1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // This transformation makes the following changes to each loop with an
15 // identifiable induction variable:
16 //   1. All loops are transformed to have a SINGLE canonical induction variable
17 //      which starts at zero and steps by one.
18 //   2. The canonical induction variable is guaranteed to be the first PHI node
19 //      in the loop header block.
20 //   3. The canonical induction variable is guaranteed to be in a wide enough
21 //      type so that IV expressions need not be (directly) zero-extended or
22 //      sign-extended.
23 //   4. Any pointer arithmetic recurrences are raised to use array subscripts.
24 //
25 // If the trip count of a loop is computable, this pass also makes the following
26 // changes:
27 //   1. The exit condition for the loop is canonicalized to compare the
28 //      induction value against the exit value.  This turns loops like:
29 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30 //   2. Any use outside of the loop of an expression derived from the indvar
31 //      is changed to compute the derived value outside of the loop, eliminating
32 //      the dependence on the exit value of the induction variable.  If the only
33 //      purpose of the loop is to compute the exit value of some derived
34 //      expression, this transformation will make the loop dead.
35 //
36 // This transformation should be followed by strength reduction after all of the
37 // desired loop transformations have been performed.
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #define DEBUG_TYPE "indvars"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/BasicBlock.h"
44 #include "llvm/Constants.h"
45 #include "llvm/Instructions.h"
46 #include "llvm/IntrinsicInst.h"
47 #include "llvm/LLVMContext.h"
48 #include "llvm/Type.h"
49 #include "llvm/Analysis/Dominators.h"
50 #include "llvm/Analysis/IVUsers.h"
51 #include "llvm/Analysis/ScalarEvolutionExpander.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Support/CFG.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Target/TargetData.h"
61 #include "llvm/ADT/DenseMap.h"
62 #include "llvm/ADT/SmallVector.h"
63 #include "llvm/ADT/Statistic.h"
64 #include "llvm/ADT/STLExtras.h"
65 using namespace llvm;
66 
67 STATISTIC(NumRemoved     , "Number of aux indvars removed");
68 STATISTIC(NumWidened     , "Number of indvars widened");
69 STATISTIC(NumInserted    , "Number of canonical indvars added");
70 STATISTIC(NumReplaced    , "Number of exit values replaced");
71 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
72 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
73 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
74 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
75 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
76 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
77 
78 static cl::opt<bool> DisableIVRewrite(
79   "disable-iv-rewrite", cl::Hidden,
80   cl::desc("Disable canonical induction variable rewriting"));
81 
82 namespace {
83   class IndVarSimplify : public LoopPass {
84     typedef DenseMap< const SCEV *, AssertingVH<PHINode> > ExprToIVMapTy;
85 
86     IVUsers         *IU;
87     LoopInfo        *LI;
88     ScalarEvolution *SE;
89     DominatorTree   *DT;
90     TargetData      *TD;
91 
92     ExprToIVMapTy ExprToIVMap;
93     SmallVector<WeakVH, 16> DeadInsts;
94     bool Changed;
95   public:
96 
97     static char ID; // Pass identification, replacement for typeid
98     IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
99                        Changed(false) {
100       initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
101     }
102 
103     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
104 
105     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
106       AU.addRequired<DominatorTree>();
107       AU.addRequired<LoopInfo>();
108       AU.addRequired<ScalarEvolution>();
109       AU.addRequiredID(LoopSimplifyID);
110       AU.addRequiredID(LCSSAID);
111       if (!DisableIVRewrite)
112         AU.addRequired<IVUsers>();
113       AU.addPreserved<ScalarEvolution>();
114       AU.addPreservedID(LoopSimplifyID);
115       AU.addPreservedID(LCSSAID);
116       if (!DisableIVRewrite)
117         AU.addPreserved<IVUsers>();
118       AU.setPreservesCFG();
119     }
120 
121   private:
122     virtual void releaseMemory() {
123       ExprToIVMap.clear();
124       DeadInsts.clear();
125     }
126 
127     bool isValidRewrite(Value *FromVal, Value *ToVal);
128 
129     void HandleFloatingPointIV(Loop *L, PHINode *PH);
130     void RewriteNonIntegerIVs(Loop *L);
131 
132     void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
133 
134     void SimplifyIVUsers(SCEVExpander &Rewriter);
135     void SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter);
136 
137     bool EliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
138     void EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
139     void EliminateIVRemainder(BinaryOperator *Rem,
140                               Value *IVOperand,
141                               bool IsSigned);
142 
143     void SimplifyCongruentIVs(Loop *L);
144 
145     void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
146 
147     ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *IVLimit,
148                                         PHINode *IndVar,
149                                         SCEVExpander &Rewriter);
150 
151     void SinkUnusedInvariants(Loop *L);
152   };
153 }
154 
155 char IndVarSimplify::ID = 0;
156 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
157                 "Induction Variable Simplification", false, false)
158 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
159 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
160 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
161 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
162 INITIALIZE_PASS_DEPENDENCY(LCSSA)
163 INITIALIZE_PASS_DEPENDENCY(IVUsers)
164 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
165                 "Induction Variable Simplification", false, false)
166 
167 Pass *llvm::createIndVarSimplifyPass() {
168   return new IndVarSimplify();
169 }
170 
171 /// isValidRewrite - Return true if the SCEV expansion generated by the
172 /// rewriter can replace the original value. SCEV guarantees that it
173 /// produces the same value, but the way it is produced may be illegal IR.
174 /// Ideally, this function will only be called for verification.
175 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
176   // If an SCEV expression subsumed multiple pointers, its expansion could
177   // reassociate the GEP changing the base pointer. This is illegal because the
178   // final address produced by a GEP chain must be inbounds relative to its
179   // underlying object. Otherwise basic alias analysis, among other things,
180   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
181   // producing an expression involving multiple pointers. Until then, we must
182   // bail out here.
183   //
184   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
185   // because it understands lcssa phis while SCEV does not.
186   Value *FromPtr = FromVal;
187   Value *ToPtr = ToVal;
188   if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
189     FromPtr = GEP->getPointerOperand();
190   }
191   if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
192     ToPtr = GEP->getPointerOperand();
193   }
194   if (FromPtr != FromVal || ToPtr != ToVal) {
195     // Quickly check the common case
196     if (FromPtr == ToPtr)
197       return true;
198 
199     // SCEV may have rewritten an expression that produces the GEP's pointer
200     // operand. That's ok as long as the pointer operand has the same base
201     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
202     // base of a recurrence. This handles the case in which SCEV expansion
203     // converts a pointer type recurrence into a nonrecurrent pointer base
204     // indexed by an integer recurrence.
205     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
206     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
207     if (FromBase == ToBase)
208       return true;
209 
210     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
211           << *FromBase << " != " << *ToBase << "\n");
212 
213     return false;
214   }
215   return true;
216 }
217 
218 //===----------------------------------------------------------------------===//
219 // RewriteNonIntegerIVs and helpers. Prefer integer IVs.
220 //===----------------------------------------------------------------------===//
221 
222 /// ConvertToSInt - Convert APF to an integer, if possible.
223 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
224   bool isExact = false;
225   if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
226     return false;
227   // See if we can convert this to an int64_t
228   uint64_t UIntVal;
229   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
230                            &isExact) != APFloat::opOK || !isExact)
231     return false;
232   IntVal = UIntVal;
233   return true;
234 }
235 
236 /// HandleFloatingPointIV - If the loop has floating induction variable
237 /// then insert corresponding integer induction variable if possible.
238 /// For example,
239 /// for(double i = 0; i < 10000; ++i)
240 ///   bar(i)
241 /// is converted into
242 /// for(int i = 0; i < 10000; ++i)
243 ///   bar((double)i);
244 ///
245 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
246   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
247   unsigned BackEdge     = IncomingEdge^1;
248 
249   // Check incoming value.
250   ConstantFP *InitValueVal =
251     dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
252 
253   int64_t InitValue;
254   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
255     return;
256 
257   // Check IV increment. Reject this PN if increment operation is not
258   // an add or increment value can not be represented by an integer.
