1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #define DEBUG_TYPE "indvars" 28 #include "llvm/Transforms/Scalar.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopPass.h" 34 #include "llvm/Analysis/ScalarEvolutionExpander.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Support/CFG.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetLibraryInfo.h" 48 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 49 #include "llvm/Transforms/Utils/Local.h" 50 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 51 using namespace llvm; 52 53 STATISTIC(NumWidened , "Number of indvars widened"); 54 STATISTIC(NumReplaced , "Number of exit values replaced"); 55 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 56 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 57 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 58 59 // Trip count verification can be enabled by default under NDEBUG if we 60 // implement a strong expression equivalence checker in SCEV. Until then, we 61 // use the verify-indvars flag, which may assert in some cases. 62 static cl::opt<bool> VerifyIndvars( 63 "verify-indvars", cl::Hidden, 64 cl::desc("Verify the ScalarEvolution result after running indvars")); 65 66 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden, 67 cl::desc("Reduce live induction variables.")); 68 69 namespace { 70 class IndVarSimplify : public LoopPass { 71 LoopInfo *LI; 72 ScalarEvolution *SE; 73 DominatorTree *DT; 74 DataLayout *TD; 75 TargetLibraryInfo *TLI; 76 77 SmallVector<WeakVH, 16> DeadInsts; 78 bool Changed; 79 public: 80 81 static char ID; // Pass identification, replacement for typeid 82 IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0), 83 Changed(false) { 84 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 85 } 86 87 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 88 89 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 90 AU.addRequired<DominatorTreeWrapperPass>(); 91 AU.addRequired<LoopInfo>(); 92 AU.addRequired<ScalarEvolution>(); 93 AU.addRequiredID(LoopSimplifyID); 94 AU.addRequiredID(LCSSAID); 95 AU.addPreserved<ScalarEvolution>(); 96 AU.addPreservedID(LoopSimplifyID); 97 AU.addPreservedID(LCSSAID); 98 AU.setPreservesCFG(); 99 } 100 101 private: 102 virtual void releaseMemory() { 103 DeadInsts.clear(); 104 } 105 106 bool isValidRewrite(Value *FromVal, Value *ToVal); 107 108 void HandleFloatingPointIV(Loop *L, PHINode *PH); 109 void RewriteNonIntegerIVs(Loop *L); 110 111 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM); 112 113 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 114 115 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 116 PHINode *IndVar, SCEVExpander &Rewriter); 117 118 void SinkUnusedInvariants(Loop *L); 119 }; 120 } 121 122 char IndVarSimplify::ID = 0; 123 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 124 "Induction Variable Simplification", false, false) 125 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 126 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 127 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 128 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 129 INITIALIZE_PASS_DEPENDENCY(LCSSA) 130 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 131 "Induction Variable Simplification", false, false) 132 133 Pass *llvm::createIndVarSimplifyPass() { 134 return new IndVarSimplify(); 135 } 136 137 /// isValidRewrite - Return true if the SCEV expansion generated by the 138 /// rewriter can replace the original value. SCEV guarantees that it 139 /// produces the same value, but the way it is produced may be illegal IR. 140 /// Ideally, this function will only be called for verification. 141 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 142 // If an SCEV expression subsumed multiple pointers, its expansion could 143 // reassociate the GEP changing the base pointer. This is illegal because the 144 // final address produced by a GEP chain must be inbounds relative to its 145 // underlying object. Otherwise basic alias analysis, among other things, 146 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 147 // producing an expression involving multiple pointers. Until then, we must 148 // bail out here. 149 // 150 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 151 // because it understands lcssa phis while SCEV does not. 152 Value *FromPtr = FromVal; 153 Value *ToPtr = ToVal; 154 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) { 155 FromPtr = GEP->getPointerOperand(); 156 } 157 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) { 158 ToPtr = GEP->getPointerOperand(); 159 } 160 if (FromPtr != FromVal || ToPtr != ToVal) { 161 // Quickly check the common case 162 if (FromPtr == ToPtr) 163 return true; 164 165 // SCEV may have rewritten an expression that produces the GEP's pointer 166 // operand. That's ok as long as the pointer operand has the same base 167 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 168 // base of a recurrence. This handles the case in which SCEV expansion 169 // converts a pointer type recurrence into a nonrecurrent pointer base 170 // indexed by an integer recurrence. 171 172 // If the GEP base pointer is a vector of pointers, abort. 173 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 174 return false; 175 176 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 177 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 178 if (FromBase == ToBase) 179 return true; 180 181 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 182 << *FromBase << " != " << *ToBase << "\n"); 183 184 return false; 185 } 186 return true; 187 } 188 189 /// Determine the insertion point for this user. By default, insert immediately 190 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 191 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 192 /// common dominator for the incoming blocks. 193 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 194 DominatorTree *DT) { 195 PHINode *PHI = dyn_cast<PHINode>(User); 196 if (!PHI) 197 return User; 198 199 Instruction *InsertPt = 0; 200 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 201 if (PHI->getIncomingValue(i) != Def) 202 continue; 203 204 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 205 if (!InsertPt) { 206 InsertPt = InsertBB->getTerminator(); 207 continue; 208 } 209 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 210 InsertPt = InsertBB->getTerminator(); 211 } 212 assert(InsertPt && "Missing phi operand"); 213 assert((!isa<Instruction>(Def) || 214 DT->dominates(cast<Instruction>(Def), InsertPt)) && 215 "def does not dominate all uses"); 216 return InsertPt; 217 } 218 219 //===----------------------------------------------------------------------===// 220 // RewriteNonIntegerIVs and helpers. Prefer integer IVs. 221 //===----------------------------------------------------------------------===// 222 223 /// ConvertToSInt - Convert APF to an integer, if possible. 224 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 225 bool isExact = false; 226 // See if we can convert this to an int64_t 227 uint64_t UIntVal; 228 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 229 &isExact) != APFloat::opOK || !isExact) 230 return false; 231 IntVal = UIntVal; 232 return true; 233 } 234 235 /// HandleFloatingPointIV - If the loop has floating induction variable 236 /// then insert corresponding integer induction variable if possible. 237 /// For example, 238 /// for(double i = 0; i < 10000; ++i) 239 /// bar(i) 240 /// is converted into 241 /// for(int i = 0; i < 10000; ++i) 242 /// bar((double)i); 243 /// 244 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { 245 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 246 unsigned BackEdge = IncomingEdge^1; 247 248 // Check incoming value. 249 ConstantFP *InitValueVal = 250 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 251 252 int64_t InitValue; 253 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 254 return; 255 256 // Check IV increment. Reject this PN if increment operation is not 257 // an add or increment value can not be represented by an integer. 258 BinaryOperator *Incr = 259 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 260 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return; 261 262 // If this is not an add of the PHI with a constantfp, or if the constant fp 263 // is not an integer, bail out. 264 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 265 int64_t IncValue; 266 if (IncValueVal == 0 || Incr->getOperand(0) != PN || 267 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 268 return; 269 270 // Check Incr uses. One user is PN and the other user is an exit condition 271 // used by the conditional terminator. 272 Value::use_iterator IncrUse = Incr->use_begin(); 273 Instruction *U1 = cast<Instruction>(*IncrUse++); 274 if (IncrUse == Incr->use_end()) return; 275 Instruction *U2 = cast<Instruction>(*IncrUse++); 276 if (IncrUse != Incr->use_end()) return; 277 278 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 279 // only used by a branch, we can't transform it. 280 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 281 if (!Compare) 282 Compare = dyn_cast<FCmpInst>(U2); 283 if (Compare == 0 || !Compare->hasOneUse() || 284 !isa<BranchInst>(Compare->use_back())) 285 return; 286 287 BranchInst *TheBr = cast<BranchInst>(Compare->use_back()); 288 289 // We need to verify that the branch actually controls the iteration count 290 // of the loop. If not, the new IV can overflow and no one will notice. 