506 507 // Ith incoming value. 508 unsigned Ith; 509 510 // Exit value after expansion. 511 Value *Val; 512 513 // High Cost when expansion. 514 bool HighCost; 515 516 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 517 : PN(P), Ith(I), Val(V), HighCost(H) {} 518 }; 519 520 } // end anonymous namespace 521 522 //===----------------------------------------------------------------------===// 523 // rewriteLoopExitValues - Optimize IV users outside the loop. 524 // As a side effect, reduces the amount of IV processing within the loop. 525 //===----------------------------------------------------------------------===// 526 527 /// Check to see if this loop has a computable loop-invariant execution count. 528 /// If so, this means that we can compute the final value of any expressions 529 /// that are recurrent in the loop, and substitute the exit values from the loop 530 /// into any instructions outside of the loop that use the final values of the 531 /// current expressions. 532 /// 533 /// This is mostly redundant with the regular IndVarSimplify activities that 534 /// happen later, except that it's more powerful in some cases, because it's 535 /// able to brute-force evaluate arbitrary instructions as long as they have 536 /// constant operands at the beginning of the loop. 537 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 538 // Check a pre-condition. 539 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 540 "Indvars did not preserve LCSSA!"); 541 542 SmallVector<BasicBlock*, 8> ExitBlocks; 543 L->getUniqueExitBlocks(ExitBlocks); 544 545 SmallVector<RewritePhi, 8> RewritePhiSet; 546 // Find all values that are computed inside the loop, but used outside of it. 547 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 548 // the exit blocks of the loop to find them. 549 for (BasicBlock *ExitBB : ExitBlocks) { 550 // If there are no PHI nodes in this exit block, then no values defined 551 // inside the loop are used on this path, skip it. 552 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 553 if (!PN) continue; 554 555 unsigned NumPreds = PN->getNumIncomingValues(); 556 557 // Iterate over all of the PHI nodes. 558 BasicBlock::iterator BBI = ExitBB->begin(); 559 while ((PN = dyn_cast<PHINode>(BBI++))) { 560 if (PN->use_empty()) 561 continue; // dead use, don't replace it 562 563 if (!SE->isSCEVable(PN->getType())) 564 continue; 565 566 // It's necessary to tell ScalarEvolution about this explicitly so that 567 // it can walk the def-use list and forget all SCEVs, as it may not be 568 // watching the PHI itself. Once the new exit value is in place, there 569 // may not be a def-use connection between the loop and every instruction 570 // which got a SCEVAddRecExpr for that loop. 571 SE->forgetValue(PN); 572 573 // Iterate over all of the values in all the PHI nodes. 574 for (unsigned i = 0; i != NumPreds; ++i) { 575 // If the value being merged in is not integer or is not defined 576 // in the loop, skip it. 577 Value *InVal = PN->getIncomingValue(i); 578 if (!isa<Instruction>(InVal)) 579 continue; 580 581 // If this pred is for a subloop, not L itself, skip it. 582 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 583 continue; // The Block is in a subloop, skip it. 584 585 // Check that InVal is defined in the loop. 586 Instruction *Inst = cast<Instruction>(InVal); 587 if (!L->contains(Inst)) 588 continue; 589 590 // Okay, this instruction has a user outside of the current loop 591 // and varies predictably *inside* the loop. Evaluate the value it 592 // contains when the loop exits, if possible. 593 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 594 if (!SE->isLoopInvariant(ExitValue, L) || 595 !isSafeToExpand(ExitValue, *SE)) 596 continue; 597 598 // Computing the value outside of the loop brings no benefit if : 599 // - it is definitely used inside the loop in a way which can not be 600 // optimized away. 601 // - no use outside of the loop can take advantage of hoisting the 602 // computation out of the loop 603 if (ExitValue->getSCEVType()>=scMulExpr) { 604 bool HasHardInternalUses = false; 605 bool HasSoftExternalUses = false; 606 for (auto *IB : Inst->users()) { 607 Instruction *UseInstr = cast<Instruction>(IB); 608 unsigned Opc = UseInstr->getOpcode(); 609 if (L->contains(UseInstr)) { 610 if (Opc == Instruction::Call) 611 HasHardInternalUses = true; 612 } else { 613 if (Opc == Instruction::PHI) { 614 // Do not count the Phi as a use. LCSSA may have inserted 615 // plenty of trivial ones. 616 for (auto *PB : UseInstr->users()) { 617 unsigned PhiOpc = cast<Instruction>(PB)->getOpcode(); 618 if (PhiOpc != Instruction::Call && 619 PhiOpc != Instruction::Ret) { 620 HasSoftExternalUses = true; 621 break; 622 } 623 } 624 continue; 625 } 626 if (Opc != Instruction::Call && Opc != Instruction::Ret) { 627 HasSoftExternalUses = true; 628 break; 629 } 630 } 631 } 632 if (HasHardInternalUses && !HasSoftExternalUses) 633 continue; 634 } 635 636 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 637 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 638 639 LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal 640 << '\n' 641 << " LoopVal = " << *Inst << "\n"); 642 643 if (!isValidRewrite(Inst, ExitVal)) { 644 DeadInsts.push_back(ExitVal); 645 continue; 646 } 647 648 #ifndef NDEBUG 649 // If we reuse an instruction from a loop which is neither L nor one of 650 // its containing loops, we end up breaking LCSSA form for this loop by 651 // creating a new use of its instruction. 652 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 653 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 654 if (EVL != L) 655 assert(EVL->contains(L) && "LCSSA breach detected!"); 656 #endif 657 658 // Collect all the candidate PHINodes to be rewritten. 659 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 660 } 661 } 662 } 663 664 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 665 666 bool Changed = false; 667 // Transformation. 668 for (const RewritePhi &Phi : RewritePhiSet) { 669 PHINode *PN = Phi.PN; 670 Value *ExitVal = Phi.Val; 671 672 // Only do the rewrite when the ExitValue can be expanded cheaply. 673 // If LoopCanBeDel is true, rewrite exit value aggressively. 674 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 675 DeadInsts.push_back(ExitVal); 676 continue; 677 } 678 679 Changed = true; 680 ++NumReplaced; 681 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 682 PN->setIncomingValue(Phi.Ith, ExitVal); 683 684 // If this instruction is dead now, delete it. Don't do it now to avoid 685 // invalidating iterators. 686 if (isInstructionTriviallyDead(Inst, TLI)) 687 DeadInsts.push_back(Inst); 688 689 // Replace PN with ExitVal if that is legal and does not break LCSSA. 690 if (PN->getNumIncomingValues() == 1 && 691 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 692 PN->replaceAllUsesWith(ExitVal); 693 PN->eraseFromParent(); 694 } 695 } 696 697 // The insertion point instruction may have been deleted; clear it out 698 // so that the rewriter doesn't trip over it later. 699 Rewriter.clearInsertPoint(); 700 return Changed; 701 } 702 703 //===---------------------------------------------------------------------===// 704 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 705 // they will exit at the first iteration. 706 //===---------------------------------------------------------------------===// 707 708 /// Check to see if this loop has loop invariant conditions which lead to loop 709 /// exits. If so, we know that if the exit path is taken, it is at the first 710 /// loop iteration. This lets us predict exit values of PHI nodes that live in 711 /// loop header. 712 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 713 // Verify the input to the pass is already in LCSSA form. 714 assert(L->isLCSSAForm(*DT)); 715 716 SmallVector<BasicBlock *, 8> ExitBlocks; 717 L->getUniqueExitBlocks(ExitBlocks); 718 auto *LoopHeader = L->getHeader(); 719 assert(LoopHeader && "Invalid loop"); 720 721 bool MadeAnyChanges = false; 722 for (auto *ExitBB : ExitBlocks) { 723 // If there are no more PHI nodes in this exit block, then no more 724 // values defined inside the loop are used on this path. 725 for (PHINode &PN : ExitBB->phis()) { 726 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 727 IncomingValIdx != E; ++IncomingValIdx) { 728 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 729 730 // We currently only support loop exits from loop header. If the 731 // incoming block is not loop header, we need to recursively check 732 // all conditions starting from loop header are loop invariants. 733 // Additional support might be added in the future. 734 if (IncomingBB != LoopHeader) 735 continue; 736 737 // Get condition that leads to the exit path. 738 auto *TermInst = IncomingBB->getTerminator(); 739 740 Value *Cond = nullptr; 741 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 742 // Must be a conditional branch, otherwise the block 743 // should not be in the loop. 744 Cond = BI->getCondition(); 745 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 746 Cond = SI->getCondition(); 747 else 748 continue; 749 750 if (!L->isLoopInvariant(Cond)) 751 continue; 752 753 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 754 755 // Only deal with PHIs. 756 if (!ExitVal) 757 continue; 758 759 // If ExitVal is a PHI on the loop header, then we know its 760 // value along this exit because the exit can only be taken 761 // on the first iteration. 762 auto *LoopPreheader = L->getLoopPreheader(); 763 assert(LoopPreheader && "Invalid loop"); 764 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 765 if (PreheaderIdx != -1) { 766 assert(ExitVal->getParent() == LoopHeader && 767 "ExitVal must be in loop header"); 768 MadeAnyChanges = true; 769 PN.setIncomingValue(IncomingValIdx, 770 ExitVal->getIncomingValue(PreheaderIdx)); 771 } 772 } 773 } 774 } 775 return MadeAnyChanges; 776 } 777 778 /// Check whether it is possible to delete the loop after rewriting exit 779 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 780 /// aggressively. 781 bool IndVarSimplify::canLoopBeDeleted( 782 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 783 BasicBlock *Preheader = L->getLoopPreheader(); 784 // If there is no preheader, the loop will not be deleted. 785 if (!Preheader) 786 return false; 787 788 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 789 // We obviate multiple ExitingBlocks case for simplicity. 