259   BinaryOperator *Incr =
260     dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
261   if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
262 
263   // If this is not an add of the PHI with a constantfp, or if the constant fp
264   // is not an integer, bail out.
265   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
266   int64_t IncValue;
267   if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
268       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
269     return;
270 
271   // Check Incr uses. One user is PN and the other user is an exit condition
272   // used by the conditional terminator.
273   Value::use_iterator IncrUse = Incr->use_begin();
274   Instruction *U1 = cast<Instruction>(*IncrUse++);
275   if (IncrUse == Incr->use_end()) return;
276   Instruction *U2 = cast<Instruction>(*IncrUse++);
277   if (IncrUse != Incr->use_end()) return;
278 
279   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
280   // only used by a branch, we can't transform it.
281   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
282   if (!Compare)
283     Compare = dyn_cast<FCmpInst>(U2);
284   if (Compare == 0 || !Compare->hasOneUse() ||
285       !isa<BranchInst>(Compare->use_back()))
286     return;
287 
288   BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
289 
290   // We need to verify that the branch actually controls the iteration count
291   // of the loop.  If not, the new IV can overflow and no one will notice.
292   // The branch block must be in the loop and one of the successors must be out
293   // of the loop.
294   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
295   if (!L->contains(TheBr->getParent()) ||
296       (L->contains(TheBr->getSuccessor(0)) &&
297        L->contains(TheBr->getSuccessor(1))))
298     return;
299 
300 
301   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
302   // transform it.
303   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
304   int64_t ExitValue;
305   if (ExitValueVal == 0 ||
306       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
307     return;
308 
309   // Find new predicate for integer comparison.
310   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
311   switch (Compare->getPredicate()) {
312   default: return;  // Unknown comparison.
313   case CmpInst::FCMP_OEQ:
314   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
315   case CmpInst::FCMP_ONE:
316   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
317   case CmpInst::FCMP_OGT:
318   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
319   case CmpInst::FCMP_OGE:
320   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
321   case CmpInst::FCMP_OLT:
322   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
323   case CmpInst::FCMP_OLE:
324   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
325   }
326 
327   // We convert the floating point induction variable to a signed i32 value if
328   // we can.  This is only safe if the comparison will not overflow in a way
329   // that won't be trapped by the integer equivalent operations.  Check for this
330   // now.
331   // TODO: We could use i64 if it is native and the range requires it.
332 
333   // The start/stride/exit values must all fit in signed i32.
334   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
335     return;
336 
337   // If not actually striding (add x, 0.0), avoid touching the code.
338   if (IncValue == 0)
339     return;
340 
341   // Positive and negative strides have different safety conditions.
342   if (IncValue > 0) {
343     // If we have a positive stride, we require the init to be less than the
344     // exit value and an equality or less than comparison.
345     if (InitValue >= ExitValue ||
346         NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
347       return;
348 
349     uint32_t Range = uint32_t(ExitValue-InitValue);
350     if (NewPred == CmpInst::ICMP_SLE) {
351       // Normalize SLE -> SLT, check for infinite loop.
352       if (++Range == 0) return;  // Range overflows.
353     }
354 
355     unsigned Leftover = Range % uint32_t(IncValue);
356 
357     // If this is an equality comparison, we require that the strided value
358     // exactly land on the exit value, otherwise the IV condition will wrap
359     // around and do things the fp IV wouldn't.
360     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
361         Leftover != 0)
362       return;
363 
364     // If the stride would wrap around the i32 before exiting, we can't
365     // transform the IV.
366     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
367       return;
368 
369   } else {
370     // If we have a negative stride, we require the init to be greater than the
371     // exit value and an equality or greater than comparison.
372     if (InitValue >= ExitValue ||
373         NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
374       return;
375 
376     uint32_t Range = uint32_t(InitValue-ExitValue);
377     if (NewPred == CmpInst::ICMP_SGE) {
378       // Normalize SGE -> SGT, check for infinite loop.
379       if (++Range == 0) return;  // Range overflows.
380     }
381 
382     unsigned Leftover = Range % uint32_t(-IncValue);
383 
384     // If this is an equality comparison, we require that the strided value
385     // exactly land on the exit value, otherwise the IV condition will wrap
386     // around and do things the fp IV wouldn't.
387     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
388         Leftover != 0)
389       return;
390 
391     // If the stride would wrap around the i32 before exiting, we can't
392     // transform the IV.
393     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
394       return;
395   }
396 
397   const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
398 
399   // Insert new integer induction variable.
400   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
401   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
402                       PN->getIncomingBlock(IncomingEdge));
403 
404   Value *NewAdd =
405     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
406                               Incr->getName()+".int", Incr);
407   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
408 
409   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
410                                       ConstantInt::get(Int32Ty, ExitValue),
411                                       Compare->getName());
412 
413   // In the following deletions, PN may become dead and may be deleted.
414   // Use a WeakVH to observe whether this happens.
415   WeakVH WeakPH = PN;
416 
417   // Delete the old floating point exit comparison.  The branch starts using the
418   // new comparison.
419   NewCompare->takeName(Compare);
420   Compare->replaceAllUsesWith(NewCompare);
421   RecursivelyDeleteTriviallyDeadInstructions(Compare);
422 
423   // Delete the old floating point increment.
424   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
425   RecursivelyDeleteTriviallyDeadInstructions(Incr);
426 
427   // If the FP induction variable still has uses, this is because something else
428   // in the loop uses its value.  In order to canonicalize the induction
429   // variable, we chose to eliminate the IV and rewrite it in terms of an
430   // int->fp cast.
431   //
432   // We give preference to sitofp over uitofp because it is faster on most
433   // platforms.
434   if (WeakPH) {
435     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
436                                  PN->getParent()->getFirstNonPHI());
437     PN->replaceAllUsesWith(Conv);
438     RecursivelyDeleteTriviallyDeadInstructions(PN);
439   }
440 
441   // Add a new IVUsers entry for the newly-created integer PHI.
442   if (IU)
443     IU->AddUsersIfInteresting(NewPHI);
444 }
445 
446 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
447   // First step.  Check to see if there are any floating-point recurrences.
448   // If there are, change them into integer recurrences, permitting analysis by
449   // the SCEV routines.
450   //
451   BasicBlock *Header = L->getHeader();
452 
453   SmallVector<WeakVH, 8> PHIs;
454   for (BasicBlock::iterator I = Header->begin();
455        PHINode *PN = dyn_cast<PHINode>(I); ++I)
456     PHIs.push_back(PN);
457 
458   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
459     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
460       HandleFloatingPointIV(L, PN);
461 
462   // If the loop previously had floating-point IV, ScalarEvolution
463   // may not have been able to compute a trip count. Now that we've done some
464   // re-writing, the trip count may be computable.
465   if (Changed)
466     SE->forgetLoop(L);
467 }
468 
469 //===----------------------------------------------------------------------===//
470 // RewriteLoopExitValues - Optimize IV users outside the loop.
471 // As a side effect, reduces the amount of IV processing within the loop.
472 //===----------------------------------------------------------------------===//
473 
474 /// RewriteLoopExitValues - Check to see if this loop has a computable
475 /// loop-invariant execution count.  If so, this means that we can compute the
476 /// final value of any expressions that are recurrent in the loop, and
477 /// substitute the exit values from the loop into any instructions outside of
478 /// the loop that use the final values of the current expressions.
479 ///
480 /// This is mostly redundant with the regular IndVarSimplify activities that
481 /// happen later, except that it's more powerful in some cases, because it's
482 /// able to brute-force evaluate arbitrary instructions as long as they have
483 /// constant operands at the beginning of the loop.
484 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
485   // Verify the input to the pass in already in LCSSA form.
486   assert(L->isLCSSAForm(*DT));
487 
488   SmallVector<BasicBlock*, 8> ExitBlocks;
489   L->getUniqueExitBlocks(ExitBlocks);
490 
491   // Find all values that are computed inside the loop, but used outside of it.
492   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
493   // the exit blocks of the loop to find them.