291 // The branch block must be in the loop and one of the successors must be out 292 // of the loop. 293 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 294 if (!L->contains(TheBr->getParent()) || 295 (L->contains(TheBr->getSuccessor(0)) && 296 L->contains(TheBr->getSuccessor(1)))) 297 return; 298 299 300 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 301 // transform it. 302 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 303 int64_t ExitValue; 304 if (ExitValueVal == 0 || 305 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 306 return; 307 308 // Find new predicate for integer comparison. 309 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 310 switch (Compare->getPredicate()) { 311 default: return; // Unknown comparison. 312 case CmpInst::FCMP_OEQ: 313 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 314 case CmpInst::FCMP_ONE: 315 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 316 case CmpInst::FCMP_OGT: 317 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 318 case CmpInst::FCMP_OGE: 319 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 320 case CmpInst::FCMP_OLT: 321 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 322 case CmpInst::FCMP_OLE: 323 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 324 } 325 326 // We convert the floating point induction variable to a signed i32 value if 327 // we can. This is only safe if the comparison will not overflow in a way 328 // that won't be trapped by the integer equivalent operations. Check for this 329 // now. 330 // TODO: We could use i64 if it is native and the range requires it. 331 332 // The start/stride/exit values must all fit in signed i32. 333 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 334 return; 335 336 // If not actually striding (add x, 0.0), avoid touching the code. 337 if (IncValue == 0) 338 return; 339 340 // Positive and negative strides have different safety conditions. 341 if (IncValue > 0) { 342 // If we have a positive stride, we require the init to be less than the 343 // exit value. 344 if (InitValue >= ExitValue) 345 return; 346 347 uint32_t Range = uint32_t(ExitValue-InitValue); 348 // Check for infinite loop, either: 349 // while (i <= Exit) or until (i > Exit) 350 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 351 if (++Range == 0) return; // Range overflows. 352 } 353 354 unsigned Leftover = Range % uint32_t(IncValue); 355 356 // If this is an equality comparison, we require that the strided value 357 // exactly land on the exit value, otherwise the IV condition will wrap 358 // around and do things the fp IV wouldn't. 359 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 360 Leftover != 0) 361 return; 362 363 // If the stride would wrap around the i32 before exiting, we can't 364 // transform the IV. 365 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 366 return; 367 368 } else { 369 // If we have a negative stride, we require the init to be greater than the 370 // exit value. 371 if (InitValue <= ExitValue) 372 return; 373 374 uint32_t Range = uint32_t(InitValue-ExitValue); 375 // Check for infinite loop, either: 376 // while (i >= Exit) or until (i < Exit) 377 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 378 if (++Range == 0) return; // Range overflows. 379 } 380 381 unsigned Leftover = Range % uint32_t(-IncValue); 382 383 // If this is an equality comparison, we require that the strided value 384 // exactly land on the exit value, otherwise the IV condition will wrap 385 // around and do things the fp IV wouldn't. 386 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 387 Leftover != 0) 388 return; 389 390 // If the stride would wrap around the i32 before exiting, we can't 391 // transform the IV. 392 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 393 return; 394 } 395 396 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 397 398 // Insert new integer induction variable. 399 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 400 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 401 PN->getIncomingBlock(IncomingEdge)); 402 403 Value *NewAdd = 404 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 405 Incr->getName()+".int", Incr); 406 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 407 408 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 409 ConstantInt::get(Int32Ty, ExitValue), 410 Compare->getName()); 411 412 // In the following deletions, PN may become dead and may be deleted. 413 // Use a WeakVH to observe whether this happens. 414 WeakVH WeakPH = PN; 415 416 // Delete the old floating point exit comparison. The branch starts using the 417 // new comparison. 418 NewCompare->takeName(Compare); 419 Compare->replaceAllUsesWith(NewCompare); 420 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 421 422 // Delete the old floating point increment. 423 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 424 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 425 426 // If the FP induction variable still has uses, this is because something else 427 // in the loop uses its value. In order to canonicalize the induction 428 // variable, we chose to eliminate the IV and rewrite it in terms of an 429 // int->fp cast. 430 // 431 // We give preference to sitofp over uitofp because it is faster on most 432 // platforms. 433 if (WeakPH) { 434 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 435 PN->getParent()->getFirstInsertionPt()); 436 PN->replaceAllUsesWith(Conv); 437 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 438 } 439 Changed = true; 440 } 441 442 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { 443 // First step. Check to see if there are any floating-point recurrences. 444 // If there are, change them into integer recurrences, permitting analysis by 445 // the SCEV routines. 446 // 447 BasicBlock *Header = L->getHeader(); 448 449 SmallVector<WeakVH, 8> PHIs; 450 for (BasicBlock::iterator I = Header->begin(); 451 PHINode *PN = dyn_cast<PHINode>(I); ++I) 452 PHIs.push_back(PN); 453 454 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 455 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 456 HandleFloatingPointIV(L, PN); 457 458 // If the loop previously had floating-point IV, ScalarEvolution 459 // may not have been able to compute a trip count. Now that we've done some 460 // re-writing, the trip count may be computable. 461 if (Changed) 462 SE->forgetLoop(L); 463 } 464 465 //===----------------------------------------------------------------------===// 466 // RewriteLoopExitValues - Optimize IV users outside the loop. 467 // As a side effect, reduces the amount of IV processing within the loop. 468 //===----------------------------------------------------------------------===// 469 470 /// RewriteLoopExitValues - Check to see if this loop has a computable 471 /// loop-invariant execution count. If so, this means that we can compute the 472 /// final value of any expressions that are recurrent in the loop, and 473 /// substitute the exit values from the loop into any instructions outside of 474 /// the loop that use the final values of the current expressions. 475 /// 476 /// This is mostly redundant with the regular IndVarSimplify activities that 477 /// happen later, except that it's more powerful in some cases, because it's 478 /// able to brute-force evaluate arbitrary instructions as long as they have 479 /// constant operands at the beginning of the loop. 480 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 481 // Verify the input to the pass in already in LCSSA form. 482 assert(L->isLCSSAForm(*DT)); 483 484 SmallVector<BasicBlock*, 8> ExitBlocks; 485 L->getUniqueExitBlocks(ExitBlocks); 486 487 // Find all values that are computed inside the loop, but used outside of it. 488 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 489 // the exit blocks of the loop to find them. 490 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 491 BasicBlock *ExitBB = ExitBlocks[i]; 492 493 // If there are no PHI nodes in this exit block, then no values defined 494 // inside the loop are used on this path, skip it. 495 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 496 if (!PN) continue; 497 498 unsigned NumPreds = PN->getNumIncomingValues(); 499 500 // We would like to be able to RAUW single-incoming value PHI nodes. We 501 // have to be certain this is safe even when this is an LCSSA PHI node. 502 // While the computed exit value is no longer varying in *this* loop, the 503 // exit block may be an exit block for an outer containing loop as well, 504 // the exit value may be varying in the outer loop, and thus it may still 505 // require an LCSSA PHI node. The safe case is when this is 506 // single-predecessor PHI node (LCSSA) and the exit block containing it is 507 // part of the enclosing loop, or this is the outer most loop of the nest. 508 // In either case the exit value could (at most) be varying in the same 509 // loop body as the phi node itself. Thus if it is in turn used outside of 510 // an enclosing loop it will only be via a separate LCSSA node. 511 bool LCSSASafePhiForRAUW = 512 NumPreds == 1 && 513 (!L->getParentLoop() || L->getParentLoop() == LI->getLoopFor(ExitBB)); 514 515 // Iterate over all of the PHI nodes. 