790 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 791 // after exit value rewriting, we can enhance the logic here. 792 SmallVector<BasicBlock *, 4> ExitingBlocks; 793 L->getExitingBlocks(ExitingBlocks); 794 SmallVector<BasicBlock *, 8> ExitBlocks; 795 L->getUniqueExitBlocks(ExitBlocks); 796 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 797 return false; 798 799 BasicBlock *ExitBlock = ExitBlocks[0]; 800 BasicBlock::iterator BI = ExitBlock->begin(); 801 while (PHINode *P = dyn_cast<PHINode>(BI)) { 802 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 803 804 // If the Incoming value of P is found in RewritePhiSet, we know it 805 // could be rewritten to use a loop invariant value in transformation 806 // phase later. Skip it in the loop invariant check below. 807 bool found = false; 808 for (const RewritePhi &Phi : RewritePhiSet) { 809 unsigned i = Phi.Ith; 810 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 811 found = true; 812 break; 813 } 814 } 815 816 Instruction *I; 817 if (!found && (I = dyn_cast<Instruction>(Incoming))) 818 if (!L->hasLoopInvariantOperands(I)) 819 return false; 820 821 ++BI; 822 } 823 824 for (auto *BB : L->blocks()) 825 if (llvm::any_of(*BB, [](Instruction &I) { 826 return I.mayHaveSideEffects(); 827 })) 828 return false; 829 830 return true; 831 } 832 833 //===----------------------------------------------------------------------===// 834 // IV Widening - Extend the width of an IV to cover its widest uses. 835 //===----------------------------------------------------------------------===// 836 837 namespace { 838 839 // Collect information about induction variables that are used by sign/zero 840 // extend operations. This information is recorded by CollectExtend and provides 841 // the input to WidenIV. 842 struct WideIVInfo { 843 PHINode *NarrowIV = nullptr; 844 845 // Widest integer type created [sz]ext 846 Type *WidestNativeType = nullptr; 847 848 // Was a sext user seen before a zext? 849 bool IsSigned = false; 850 }; 851 852 } // end anonymous namespace 853 854 /// Update information about the induction variable that is extended by this 855 /// sign or zero extend operation. This is used to determine the final width of 856 /// the IV before actually widening it. 857 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 858 const TargetTransformInfo *TTI) { 859 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 860 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 861 return; 862 863 Type *Ty = Cast->getType(); 864 uint64_t Width = SE->getTypeSizeInBits(Ty); 865 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 866 return; 867 868 // Check that `Cast` actually extends the induction variable (we rely on this 869 // later). This takes care of cases where `Cast` is extending a truncation of 870 // the narrow induction variable, and thus can end up being narrower than the 871 // "narrow" induction variable. 872 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 873 if (NarrowIVWidth >= Width) 874 return; 875 876 // Cast is either an sext or zext up to this point. 877 // We should not widen an indvar if arithmetics on the wider indvar are more 878 // expensive than those on the narrower indvar. We check only the cost of ADD 879 // because at least an ADD is required to increment the induction variable. We 880 // could compute more comprehensively the cost of all instructions on the 881 // induction variable when necessary. 882 if (TTI && 883 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 884 TTI->getArithmeticInstrCost(Instruction::Add, 885 Cast->getOperand(0)->getType())) { 886 return; 887 } 888 889 if (!WI.WidestNativeType) { 890 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 891 WI.IsSigned = IsSigned; 892 return; 893 } 894 895 // We extend the IV to satisfy the sign of its first user, arbitrarily. 896 if (WI.IsSigned != IsSigned) 897 return; 898 899 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 900 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 901 } 902 903 namespace { 904 905 /// Record a link in the Narrow IV def-use chain along with the WideIV that 906 /// computes the same value as the Narrow IV def. This avoids caching Use* 907 /// pointers. 908 struct NarrowIVDefUse { 909 Instruction *NarrowDef = nullptr; 910 Instruction *NarrowUse = nullptr; 911 Instruction *WideDef = nullptr; 912 913 // True if the narrow def is never negative. Tracking this information lets 914 // us use a sign extension instead of a zero extension or vice versa, when 915 // profitable and legal. 916 bool NeverNegative = false; 917 918 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 919 bool NeverNegative) 920 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 921 NeverNegative(NeverNegative) {} 922 }; 923 924 /// The goal of this transform is to remove sign and zero extends without 925 /// creating any new induction variables. To do this, it creates a new phi of 926 /// the wider type and redirects all users, either removing extends or inserting 927 /// truncs whenever we stop propagating the type. 928 class WidenIV { 929 // Parameters 930 PHINode *OrigPhi; 931 Type *WideType; 932 933 // Context 934 LoopInfo *LI; 935 Loop *L; 936 ScalarEvolution *SE; 937 DominatorTree *DT; 938 939 // Does the module have any calls to the llvm.experimental.guard intrinsic 940 // at all? If not we can avoid scanning instructions looking for guards. 941 bool HasGuards; 942 943 // Result 944 PHINode *WidePhi = nullptr; 945 Instruction *WideInc = nullptr; 946 const SCEV *WideIncExpr = nullptr; 947 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 948 949 SmallPtrSet<Instruction *,16> Widened; 950 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 951 952 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 953 954 // A map tracking the kind of extension used to widen each narrow IV 955 // and narrow IV user. 956 // Key: pointer to a narrow IV or IV user. 957 // Value: the kind of extension used to widen this Instruction. 958 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 959 960 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 961 962 // A map with control-dependent ranges for post increment IV uses. The key is 963 // a pair of IV def and a use of this def denoting the context. The value is 964 // a ConstantRange representing possible values of the def at the given 965 // context. 966 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 967 968 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 969 Instruction *UseI) { 970 DefUserPair Key(Def, UseI); 971 auto It = PostIncRangeInfos.find(Key); 972 return It == PostIncRangeInfos.end() 973 ? Optional<ConstantRange>(None) 974 : Optional<ConstantRange>(It->second); 975 } 976 977 void calculatePostIncRanges(PHINode *OrigPhi); 978 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 979 980 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 981 DefUserPair Key(Def, UseI); 982 auto It = PostIncRangeInfos.find(Key); 983 if (It == PostIncRangeInfos.end()) 984 PostIncRangeInfos.insert({Key, R}); 985 else 986 It->second = R.intersectWith(It->second); 987 } 988 989 public: 990 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 991 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 992 bool HasGuards) 993 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 994 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 995 HasGuards(HasGuards), DeadInsts(DI) { 996 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 997 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 998 } 999 1000 PHINode *createWideIV(SCEVExpander &Rewriter); 1001 1002 protected: 1003 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 1004 Instruction *Use); 1005 1006 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 1007 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1008 const SCEVAddRecExpr *WideAR); 1009 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1010 1011 ExtendKind getExtendKind(Instruction *I); 1012 1013 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1014 1015 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1016 1017 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1018 1019 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1020 unsigned OpCode) const; 1021 1022 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1023 1024 bool widenLoopCompare(NarrowIVDefUse DU); 1025 bool widenWithVariantLoadUse(NarrowIVDefUse DU); 1026 void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU); 1027 1028 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1029 }; 1030 1031 } // end anonymous namespace 1032 1033 /// Perform a quick domtree based check for loop invariance assuming that V is 1034 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 1035 /// purpose. 1036 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 1037 Instruction *Inst = dyn_cast<Instruction>(V); 1038 if (!Inst) 1039 return true; 1040 1041 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 1042 } 1043 1044 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1045 bool IsSigned, Instruction *Use) { 1046 // Set the debug location and conservative insertion point. 1047 IRBuilder<> Builder(Use); 1048 // Hoist the insertion point into loop preheaders as far as possible. 1049 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1050 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 1051 L = L->getParentLoop()) 1052 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1053 1054 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1055 Builder.CreateZExt(NarrowOper, WideType); 1056 } 1057 1058 /// Instantiate a wide operation to replace a narrow operation. This only needs 1059 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1060 /// 0 for any operation we decide not to clone. 1061 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 1062 const SCEVAddRecExpr *WideAR) { 1063 unsigned Opcode = DU.NarrowUse->getOpcode(); 1064 switch (Opcode) { 1065 default: 1066 return nullptr; 1067 case Instruction::Add: 1068 case Instruction::Mul: 1069 case Instruction::UDiv: 1070 case Instruction::Sub: 1071 return cloneArithmeticIVUser(DU, WideAR); 1072 1073 case Instruction::And: 1074 case Instruction::Or: 1075 case Instruction::Xor: 1076 case Instruction::Shl: 1077 case Instruction::LShr: 1078 case Instruction::AShr: 1079 return cloneBitwiseIVUser(DU); 1080 } 1081 } 1082 1083 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 1084 Instruction *NarrowUse = DU.NarrowUse; 1085 Instruction *NarrowDef = DU.NarrowDef; 1086 Instruction *WideDef = DU.WideDef; 1087 1088 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1089 1090 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1091 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1092 // invariant and will be folded or hoisted. If it actually comes from a 1093 // widened IV, it should be removed during a future call to widenIVUse. 