494   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
495     BasicBlock *ExitBB = ExitBlocks[i];
496 
497     // If there are no PHI nodes in this exit block, then no values defined
498     // inside the loop are used on this path, skip it.
499     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
500     if (!PN) continue;
501 
502     unsigned NumPreds = PN->getNumIncomingValues();
503 
504     // Iterate over all of the PHI nodes.
505     BasicBlock::iterator BBI = ExitBB->begin();
506     while ((PN = dyn_cast<PHINode>(BBI++))) {
507       if (PN->use_empty())
508         continue; // dead use, don't replace it
509 
510       // SCEV only supports integer expressions for now.
511       if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
512         continue;
513 
514       // It's necessary to tell ScalarEvolution about this explicitly so that
515       // it can walk the def-use list and forget all SCEVs, as it may not be
516       // watching the PHI itself. Once the new exit value is in place, there
517       // may not be a def-use connection between the loop and every instruction
518       // which got a SCEVAddRecExpr for that loop.
519       SE->forgetValue(PN);
520 
521       // Iterate over all of the values in all the PHI nodes.
522       for (unsigned i = 0; i != NumPreds; ++i) {
523         // If the value being merged in is not integer or is not defined
524         // in the loop, skip it.
525         Value *InVal = PN->getIncomingValue(i);
526         if (!isa<Instruction>(InVal))
527           continue;
528 
529         // If this pred is for a subloop, not L itself, skip it.
530         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
531           continue; // The Block is in a subloop, skip it.
532 
533         // Check that InVal is defined in the loop.
534         Instruction *Inst = cast<Instruction>(InVal);
535         if (!L->contains(Inst))
536           continue;
537 
538         // Okay, this instruction has a user outside of the current loop
539         // and varies predictably *inside* the loop.  Evaluate the value it
540         // contains when the loop exits, if possible.
541         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
542         if (!SE->isLoopInvariant(ExitValue, L))
543           continue;
544 
545         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
546 
547         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
548                      << "  LoopVal = " << *Inst << "\n");
549 
550         if (!isValidRewrite(Inst, ExitVal)) {
551           DeadInsts.push_back(ExitVal);
552           continue;
553         }
554         Changed = true;
555         ++NumReplaced;
556 
557         PN->setIncomingValue(i, ExitVal);
558 
559         // If this instruction is dead now, delete it.
560         RecursivelyDeleteTriviallyDeadInstructions(Inst);
561 
562         if (NumPreds == 1) {
563           // Completely replace a single-pred PHI. This is safe, because the
564           // NewVal won't be variant in the loop, so we don't need an LCSSA phi
565           // node anymore.
566           PN->replaceAllUsesWith(ExitVal);
567           RecursivelyDeleteTriviallyDeadInstructions(PN);
568         }
569       }
570       if (NumPreds != 1) {
571         // Clone the PHI and delete the original one. This lets IVUsers and
572         // any other maps purge the original user from their records.
573         PHINode *NewPN = cast<PHINode>(PN->clone());
574         NewPN->takeName(PN);
575         NewPN->insertBefore(PN);
576         PN->replaceAllUsesWith(NewPN);
577         PN->eraseFromParent();
578       }
579     }
580   }
581 
582   // The insertion point instruction may have been deleted; clear it out
583   // so that the rewriter doesn't trip over it later.
584   Rewriter.clearInsertPoint();
585 }
586 
587 //===----------------------------------------------------------------------===//
588 //  Rewrite IV users based on a canonical IV.
589 //  To be replaced by -disable-iv-rewrite.
590 //===----------------------------------------------------------------------===//
591 
592 /// SimplifyIVUsers - Iteratively perform simplification on IVUsers within this
593 /// loop. IVUsers is treated as a worklist. Each successive simplification may
594 /// push more users which may themselves be candidates for simplification.
595 ///
596 /// This is the old approach to IV simplification to be replaced by
597 /// SimplifyIVUsersNoRewrite.
598 ///
599 void IndVarSimplify::SimplifyIVUsers(SCEVExpander &Rewriter) {
600   // Each round of simplification involves a round of eliminating operations
601   // followed by a round of widening IVs. A single IVUsers worklist is used
602   // across all rounds. The inner loop advances the user. If widening exposes
603   // more uses, then another pass through the outer loop is triggered.
604   for (IVUsers::iterator I = IU->begin(); I != IU->end(); ++I) {
605     Instruction *UseInst = I->getUser();
606     Value *IVOperand = I->getOperandValToReplace();
607 
608     if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
609       EliminateIVComparison(ICmp, IVOperand);
610       continue;
611     }
612     if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
613       bool IsSigned = Rem->getOpcode() == Instruction::SRem;
614       if (IsSigned || Rem->getOpcode() == Instruction::URem) {
615         EliminateIVRemainder(Rem, IVOperand, IsSigned);
616         continue;
617       }
618     }
619   }
620 }
621 
622 // FIXME: It is an extremely bad idea to indvar substitute anything more
623 // complex than affine induction variables.  Doing so will put expensive
624 // polynomial evaluations inside of the loop, and the str reduction pass
625 // currently can only reduce affine polynomials.  For now just disable
626 // indvar subst on anything more complex than an affine addrec, unless
627 // it can be expanded to a trivial value.
628 static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
629   // Loop-invariant values are safe.
630   if (SE->isLoopInvariant(S, L)) return true;
631 
632   // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
633   // to transform them into efficient code.
634   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
635     return AR->isAffine();
636 
637   // An add is safe it all its operands are safe.
638   if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
639     for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
640          E = Commutative->op_end(); I != E; ++I)
641       if (!isSafe(*I, L, SE)) return false;
642     return true;
643   }
644 
645   // A cast is safe if its operand is.
646   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
647     return isSafe(C->getOperand(), L, SE);
648 
649   // A udiv is safe if its operands are.
650   if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
651     return isSafe(UD->getLHS(), L, SE) &&
652            isSafe(UD->getRHS(), L, SE);
653 
654   // SCEVUnknown is always safe.
655   if (isa<SCEVUnknown>(S))
656     return true;
657 
658   // Nothing else is safe.
659   return false;
660 }
661 
662 void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
663   // Rewrite all induction variable expressions in terms of the canonical
664   // induction variable.
665   //
666   // If there were induction variables of other sizes or offsets, manually
667   // add the offsets to the primary induction variable and cast, avoiding
668   // the need for the code evaluation methods to insert induction variables
669   // of different sizes.
670   for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
671     Value *Op = UI->getOperandValToReplace();
672     const Type *UseTy = Op->getType();
673     Instruction *User = UI->getUser();
674 
675     // Compute the final addrec to expand into code.
676     const SCEV *AR = IU->getReplacementExpr(*UI);
677 
678     // Evaluate the expression out of the loop, if possible.
679     if (!L->contains(UI->getUser())) {
680       const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
681       if (SE->isLoopInvariant(ExitVal, L))
682         AR = ExitVal;
683     }
684 
685     // FIXME: It is an extremely bad idea to indvar substitute anything more
686     // complex than affine induction variables.  Doing so will put expensive
687     // polynomial evaluations inside of the loop, and the str reduction pass
688     // currently can only reduce affine polynomials.  For now just disable
689     // indvar subst on anything more complex than an affine addrec, unless
690     // it can be expanded to a trivial value.
691     if (!isSafe(AR, L, SE))
692       continue;
693 
694     // Determine the insertion point for this user. By default, insert
695     // immediately before the user. The SCEVExpander class will automatically
696     // hoist loop invariants out of the loop. For PHI nodes, there may be
697     // multiple uses, so compute the nearest common dominator for the
698     // incoming blocks.
699     Instruction *InsertPt = User;
700     if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
701       for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
702         if (PHI->getIncomingValue(i) == Op) {
703           if (InsertPt == User)
704             InsertPt = PHI->getIncomingBlock(i)->getTerminator();
705           else
706             InsertPt =
707               DT->findNearestCommonDominator(InsertPt->getParent(),
708                                              PHI->getIncomingBlock(i))
709                     ->getTerminator();
710         }
711 
712     // Now expand it into actual Instructions and patch it into place.