516 BasicBlock::iterator BBI = ExitBB->begin(); 517 while ((PN = dyn_cast<PHINode>(BBI++))) { 518 if (PN->use_empty()) 519 continue; // dead use, don't replace it 520 521 // SCEV only supports integer expressions for now. 522 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 523 continue; 524 525 // It's necessary to tell ScalarEvolution about this explicitly so that 526 // it can walk the def-use list and forget all SCEVs, as it may not be 527 // watching the PHI itself. Once the new exit value is in place, there 528 // may not be a def-use connection between the loop and every instruction 529 // which got a SCEVAddRecExpr for that loop. 530 SE->forgetValue(PN); 531 532 // Iterate over all of the values in all the PHI nodes. 533 for (unsigned i = 0; i != NumPreds; ++i) { 534 // If the value being merged in is not integer or is not defined 535 // in the loop, skip it. 536 Value *InVal = PN->getIncomingValue(i); 537 if (!isa<Instruction>(InVal)) 538 continue; 539 540 // If this pred is for a subloop, not L itself, skip it. 541 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 542 continue; // The Block is in a subloop, skip it. 543 544 // Check that InVal is defined in the loop. 545 Instruction *Inst = cast<Instruction>(InVal); 546 if (!L->contains(Inst)) 547 continue; 548 549 // Okay, this instruction has a user outside of the current loop 550 // and varies predictably *inside* the loop. Evaluate the value it 551 // contains when the loop exits, if possible. 552 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 553 if (!SE->isLoopInvariant(ExitValue, L) || 554 !isSafeToExpand(ExitValue, *SE)) 555 continue; 556 557 // Computing the value outside of the loop brings no benefit if : 558 // - it is definitely used inside the loop in a way which can not be 559 // optimized away. 560 // - no use outside of the loop can take advantage of hoisting the 561 // computation out of the loop 562 if (ExitValue->getSCEVType()>=scMulExpr) { 563 unsigned NumHardInternalUses = 0; 564 unsigned NumSoftExternalUses = 0; 565 unsigned NumUses = 0; 566 for (Value::use_iterator IB=Inst->use_begin(), IE=Inst->use_end(); 567 IB!=IE && NumUses<=6 ; ++IB) { 568 Instruction *UseInstr = cast<Instruction>(*IB); 569 unsigned Opc = UseInstr->getOpcode(); 570 NumUses++; 571 if (L->contains(UseInstr)) { 572 if (Opc == Instruction::Call || Opc == Instruction::Ret) 573 NumHardInternalUses++; 574 } else { 575 if (Opc == Instruction::PHI) { 576 // Do not count the Phi as a use. LCSSA may have inserted 577 // plenty of trivial ones. 578 NumUses--; 579 for (Value::use_iterator PB=UseInstr->use_begin(), 580 PE=UseInstr->use_end(); 581 PB!=PE && NumUses<=6 ; ++PB, ++NumUses) { 582 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 583 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 584 NumSoftExternalUses++; 585 } 586 continue; 587 } 588 if (Opc != Instruction::Call && Opc != Instruction::Ret) 589 NumSoftExternalUses++; 590 } 591 } 592 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 593 continue; 594 } 595 596 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 597 598 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 599 << " LoopVal = " << *Inst << "\n"); 600 601 if (!isValidRewrite(Inst, ExitVal)) { 602 DeadInsts.push_back(ExitVal); 603 continue; 604 } 605 Changed = true; 606 ++NumReplaced; 607 608 PN->setIncomingValue(i, ExitVal); 609 610 // If this instruction is dead now, delete it. Don't do it now to avoid 611 // invalidating iterators. 612 if (isInstructionTriviallyDead(Inst, TLI)) 613 DeadInsts.push_back(Inst); 614 615 // If we determined that this PHI is safe to replace even if an LCSSA 616 // PHI, do so. 617 if (LCSSASafePhiForRAUW) { 618 PN->replaceAllUsesWith(ExitVal); 619 PN->eraseFromParent(); 620 } 621 } 622 623 // If we were unable to completely replace the PHI node, clone the PHI 624 // and delete the original one. This lets IVUsers and any other maps 625 // purge the original user from their records. 626 if (!LCSSASafePhiForRAUW) { 627 PHINode *NewPN = cast<PHINode>(PN->clone()); 628 NewPN->takeName(PN); 629 NewPN->insertBefore(PN); 630 PN->replaceAllUsesWith(NewPN); 631 PN->eraseFromParent(); 632 } 633 } 634 } 635 636 // The insertion point instruction may have been deleted; clear it out 637 // so that the rewriter doesn't trip over it later. 638 Rewriter.clearInsertPoint(); 639 } 640 641 //===----------------------------------------------------------------------===// 642 // IV Widening - Extend the width of an IV to cover its widest uses. 643 //===----------------------------------------------------------------------===// 644 645 namespace { 646 // Collect information about induction variables that are used by sign/zero 647 // extend operations. This information is recorded by CollectExtend and 648 // provides the input to WidenIV. 649 struct WideIVInfo { 650 PHINode *NarrowIV; 651 Type *WidestNativeType; // Widest integer type created [sz]ext 652 bool IsSigned; // Was an sext user seen before a zext? 653 654 WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {} 655 }; 656 } 657 658 /// visitCast - Update information about the induction variable that is 659 /// extended by this sign or zero extend operation. This is used to determine 660 /// the final width of the IV before actually widening it. 661 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 662 const DataLayout *TD) { 663 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 664 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 665 return; 666 667 Type *Ty = Cast->getType(); 668 uint64_t Width = SE->getTypeSizeInBits(Ty); 669 if (TD && !TD->isLegalInteger(Width)) 670 return; 671 672 if (!WI.WidestNativeType) { 673 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 674 WI.IsSigned = IsSigned; 675 return; 676 } 677 678 // We extend the IV to satisfy the sign of its first user, arbitrarily. 679 if (WI.IsSigned != IsSigned) 680 return; 681 682 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 683 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 684 } 685 686 namespace { 687 688 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the 689 /// WideIV that computes the same value as the Narrow IV def. This avoids 690 /// caching Use* pointers. 691 struct NarrowIVDefUse { 692 Instruction *NarrowDef; 693 Instruction *NarrowUse; 694 Instruction *WideDef; 695 696 NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {} 697 698 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD): 699 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {} 700 }; 701 702 /// WidenIV - The goal of this transform is to remove sign and zero extends 703 /// without creating any new induction variables. To do this, it creates a new 704 /// phi of the wider type and redirects all users, either removing extends or 705 /// inserting truncs whenever we stop propagating the type. 706 /// 707 class WidenIV { 708 // Parameters 709 PHINode *OrigPhi; 710 Type *WideType; 711 bool IsSigned; 712 713 // Context 714 LoopInfo *LI; 715 Loop *L; 716 ScalarEvolution *SE; 717 DominatorTree *DT; 718 719 // Result 720 PHINode *WidePhi; 721 Instruction *WideInc; 722 const SCEV *WideIncExpr; 723 SmallVectorImpl<WeakVH> &DeadInsts; 724 725 SmallPtrSet<Instruction*,16> Widened; 726 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 727 728 public: 729 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 730 ScalarEvolution *SEv, DominatorTree *DTree, 731 SmallVectorImpl<WeakVH> &DI) : 732 OrigPhi(WI.NarrowIV), 733 WideType(WI.WidestNativeType), 734 IsSigned(WI.IsSigned), 735 LI(LInfo), 736 L(LI->getLoopFor(OrigPhi->getParent())), 737 SE(SEv), 738 DT(DTree), 739 WidePhi(0), 740 WideInc(0), 741 WideIncExpr(0), 742 DeadInsts(DI) { 743 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 744 } 745 746 PHINode *CreateWideIV(SCEVExpander &Rewriter); 747 748 protected: 749 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 750 Instruction *Use); 751 752 Instruction *CloneIVUser(NarrowIVDefUse DU); 753 754 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse); 755 756 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU); 757 758 Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 759 760 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 761 }; 762 } // anonymous namespace 763 764 /// isLoopInvariant - Perform a quick domtree based check for loop invariance 765 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems 766 /// gratuitous for this purpose. 767 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 768 Instruction *Inst = dyn_cast<Instruction>(V); 769 if (!Inst) 770 return true; 771 772 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 773 } 774 775 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 776 Instruction *Use) { 777 // Set the debug location and conservative insertion point. 