1094 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1095 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1096 ? WideDef 1097 : createExtendInst(NarrowUse->getOperand(0), WideType, 1098 IsSigned, NarrowUse); 1099 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1100 ? WideDef 1101 : createExtendInst(NarrowUse->getOperand(1), WideType, 1102 IsSigned, NarrowUse); 1103 1104 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1105 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1106 NarrowBO->getName()); 1107 IRBuilder<> Builder(NarrowUse); 1108 Builder.Insert(WideBO); 1109 WideBO->copyIRFlags(NarrowBO); 1110 return WideBO; 1111 } 1112 1113 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1114 const SCEVAddRecExpr *WideAR) { 1115 Instruction *NarrowUse = DU.NarrowUse; 1116 Instruction *NarrowDef = DU.NarrowDef; 1117 Instruction *WideDef = DU.WideDef; 1118 1119 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1120 1121 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1122 1123 // We're trying to find X such that 1124 // 1125 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1126 // 1127 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1128 // and check using SCEV if any of them are correct. 1129 1130 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1131 // correct solution to X. 1132 auto GuessNonIVOperand = [&](bool SignExt) { 1133 const SCEV *WideLHS; 1134 const SCEV *WideRHS; 1135 1136 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1137 if (SignExt) 1138 return SE->getSignExtendExpr(S, Ty); 1139 return SE->getZeroExtendExpr(S, Ty); 1140 }; 1141 1142 if (IVOpIdx == 0) { 1143 WideLHS = SE->getSCEV(WideDef); 1144 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1145 WideRHS = GetExtend(NarrowRHS, WideType); 1146 } else { 1147 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1148 WideLHS = GetExtend(NarrowLHS, WideType); 1149 WideRHS = SE->getSCEV(WideDef); 1150 } 1151 1152 // WideUse is "WideDef `op.wide` X" as described in the comment. 1153 const SCEV *WideUse = nullptr; 1154 1155 switch (NarrowUse->getOpcode()) { 1156 default: 1157 llvm_unreachable("No other possibility!"); 1158 1159 case Instruction::Add: 1160 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1161 break; 1162 1163 case Instruction::Mul: 1164 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1165 break; 1166 1167 case Instruction::UDiv: 1168 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1169 break; 1170 1171 case Instruction::Sub: 1172 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1173 break; 1174 } 1175 1176 return WideUse == WideAR; 1177 }; 1178 1179 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1180 if (!GuessNonIVOperand(SignExtend)) { 1181 SignExtend = !SignExtend; 1182 if (!GuessNonIVOperand(SignExtend)) 1183 return nullptr; 1184 } 1185 1186 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1187 ? WideDef 1188 : createExtendInst(NarrowUse->getOperand(0), WideType, 1189 SignExtend, NarrowUse); 1190 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1191 ? WideDef 1192 : createExtendInst(NarrowUse->getOperand(1), WideType, 1193 SignExtend, NarrowUse); 1194 1195 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1196 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1197 NarrowBO->getName()); 1198 1199 IRBuilder<> Builder(NarrowUse); 1200 Builder.Insert(WideBO); 1201 WideBO->copyIRFlags(NarrowBO); 1202 return WideBO; 1203 } 1204 1205 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1206 auto It = ExtendKindMap.find(I); 1207 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1208 return It->second; 1209 } 1210 1211 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1212 unsigned OpCode) const { 1213 if (OpCode == Instruction::Add) 1214 return SE->getAddExpr(LHS, RHS); 1215 if (OpCode == Instruction::Sub) 1216 return SE->getMinusSCEV(LHS, RHS); 1217 if (OpCode == Instruction::Mul) 1218 return SE->getMulExpr(LHS, RHS); 1219 1220 llvm_unreachable("Unsupported opcode."); 1221 } 1222 1223 /// No-wrap operations can transfer sign extension of their result to their 1224 /// operands. Generate the SCEV value for the widened operation without 1225 /// actually modifying the IR yet. If the expression after extending the 1226 /// operands is an AddRec for this loop, return the AddRec and the kind of 1227 /// extension used. 1228 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1229 // Handle the common case of add<nsw/nuw> 1230 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1231 // Only Add/Sub/Mul instructions supported yet. 1232 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1233 OpCode != Instruction::Mul) 1234 return {nullptr, Unknown}; 1235 1236 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1237 // if extending the other will lead to a recurrence. 1238 const unsigned ExtendOperIdx = 1239 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1240 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1241 1242 const SCEV *ExtendOperExpr = nullptr; 1243 const OverflowingBinaryOperator *OBO = 1244 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1245 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1246 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1247 ExtendOperExpr = SE->getSignExtendExpr( 1248 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1249 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1250 ExtendOperExpr = SE->getZeroExtendExpr( 1251 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1252 else 1253 return {nullptr, Unknown}; 1254 1255 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1256 // flags. This instruction may be guarded by control flow that the no-wrap 1257 // behavior depends on. Non-control-equivalent instructions can be mapped to 1258 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1259 // semantics to those operations. 1260 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1261 const SCEV *rhs = ExtendOperExpr; 1262 1263 // Let's swap operands to the initial order for the case of non-commutative 1264 // operations, like SUB. See PR21014. 1265 if (ExtendOperIdx == 0) 1266 std::swap(lhs, rhs); 1267 const SCEVAddRecExpr *AddRec = 1268 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1269 1270 if (!AddRec || AddRec->getLoop() != L) 1271 return {nullptr, Unknown}; 1272 1273 return {AddRec, ExtKind}; 1274 } 1275 1276 /// Is this instruction potentially interesting for further simplification after 1277 /// widening it's type? In other words, can the extend be safely hoisted out of 1278 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1279 /// so, return the extended recurrence and the kind of extension used. Otherwise 1280 /// return {nullptr, Unknown}. 1281 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) { 1282 if (!SE->isSCEVable(DU.NarrowUse->getType())) 1283 return {nullptr, Unknown}; 1284 1285 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1286 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1287 SE->getTypeSizeInBits(WideType)) { 1288 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1289 // index. So don't follow this use. 1290 return {nullptr, Unknown}; 1291 } 1292 1293 const SCEV *WideExpr; 1294 ExtendKind ExtKind; 1295 if (DU.NeverNegative) { 1296 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1297 if (isa<SCEVAddRecExpr>(WideExpr)) 1298 ExtKind = SignExtended; 1299 else { 1300 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1301 ExtKind = ZeroExtended; 1302 } 1303 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1304 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1305 ExtKind = SignExtended; 1306 } else { 1307 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1308 ExtKind = ZeroExtended; 1309 } 1310 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1311 if (!AddRec || AddRec->getLoop() != L) 1312 return {nullptr, Unknown}; 1313 return {AddRec, ExtKind}; 1314 } 1315 1316 /// This IV user cannot be widen. Replace this use of the original narrow IV 1317 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1318 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1319 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1320 << *DU.NarrowUse << "\n"); 1321 IRBuilder<> Builder( 1322 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1323 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1324 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1325 } 1326 1327 /// If the narrow use is a compare instruction, then widen the compare 1328 // (and possibly the other operand). The extend operation is hoisted into the 1329 // loop preheader as far as possible. 1330 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1331 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1332 if (!Cmp) 1333 return false; 1334 1335 // We can legally widen the comparison in the following two cases: 1336 // 1337 // - The signedness of the IV extension and comparison match 1338 // 1339 // - The narrow IV is always positive (and thus its sign extension is equal 1340 // to its zero extension). For instance, let's say we're zero extending 1341 // %narrow for the following use 1342 // 1343 // icmp slt i32 %narrow, %val ... (A) 1344 // 1345 // and %narrow is always positive. Then 1346 // 1347 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1348 // == icmp slt i32 zext(%narrow), sext(%val) 1349 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1350 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1351 return false; 1352 1353 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1354 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1355 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1356 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1357 1358 // Widen the compare instruction. 1359 IRBuilder<> Builder( 1360 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1361 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1362 1363 // Widen the other operand of the compare, if necessary. 1364 if (CastWidth < IVWidth) { 1365 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1366 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1367 } 1368 return true; 1369 } 1370 1371 /// If the narrow use is an instruction whose two operands are the defining 1372 /// instruction of DU and a load instruction, then we have the following: 1373 /// if the load is hoisted outside the loop, then we do not reach this function 1374 /// as scalar evolution analysis works fine in widenIVUse with variables 1375 /// hoisted outside the loop and efficient code is subsequently generated by 1376 /// not emitting truncate instructions. But when the load is not hoisted 1377 /// (whether due to limitation in alias analysis or due to a true legality), 1378 /// then scalar evolution can not proceed with loop variant values and 1379 /// inefficient code is generated. This function handles the non-hoisted load 1380 /// special case by making the optimization generate the same type of code for 1381 /// hoisted and non-hoisted load (widen use and eliminate sign extend 1382 /// instruction). This special case is important especially when the induction 1383 /// variables are affecting addressing mode in code generation. 