713     Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
714 
715     DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
716                  << "   into = " << *NewVal << "\n");
717 
718     if (!isValidRewrite(Op, NewVal)) {
719       DeadInsts.push_back(NewVal);
720       continue;
721     }
722     // Inform ScalarEvolution that this value is changing. The change doesn't
723     // affect its value, but it does potentially affect which use lists the
724     // value will be on after the replacement, which affects ScalarEvolution's
725     // ability to walk use lists and drop dangling pointers when a value is
726     // deleted.
727     SE->forgetValue(User);
728 
729     // Patch the new value into place.
730     if (Op->hasName())
731       NewVal->takeName(Op);
732     if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
733       NewValI->setDebugLoc(User->getDebugLoc());
734     User->replaceUsesOfWith(Op, NewVal);
735     UI->setOperandValToReplace(NewVal);
736 
737     ++NumRemoved;
738     Changed = true;
739 
740     // The old value may be dead now.
741     DeadInsts.push_back(Op);
742   }
743 }
744 
745 //===----------------------------------------------------------------------===//
746 //  IV Widening - Extend the width of an IV to cover its widest uses.
747 //===----------------------------------------------------------------------===//
748 
749 namespace {
750   // Collect information about induction variables that are used by sign/zero
751   // extend operations. This information is recorded by CollectExtend and
752   // provides the input to WidenIV.
753   struct WideIVInfo {
754     const Type *WidestNativeType; // Widest integer type created [sz]ext
755     bool IsSigned;                // Was an sext user seen before a zext?
756 
757     WideIVInfo() : WidestNativeType(0), IsSigned(false) {}
758   };
759 }
760 
761 /// CollectExtend - Update information about the induction variable that is
762 /// extended by this sign or zero extend operation. This is used to determine
763 /// the final width of the IV before actually widening it.
764 static void CollectExtend(CastInst *Cast, bool IsSigned, WideIVInfo &WI,
765                           ScalarEvolution *SE, const TargetData *TD) {
766   const Type *Ty = Cast->getType();
767   uint64_t Width = SE->getTypeSizeInBits(Ty);
768   if (TD && !TD->isLegalInteger(Width))
769     return;
770 
771   if (!WI.WidestNativeType) {
772     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
773     WI.IsSigned = IsSigned;
774     return;
775   }
776 
777   // We extend the IV to satisfy the sign of its first user, arbitrarily.
778   if (WI.IsSigned != IsSigned)
779     return;
780 
781   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
782     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
783 }
784 
785 namespace {
786 /// WidenIV - The goal of this transform is to remove sign and zero extends
787 /// without creating any new induction variables. To do this, it creates a new
788 /// phi of the wider type and redirects all users, either removing extends or
789 /// inserting truncs whenever we stop propagating the type.
790 ///
791 class WidenIV {
792   // Parameters
793   PHINode *OrigPhi;
794   const Type *WideType;
795   bool IsSigned;
796 
797   // Context
798   LoopInfo        *LI;
799   Loop            *L;
800   ScalarEvolution *SE;
801   DominatorTree   *DT;
802 
803   // Result
804   PHINode *WidePhi;
805   Instruction *WideInc;
806   const SCEV *WideIncExpr;
807   SmallVectorImpl<WeakVH> &DeadInsts;
808 
809   SmallPtrSet<Instruction*,16> Widened;
810   SmallVector<std::pair<Use *, Instruction *>, 8> NarrowIVUsers;
811 
812 public:
813   WidenIV(PHINode *PN, const WideIVInfo &WI, LoopInfo *LInfo,
814           ScalarEvolution *SEv, DominatorTree *DTree,
815           SmallVectorImpl<WeakVH> &DI) :
816     OrigPhi(PN),
817     WideType(WI.WidestNativeType),
818     IsSigned(WI.IsSigned),
819     LI(LInfo),
820     L(LI->getLoopFor(OrigPhi->getParent())),
821     SE(SEv),
822     DT(DTree),
823     WidePhi(0),
824     WideInc(0),
825     WideIncExpr(0),
826     DeadInsts(DI) {
827     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
828   }
829 
830   PHINode *CreateWideIV(SCEVExpander &Rewriter);
831 
832 protected:
833   Instruction *CloneIVUser(Instruction *NarrowUse,
834                            Instruction *NarrowDef,
835                            Instruction *WideDef);
836 
837   const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
838 
839   Instruction *WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef,
840                           Instruction *WideDef);
841 
842   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
843 };
844 } // anonymous namespace
845 
846 static Value *getExtend( Value *NarrowOper, const Type *WideType,
847                                bool IsSigned, IRBuilder<> &Builder) {
848   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
849                     Builder.CreateZExt(NarrowOper, WideType);
850 }
851 
852 /// CloneIVUser - Instantiate a wide operation to replace a narrow
853 /// operation. This only needs to handle operations that can evaluation to
854 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
855 Instruction *WidenIV::CloneIVUser(Instruction *NarrowUse,
856                                   Instruction *NarrowDef,
857                                   Instruction *WideDef) {
858   unsigned Opcode = NarrowUse->getOpcode();
859   switch (Opcode) {
860   default:
861     return 0;
862   case Instruction::Add:
863   case Instruction::Mul:
864   case Instruction::UDiv:
865   case Instruction::Sub:
866   case Instruction::And:
867   case Instruction::Or:
868   case Instruction::Xor:
869   case Instruction::Shl:
870   case Instruction::LShr:
871   case Instruction::AShr:
872     DEBUG(dbgs() << "Cloning IVUser: " << *NarrowUse << "\n");
873 
874     IRBuilder<> Builder(NarrowUse);
875 
876     // Replace NarrowDef operands with WideDef. Otherwise, we don't know
877     // anything about the narrow operand yet so must insert a [sz]ext. It is
878     // probably loop invariant and will be folded or hoisted. If it actually
879     // comes from a widened IV, it should be removed during a future call to
880     // WidenIVUse.
881     Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) ? WideDef :
882       getExtend(NarrowUse->getOperand(0), WideType, IsSigned, Builder);
883     Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) ? WideDef :
884       getExtend(NarrowUse->getOperand(1), WideType, IsSigned, Builder);
885 
886     BinaryOperator *NarrowBO = cast<BinaryOperator>(NarrowUse);
887     BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
888                                                     LHS, RHS,
889                                                     NarrowBO->getName());
890     Builder.Insert(WideBO);
891     if (const OverflowingBinaryOperator *OBO =
892         dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
893       if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
894       if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
895     }
896     return WideBO;
897   }
898   llvm_unreachable(0);
899 }
900 
901 /// HoistStep - Attempt to hoist an IV increment above a potential use.
902 ///
903 /// To successfully hoist, two criteria must be met:
904 /// - IncV operands dominate InsertPos and
905 /// - InsertPos dominates IncV
906 ///
907 /// Meeting the second condition means that we don't need to check all of IncV's
908 /// existing uses (it's moving up in the domtree).
909 ///
910 /// This does not yet recursively hoist the operands, although that would
911 /// not be difficult.
912 static bool HoistStep(Instruction *IncV, Instruction *InsertPos,
913                       const DominatorTree *DT)
914 {
915   if (DT->dominates(IncV, InsertPos))
916     return true;
917 
918   if (!DT->dominates(InsertPos->getParent(), IncV->getParent()))
919     return false;
920 
921   if (IncV->mayHaveSideEffects())
922     return false;
923 
924   // Attempt to hoist IncV
925   for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end();
926        OI != OE; ++OI) {
927     Instruction *OInst = dyn_cast<Instruction>(OI);
928     if (OInst && !DT->dominates(OInst, InsertPos))
929       return false;
930   }
931   IncV->moveBefore(InsertPos);
932   return true;
933 }
934 
935 // GetWideRecurrence - Is this instruction potentially interesting from IVUsers'
936 // perspective after widening it's type? In other words, can the extend be
937 // safely hoisted out of the loop with SCEV reducing the value to a recurrence
938 // on the same loop. If so, return the sign or zero extended
939 // recurrence. Otherwise return NULL.