778 IRBuilder<> Builder(Use); 779 // Hoist the insertion point into loop preheaders as far as possible. 780 for (const Loop *L = LI->getLoopFor(Use->getParent()); 781 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 782 L = L->getParentLoop()) 783 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 784 785 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 786 Builder.CreateZExt(NarrowOper, WideType); 787 } 788 789 /// CloneIVUser - Instantiate a wide operation to replace a narrow 790 /// operation. This only needs to handle operations that can evaluation to 791 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone. 792 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) { 793 unsigned Opcode = DU.NarrowUse->getOpcode(); 794 switch (Opcode) { 795 default: 796 return 0; 797 case Instruction::Add: 798 case Instruction::Mul: 799 case Instruction::UDiv: 800 case Instruction::Sub: 801 case Instruction::And: 802 case Instruction::Or: 803 case Instruction::Xor: 804 case Instruction::Shl: 805 case Instruction::LShr: 806 case Instruction::AShr: 807 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n"); 808 809 // Replace NarrowDef operands with WideDef. Otherwise, we don't know 810 // anything about the narrow operand yet so must insert a [sz]ext. It is 811 // probably loop invariant and will be folded or hoisted. If it actually 812 // comes from a widened IV, it should be removed during a future call to 813 // WidenIVUse. 814 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef : 815 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse); 816 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef : 817 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse); 818 819 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse); 820 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), 821 LHS, RHS, 822 NarrowBO->getName()); 823 IRBuilder<> Builder(DU.NarrowUse); 824 Builder.Insert(WideBO); 825 if (const OverflowingBinaryOperator *OBO = 826 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) { 827 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap(); 828 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap(); 829 } 830 return WideBO; 831 } 832 } 833 834 /// No-wrap operations can transfer sign extension of their result to their 835 /// operands. Generate the SCEV value for the widened operation without 836 /// actually modifying the IR yet. If the expression after extending the 837 /// operands is an AddRec for this loop, return it. 838 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) { 839 // Handle the common case of add<nsw/nuw> 840 if (DU.NarrowUse->getOpcode() != Instruction::Add) 841 return 0; 842 843 // One operand (NarrowDef) has already been extended to WideDef. Now determine 844 // if extending the other will lead to a recurrence. 845 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 846 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 847 848 const SCEV *ExtendOperExpr = 0; 849 const OverflowingBinaryOperator *OBO = 850 cast<OverflowingBinaryOperator>(DU.NarrowUse); 851 if (IsSigned && OBO->hasNoSignedWrap()) 852 ExtendOperExpr = SE->getSignExtendExpr( 853 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 854 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 855 ExtendOperExpr = SE->getZeroExtendExpr( 856 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 857 else 858 return 0; 859 860 // When creating this AddExpr, don't apply the current operations NSW or NUW 861 // flags. This instruction may be guarded by control flow that the no-wrap 862 // behavior depends on. Non-control-equivalent instructions can be mapped to 863 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 864 // semantics to those operations. 865 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>( 866 SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr)); 867 868 if (!AddRec || AddRec->getLoop() != L) 869 return 0; 870 return AddRec; 871 } 872 873 /// GetWideRecurrence - Is this instruction potentially interesting from 874 /// IVUsers' perspective after widening it's type? In other words, can the 875 /// extend be safely hoisted out of the loop with SCEV reducing the value to a 876 /// recurrence on the same loop. If so, return the sign or zero extended 877 /// recurrence. Otherwise return NULL. 878 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) { 879 if (!SE->isSCEVable(NarrowUse->getType())) 880 return 0; 881 882 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 883 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 884 >= SE->getTypeSizeInBits(WideType)) { 885 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 886 // index. So don't follow this use. 887 return 0; 888 } 889 890 const SCEV *WideExpr = IsSigned ? 891 SE->getSignExtendExpr(NarrowExpr, WideType) : 892 SE->getZeroExtendExpr(NarrowExpr, WideType); 893 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 894 if (!AddRec || AddRec->getLoop() != L) 895 return 0; 896 return AddRec; 897 } 898 899 /// This IV user cannot be widen. Replace this use of the original narrow IV 900 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 901 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) { 902 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef 903 << " for user " << *DU.NarrowUse << "\n"); 904 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 905 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 906 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 907 } 908 909 /// WidenIVUse - Determine whether an individual user of the narrow IV can be 910 /// widened. If so, return the wide clone of the user. 911 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 912 913 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 914 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 915 if (LI->getLoopFor(UsePhi->getParent()) != L) { 916 // For LCSSA phis, sink the truncate outside the loop. 917 // After SimplifyCFG most loop exit targets have a single predecessor. 918 // Otherwise fall back to a truncate within the loop. 919 if (UsePhi->getNumOperands() != 1) 920 truncateIVUse(DU, DT); 921 else { 922 PHINode *WidePhi = 923 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 924 UsePhi); 925 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 926 IRBuilder<> Builder(WidePhi->getParent()->getFirstInsertionPt()); 927 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 928 UsePhi->replaceAllUsesWith(Trunc); 929 DeadInsts.push_back(UsePhi); 930 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi 931 << " to " << *WidePhi << "\n"); 932 } 933 return 0; 934 } 935 } 936 // Our raison d'etre! Eliminate sign and zero extension. 937 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 938 Value *NewDef = DU.WideDef; 939 if (DU.NarrowUse->getType() != WideType) { 940 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 941 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 942 if (CastWidth < IVWidth) { 943 // The cast isn't as wide as the IV, so insert a Trunc. 944 IRBuilder<> Builder(DU.NarrowUse); 945 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 946 } 947 else { 948 // A wider extend was hidden behind a narrower one. This may induce 949 // another round of IV widening in which the intermediate IV becomes 950 // dead. It should be very rare. 951 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 952 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 953 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 954 NewDef = DU.NarrowUse; 955 } 956 } 957 if (NewDef != DU.NarrowUse) { 958 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 959 << " replaced by " << *DU.WideDef << "\n"); 960 ++NumElimExt; 961 DU.NarrowUse->replaceAllUsesWith(NewDef); 962 DeadInsts.push_back(DU.NarrowUse); 963 } 964 // Now that the extend is gone, we want to expose it's uses for potential 965 // further simplification. We don't need to directly inform SimplifyIVUsers 966 // of the new users, because their parent IV will be processed later as a 967 // new loop phi. If we preserved IVUsers analysis, we would also want to 968 // push the uses of WideDef here. 969 970 // No further widening is needed. The deceased [sz]ext had done it for us. 971 return 0; 972 } 973 974 // Does this user itself evaluate to a recurrence after widening? 975 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse); 976 if (!WideAddRec) { 977 WideAddRec = GetExtendedOperandRecurrence(DU); 978 } 979 if (!WideAddRec) { 980 // This user does not evaluate to a recurence after widening, so don't 981 // follow it. Instead insert a Trunc to kill off the original use, 982 // eventually isolating the original narrow IV so it can be removed. 983 truncateIVUse(DU, DT); 984 return 0; 985 } 986 // Assume block terminators cannot evaluate to a recurrence. We can't to 987 // insert a Trunc after a terminator if there happens to be a critical edge. 988 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 989 "SCEV is not expected to evaluate a block terminator"); 990 991 // Reuse the IV increment that SCEVExpander created as long as it dominates 992 // NarrowUse. 