1384 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) { 1385 Instruction *NarrowUse = DU.NarrowUse; 1386 Instruction *NarrowDef = DU.NarrowDef; 1387 Instruction *WideDef = DU.WideDef; 1388 1389 // Handle the common case of add<nsw/nuw> 1390 const unsigned OpCode = NarrowUse->getOpcode(); 1391 // Only Add/Sub/Mul instructions are supported. 1392 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1393 OpCode != Instruction::Mul) 1394 return false; 1395 1396 // The operand that is not defined by NarrowDef of DU. Let's call it the 1397 // other operand. 1398 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0; 1399 assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef && 1400 "bad DU"); 1401 1402 const SCEV *ExtendOperExpr = nullptr; 1403 const OverflowingBinaryOperator *OBO = 1404 cast<OverflowingBinaryOperator>(NarrowUse); 1405 ExtendKind ExtKind = getExtendKind(NarrowDef); 1406 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1407 ExtendOperExpr = SE->getSignExtendExpr( 1408 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1409 else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1410 ExtendOperExpr = SE->getZeroExtendExpr( 1411 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1412 else 1413 return false; 1414 1415 // We are interested in the other operand being a load instruction. 1416 // But, we should look into relaxing this restriction later on. 1417 auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx)); 1418 if (I && I->getOpcode() != Instruction::Load) 1419 return false; 1420 1421 // Verifying that Defining operand is an AddRec 1422 const SCEV *Op1 = SE->getSCEV(WideDef); 1423 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); 1424 if (!AddRecOp1 || AddRecOp1->getLoop() != L) 1425 return false; 1426 // Verifying that other operand is an Extend. 1427 if (ExtKind == SignExtended) { 1428 if (!isa<SCEVSignExtendExpr>(ExtendOperExpr)) 1429 return false; 1430 } else { 1431 if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr)) 1432 return false; 1433 } 1434 1435 if (ExtKind == SignExtended) { 1436 for (Use &U : NarrowUse->uses()) { 1437 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1438 if (!User || User->getType() != WideType) 1439 return false; 1440 } 1441 } else { // ExtKind == ZeroExtended 1442 for (Use &U : NarrowUse->uses()) { 1443 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1444 if (!User || User->getType() != WideType) 1445 return false; 1446 } 1447 } 1448 1449 return true; 1450 } 1451 1452 /// Special Case for widening with variant Loads (see 1453 /// WidenIV::widenWithVariantLoadUse). This is the code generation part. 1454 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) { 1455 Instruction *NarrowUse = DU.NarrowUse; 1456 Instruction *NarrowDef = DU.NarrowDef; 1457 Instruction *WideDef = DU.WideDef; 1458 1459 ExtendKind ExtKind = getExtendKind(NarrowDef); 1460 1461 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1462 1463 // Generating a widening use instruction. 1464 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1465 ? WideDef 1466 : createExtendInst(NarrowUse->getOperand(0), WideType, 1467 ExtKind, NarrowUse); 1468 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1469 ? WideDef 1470 : createExtendInst(NarrowUse->getOperand(1), WideType, 1471 ExtKind, NarrowUse); 1472 1473 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1474 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1475 NarrowBO->getName()); 1476 IRBuilder<> Builder(NarrowUse); 1477 Builder.Insert(WideBO); 1478 WideBO->copyIRFlags(NarrowBO); 1479 1480 if (ExtKind == SignExtended) 1481 ExtendKindMap[NarrowUse] = SignExtended; 1482 else 1483 ExtendKindMap[NarrowUse] = ZeroExtended; 1484 1485 // Update the Use. 1486 if (ExtKind == SignExtended) { 1487 for (Use &U : NarrowUse->uses()) { 1488 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1489 if (User && User->getType() == WideType) { 1490 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1491 << *WideBO << "\n"); 1492 ++NumElimExt; 1493 User->replaceAllUsesWith(WideBO); 1494 DeadInsts.emplace_back(User); 1495 } 1496 } 1497 } else { // ExtKind == ZeroExtended 1498 for (Use &U : NarrowUse->uses()) { 1499 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1500 if (User && User->getType() == WideType) { 1501 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1502 << *WideBO << "\n"); 1503 ++NumElimExt; 1504 User->replaceAllUsesWith(WideBO); 1505 DeadInsts.emplace_back(User); 1506 } 1507 } 1508 } 1509 } 1510 1511 /// Determine whether an individual user of the narrow IV can be widened. If so, 1512 /// return the wide clone of the user. 1513 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1514 assert(ExtendKindMap.count(DU.NarrowDef) && 1515 "Should already know the kind of extension used to widen NarrowDef"); 1516 1517 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1518 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1519 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1520 // For LCSSA phis, sink the truncate outside the loop. 1521 // After SimplifyCFG most loop exit targets have a single predecessor. 1522 // Otherwise fall back to a truncate within the loop. 1523 if (UsePhi->getNumOperands() != 1) 1524 truncateIVUse(DU, DT, LI); 1525 else { 1526 // Widening the PHI requires us to insert a trunc. The logical place 1527 // for this trunc is in the same BB as the PHI. This is not possible if 1528 // the BB is terminated by a catchswitch. 1529 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1530 return nullptr; 1531 1532 PHINode *WidePhi = 1533 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1534 UsePhi); 1535 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1536 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1537 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1538 UsePhi->replaceAllUsesWith(Trunc); 1539 DeadInsts.emplace_back(UsePhi); 1540 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1541 << *WidePhi << "\n"); 1542 } 1543 return nullptr; 1544 } 1545 } 1546 1547 // This narrow use can be widened by a sext if it's non-negative or its narrow 1548 // def was widended by a sext. Same for zext. 1549 auto canWidenBySExt = [&]() { 1550 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1551 }; 1552 auto canWidenByZExt = [&]() { 1553 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1554 }; 1555 1556 // Our raison d'etre! Eliminate sign and zero extension. 1557 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1558 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1559 Value *NewDef = DU.WideDef; 1560 if (DU.NarrowUse->getType() != WideType) { 1561 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1562 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1563 if (CastWidth < IVWidth) { 1564 // The cast isn't as wide as the IV, so insert a Trunc. 1565 IRBuilder<> Builder(DU.NarrowUse); 1566 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1567 } 1568 else { 1569 // A wider extend was hidden behind a narrower one. This may induce 1570 // another round of IV widening in which the intermediate IV becomes 1571 // dead. It should be very rare. 1572 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1573 << " not wide enough to subsume " << *DU.NarrowUse 1574 << "\n"); 1575 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1576 NewDef = DU.NarrowUse; 1577 } 1578 } 1579 if (NewDef != DU.NarrowUse) { 1580 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1581 << " replaced by " << *DU.WideDef << "\n"); 1582 ++NumElimExt; 1583 DU.NarrowUse->replaceAllUsesWith(NewDef); 1584 DeadInsts.emplace_back(DU.NarrowUse); 1585 } 1586 // Now that the extend is gone, we want to expose it's uses for potential 1587 // further simplification. We don't need to directly inform SimplifyIVUsers 1588 // of the new users, because their parent IV will be processed later as a 1589 // new loop phi. If we preserved IVUsers analysis, we would also want to 1590 // push the uses of WideDef here. 1591 1592 // No further widening is needed. The deceased [sz]ext had done it for us. 1593 return nullptr; 1594 } 1595 1596 // Does this user itself evaluate to a recurrence after widening? 1597 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1598 if (!WideAddRec.first) 1599 WideAddRec = getWideRecurrence(DU); 1600 1601 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1602 if (!WideAddRec.first) { 1603 // If use is a loop condition, try to promote the condition instead of 1604 // truncating the IV first. 1605 if (widenLoopCompare(DU)) 1606 return nullptr; 1607 1608 // We are here about to generate a truncate instruction that may hurt 1609 // performance because the scalar evolution expression computed earlier 1610 // in WideAddRec.first does not indicate a polynomial induction expression. 1611 // In that case, look at the operands of the use instruction to determine 1612 // if we can still widen the use instead of truncating its operand. 1613 if (widenWithVariantLoadUse(DU)) { 1614 widenWithVariantLoadUseCodegen(DU); 1615 return nullptr; 1616 } 1617 1618 // This user does not evaluate to a recurrence after widening, so don't 1619 // follow it. Instead insert a Trunc to kill off the original use, 1620 // eventually isolating the original narrow IV so it can be removed. 1621 truncateIVUse(DU, DT, LI); 1622 return nullptr; 1623 } 1624 // Assume block terminators cannot evaluate to a recurrence. We can't to 1625 // insert a Trunc after a terminator if there happens to be a critical edge. 1626 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1627 "SCEV is not expected to evaluate a block terminator"); 1628 1629 // Reuse the IV increment that SCEVExpander created as long as it dominates 1630 // NarrowUse. 1631 Instruction *WideUse = nullptr; 1632 if (WideAddRec.first == WideIncExpr && 1633 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1634 WideUse = WideInc; 1635 else { 1636 WideUse = cloneIVUser(DU, WideAddRec.first); 1637 if (!WideUse) 1638 return nullptr; 1639 } 1640 // Evaluation of WideAddRec ensured that the narrow expression could be 1641 // extended outside the loop without overflow. This suggests that the wide use 1642 // evaluates to the same expression as the extended narrow use, but doesn't 1643 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1644 // where it fails, we simply throw away the newly created wide use. 1645 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1646 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1647 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1648 << "\n"); 1649 DeadInsts.emplace_back(WideUse); 1650 return nullptr; 1651 } 1652 1653 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1654 // Returning WideUse pushes it on the worklist. 