940 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
941   if (!SE->isSCEVable(NarrowUse->getType()))
942     return 0;
943 
944   const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
945   if (SE->getTypeSizeInBits(NarrowExpr->getType())
946       >= SE->getTypeSizeInBits(WideType)) {
947     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
948     // index. So don't follow this use.
949     return 0;
950   }
951 
952   const SCEV *WideExpr = IsSigned ?
953     SE->getSignExtendExpr(NarrowExpr, WideType) :
954     SE->getZeroExtendExpr(NarrowExpr, WideType);
955   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
956   if (!AddRec || AddRec->getLoop() != L)
957     return 0;
958 
959   return AddRec;
960 }
961 
962 /// WidenIVUse - Determine whether an individual user of the narrow IV can be
963 /// widened. If so, return the wide clone of the user.
964 Instruction *WidenIV::WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef,
965                                  Instruction *WideDef) {
966   Instruction *NarrowUse = cast<Instruction>(NarrowDefUse.getUser());
967 
968   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
969   if (isa<PHINode>(NarrowUse) && LI->getLoopFor(NarrowUse->getParent()) != L)
970     return 0;
971 
972   // Our raison d'etre! Eliminate sign and zero extension.
973   if (IsSigned ? isa<SExtInst>(NarrowUse) : isa<ZExtInst>(NarrowUse)) {
974     Value *NewDef = WideDef;
975     if (NarrowUse->getType() != WideType) {
976       unsigned CastWidth = SE->getTypeSizeInBits(NarrowUse->getType());
977       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
978       if (CastWidth < IVWidth) {
979         // The cast isn't as wide as the IV, so insert a Trunc.
980         IRBuilder<> Builder(NarrowDefUse);
981         NewDef = Builder.CreateTrunc(WideDef, NarrowUse->getType());
982       }
983       else {
984         // A wider extend was hidden behind a narrower one. This may induce
985         // another round of IV widening in which the intermediate IV becomes
986         // dead. It should be very rare.
987         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
988               << " not wide enough to subsume " << *NarrowUse << "\n");
989         NarrowUse->replaceUsesOfWith(NarrowDef, WideDef);
990         NewDef = NarrowUse;
991       }
992     }
993     if (NewDef != NarrowUse) {
994       DEBUG(dbgs() << "INDVARS: eliminating " << *NarrowUse
995             << " replaced by " << *WideDef << "\n");
996       ++NumElimExt;
997       NarrowUse->replaceAllUsesWith(NewDef);
998       DeadInsts.push_back(NarrowUse);
999     }
1000     // Now that the extend is gone, we want to expose it's uses for potential
1001     // further simplification. We don't need to directly inform SimplifyIVUsers
1002     // of the new users, because their parent IV will be processed later as a
1003     // new loop phi. If we preserved IVUsers analysis, we would also want to
1004     // push the uses of WideDef here.
1005 
1006     // No further widening is needed. The deceased [sz]ext had done it for us.
1007     return 0;
1008   }
1009 
1010   // Does this user itself evaluate to a recurrence after widening?
1011   const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(NarrowUse);
1012   if (!WideAddRec) {
1013     // This user does not evaluate to a recurence after widening, so don't
1014     // follow it. Instead insert a Trunc to kill off the original use,
1015     // eventually isolating the original narrow IV so it can be removed.
1016     IRBuilder<> Builder(NarrowDefUse);
1017     Value *Trunc = Builder.CreateTrunc(WideDef, NarrowDef->getType());
1018     NarrowUse->replaceUsesOfWith(NarrowDef, Trunc);
1019     return 0;
1020   }
1021   // We assume that block terminators are not SCEVable. We wouldn't want to
1022   // insert a Trunc after a terminator if there happens to be a critical edge.
1023   assert(NarrowUse != NarrowUse->getParent()->getTerminator() &&
1024          "SCEV is not expected to evaluate a block terminator");
1025 
1026   // Reuse the IV increment that SCEVExpander created as long as it dominates
1027   // NarrowUse.
1028   Instruction *WideUse = 0;
1029   if (WideAddRec == WideIncExpr && HoistStep(WideInc, NarrowUse, DT)) {
1030     WideUse = WideInc;
1031   }
1032   else {
1033     WideUse = CloneIVUser(NarrowUse, NarrowDef, WideDef);
1034     if (!WideUse)
1035       return 0;
1036   }
1037   // Evaluation of WideAddRec ensured that the narrow expression could be
1038   // extended outside the loop without overflow. This suggests that the wide use
1039   // evaluates to the same expression as the extended narrow use, but doesn't
1040   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1041   // where it fails, we simply throw away the newly created wide use.
1042   if (WideAddRec != SE->getSCEV(WideUse)) {
1043     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1044           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1045     DeadInsts.push_back(WideUse);
1046     return 0;
1047   }
1048 
1049   // Returning WideUse pushes it on the worklist.
1050   return WideUse;
1051 }
1052 
1053 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
1054 ///
1055 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1056   for (Value::use_iterator UI = NarrowDef->use_begin(),
1057          UE = NarrowDef->use_end(); UI != UE; ++UI) {
1058     Use &U = UI.getUse();
1059 
1060     // Handle data flow merges and bizarre phi cycles.
1061     if (!Widened.insert(cast<Instruction>(U.getUser())))
1062       continue;
1063 
1064     NarrowIVUsers.push_back(std::make_pair(&UI.getUse(), WideDef));
1065   }
1066 }
1067 
1068 /// CreateWideIV - Process a single induction variable. First use the
1069 /// SCEVExpander to create a wide induction variable that evaluates to the same
1070 /// recurrence as the original narrow IV. Then use a worklist to forward
1071 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
1072 /// interesting IV users, the narrow IV will be isolated for removal by
1073 /// DeleteDeadPHIs.
1074 ///
1075 /// It would be simpler to delete uses as they are processed, but we must avoid
1076 /// invalidating SCEV expressions.
1077 ///
1078 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
1079   // Is this phi an induction variable?
1080   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1081   if (!AddRec)
1082     return NULL;
1083 
1084   // Widen the induction variable expression.
1085   const SCEV *WideIVExpr = IsSigned ?
1086     SE->getSignExtendExpr(AddRec, WideType) :
1087     SE->getZeroExtendExpr(AddRec, WideType);
1088 
1089   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1090          "Expect the new IV expression to preserve its type");
1091 
1092   // Can the IV be extended outside the loop without overflow?
1093   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1094   if (!AddRec || AddRec->getLoop() != L)
1095     return NULL;
1096 
1097   // An AddRec must have loop-invariant operands. Since this AddRec is
1098   // materialized by a loop header phi, the expression cannot have any post-loop
1099   // operands, so they must dominate the loop header.
1100   assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1101          SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1102          && "Loop header phi recurrence inputs do not dominate the loop");
1103 
1104   // The rewriter provides a value for the desired IV expression. This may
1105   // either find an existing phi or materialize a new one. Either way, we
1106   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1107   // of the phi-SCC dominates the loop entry.
1108   Instruction *InsertPt = L->getHeader()->begin();
1109   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1110 
1111   // Remembering the WideIV increment generated by SCEVExpander allows
1112   // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1113   // employ a general reuse mechanism because the call above is the only call to
1114   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1115   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1116     WideInc =
1117       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1118     WideIncExpr = SE->getSCEV(WideInc);
1119   }
1120 
1121   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1122   ++NumWidened;
1123 
1124   // Traverse the def-use chain using a worklist starting at the original IV.
1125   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1126 
1127   Widened.insert(OrigPhi);
1128   pushNarrowIVUsers(OrigPhi, WidePhi);
1129 
1130   while (!NarrowIVUsers.empty()) {
1131     Use *UsePtr;
1132     Instruction *WideDef;
1133     tie(UsePtr, WideDef) = NarrowIVUsers.pop_back_val();
1134     Use &NarrowDefUse = *UsePtr;
1135 
1136     // Process a def-use edge. This may replace the use, so don't hold a
1137     // use_iterator across it.