993 Instruction *WideUse = 0; 994 if (WideAddRec == WideIncExpr 995 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 996 WideUse = WideInc; 997 else { 998 WideUse = CloneIVUser(DU); 999 if (!WideUse) 1000 return 0; 1001 } 1002 // Evaluation of WideAddRec ensured that the narrow expression could be 1003 // extended outside the loop without overflow. This suggests that the wide use 1004 // evaluates to the same expression as the extended narrow use, but doesn't 1005 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1006 // where it fails, we simply throw away the newly created wide use. 1007 if (WideAddRec != SE->getSCEV(WideUse)) { 1008 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1009 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1010 DeadInsts.push_back(WideUse); 1011 return 0; 1012 } 1013 1014 // Returning WideUse pushes it on the worklist. 1015 return WideUse; 1016 } 1017 1018 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers. 1019 /// 1020 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1021 for (Value::use_iterator UI = NarrowDef->use_begin(), 1022 UE = NarrowDef->use_end(); UI != UE; ++UI) { 1023 Instruction *NarrowUse = cast<Instruction>(*UI); 1024 1025 // Handle data flow merges and bizarre phi cycles. 1026 if (!Widened.insert(NarrowUse)) 1027 continue; 1028 1029 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef)); 1030 } 1031 } 1032 1033 /// CreateWideIV - Process a single induction variable. First use the 1034 /// SCEVExpander to create a wide induction variable that evaluates to the same 1035 /// recurrence as the original narrow IV. Then use a worklist to forward 1036 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all 1037 /// interesting IV users, the narrow IV will be isolated for removal by 1038 /// DeleteDeadPHIs. 1039 /// 1040 /// It would be simpler to delete uses as they are processed, but we must avoid 1041 /// invalidating SCEV expressions. 1042 /// 1043 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) { 1044 // Is this phi an induction variable? 1045 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1046 if (!AddRec) 1047 return NULL; 1048 1049 // Widen the induction variable expression. 1050 const SCEV *WideIVExpr = IsSigned ? 1051 SE->getSignExtendExpr(AddRec, WideType) : 1052 SE->getZeroExtendExpr(AddRec, WideType); 1053 1054 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1055 "Expect the new IV expression to preserve its type"); 1056 1057 // Can the IV be extended outside the loop without overflow? 1058 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1059 if (!AddRec || AddRec->getLoop() != L) 1060 return NULL; 1061 1062 // An AddRec must have loop-invariant operands. Since this AddRec is 1063 // materialized by a loop header phi, the expression cannot have any post-loop 1064 // operands, so they must dominate the loop header. 1065 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1066 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1067 && "Loop header phi recurrence inputs do not dominate the loop"); 1068 1069 // The rewriter provides a value for the desired IV expression. This may 1070 // either find an existing phi or materialize a new one. Either way, we 1071 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1072 // of the phi-SCC dominates the loop entry. 1073 Instruction *InsertPt = L->getHeader()->begin(); 1074 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1075 1076 // Remembering the WideIV increment generated by SCEVExpander allows 1077 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't 1078 // employ a general reuse mechanism because the call above is the only call to 1079 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1080 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1081 WideInc = 1082 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1083 WideIncExpr = SE->getSCEV(WideInc); 1084 } 1085 1086 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1087 ++NumWidened; 1088 1089 // Traverse the def-use chain using a worklist starting at the original IV. 1090 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1091 1092 Widened.insert(OrigPhi); 1093 pushNarrowIVUsers(OrigPhi, WidePhi); 1094 1095 while (!NarrowIVUsers.empty()) { 1096 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1097 1098 // Process a def-use edge. This may replace the use, so don't hold a 1099 // use_iterator across it. 1100 Instruction *WideUse = WidenIVUse(DU, Rewriter); 1101 1102 // Follow all def-use edges from the previous narrow use. 1103 if (WideUse) 1104 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1105 1106 // WidenIVUse may have removed the def-use edge. 1107 if (DU.NarrowDef->use_empty()) 1108 DeadInsts.push_back(DU.NarrowDef); 1109 } 1110 return WidePhi; 1111 } 1112 1113 //===----------------------------------------------------------------------===// 1114 // Live IV Reduction - Minimize IVs live across the loop. 1115 //===----------------------------------------------------------------------===// 1116 1117 1118 //===----------------------------------------------------------------------===// 1119 // Simplification of IV users based on SCEV evaluation. 1120 //===----------------------------------------------------------------------===// 1121 1122 namespace { 1123 class IndVarSimplifyVisitor : public IVVisitor { 1124 ScalarEvolution *SE; 1125 const DataLayout *TD; 1126 PHINode *IVPhi; 1127 1128 public: 1129 WideIVInfo WI; 1130 1131 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1132 const DataLayout *TData, const DominatorTree *DTree): 1133 SE(SCEV), TD(TData), IVPhi(IV) { 1134 DT = DTree; 1135 WI.NarrowIV = IVPhi; 1136 if (ReduceLiveIVs) 1137 setSplitOverflowIntrinsics(); 1138 } 1139 1140 // Implement the interface used by simplifyUsersOfIV. 1141 virtual void visitCast(CastInst *Cast) { visitIVCast(Cast, WI, SE, TD); } 1142 }; 1143 } 1144 1145 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV 1146 /// users. Each successive simplification may push more users which may 1147 /// themselves be candidates for simplification. 1148 /// 1149 /// Sign/Zero extend elimination is interleaved with IV simplification. 1150 /// 1151 void IndVarSimplify::SimplifyAndExtend(Loop *L, 1152 SCEVExpander &Rewriter, 1153 LPPassManager &LPM) { 1154 SmallVector<WideIVInfo, 8> WideIVs; 1155 1156 SmallVector<PHINode*, 8> LoopPhis; 1157 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1158 LoopPhis.push_back(cast<PHINode>(I)); 1159 } 1160 // Each round of simplification iterates through the SimplifyIVUsers worklist 1161 // for all current phis, then determines whether any IVs can be 1162 // widened. Widening adds new phis to LoopPhis, inducing another round of 1163 // simplification on the wide IVs. 1164 while (!LoopPhis.empty()) { 1165 // Evaluate as many IV expressions as possible before widening any IVs. This 1166 // forces SCEV to set no-wrap flags before evaluating sign/zero 1167 // extension. The first time SCEV attempts to normalize sign/zero extension, 1168 // the result becomes final. So for the most predictable results, we delay 1169 // evaluation of sign/zero extend evaluation until needed, and avoid running 1170 // other SCEV based analysis prior to SimplifyAndExtend. 1171 do { 1172 PHINode *CurrIV = LoopPhis.pop_back_val(); 1173 1174 // Information about sign/zero extensions of CurrIV. 1175 IndVarSimplifyVisitor Visitor(CurrIV, SE, TD, DT); 1176 1177 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor); 1178 1179 if (Visitor.WI.WidestNativeType) { 1180 WideIVs.push_back(Visitor.WI); 1181 } 1182 } while(!LoopPhis.empty()); 1183 1184 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1185 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1186 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) { 1187 Changed = true; 1188 LoopPhis.push_back(WidePhi); 1189 } 1190 } 1191 } 1192 } 1193 1194 //===----------------------------------------------------------------------===// 1195 // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1196 //===----------------------------------------------------------------------===// 1197 1198 /// Check for expressions that ScalarEvolution generates to compute 1199 /// BackedgeTakenInfo. If these expressions have not been reduced, then 1200 /// expanding them may incur additional cost (albeit in the loop preheader). 1201 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI, 1202 SmallPtrSet<const SCEV*, 8> &Processed, 1203 ScalarEvolution *SE) { 1204 if (!Processed.insert(S)) 1205 return false; 1206 1207 // If the backedge-taken count is a UDiv, it's very likely a UDiv that 1208 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a 1209 // precise expression, rather than a UDiv from the user's code. If we can't 1210 // find a UDiv in the code with some simple searching, assume the former and 1211 // forego rewriting the loop. 1212 if (isa<SCEVUDivExpr>(S)) { 1213 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition()); 1214 if (!OrigCond) return true; 1215 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1)); 1216 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1)); 1217 if (R != S) { 1218 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0)); 1219 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1)); 1220 if (L != S) 1221 return true; 1222 } 1223 } 1224 1225 // Recurse past add expressions, which commonly occur in the 1226 // BackedgeTakenCount. They may already exist in program code, and if not, 1227 // they are not too expensive rematerialize. 