1655 return WideUse; 1656 } 1657 1658 /// Add eligible users of NarrowDef to NarrowIVUsers. 1659 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1660 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1661 bool NonNegativeDef = 1662 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1663 SE->getConstant(NarrowSCEV->getType(), 0)); 1664 for (User *U : NarrowDef->users()) { 1665 Instruction *NarrowUser = cast<Instruction>(U); 1666 1667 // Handle data flow merges and bizarre phi cycles. 1668 if (!Widened.insert(NarrowUser).second) 1669 continue; 1670 1671 bool NonNegativeUse = false; 1672 if (!NonNegativeDef) { 1673 // We might have a control-dependent range information for this context. 1674 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1675 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1676 } 1677 1678 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1679 NonNegativeDef || NonNegativeUse); 1680 } 1681 } 1682 1683 /// Process a single induction variable. First use the SCEVExpander to create a 1684 /// wide induction variable that evaluates to the same recurrence as the 1685 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1686 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1687 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1688 /// 1689 /// It would be simpler to delete uses as they are processed, but we must avoid 1690 /// invalidating SCEV expressions. 1691 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1692 // Is this phi an induction variable? 1693 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1694 if (!AddRec) 1695 return nullptr; 1696 1697 // Widen the induction variable expression. 1698 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1699 ? SE->getSignExtendExpr(AddRec, WideType) 1700 : SE->getZeroExtendExpr(AddRec, WideType); 1701 1702 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1703 "Expect the new IV expression to preserve its type"); 1704 1705 // Can the IV be extended outside the loop without overflow? 1706 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1707 if (!AddRec || AddRec->getLoop() != L) 1708 return nullptr; 1709 1710 // An AddRec must have loop-invariant operands. Since this AddRec is 1711 // materialized by a loop header phi, the expression cannot have any post-loop 1712 // operands, so they must dominate the loop header. 1713 assert( 1714 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1715 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1716 "Loop header phi recurrence inputs do not dominate the loop"); 1717 1718 // Iterate over IV uses (including transitive ones) looking for IV increments 1719 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1720 // the increment calculate control-dependent range information basing on 1721 // dominating conditions inside of the loop (e.g. a range check inside of the 1722 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1723 // 1724 // Control-dependent range information is later used to prove that a narrow 1725 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1726 // this on demand because when pushNarrowIVUsers needs this information some 1727 // of the dominating conditions might be already widened. 1728 if (UsePostIncrementRanges) 1729 calculatePostIncRanges(OrigPhi); 1730 1731 // The rewriter provides a value for the desired IV expression. This may 1732 // either find an existing phi or materialize a new one. Either way, we 1733 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1734 // of the phi-SCC dominates the loop entry. 1735 Instruction *InsertPt = &L->getHeader()->front(); 1736 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1737 1738 // Remembering the WideIV increment generated by SCEVExpander allows 1739 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1740 // employ a general reuse mechanism because the call above is the only call to 1741 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1742 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1743 WideInc = 1744 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1745 WideIncExpr = SE->getSCEV(WideInc); 1746 // Propagate the debug location associated with the original loop increment 1747 // to the new (widened) increment. 1748 auto *OrigInc = 1749 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1750 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1751 } 1752 1753 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1754 ++NumWidened; 1755 1756 // Traverse the def-use chain using a worklist starting at the original IV. 1757 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1758 1759 Widened.insert(OrigPhi); 1760 pushNarrowIVUsers(OrigPhi, WidePhi); 1761 1762 while (!NarrowIVUsers.empty()) { 1763 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1764 1765 // Process a def-use edge. This may replace the use, so don't hold a 1766 // use_iterator across it. 1767 Instruction *WideUse = widenIVUse(DU, Rewriter); 1768 1769 // Follow all def-use edges from the previous narrow use. 1770 if (WideUse) 1771 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1772 1773 // widenIVUse may have removed the def-use edge. 1774 if (DU.NarrowDef->use_empty()) 1775 DeadInsts.emplace_back(DU.NarrowDef); 1776 } 1777 1778 // Attach any debug information to the new PHI. Since OrigPhi and WidePHI 1779 // evaluate the same recurrence, we can just copy the debug info over. 1780 SmallVector<DbgValueInst *, 1> DbgValues; 1781 llvm::findDbgValues(DbgValues, OrigPhi); 1782 auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(), 1783 ValueAsMetadata::get(WidePhi)); 1784 for (auto &DbgValue : DbgValues) 1785 DbgValue->setOperand(0, MDPhi); 1786 return WidePhi; 1787 } 1788 1789 /// Calculates control-dependent range for the given def at the given context 1790 /// by looking at dominating conditions inside of the loop 1791 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1792 Instruction *NarrowUser) { 1793 using namespace llvm::PatternMatch; 1794 1795 Value *NarrowDefLHS; 1796 const APInt *NarrowDefRHS; 1797 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1798 m_APInt(NarrowDefRHS))) || 1799 !NarrowDefRHS->isNonNegative()) 1800 return; 1801 1802 auto UpdateRangeFromCondition = [&] (Value *Condition, 1803 bool TrueDest) { 1804 CmpInst::Predicate Pred; 1805 Value *CmpRHS; 1806 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 1807 m_Value(CmpRHS)))) 1808 return; 1809 1810 CmpInst::Predicate P = 1811 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 1812 1813 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 1814 auto CmpConstrainedLHSRange = 1815 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 1816 auto NarrowDefRange = 1817 CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS); 1818 1819 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 1820 }; 1821 1822 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 1823 if (!HasGuards) 1824 return; 1825 1826 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 1827 Ctx->getParent()->rend())) { 1828 Value *C = nullptr; 1829 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 1830 UpdateRangeFromCondition(C, /*TrueDest=*/true); 1831 } 1832 }; 1833 1834 UpdateRangeFromGuards(NarrowUser); 1835 1836 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 1837 // If NarrowUserBB is statically unreachable asking dominator queries may 1838 // yield surprising results. (e.g. the block may not have a dom tree node) 1839 if (!DT->isReachableFromEntry(NarrowUserBB)) 1840 return; 1841 1842 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 1843 L->contains(DTB->getBlock()); 1844 DTB = DTB->getIDom()) { 1845 auto *BB = DTB->getBlock(); 1846 auto *TI = BB->getTerminator(); 1847 UpdateRangeFromGuards(TI); 1848 1849 auto *BI = dyn_cast<BranchInst>(TI); 1850 if (!BI || !BI->isConditional()) 1851 continue; 1852 1853 auto *TrueSuccessor = BI->getSuccessor(0); 1854 auto *FalseSuccessor = BI->getSuccessor(1); 1855 1856 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 1857 return BBE.isSingleEdge() && 1858 DT->dominates(BBE, NarrowUser->getParent()); 1859 }; 1860 1861 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 1862 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 1863 1864 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 1865 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 1866 } 1867 } 1868 1869 /// Calculates PostIncRangeInfos map for the given IV 1870 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 1871 SmallPtrSet<Instruction *, 16> Visited; 1872 SmallVector<Instruction *, 6> Worklist; 1873 Worklist.push_back(OrigPhi); 1874 Visited.insert(OrigPhi); 1875 1876 while (!Worklist.empty()) { 1877 Instruction *NarrowDef = Worklist.pop_back_val(); 1878 1879 for (Use &U : NarrowDef->uses()) { 1880 auto *NarrowUser = cast<Instruction>(U.getUser()); 1881 1882 // Don't go looking outside the current loop. 1883 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 1884 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 1885 continue; 1886 1887 if (!Visited.insert(NarrowUser).second) 1888 continue; 1889 1890 Worklist.push_back(NarrowUser); 1891 1892 calculatePostIncRange(NarrowDef, NarrowUser); 1893 } 1894 } 1895 } 1896 1897 //===----------------------------------------------------------------------===// 1898 // Live IV Reduction - Minimize IVs live across the loop. 1899 //===----------------------------------------------------------------------===// 1900 1901 //===----------------------------------------------------------------------===// 1902 // Simplification of IV users based on SCEV evaluation. 1903 //===----------------------------------------------------------------------===// 1904 1905 namespace { 1906 1907 class IndVarSimplifyVisitor : public IVVisitor { 1908 ScalarEvolution *SE; 1909 const TargetTransformInfo *TTI; 1910 PHINode *IVPhi; 1911 1912 public: 1913 WideIVInfo WI; 1914 1915 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1916 const TargetTransformInfo *TTI, 1917 const DominatorTree *DTree) 1918 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1919 DT = DTree; 1920 WI.NarrowIV = IVPhi; 1921 } 1922 1923 // Implement the interface used by simplifyUsersOfIV. 1924 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1925 }; 1926 1927 } // end anonymous namespace 1928 1929 /// Iteratively perform simplification on a worklist of IV users. Each 1930 /// successive simplification may push more users which may themselves be 1931 /// candidates for simplification. 