1138     Instruction *NarrowDef = cast<Instruction>(NarrowDefUse.get());
1139     Instruction *WideUse = WidenIVUse(NarrowDefUse, NarrowDef, WideDef);
1140 
1141     // Follow all def-use edges from the previous narrow use.
1142     if (WideUse)
1143       pushNarrowIVUsers(cast<Instruction>(NarrowDefUse.getUser()), WideUse);
1144 
1145     // WidenIVUse may have removed the def-use edge.
1146     if (NarrowDef->use_empty())
1147       DeadInsts.push_back(NarrowDef);
1148   }
1149   return WidePhi;
1150 }
1151 
1152 //===----------------------------------------------------------------------===//
1153 //  Simplification of IV users based on SCEV evaluation.
1154 //===----------------------------------------------------------------------===//
1155 
1156 void IndVarSimplify::EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
1157   unsigned IVOperIdx = 0;
1158   ICmpInst::Predicate Pred = ICmp->getPredicate();
1159   if (IVOperand != ICmp->getOperand(0)) {
1160     // Swapped
1161     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
1162     IVOperIdx = 1;
1163     Pred = ICmpInst::getSwappedPredicate(Pred);
1164   }
1165 
1166   // Get the SCEVs for the ICmp operands.
1167   const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
1168   const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
1169 
1170   // Simplify unnecessary loops away.
1171   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
1172   S = SE->getSCEVAtScope(S, ICmpLoop);
1173   X = SE->getSCEVAtScope(X, ICmpLoop);
1174 
1175   // If the condition is always true or always false, replace it with
1176   // a constant value.
1177   if (SE->isKnownPredicate(Pred, S, X))
1178     ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
1179   else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
1180     ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
1181   else
1182     return;
1183 
1184   DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
1185   ++NumElimCmp;
1186   Changed = true;
1187   DeadInsts.push_back(ICmp);
1188 }
1189 
1190 void IndVarSimplify::EliminateIVRemainder(BinaryOperator *Rem,
1191                                           Value *IVOperand,
1192                                           bool IsSigned) {
1193   // We're only interested in the case where we know something about
1194   // the numerator.
1195   if (IVOperand != Rem->getOperand(0))
1196     return;
1197 
1198   // Get the SCEVs for the ICmp operands.
1199   const SCEV *S = SE->getSCEV(Rem->getOperand(0));
1200   const SCEV *X = SE->getSCEV(Rem->getOperand(1));
1201 
1202   // Simplify unnecessary loops away.
1203   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
1204   S = SE->getSCEVAtScope(S, ICmpLoop);
1205   X = SE->getSCEVAtScope(X, ICmpLoop);
1206 
1207   // i % n  -->  i  if i is in [0,n).
1208   if ((!IsSigned || SE->isKnownNonNegative(S)) &&
1209       SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
1210                            S, X))
1211     Rem->replaceAllUsesWith(Rem->getOperand(0));
1212   else {
1213     // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
1214     const SCEV *LessOne =
1215       SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
1216     if (IsSigned && !SE->isKnownNonNegative(LessOne))
1217       return;
1218 
1219     if (!SE->isKnownPredicate(IsSigned ?
1220                               ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
1221                               LessOne, X))
1222       return;
1223 
1224     ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
1225                                   Rem->getOperand(0), Rem->getOperand(1),
1226                                   "tmp");
1227     SelectInst *Sel =
1228       SelectInst::Create(ICmp,
1229                          ConstantInt::get(Rem->getType(), 0),
1230                          Rem->getOperand(0), "tmp", Rem);
1231     Rem->replaceAllUsesWith(Sel);
1232   }
1233 
1234   // Inform IVUsers about the new users.
1235   if (IU) {
1236     if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0)))
1237       IU->AddUsersIfInteresting(I);
1238   }
1239   DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
1240   ++NumElimRem;
1241   Changed = true;
1242   DeadInsts.push_back(Rem);
1243 }
1244 
1245 /// EliminateIVUser - Eliminate an operation that consumes a simple IV and has
1246 /// no observable side-effect given the range of IV values.
1247 bool IndVarSimplify::EliminateIVUser(Instruction *UseInst,
1248                                      Instruction *IVOperand) {
1249   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
1250     EliminateIVComparison(ICmp, IVOperand);
1251     return true;
1252   }
1253   if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
1254     bool IsSigned = Rem->getOpcode() == Instruction::SRem;
1255     if (IsSigned || Rem->getOpcode() == Instruction::URem) {
1256       EliminateIVRemainder(Rem, IVOperand, IsSigned);
1257       return true;
1258     }
1259   }
1260 
1261   // Eliminate any operation that SCEV can prove is an identity function.
1262   if (!SE->isSCEVable(UseInst->getType()) ||
1263       (UseInst->getType() != IVOperand->getType()) ||
1264       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
1265     return false;
1266 
1267   DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
1268 
1269   UseInst->replaceAllUsesWith(IVOperand);
1270   ++NumElimIdentity;
1271   Changed = true;
1272   DeadInsts.push_back(UseInst);
1273   return true;
1274 }
1275 
1276 /// pushIVUsers - Add all uses of Def to the current IV's worklist.
1277 ///
1278 static void pushIVUsers(
1279   Instruction *Def,
1280   SmallPtrSet<Instruction*,16> &Simplified,
1281   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
1282 
1283   for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end();
1284        UI != E; ++UI) {
1285     Instruction *User = cast<Instruction>(*UI);
1286 
1287     // Avoid infinite or exponential worklist processing.
1288     // Also ensure unique worklist users.
1289     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
1290     // self edges first.
1291     if (User != Def && Simplified.insert(User))
1292       SimpleIVUsers.push_back(std::make_pair(User, Def));
1293   }
1294 }
1295 
1296 /// isSimpleIVUser - Return true if this instruction generates a simple SCEV
1297 /// expression in terms of that IV.
1298 ///
1299 /// This is similar to IVUsers' isInsteresting() but processes each instruction
1300 /// non-recursively when the operand is already known to be a simpleIVUser.
1301 ///
1302 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
1303   if (!SE->isSCEVable(I->getType()))
1304     return false;
1305 
1306   // Get the symbolic expression for this instruction.
1307   const SCEV *S = SE->getSCEV(I);
1308 
1309   // We assume that terminators are not SCEVable.
1310   assert((!S || I != I->getParent()->getTerminator()) &&
1311          "can't fold terminators");
1312 
1313   // Only consider affine recurrences.
1314   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
1315   if (AR && AR->getLoop() == L)
1316     return true;
1317 
1318   return false;
1319 }
1320 
1321 /// SimplifyIVUsersNoRewrite - Iteratively perform simplification on a worklist
1322 /// of IV users. Each successive simplification may push more users which may
1323 /// themselves be candidates for simplification.
1324 ///
1325 /// The "NoRewrite" algorithm does not require IVUsers analysis. Instead, it
1326 /// simplifies instructions in-place during analysis. Rather than rewriting
1327 /// induction variables bottom-up from their users, it transforms a chain of
1328 /// IVUsers top-down, updating the IR only when it encouters a clear
1329 /// optimization opportunitiy. A SCEVExpander "Rewriter" instance is still
1330 /// needed, but only used to generate a new IV (phi) of wider type for sign/zero
1331 /// extend elimination.
1332 ///
1333 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
1334 ///
1335 void IndVarSimplify::SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter) {
1336   std::map<PHINode *, WideIVInfo> WideIVMap;
1337 
1338   SmallVector<PHINode*, 8> LoopPhis;
1339   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1340     LoopPhis.push_back(cast<PHINode>(I));
1341   }
1342   // Each round of simplification iterates through the SimplifyIVUsers worklist
1343   // for all current phis, then determines whether any IVs can be
1344   // widened. Widening adds new phis to LoopPhis, inducing another round of
1345   // simplification on the wide IVs.