1228 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 1229 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1230 I != E; ++I) { 1231 if (isHighCostExpansion(*I, BI, Processed, SE)) 1232 return true; 1233 } 1234 return false; 1235 } 1236 1237 // HowManyLessThans uses a Max expression whenever the loop is not guarded by 1238 // the exit condition. 1239 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S)) 1240 return true; 1241 1242 // If we haven't recognized an expensive SCEV pattern, assume it's an 1243 // expression produced by program code. 1244 return false; 1245 } 1246 1247 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken 1248 /// count expression can be safely and cheaply expanded into an instruction 1249 /// sequence that can be used by LinearFunctionTestReplace. 1250 /// 1251 /// TODO: This fails for pointer-type loop counters with greater than one byte 1252 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1253 /// we could skip this check in the case that the LFTR loop counter (chosen by 1254 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1255 /// the loop test to an inequality test by checking the target data's alignment 1256 /// of element types (given that the initial pointer value originates from or is 1257 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1258 /// However, we don't yet have a strong motivation for converting loop tests 1259 /// into inequality tests. 1260 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) { 1261 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1262 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1263 BackedgeTakenCount->isZero()) 1264 return false; 1265 1266 if (!L->getExitingBlock()) 1267 return false; 1268 1269 // Can't rewrite non-branch yet. 1270 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1271 if (!BI) 1272 return false; 1273 1274 SmallPtrSet<const SCEV*, 8> Processed; 1275 if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE)) 1276 return false; 1277 1278 return true; 1279 } 1280 1281 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop 1282 /// invariant value to the phi. 1283 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1284 Instruction *IncI = dyn_cast<Instruction>(IncV); 1285 if (!IncI) 1286 return 0; 1287 1288 switch (IncI->getOpcode()) { 1289 case Instruction::Add: 1290 case Instruction::Sub: 1291 break; 1292 case Instruction::GetElementPtr: 1293 // An IV counter must preserve its type. 1294 if (IncI->getNumOperands() == 2) 1295 break; 1296 default: 1297 return 0; 1298 } 1299 1300 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1301 if (Phi && Phi->getParent() == L->getHeader()) { 1302 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1303 return Phi; 1304 return 0; 1305 } 1306 if (IncI->getOpcode() == Instruction::GetElementPtr) 1307 return 0; 1308 1309 // Allow add/sub to be commuted. 1310 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1311 if (Phi && Phi->getParent() == L->getHeader()) { 1312 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1313 return Phi; 1314 } 1315 return 0; 1316 } 1317 1318 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1319 static ICmpInst *getLoopTest(Loop *L) { 1320 assert(L->getExitingBlock() && "expected loop exit"); 1321 1322 BasicBlock *LatchBlock = L->getLoopLatch(); 1323 // Don't bother with LFTR if the loop is not properly simplified. 1324 if (!LatchBlock) 1325 return 0; 1326 1327 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1328 assert(BI && "expected exit branch"); 1329 1330 return dyn_cast<ICmpInst>(BI->getCondition()); 1331 } 1332 1333 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show 1334 /// that the current exit test is already sufficiently canonical. 1335 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1336 // Do LFTR to simplify the exit condition to an ICMP. 1337 ICmpInst *Cond = getLoopTest(L); 1338 if (!Cond) 1339 return true; 1340 1341 // Do LFTR to simplify the exit ICMP to EQ/NE 1342 ICmpInst::Predicate Pred = Cond->getPredicate(); 1343 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1344 return true; 1345 1346 // Look for a loop invariant RHS 1347 Value *LHS = Cond->getOperand(0); 1348 Value *RHS = Cond->getOperand(1); 1349 if (!isLoopInvariant(RHS, L, DT)) { 1350 if (!isLoopInvariant(LHS, L, DT)) 1351 return true; 1352 std::swap(LHS, RHS); 1353 } 1354 // Look for a simple IV counter LHS 1355 PHINode *Phi = dyn_cast<PHINode>(LHS); 1356 if (!Phi) 1357 Phi = getLoopPhiForCounter(LHS, L, DT); 1358 1359 if (!Phi) 1360 return true; 1361 1362 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1363 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1364 if (Idx < 0) 1365 return true; 1366 1367 // Do LFTR if the exit condition's IV is *not* a simple counter. 1368 Value *IncV = Phi->getIncomingValue(Idx); 1369 return Phi != getLoopPhiForCounter(IncV, L, DT); 1370 } 1371 1372 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1373 /// down to checking that all operands are constant and listing instructions 1374 /// that may hide undef. 1375 static bool hasConcreteDefImpl(Value *V, SmallPtrSet<Value*, 8> &Visited, 1376 unsigned Depth) { 1377 if (isa<Constant>(V)) 1378 return !isa<UndefValue>(V); 1379 1380 if (Depth >= 6) 1381 return false; 1382 1383 // Conservatively handle non-constant non-instructions. For example, Arguments 1384 // may be undef. 1385 Instruction *I = dyn_cast<Instruction>(V); 1386 if (!I) 1387 return false; 1388 1389 // Load and return values may be undef. 1390 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1391 return false; 1392 1393 // Optimistically handle other instructions. 1394 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { 1395 if (!Visited.insert(*OI)) 1396 continue; 1397 if (!hasConcreteDefImpl(*OI, Visited, Depth+1)) 1398 return false; 1399 } 1400 return true; 1401 } 1402 1403 /// Return true if the given value is concrete. We must prove that undef can 1404 /// never reach it. 1405 /// 1406 /// TODO: If we decide that this is a good approach to checking for undef, we 1407 /// may factor it into a common location. 1408 static bool hasConcreteDef(Value *V) { 1409 SmallPtrSet<Value*, 8> Visited; 1410 Visited.insert(V); 1411 return hasConcreteDefImpl(V, Visited, 0); 1412 } 1413 1414 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to 1415 /// be rewritten) loop exit test. 1416 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1417 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1418 Value *IncV = Phi->getIncomingValue(LatchIdx); 1419 1420 for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end(); 1421 UI != UE; ++UI) { 1422 if (*UI != Cond && *UI != IncV) return false; 1423 } 1424 1425 for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end(); 1426 UI != UE; ++UI) { 1427 if (*UI != Cond && *UI != Phi) return false; 1428 } 1429 return true; 1430 } 1431 1432 /// FindLoopCounter - Find an affine IV in canonical form. 1433 /// 1434 /// BECount may be an i8* pointer type. The pointer difference is already 1435 /// valid count without scaling the address stride, so it remains a pointer 1436 /// expression as far as SCEV is concerned. 1437 /// 1438 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1439 /// 1440 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1441 /// 1442 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1443 /// This is difficult in general for SCEV because of potential overflow. But we 1444 /// could at least handle constant BECounts. 1445 static PHINode * 1446 FindLoopCounter(Loop *L, const SCEV *BECount, 1447 ScalarEvolution *SE, DominatorTree *DT, const DataLayout *TD) { 1448 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1449 1450 Value *Cond = 1451 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1452 1453 // Loop over all of the PHI nodes, looking for a simple counter. 1454 PHINode *BestPhi = 0; 1455 const SCEV *BestInit = 0; 1456 BasicBlock *LatchBlock = L->getLoopLatch(); 1457 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1458 1459 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1460 PHINode *Phi = cast<PHINode>(I); 1461 if (!SE->isSCEVable(Phi->getType())) 1462 continue; 1463 1464 // Avoid comparing an integer IV against a pointer Limit. 