1932 /// 1933 /// Sign/Zero extend elimination is interleaved with IV simplification. 1934 bool IndVarSimplify::simplifyAndExtend(Loop *L, 1935 SCEVExpander &Rewriter, 1936 LoopInfo *LI) { 1937 SmallVector<WideIVInfo, 8> WideIVs; 1938 1939 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 1940 Intrinsic::getName(Intrinsic::experimental_guard)); 1941 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 1942 1943 SmallVector<PHINode*, 8> LoopPhis; 1944 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1945 LoopPhis.push_back(cast<PHINode>(I)); 1946 } 1947 // Each round of simplification iterates through the SimplifyIVUsers worklist 1948 // for all current phis, then determines whether any IVs can be 1949 // widened. Widening adds new phis to LoopPhis, inducing another round of 1950 // simplification on the wide IVs. 1951 bool Changed = false; 1952 while (!LoopPhis.empty()) { 1953 // Evaluate as many IV expressions as possible before widening any IVs. This 1954 // forces SCEV to set no-wrap flags before evaluating sign/zero 1955 // extension. The first time SCEV attempts to normalize sign/zero extension, 1956 // the result becomes final. So for the most predictable results, we delay 1957 // evaluation of sign/zero extend evaluation until needed, and avoid running 1958 // other SCEV based analysis prior to simplifyAndExtend. 1959 do { 1960 PHINode *CurrIV = LoopPhis.pop_back_val(); 1961 1962 // Information about sign/zero extensions of CurrIV. 1963 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1964 1965 Changed |= 1966 simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor); 1967 1968 if (Visitor.WI.WidestNativeType) { 1969 WideIVs.push_back(Visitor.WI); 1970 } 1971 } while(!LoopPhis.empty()); 1972 1973 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1974 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards); 1975 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1976 Changed = true; 1977 LoopPhis.push_back(WidePhi); 1978 } 1979 } 1980 } 1981 return Changed; 1982 } 1983 1984 //===----------------------------------------------------------------------===// 1985 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1986 //===----------------------------------------------------------------------===// 1987 1988 /// Return true if this loop's backedge taken count expression can be safely and 1989 /// cheaply expanded into an instruction sequence that can be used by 1990 /// linearFunctionTestReplace. 1991 /// 1992 /// TODO: This fails for pointer-type loop counters with greater than one byte 1993 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1994 /// we could skip this check in the case that the LFTR loop counter (chosen by 1995 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1996 /// the loop test to an inequality test by checking the target data's alignment 1997 /// of element types (given that the initial pointer value originates from or is 1998 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1999 /// However, we don't yet have a strong motivation for converting loop tests 2000 /// into inequality tests. 2001 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 2002 SCEVExpander &Rewriter) { 2003 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2004 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 2005 BackedgeTakenCount->isZero()) 2006 return false; 2007 2008 if (!L->getExitingBlock()) 2009 return false; 2010 2011 // Can't rewrite non-branch yet. 2012 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 2013 return false; 2014 2015 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 2016 return false; 2017 2018 return true; 2019 } 2020 2021 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 2022 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 2023 Instruction *IncI = dyn_cast<Instruction>(IncV); 2024 if (!IncI) 2025 return nullptr; 2026 2027 switch (IncI->getOpcode()) { 2028 case Instruction::Add: 2029 case Instruction::Sub: 2030 break; 2031 case Instruction::GetElementPtr: 2032 // An IV counter must preserve its type. 2033 if (IncI->getNumOperands() == 2) 2034 break; 2035 LLVM_FALLTHROUGH; 2036 default: 2037 return nullptr; 2038 } 2039 2040 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 2041 if (Phi && Phi->getParent() == L->getHeader()) { 2042 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 2043 return Phi; 2044 return nullptr; 2045 } 2046 if (IncI->getOpcode() == Instruction::GetElementPtr) 2047 return nullptr; 2048 2049 // Allow add/sub to be commuted. 2050 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 2051 if (Phi && Phi->getParent() == L->getHeader()) { 2052 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 2053 return Phi; 2054 } 2055 return nullptr; 2056 } 2057 2058 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 2059 static ICmpInst *getLoopTest(Loop *L) { 2060 assert(L->getExitingBlock() && "expected loop exit"); 2061 2062 BasicBlock *LatchBlock = L->getLoopLatch(); 2063 // Don't bother with LFTR if the loop is not properly simplified. 2064 if (!LatchBlock) 2065 return nullptr; 2066 2067 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2068 assert(BI && "expected exit branch"); 2069 2070 return dyn_cast<ICmpInst>(BI->getCondition()); 2071 } 2072 2073 /// linearFunctionTestReplace policy. Return true unless we can show that the 2074 /// current exit test is already sufficiently canonical. 2075 static bool needsLFTR(Loop *L, DominatorTree *DT) { 2076 // Do LFTR to simplify the exit condition to an ICMP. 2077 ICmpInst *Cond = getLoopTest(L); 2078 if (!Cond) 2079 return true; 2080 2081 // Do LFTR to simplify the exit ICMP to EQ/NE 2082 ICmpInst::Predicate Pred = Cond->getPredicate(); 2083 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 2084 return true; 2085 2086 // Look for a loop invariant RHS 2087 Value *LHS = Cond->getOperand(0); 2088 Value *RHS = Cond->getOperand(1); 2089 if (!isLoopInvariant(RHS, L, DT)) { 2090 if (!isLoopInvariant(LHS, L, DT)) 2091 return true; 2092 std::swap(LHS, RHS); 2093 } 2094 // Look for a simple IV counter LHS 2095 PHINode *Phi = dyn_cast<PHINode>(LHS); 2096 if (!Phi) 2097 Phi = getLoopPhiForCounter(LHS, L, DT); 2098 2099 if (!Phi) 2100 return true; 2101 2102 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 2103 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 2104 if (Idx < 0) 2105 return true; 2106 2107 // Do LFTR if the exit condition's IV is *not* a simple counter. 2108 Value *IncV = Phi->getIncomingValue(Idx); 2109 return Phi != getLoopPhiForCounter(IncV, L, DT); 2110 } 2111 2112 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 2113 /// down to checking that all operands are constant and listing instructions 2114 /// that may hide undef. 2115 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 2116 unsigned Depth) { 2117 if (isa<Constant>(V)) 2118 return !isa<UndefValue>(V); 2119 2120 if (Depth >= 6) 2121 return false; 2122 2123 // Conservatively handle non-constant non-instructions. For example, Arguments 2124 // may be undef. 2125 Instruction *I = dyn_cast<Instruction>(V); 2126 if (!I) 2127 return false; 2128 2129 // Load and return values may be undef. 2130 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 2131 return false; 2132 2133 // Optimistically handle other instructions. 2134 for (Value *Op : I->operands()) { 2135 if (!Visited.insert(Op).second) 2136 continue; 2137 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 2138 return false; 2139 } 2140 return true; 2141 } 2142 2143 /// Return true if the given value is concrete. We must prove that undef can 2144 /// never reach it. 2145 /// 2146 /// TODO: If we decide that this is a good approach to checking for undef, we 2147 /// may factor it into a common location. 2148 static bool hasConcreteDef(Value *V) { 2149 SmallPtrSet<Value*, 8> Visited; 2150 Visited.insert(V); 2151 return hasConcreteDefImpl(V, Visited, 0); 2152 } 2153 2154 /// Return true if this IV has any uses other than the (soon to be rewritten) 2155 /// loop exit test. 2156 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 2157 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2158 Value *IncV = Phi->getIncomingValue(LatchIdx); 2159 2160 for (User *U : Phi->users()) 2161 if (U != Cond && U != IncV) return false; 2162 2163 for (User *U : IncV->users()) 2164 if (U != Cond && U != Phi) return false; 2165 return true; 2166 } 2167 2168 /// Find an affine IV in canonical form. 2169 /// 2170 /// BECount may be an i8* pointer type. The pointer difference is already 2171 /// valid count without scaling the address stride, so it remains a pointer 2172 /// expression as far as SCEV is concerned. 2173 /// 2174 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 2175 /// 2176 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 2177 /// 2178 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 2179 /// This is difficult in general for SCEV because of potential overflow. But we 2180 /// could at least handle constant BECounts. 2181 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 2182 ScalarEvolution *SE, DominatorTree *DT) { 2183 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 2184 2185 Value *Cond = 2186 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 2187 2188 // Loop over all of the PHI nodes, looking for a simple counter. 2189 PHINode *BestPhi = nullptr; 2190 const SCEV *BestInit = nullptr; 2191 BasicBlock *LatchBlock = L->getLoopLatch(); 2192 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 2193 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2194 2195 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 2196 PHINode *Phi = cast<PHINode>(I); 2197 if (!SE->isSCEVable(Phi->getType())) 2198 continue; 2199 2200 // Avoid comparing an integer IV against a pointer Limit. 2201 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 2202 continue; 2203 2204 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 2205 if (!AR || AR->getLoop() != L || !AR->isAffine()) 2206 continue; 2207 2208 // AR may be a pointer type, while BECount is an integer type. 2209 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 2210 // AR may not be a narrower type, or we may never exit. 2211 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 2212 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 2213 continue; 2214 2215 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 2216 if (!Step || !Step->isOne()) 2217 continue; 2218 2219 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2220 Value *IncV = Phi->getIncomingValue(LatchIdx); 2221 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 2222 continue; 2223 2224 // Avoid reusing a potentially undef value to compute other values that may 2225 // have originally had a concrete definition. 