1346   while (!LoopPhis.empty()) {
1347     // Evaluate as many IV expressions as possible before widening any IVs. This
1348     // forces SCEV to set no-wrap flags before evaluating sign/zero
1349     // extension. The first time SCEV attempts to normalize sign/zero extension,
1350     // the result becomes final. So for the most predictable results, we delay
1351     // evaluation of sign/zero extend evaluation until needed, and avoid running
1352     // other SCEV based analysis prior to SimplifyIVUsersNoRewrite.
1353     do {
1354       PHINode *CurrIV = LoopPhis.pop_back_val();
1355 
1356       // Information about sign/zero extensions of CurrIV.
1357       WideIVInfo WI;
1358 
1359       // Instructions processed by SimplifyIVUsers for CurrIV.
1360       SmallPtrSet<Instruction*,16> Simplified;
1361 
1362       // Use-def pairs if IV users waiting to be processed for CurrIV.
1363       SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
1364 
1365       // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
1366       // called multiple times for the same LoopPhi. This is the proper thing to
1367       // do for loop header phis that use each other.
1368       pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
1369 
1370       while (!SimpleIVUsers.empty()) {
1371         Instruction *UseInst, *Operand;
1372         tie(UseInst, Operand) = SimpleIVUsers.pop_back_val();
1373         // Bypass back edges to avoid extra work.
1374         if (UseInst == CurrIV) continue;
1375 
1376         if (EliminateIVUser(UseInst, Operand)) {
1377           pushIVUsers(Operand, Simplified, SimpleIVUsers);
1378           continue;
1379         }
1380         if (CastInst *Cast = dyn_cast<CastInst>(UseInst)) {
1381           bool IsSigned = Cast->getOpcode() == Instruction::SExt;
1382           if (IsSigned || Cast->getOpcode() == Instruction::ZExt) {
1383             CollectExtend(Cast, IsSigned, WI, SE, TD);
1384           }
1385           continue;
1386         }
1387         if (isSimpleIVUser(UseInst, L, SE)) {
1388           pushIVUsers(UseInst, Simplified, SimpleIVUsers);
1389         }
1390       }
1391       if (WI.WidestNativeType) {
1392         WideIVMap[CurrIV] = WI;
1393       }
1394     } while(!LoopPhis.empty());
1395 
1396     for (std::map<PHINode *, WideIVInfo>::const_iterator I = WideIVMap.begin(),
1397            E = WideIVMap.end(); I != E; ++I) {
1398       WidenIV Widener(I->first, I->second, LI, SE, DT, DeadInsts);
1399       if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1400         Changed = true;
1401         LoopPhis.push_back(WidePhi);
1402       }
1403     }
1404     WideIVMap.clear();
1405   }
1406 }
1407 
1408 /// SimplifyCongruentIVs - Check for congruent phis in this loop header and
1409 /// populate ExprToIVMap for use later.
1410 ///
1411 void IndVarSimplify::SimplifyCongruentIVs(Loop *L) {
1412   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1413     PHINode *Phi = cast<PHINode>(I);
1414     if (!SE->isSCEVable(Phi->getType()))
1415       continue;
1416 
1417     const SCEV *S = SE->getSCEV(Phi);
1418     ExprToIVMapTy::const_iterator Pos;
1419     bool Inserted;
1420     tie(Pos, Inserted) = ExprToIVMap.insert(std::make_pair(S, Phi));
1421     if (Inserted)
1422       continue;
1423     PHINode *OrigPhi = Pos->second;
1424     // Replacing the congruent phi is sufficient because acyclic redundancy
1425     // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
1426     // that a phi is congruent, it's almost certain to be the head of an IV
1427     // user cycle that is isomorphic with the original phi. So it's worth
1428     // eagerly cleaning up the common case of a single IV increment.
1429     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1430       Instruction *OrigInc =
1431         cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1432       Instruction *IsomorphicInc =
1433         cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1434       if (OrigInc != IsomorphicInc &&
1435           SE->getSCEV(OrigInc) == SE->getSCEV(IsomorphicInc) &&
1436           HoistStep(OrigInc, IsomorphicInc, DT)) {
1437         DEBUG(dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1438               << *IsomorphicInc << '\n');
1439         IsomorphicInc->replaceAllUsesWith(OrigInc);
1440         DeadInsts.push_back(IsomorphicInc);
1441       }
1442     }
1443     DEBUG(dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
1444     ++NumElimIV;
1445     Phi->replaceAllUsesWith(OrigPhi);
1446     DeadInsts.push_back(Phi);
1447   }
1448 }
1449 
1450 //===----------------------------------------------------------------------===//
1451 //  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1452 //===----------------------------------------------------------------------===//
1453 
1454 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1455 /// count expression can be safely and cheaply expanded into an instruction
1456 /// sequence that can be used by LinearFunctionTestReplace.
1457 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1458   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1459   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1460       BackedgeTakenCount->isZero())
1461     return false;
1462 
1463   if (!L->getExitingBlock())
1464     return false;
1465 
1466   // Can't rewrite non-branch yet.
1467   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1468   if (!BI)
1469     return false;
1470 
1471   // Special case: If the backedge-taken count is a UDiv, it's very likely a
1472   // UDiv that ScalarEvolution produced in order to compute a precise
1473   // expression, rather than a UDiv from the user's code. If we can't find a
1474   // UDiv in the code with some simple searching, assume the former and forego
1475   // rewriting the loop.
1476   if (isa<SCEVUDivExpr>(BackedgeTakenCount)) {
1477     ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1478     if (!OrigCond) return false;
1479     const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1480     R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1481     if (R != BackedgeTakenCount) {
1482       const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1483       L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1484       if (L != BackedgeTakenCount)
1485         return false;
1486     }
1487   }
1488   return true;
1489 }
1490 
1491 /// getBackedgeIVType - Get the widest type used by the loop test after peeking
1492 /// through Truncs.
1493 ///
1494 /// TODO: Unnecessary if LFTR does not force a canonical IV.
1495 static const Type *getBackedgeIVType(Loop *L) {
1496   if (!L->getExitingBlock())
1497     return 0;
1498 
1499   // Can't rewrite non-branch yet.
1500   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1501   if (!BI)
1502     return 0;
1503 
1504   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1505   if (!Cond)
1506     return 0;
1507 
1508   const Type *Ty = 0;
1509   for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
1510       OI != OE; ++OI) {
1511     assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
1512     TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
1513     if (!Trunc)
1514       continue;
1515 
1516     return Trunc->getSrcTy();
1517   }
1518   return Ty;
1519 }
1520 
1521 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
1522 /// loop to be a canonical != comparison against the incremented loop induction
1523 /// variable.  This pass is able to rewrite the exit tests of any loop where the
1524 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
1525 /// is actually a much broader range than just linear tests.
1526 ICmpInst *IndVarSimplify::
1527 LinearFunctionTestReplace(Loop *L,
1528                           const SCEV *BackedgeTakenCount,
1529                           PHINode *IndVar,
1530                           SCEVExpander &Rewriter) {
1531   assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1532   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1533 
1534   // If the exiting block is not the same as the backedge block, we must compare
1535   // against the preincremented value, otherwise we prefer to compare against
1536   // the post-incremented value.
1537   Value *CmpIndVar;
1538   const SCEV *RHS = BackedgeTakenCount;
1539   if (L->getExitingBlock() == L->getLoopLatch()) {
1540     // Add one to the "backedge-taken" count to get the trip count.
1541     // If this addition may overflow, we have to be more pessimistic and
1542     // cast the induction variable before doing the add.
1543     const SCEV *Zero = SE->getConstant(BackedgeTakenCount->getType(), 0);
1544     const SCEV *N =
1545       SE->getAddExpr(BackedgeTakenCount,
1546                      SE->getConstant(BackedgeTakenCount->getType(), 1));
1547     if ((isa<SCEVConstant>(N) && !N->isZero()) ||
1548         SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
1549       // No overflow. Cast the sum.
1550       RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
1551     } else {
1552       // Potential overflow. Cast before doing the add.