1465 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1466 continue; 1467 1468 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1469 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1470 continue; 1471 1472 // AR may be a pointer type, while BECount is an integer type. 1473 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1474 // AR may not be a narrower type, or we may never exit. 1475 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1476 if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth))) 1477 continue; 1478 1479 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1480 if (!Step || !Step->isOne()) 1481 continue; 1482 1483 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1484 Value *IncV = Phi->getIncomingValue(LatchIdx); 1485 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1486 continue; 1487 1488 // Avoid reusing a potentially undef value to compute other values that may 1489 // have originally had a concrete definition. 1490 if (!hasConcreteDef(Phi)) { 1491 // We explicitly allow unknown phis as long as they are already used by 1492 // the loop test. In this case we assume that performing LFTR could not 1493 // increase the number of undef users. 1494 if (ICmpInst *Cond = getLoopTest(L)) { 1495 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) 1496 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 1497 continue; 1498 } 1499 } 1500 } 1501 const SCEV *Init = AR->getStart(); 1502 1503 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1504 // Don't force a live loop counter if another IV can be used. 1505 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1506 continue; 1507 1508 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1509 // also prefers integer to pointer IVs. 1510 if (BestInit->isZero() != Init->isZero()) { 1511 if (BestInit->isZero()) 1512 continue; 1513 } 1514 // If two IVs both count from zero or both count from nonzero then the 1515 // narrower is likely a dead phi that has been widened. Use the wider phi 1516 // to allow the other to be eliminated. 1517 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1518 continue; 1519 } 1520 BestPhi = Phi; 1521 BestInit = Init; 1522 } 1523 return BestPhi; 1524 } 1525 1526 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that 1527 /// holds the RHS of the new loop test. 1528 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1529 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1530 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1531 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1532 const SCEV *IVInit = AR->getStart(); 1533 1534 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1535 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1536 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1537 // the existing GEPs whenever possible. 1538 if (IndVar->getType()->isPointerTy() 1539 && !IVCount->getType()->isPointerTy()) { 1540 1541 // IVOffset will be the new GEP offset that is interpreted by GEP as a 1542 // signed value. IVCount on the other hand represents the loop trip count, 1543 // which is an unsigned value. FindLoopCounter only allows induction 1544 // variables that have a positive unit stride of one. This means we don't 1545 // have to handle the case of negative offsets (yet) and just need to zero 1546 // extend IVCount. 1547 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1548 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 1549 1550 // Expand the code for the iteration count. 1551 assert(SE->isLoopInvariant(IVOffset, L) && 1552 "Computed iteration count is not loop invariant!"); 1553 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1554 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1555 1556 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1557 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1558 // We could handle pointer IVs other than i8*, but we need to compensate for 1559 // gep index scaling. See canExpandBackedgeTakenCount comments. 1560 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1561 cast<PointerType>(GEPBase->getType())->getElementType())->isOne() 1562 && "unit stride pointer IV must be i8*"); 1563 1564 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1565 return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit"); 1566 } 1567 else { 1568 // In any other case, convert both IVInit and IVCount to integers before 1569 // comparing. This may result in SCEV expension of pointers, but in practice 1570 // SCEV will fold the pointer arithmetic away as such: 1571 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1572 // 1573 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1574 // for simple memset-style loops. 1575 // 1576 // IVInit integer and IVCount pointer would only occur if a canonical IV 1577 // were generated on top of case #2, which is not expected. 1578 1579 const SCEV *IVLimit = 0; 1580 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1581 // For non-zero Start, compute IVCount here. 1582 if (AR->getStart()->isZero()) 1583 IVLimit = IVCount; 1584 else { 1585 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1586 const SCEV *IVInit = AR->getStart(); 1587 1588 // For integer IVs, truncate the IV before computing IVInit + BECount. 1589 if (SE->getTypeSizeInBits(IVInit->getType()) 1590 > SE->getTypeSizeInBits(IVCount->getType())) 1591 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1592 1593 IVLimit = SE->getAddExpr(IVInit, IVCount); 1594 } 1595 // Expand the code for the iteration count. 1596 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1597 IRBuilder<> Builder(BI); 1598 assert(SE->isLoopInvariant(IVLimit, L) && 1599 "Computed iteration count is not loop invariant!"); 1600 // Ensure that we generate the same type as IndVar, or a smaller integer 1601 // type. In the presence of null pointer values, we have an integer type 1602 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1603 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1604 IndVar->getType() : IVCount->getType(); 1605 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1606 } 1607 } 1608 1609 /// LinearFunctionTestReplace - This method rewrites the exit condition of the 1610 /// loop to be a canonical != comparison against the incremented loop induction 1611 /// variable. This pass is able to rewrite the exit tests of any loop where the 1612 /// SCEV analysis can determine a loop-invariant trip count of the loop, which 1613 /// is actually a much broader range than just linear tests. 1614 Value *IndVarSimplify:: 1615 LinearFunctionTestReplace(Loop *L, 1616 const SCEV *BackedgeTakenCount, 1617 PHINode *IndVar, 1618 SCEVExpander &Rewriter) { 1619 assert(canExpandBackedgeTakenCount(L, SE) && "precondition"); 1620 1621 // Initialize CmpIndVar and IVCount to their preincremented values. 1622 Value *CmpIndVar = IndVar; 1623 const SCEV *IVCount = BackedgeTakenCount; 1624 1625 // If the exiting block is the same as the backedge block, we prefer to 1626 // compare against the post-incremented value, otherwise we must compare 1627 // against the preincremented value. 1628 if (L->getExitingBlock() == L->getLoopLatch()) { 1629 // Add one to the "backedge-taken" count to get the trip count. 1630 // This addition may overflow, which is valid as long as the comparison is 1631 // truncated to BackedgeTakenCount->getType(). 1632 IVCount = SE->getAddExpr(BackedgeTakenCount, 1633 SE->getConstant(BackedgeTakenCount->getType(), 1)); 1634 // The BackedgeTaken expression contains the number of times that the 1635 // backedge branches to the loop header. This is one less than the 1636 // number of times the loop executes, so use the incremented indvar. 1637 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1638 } 1639 1640 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1641 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() 1642 && "genLoopLimit missed a cast"); 1643 1644 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1645 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1646 ICmpInst::Predicate P; 1647 if (L->contains(BI->getSuccessor(0))) 1648 P = ICmpInst::ICMP_NE; 1649 else 1650 P = ICmpInst::ICMP_EQ; 1651 1652 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1653 << " LHS:" << *CmpIndVar << '\n' 1654 << " op:\t" 1655 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1656 << " RHS:\t" << *ExitCnt << "\n" 1657 << " IVCount:\t" << *IVCount << "\n"); 1658 1659 IRBuilder<> Builder(BI); 1660 1661 // LFTR can ignore IV overflow and truncate to the width of 1662 // BECount. This avoids materializing the add(zext(add)) expression. 1663 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1664 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1665 if (CmpIndVarSize > ExitCntSize) { 1666 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1667 const SCEV *ARStart = AR->getStart(); 1668 const SCEV *ARStep = AR->getStepRecurrence(*SE); 1669 // For constant IVCount, avoid truncation. 