2226 if (!hasConcreteDef(Phi)) { 2227 // We explicitly allow unknown phis as long as they are already used by 2228 // the loop test. In this case we assume that performing LFTR could not 2229 // increase the number of undef users. 2230 if (ICmpInst *Cond = getLoopTest(L)) { 2231 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) && 2232 Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 2233 continue; 2234 } 2235 } 2236 } 2237 const SCEV *Init = AR->getStart(); 2238 2239 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 2240 // Don't force a live loop counter if another IV can be used. 2241 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 2242 continue; 2243 2244 // Prefer to count-from-zero. This is a more "canonical" counter form. It 2245 // also prefers integer to pointer IVs. 2246 if (BestInit->isZero() != Init->isZero()) { 2247 if (BestInit->isZero()) 2248 continue; 2249 } 2250 // If two IVs both count from zero or both count from nonzero then the 2251 // narrower is likely a dead phi that has been widened. Use the wider phi 2252 // to allow the other to be eliminated. 2253 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 2254 continue; 2255 } 2256 BestPhi = Phi; 2257 BestInit = Init; 2258 } 2259 return BestPhi; 2260 } 2261 2262 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 2263 /// the new loop test. 2264 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 2265 SCEVExpander &Rewriter, ScalarEvolution *SE) { 2266 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2267 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 2268 const SCEV *IVInit = AR->getStart(); 2269 2270 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 2271 // finds a valid pointer IV. Sign extend BECount in order to materialize a 2272 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 2273 // the existing GEPs whenever possible. 2274 if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) { 2275 // IVOffset will be the new GEP offset that is interpreted by GEP as a 2276 // signed value. IVCount on the other hand represents the loop trip count, 2277 // which is an unsigned value. FindLoopCounter only allows induction 2278 // variables that have a positive unit stride of one. This means we don't 2279 // have to handle the case of negative offsets (yet) and just need to zero 2280 // extend IVCount. 2281 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 2282 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 2283 2284 // Expand the code for the iteration count. 2285 assert(SE->isLoopInvariant(IVOffset, L) && 2286 "Computed iteration count is not loop invariant!"); 2287 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2288 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 2289 2290 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 2291 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 2292 // We could handle pointer IVs other than i8*, but we need to compensate for 2293 // gep index scaling. See canExpandBackedgeTakenCount comments. 2294 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 2295 cast<PointerType>(GEPBase->getType()) 2296 ->getElementType())->isOne() && 2297 "unit stride pointer IV must be i8*"); 2298 2299 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2300 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 2301 } else { 2302 // In any other case, convert both IVInit and IVCount to integers before 2303 // comparing. This may result in SCEV expansion of pointers, but in practice 2304 // SCEV will fold the pointer arithmetic away as such: 2305 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 2306 // 2307 // Valid Cases: (1) both integers is most common; (2) both may be pointers 2308 // for simple memset-style loops. 2309 // 2310 // IVInit integer and IVCount pointer would only occur if a canonical IV 2311 // were generated on top of case #2, which is not expected. 2312 2313 const SCEV *IVLimit = nullptr; 2314 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 2315 // For non-zero Start, compute IVCount here. 2316 if (AR->getStart()->isZero()) 2317 IVLimit = IVCount; 2318 else { 2319 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 2320 const SCEV *IVInit = AR->getStart(); 2321 2322 // For integer IVs, truncate the IV before computing IVInit + BECount. 2323 if (SE->getTypeSizeInBits(IVInit->getType()) 2324 > SE->getTypeSizeInBits(IVCount->getType())) 2325 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 2326 2327 IVLimit = SE->getAddExpr(IVInit, IVCount); 2328 } 2329 // Expand the code for the iteration count. 2330 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2331 IRBuilder<> Builder(BI); 2332 assert(SE->isLoopInvariant(IVLimit, L) && 2333 "Computed iteration count is not loop invariant!"); 2334 // Ensure that we generate the same type as IndVar, or a smaller integer 2335 // type. In the presence of null pointer values, we have an integer type 2336 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 2337 Type *LimitTy = IVCount->getType()->isPointerTy() ? 2338 IndVar->getType() : IVCount->getType(); 2339 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 2340 } 2341 } 2342 2343 /// This method rewrites the exit condition of the loop to be a canonical != 2344 /// comparison against the incremented loop induction variable. This pass is 2345 /// able to rewrite the exit tests of any loop where the SCEV analysis can 2346 /// determine a loop-invariant trip count of the loop, which is actually a much 2347 /// broader range than just linear tests. 2348 bool IndVarSimplify:: 2349 linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 2350 PHINode *IndVar, SCEVExpander &Rewriter) { 2351 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 2352 2353 // Initialize CmpIndVar and IVCount to their preincremented values. 2354 Value *CmpIndVar = IndVar; 2355 const SCEV *IVCount = BackedgeTakenCount; 2356 2357 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 2358 2359 // If the exiting block is the same as the backedge block, we prefer to 2360 // compare against the post-incremented value, otherwise we must compare 2361 // against the preincremented value. 2362 if (L->getExitingBlock() == L->getLoopLatch()) { 2363 // Add one to the "backedge-taken" count to get the trip count. 2364 // This addition may overflow, which is valid as long as the comparison is 2365 // truncated to BackedgeTakenCount->getType(). 2366 IVCount = SE->getAddExpr(BackedgeTakenCount, 2367 SE->getOne(BackedgeTakenCount->getType())); 2368 // The BackedgeTaken expression contains the number of times that the 2369 // backedge branches to the loop header. This is one less than the 2370 // number of times the loop executes, so use the incremented indvar. 2371 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 2372 } 2373 2374 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 2375 assert(ExitCnt->getType()->isPointerTy() == 2376 IndVar->getType()->isPointerTy() && 2377 "genLoopLimit missed a cast"); 2378 2379 // Insert a new icmp_ne or icmp_eq instruction before the branch. 2380 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2381 ICmpInst::Predicate P; 2382 if (L->contains(BI->getSuccessor(0))) 2383 P = ICmpInst::ICMP_NE; 2384 else 2385 P = ICmpInst::ICMP_EQ; 2386 2387 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 2388 << " LHS:" << *CmpIndVar << '\n' 2389 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 2390 << "\n" 2391 << " RHS:\t" << *ExitCnt << "\n" 2392 << " IVCount:\t" << *IVCount << "\n"); 2393 2394 IRBuilder<> Builder(BI); 2395 2396 // The new loop exit condition should reuse the debug location of the 2397 // original loop exit condition. 2398 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 2399 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 2400 2401 // LFTR can ignore IV overflow and truncate to the width of 2402 // BECount. This avoids materializing the add(zext(add)) expression. 2403 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 2404 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 2405 if (CmpIndVarSize > ExitCntSize) { 2406 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2407 const SCEV *ARStart = AR->getStart(); 2408 const SCEV *ARStep = AR->getStepRecurrence(*SE); 2409 // For constant IVCount, avoid truncation. 2410 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 2411 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 2412 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 2413 // Note that the post-inc value of BackedgeTakenCount may have overflowed 2414 // above such that IVCount is now zero. 2415 if (IVCount != BackedgeTakenCount && Count == 0) { 2416 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 2417 ++Count; 2418 } 2419 else 2420 Count = Count.zext(CmpIndVarSize); 2421 APInt NewLimit; 2422 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 2423 NewLimit = Start - Count; 2424 else 2425 NewLimit = Start + Count; 2426 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 2427 2428 LLVM_DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 2429 } else { 2430 // We try to extend trip count first. If that doesn't work we truncate IV. 2431 // Zext(trunc(IV)) == IV implies equivalence of the following two: 2432 // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If 2433 // one of the two holds, extend the trip count, otherwise we truncate IV. 2434 bool Extended = false; 2435 const SCEV *IV = SE->getSCEV(CmpIndVar); 2436 const SCEV *ZExtTrunc = 2437 SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2438 ExitCnt->getType()), 2439 CmpIndVar->getType()); 2440 2441 if (ZExtTrunc == IV) { 2442 Extended = true; 2443 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 2444 "wide.trip.count"); 2445 } else { 2446 const SCEV *SExtTrunc = 2447 SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2448 ExitCnt->getType()), 2449 CmpIndVar->getType()); 2450 if (SExtTrunc == IV) { 2451 Extended = true; 2452 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 2453 "wide.trip.count"); 2454 } 2455 } 2456 2457 if (!Extended) 2458 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 2459 "lftr.wideiv"); 2460 } 2461 } 2462 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 2463 Value *OrigCond = BI->getCondition(); 2464 // It's tempting to use replaceAllUsesWith here to fully replace the old 2465 // comparison, but that's not immediately safe, since users of the old 2466 // comparison may not be dominated by the new comparison. Instead, just 2467 // update the branch to use the new comparison; in the common case this 2468 // will make old comparison dead. 2469 BI->setCondition(Cond); 2470 DeadInsts.push_back(OrigCond); 2471 2472 ++NumLFTR; 2473 return true; 2474 } 2475 2476 //===----------------------------------------------------------------------===// 2477 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2478 //===----------------------------------------------------------------------===// 2479 2480 /// If there's a single exit block, sink any loop-invariant values that 2481 /// were defined in the preheader but not used inside the loop into the 2482 /// exit block to reduce register pressure in the loop. 2483 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2484 BasicBlock *ExitBlock = L->getExitBlock(); 2485 if (!ExitBlock) return false; 2486 2487 BasicBlock *Preheader = L->getLoopPreheader(); 2488 if (!Preheader) return false; 2489 2490 bool MadeAnyChanges = false; 2491 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 2492 BasicBlock::iterator I(Preheader->getTerminator()); 2493 while (I != Preheader->begin()) { 2494 --I; 2495 // New instructions were inserted at the end of the preheader. 