1670 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 1671 const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue(); 1672 APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue(); 1673 // Note that the post-inc value of BackedgeTakenCount may have overflowed 1674 // above such that IVCount is now zero. 1675 if (IVCount != BackedgeTakenCount && Count == 0) { 1676 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 1677 ++Count; 1678 } 1679 else 1680 Count = Count.zext(CmpIndVarSize); 1681 APInt NewLimit; 1682 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 1683 NewLimit = Start - Count; 1684 else 1685 NewLimit = Start + Count; 1686 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 1687 1688 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 1689 } else { 1690 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1691 "lftr.wideiv"); 1692 } 1693 } 1694 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1695 Value *OrigCond = BI->getCondition(); 1696 // It's tempting to use replaceAllUsesWith here to fully replace the old 1697 // comparison, but that's not immediately safe, since users of the old 1698 // comparison may not be dominated by the new comparison. Instead, just 1699 // update the branch to use the new comparison; in the common case this 1700 // will make old comparison dead. 1701 BI->setCondition(Cond); 1702 DeadInsts.push_back(OrigCond); 1703 1704 ++NumLFTR; 1705 Changed = true; 1706 return Cond; 1707 } 1708 1709 //===----------------------------------------------------------------------===// 1710 // SinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1711 //===----------------------------------------------------------------------===// 1712 1713 /// If there's a single exit block, sink any loop-invariant values that 1714 /// were defined in the preheader but not used inside the loop into the 1715 /// exit block to reduce register pressure in the loop. 1716 void IndVarSimplify::SinkUnusedInvariants(Loop *L) { 1717 BasicBlock *ExitBlock = L->getExitBlock(); 1718 if (!ExitBlock) return; 1719 1720 BasicBlock *Preheader = L->getLoopPreheader(); 1721 if (!Preheader) return; 1722 1723 Instruction *InsertPt = ExitBlock->getFirstInsertionPt(); 1724 BasicBlock::iterator I = Preheader->getTerminator(); 1725 while (I != Preheader->begin()) { 1726 --I; 1727 // New instructions were inserted at the end of the preheader. 1728 if (isa<PHINode>(I)) 1729 break; 1730 1731 // Don't move instructions which might have side effects, since the side 1732 // effects need to complete before instructions inside the loop. Also don't 1733 // move instructions which might read memory, since the loop may modify 1734 // memory. Note that it's okay if the instruction might have undefined 1735 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1736 // block. 1737 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1738 continue; 1739 1740 // Skip debug info intrinsics. 1741 if (isa<DbgInfoIntrinsic>(I)) 1742 continue; 1743 1744 // Skip landingpad instructions. 1745 if (isa<LandingPadInst>(I)) 1746 continue; 1747 1748 // Don't sink alloca: we never want to sink static alloca's out of the 1749 // entry block, and correctly sinking dynamic alloca's requires 1750 // checks for stacksave/stackrestore intrinsics. 1751 // FIXME: Refactor this check somehow? 1752 if (isa<AllocaInst>(I)) 1753 continue; 1754 1755 // Determine if there is a use in or before the loop (direct or 1756 // otherwise). 1757 bool UsedInLoop = false; 1758 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 1759 UI != UE; ++UI) { 1760 User *U = *UI; 1761 BasicBlock *UseBB = cast<Instruction>(U)->getParent(); 1762 if (PHINode *P = dyn_cast<PHINode>(U)) { 1763 unsigned i = 1764 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()); 1765 UseBB = P->getIncomingBlock(i); 1766 } 1767 if (UseBB == Preheader || L->contains(UseBB)) { 1768 UsedInLoop = true; 1769 break; 1770 } 1771 } 1772 1773 // If there is, the def must remain in the preheader. 1774 if (UsedInLoop) 1775 continue; 1776 1777 // Otherwise, sink it to the exit block. 1778 Instruction *ToMove = I; 1779 bool Done = false; 1780 1781 if (I != Preheader->begin()) { 1782 // Skip debug info intrinsics. 1783 do { 1784 --I; 1785 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1786 1787 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1788 Done = true; 1789 } else { 1790 Done = true; 1791 } 1792 1793 ToMove->moveBefore(InsertPt); 1794 if (Done) break; 1795 InsertPt = ToMove; 1796 } 1797 } 1798 1799 //===----------------------------------------------------------------------===// 1800 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1801 //===----------------------------------------------------------------------===// 1802 1803 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 1804 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1805 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1806 // canonicalization can be a pessimization without LSR to "clean up" 1807 // afterwards. 1808 // - We depend on having a preheader; in particular, 1809 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1810 // and we're in trouble if we can't find the induction variable even when 1811 // we've manually inserted one. 1812 if (!L->isLoopSimplifyForm()) 1813 return false; 1814 1815 LI = &getAnalysis<LoopInfo>(); 1816 SE = &getAnalysis<ScalarEvolution>(); 1817 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1818 TD = getAnalysisIfAvailable<DataLayout>(); 1819 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 1820 1821 DeadInsts.clear(); 1822 Changed = false; 1823 1824 // If there are any floating-point recurrences, attempt to 1825 // transform them to use integer recurrences. 1826 RewriteNonIntegerIVs(L); 1827 1828 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1829 1830 // Create a rewriter object which we'll use to transform the code with. 1831 SCEVExpander Rewriter(*SE, "indvars"); 1832 #ifndef NDEBUG 1833 Rewriter.setDebugType(DEBUG_TYPE); 1834 #endif 1835 1836 // Eliminate redundant IV users. 1837 // 1838 // Simplification works best when run before other consumers of SCEV. We 1839 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 1840 // other expressions involving loop IVs have been evaluated. This helps SCEV 1841 // set no-wrap flags before normalizing sign/zero extension. 1842 Rewriter.disableCanonicalMode(); 1843 SimplifyAndExtend(L, Rewriter, LPM); 1844 1845 // Check to see if this loop has a computable loop-invariant execution count. 1846 // If so, this means that we can compute the final value of any expressions 1847 // that are recurrent in the loop, and substitute the exit values from the 1848 // loop into any instructions outside of the loop that use the final values of 1849 // the current expressions. 1850 // 1851 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1852 RewriteLoopExitValues(L, Rewriter); 1853 1854 // Eliminate redundant IV cycles. 1855 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 1856 1857 // If we have a trip count expression, rewrite the loop's exit condition 1858 // using it. We can currently only handle loops with a single exit. 1859 if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) { 1860 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD); 1861 if (IndVar) { 1862 // Check preconditions for proper SCEVExpander operation. SCEV does not 1863 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 1864 // pass that uses the SCEVExpander must do it. This does not work well for 1865 // loop passes because SCEVExpander makes assumptions about all loops, 1866 // while LoopPassManager only forces the current loop to be simplified. 1867 // 1868 // FIXME: SCEV expansion has no way to bail out, so the caller must 1869 // explicitly check any assumptions made by SCEV. Brittle. 1870 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 1871 if (!AR || AR->getLoop()->getLoopPreheader()) 1872 (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 1873 Rewriter); 1874 } 1875 } 1876 // Clear the rewriter cache, because values that are in the rewriter's cache 1877 // can be deleted in the loop below, causing the AssertingVH in the cache to 1878 // trigger. 1879 Rewriter.clear(); 1880 1881 // Now that we're done iterating through lists, clean up any instructions 1882 // which are now dead. 1883 while (!DeadInsts.empty()) 1884 if (Instruction *Inst = 1885 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 1886 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 1887 1888 // The Rewriter may not be used from this point on. 1889 1890 // Loop-invariant instructions in the preheader that aren't used in the 1891 // loop may be sunk below the loop to reduce register pressure. 1892 SinkUnusedInvariants(L); 1893 1894 // Clean up dead instructions. 1895 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 1896 // Check a post-condition. 1897 assert(L->isLCSSAForm(*DT) && 1898 "Indvars did not leave the loop in lcssa form!"); 1899 1900 // Verify that LFTR, and any other change have not interfered with SCEV's 1901 // ability to compute trip count. 1902 #ifndef NDEBUG 1903 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 1904 SE->forgetLoop(L); 1905 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 1906 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 1907 SE->getTypeSizeInBits(NewBECount->getType())) 1908 NewBECount = SE->getTruncateOrNoop(NewBECount, 1909 BackedgeTakenCount->getType()); 1910 else 1911 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 1912 NewBECount->getType()); 1913 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 1914 } 1915 #endif 1916 1917 return Changed; 1918 } 1919