2496 if (isa<PHINode>(I)) 2497 break; 2498 2499 // Don't move instructions which might have side effects, since the side 2500 // effects need to complete before instructions inside the loop. Also don't 2501 // move instructions which might read memory, since the loop may modify 2502 // memory. Note that it's okay if the instruction might have undefined 2503 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2504 // block. 2505 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2506 continue; 2507 2508 // Skip debug info intrinsics. 2509 if (isa<DbgInfoIntrinsic>(I)) 2510 continue; 2511 2512 // Skip eh pad instructions. 2513 if (I->isEHPad()) 2514 continue; 2515 2516 // Don't sink alloca: we never want to sink static alloca's out of the 2517 // entry block, and correctly sinking dynamic alloca's requires 2518 // checks for stacksave/stackrestore intrinsics. 2519 // FIXME: Refactor this check somehow? 2520 if (isa<AllocaInst>(I)) 2521 continue; 2522 2523 // Determine if there is a use in or before the loop (direct or 2524 // otherwise). 2525 bool UsedInLoop = false; 2526 for (Use &U : I->uses()) { 2527 Instruction *User = cast<Instruction>(U.getUser()); 2528 BasicBlock *UseBB = User->getParent(); 2529 if (PHINode *P = dyn_cast<PHINode>(User)) { 2530 unsigned i = 2531 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2532 UseBB = P->getIncomingBlock(i); 2533 } 2534 if (UseBB == Preheader || L->contains(UseBB)) { 2535 UsedInLoop = true; 2536 break; 2537 } 2538 } 2539 2540 // If there is, the def must remain in the preheader. 2541 if (UsedInLoop) 2542 continue; 2543 2544 // Otherwise, sink it to the exit block. 2545 Instruction *ToMove = &*I; 2546 bool Done = false; 2547 2548 if (I != Preheader->begin()) { 2549 // Skip debug info intrinsics. 2550 do { 2551 --I; 2552 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2553 2554 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2555 Done = true; 2556 } else { 2557 Done = true; 2558 } 2559 2560 MadeAnyChanges = true; 2561 ToMove->moveBefore(*ExitBlock, InsertPt); 2562 if (Done) break; 2563 InsertPt = ToMove->getIterator(); 2564 } 2565 2566 return MadeAnyChanges; 2567 } 2568 2569 //===----------------------------------------------------------------------===// 2570 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2571 //===----------------------------------------------------------------------===// 2572 2573 bool IndVarSimplify::run(Loop *L) { 2574 // We need (and expect!) the incoming loop to be in LCSSA. 2575 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2576 "LCSSA required to run indvars!"); 2577 bool Changed = false; 2578 2579 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2580 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2581 // canonicalization can be a pessimization without LSR to "clean up" 2582 // afterwards. 2583 // - We depend on having a preheader; in particular, 2584 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2585 // and we're in trouble if we can't find the induction variable even when 2586 // we've manually inserted one. 2587 // - LFTR relies on having a single backedge. 2588 if (!L->isLoopSimplifyForm()) 2589 return false; 2590 2591 // If there are any floating-point recurrences, attempt to 2592 // transform them to use integer recurrences. 2593 Changed |= rewriteNonIntegerIVs(L); 2594 2595 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2596 2597 // Create a rewriter object which we'll use to transform the code with. 2598 SCEVExpander Rewriter(*SE, DL, "indvars"); 2599 #ifndef NDEBUG 2600 Rewriter.setDebugType(DEBUG_TYPE); 2601 #endif 2602 2603 // Eliminate redundant IV users. 2604 // 2605 // Simplification works best when run before other consumers of SCEV. We 2606 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2607 // other expressions involving loop IVs have been evaluated. This helps SCEV 2608 // set no-wrap flags before normalizing sign/zero extension. 2609 Rewriter.disableCanonicalMode(); 2610 Changed |= simplifyAndExtend(L, Rewriter, LI); 2611 2612 // Check to see if this loop has a computable loop-invariant execution count. 2613 // If so, this means that we can compute the final value of any expressions 2614 // that are recurrent in the loop, and substitute the exit values from the 2615 // loop into any instructions outside of the loop that use the final values of 2616 // the current expressions. 2617 // 2618 if (ReplaceExitValue != NeverRepl && 2619 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2620 Changed |= rewriteLoopExitValues(L, Rewriter); 2621 2622 // Eliminate redundant IV cycles. 2623 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2624 2625 // If we have a trip count expression, rewrite the loop's exit condition 2626 // using it. We can currently only handle loops with a single exit. 2627 if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) && 2628 needsLFTR(L, DT)) { 2629 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2630 if (IndVar) { 2631 // Check preconditions for proper SCEVExpander operation. SCEV does not 2632 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2633 // pass that uses the SCEVExpander must do it. This does not work well for 2634 // loop passes because SCEVExpander makes assumptions about all loops, 2635 // while LoopPassManager only forces the current loop to be simplified. 2636 // 2637 // FIXME: SCEV expansion has no way to bail out, so the caller must 2638 // explicitly check any assumptions made by SCEV. Brittle. 2639 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2640 if (!AR || AR->getLoop()->getLoopPreheader()) 2641 Changed |= linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2642 Rewriter); 2643 } 2644 } 2645 // Clear the rewriter cache, because values that are in the rewriter's cache 2646 // can be deleted in the loop below, causing the AssertingVH in the cache to 2647 // trigger. 2648 Rewriter.clear(); 2649 2650 // Now that we're done iterating through lists, clean up any instructions 2651 // which are now dead. 2652 while (!DeadInsts.empty()) 2653 if (Instruction *Inst = 2654 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2655 Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2656 2657 // The Rewriter may not be used from this point on. 2658 2659 // Loop-invariant instructions in the preheader that aren't used in the 2660 // loop may be sunk below the loop to reduce register pressure. 2661 Changed |= sinkUnusedInvariants(L); 2662 2663 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2664 // trip count and therefore can further simplify exit values in addition to 2665 // rewriteLoopExitValues. 2666 Changed |= rewriteFirstIterationLoopExitValues(L); 2667 2668 // Clean up dead instructions. 2669 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2670 2671 // Check a post-condition. 2672 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2673 "Indvars did not preserve LCSSA!"); 2674 2675 // Verify that LFTR, and any other change have not interfered with SCEV's 2676 // ability to compute trip count. 2677 #ifndef NDEBUG 2678 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2679 SE->forgetLoop(L); 2680 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2681 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2682 SE->getTypeSizeInBits(NewBECount->getType())) 2683 NewBECount = SE->getTruncateOrNoop(NewBECount, 2684 BackedgeTakenCount->getType()); 2685 else 2686 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2687 NewBECount->getType()); 2688 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2689 } 2690 #endif 2691 2692 return Changed; 2693 } 2694 2695 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 2696 LoopStandardAnalysisResults &AR, 2697 LPMUpdater &) { 2698 Function *F = L.getHeader()->getParent(); 2699 const DataLayout &DL = F->getParent()->getDataLayout(); 2700 2701 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI); 2702 if (!IVS.run(&L)) 2703 return PreservedAnalyses::all(); 2704 2705 auto PA = getLoopPassPreservedAnalyses(); 2706 PA.preserveSet<CFGAnalyses>(); 2707 return PA; 2708 } 2709 2710 namespace { 2711 2712 struct IndVarSimplifyLegacyPass : public LoopPass { 2713 static char ID; // Pass identification, replacement for typeid 2714 2715 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2716 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2717 } 2718 2719 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2720 if (skipLoop(L)) 2721 return false; 2722 2723 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2724 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2725 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2726 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2727 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2728 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2729 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2730 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2731 2732 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2733 return IVS.run(L); 2734 } 2735 2736 void getAnalysisUsage(AnalysisUsage &AU) const override { 2737 AU.setPreservesCFG(); 2738 getLoopAnalysisUsage(AU); 2739 } 2740 }; 2741 2742 } // end anonymous namespace 2743 2744 char IndVarSimplifyLegacyPass::ID = 0; 2745 2746 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2747 "Induction Variable Simplification", false, false) 2748 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2749 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2750 "Induction Variable Simplification", false, false) 2751 2752 Pass *llvm::createIndVarSimplifyPass() { 2753 return new IndVarSimplifyLegacyPass(); 2754 } 2755