1553       RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
1554                                         IndVar->getType());
1555       RHS = SE->getAddExpr(RHS,
1556                            SE->getConstant(IndVar->getType(), 1));
1557     }
1558 
1559     // The BackedgeTaken expression contains the number of times that the
1560     // backedge branches to the loop header.  This is one less than the
1561     // number of times the loop executes, so use the incremented indvar.
1562     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1563   } else {
1564     // We have to use the preincremented value...
1565     RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
1566                                       IndVar->getType());
1567     CmpIndVar = IndVar;
1568   }
1569 
1570   // Expand the code for the iteration count.
1571   assert(SE->isLoopInvariant(RHS, L) &&
1572          "Computed iteration count is not loop invariant!");
1573   Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);
1574 
1575   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1576   ICmpInst::Predicate Opcode;
1577   if (L->contains(BI->getSuccessor(0)))
1578     Opcode = ICmpInst::ICMP_NE;
1579   else
1580     Opcode = ICmpInst::ICMP_EQ;
1581 
1582   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1583                << "      LHS:" << *CmpIndVar << '\n'
1584                << "       op:\t"
1585                << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1586                << "      RHS:\t" << *RHS << "\n");
1587 
1588   ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
1589   Cond->setDebugLoc(BI->getDebugLoc());
1590   Value *OrigCond = BI->getCondition();
1591   // It's tempting to use replaceAllUsesWith here to fully replace the old
1592   // comparison, but that's not immediately safe, since users of the old
1593   // comparison may not be dominated by the new comparison. Instead, just
1594   // update the branch to use the new comparison; in the common case this
1595   // will make old comparison dead.
1596   BI->setCondition(Cond);
1597   DeadInsts.push_back(OrigCond);
1598 
1599   ++NumLFTR;
1600   Changed = true;
1601   return Cond;
1602 }
1603 
1604 //===----------------------------------------------------------------------===//
1605 //  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1606 //===----------------------------------------------------------------------===//
1607 
1608 /// If there's a single exit block, sink any loop-invariant values that
1609 /// were defined in the preheader but not used inside the loop into the
1610 /// exit block to reduce register pressure in the loop.
1611 void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1612   BasicBlock *ExitBlock = L->getExitBlock();
1613   if (!ExitBlock) return;
1614 
1615   BasicBlock *Preheader = L->getLoopPreheader();
1616   if (!Preheader) return;
1617 
1618   Instruction *InsertPt = ExitBlock->getFirstNonPHI();
1619   BasicBlock::iterator I = Preheader->getTerminator();
1620   while (I != Preheader->begin()) {
1621     --I;
1622     // New instructions were inserted at the end of the preheader.
1623     if (isa<PHINode>(I))
1624       break;
1625 
1626     // Don't move instructions which might have side effects, since the side
1627     // effects need to complete before instructions inside the loop.  Also don't
1628     // move instructions which might read memory, since the loop may modify
1629     // memory. Note that it's okay if the instruction might have undefined
1630     // behavior: LoopSimplify guarantees that the preheader dominates the exit
1631     // block.
1632     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1633       continue;
1634 
1635     // Skip debug info intrinsics.
1636     if (isa<DbgInfoIntrinsic>(I))
1637       continue;
1638 
1639     // Don't sink static AllocaInsts out of the entry block, which would
1640     // turn them into dynamic allocas!
1641     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
1642       if (AI->isStaticAlloca())
1643         continue;
1644 
1645     // Determine if there is a use in or before the loop (direct or
1646     // otherwise).
1647     bool UsedInLoop = false;
1648     for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1649          UI != UE; ++UI) {
1650       User *U = *UI;
1651       BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1652       if (PHINode *P = dyn_cast<PHINode>(U)) {
1653         unsigned i =
1654           PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1655         UseBB = P->getIncomingBlock(i);
1656       }
1657       if (UseBB == Preheader || L->contains(UseBB)) {
1658         UsedInLoop = true;
1659         break;
1660       }
1661     }
1662 
1663     // If there is, the def must remain in the preheader.
1664     if (UsedInLoop)
1665       continue;
1666 
1667     // Otherwise, sink it to the exit block.
1668     Instruction *ToMove = I;
1669     bool Done = false;
1670 
1671     if (I != Preheader->begin()) {
1672       // Skip debug info intrinsics.
1673       do {
1674         --I;
1675       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1676 
1677       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1678         Done = true;
1679     } else {
1680       Done = true;
1681     }
1682 
1683     ToMove->moveBefore(InsertPt);
1684     if (Done) break;
1685     InsertPt = ToMove;
1686   }
1687 }
1688 
1689 //===----------------------------------------------------------------------===//
1690 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
1691 //===----------------------------------------------------------------------===//
1692 
1693 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1694   // If LoopSimplify form is not available, stay out of trouble. Some notes:
1695   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1696   //    canonicalization can be a pessimization without LSR to "clean up"
1697   //    afterwards.
1698   //  - We depend on having a preheader; in particular,
1699   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1700   //    and we're in trouble if we can't find the induction variable even when
1701   //    we've manually inserted one.
1702   if (!L->isLoopSimplifyForm())
1703     return false;
1704 
1705   if (!DisableIVRewrite)
1706     IU = &getAnalysis<IVUsers>();
1707   LI = &getAnalysis<LoopInfo>();
1708   SE = &getAnalysis<ScalarEvolution>();
1709   DT = &getAnalysis<DominatorTree>();
1710   TD = getAnalysisIfAvailable<TargetData>();
1711 
1712   ExprToIVMap.clear();
1713   DeadInsts.clear();
1714   Changed = false;
1715 
1716   // If there are any floating-point recurrences, attempt to
1717   // transform them to use integer recurrences.
1718   RewriteNonIntegerIVs(L);
1719 
1720   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1721 
1722   // Create a rewriter object which we'll use to transform the code with.
1723   SCEVExpander Rewriter(*SE, "indvars");
1724 
1725   // Eliminate redundant IV users.
1726   //
1727   // Simplification works best when run before other consumers of SCEV. We
1728   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1729   // other expressions involving loop IVs have been evaluated. This helps SCEV
1730   // set no-wrap flags before normalizing sign/zero extension.
1731   if (DisableIVRewrite) {
1732     Rewriter.disableCanonicalMode();
1733     SimplifyIVUsersNoRewrite(L, Rewriter);
1734   }
1735 
1736   // Check to see if this loop has a computable loop-invariant execution count.
1737   // If so, this means that we can compute the final value of any expressions
1738   // that are recurrent in the loop, and substitute the exit values from the
1739   // loop into any instructions outside of the loop that use the final values of
1740   // the current expressions.
1741   //
1742   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1743     RewriteLoopExitValues(L, Rewriter);
1744 
1745   // Eliminate redundant IV users.
1746   if (!DisableIVRewrite)
1747     SimplifyIVUsers(Rewriter);
1748 
1749   // Eliminate redundant IV cycles and populate ExprToIVMap.
1750   // TODO: use ExprToIVMap to allow LFTR without canonical IVs
1751   if (DisableIVRewrite)
1752     SimplifyCongruentIVs(L);
1753 
1754   // Compute the type of the largest recurrence expression, and decide whether
1755   // a canonical induction variable should be inserted.
1756   const Type *LargestType = 0;
1757   bool NeedCannIV = false;
1758   bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
1759   if (ExpandBECount) {
1760     // If we have a known trip count and a single exit block, we'll be
1761     // rewriting the loop exit test condition below, which requires a
1762     // canonical induction variable.
1763     NeedCannIV = true;
1764     const Type *Ty = BackedgeTakenCount->getType();
1765     if (DisableIVRewrite) {
1766       // In this mode, SimplifyIVUsers may have already widened the IV used by
1767       // the backedge test and inserted a Trunc on the compare's operand. Get
1768       // the wider type to avoid creating a redundant narrow IV only used by the
1769       // loop test.
1770       LargestType = getBackedgeIVType(L);
1771     }
1772     if (!LargestType ||
1773         SE->getTypeSizeInBits(Ty) >
1774         SE->getTypeSizeInBits(LargestType))
1775       LargestType = SE->getEffectiveSCEVType(Ty);
1776   }
1777   if (!DisableIVRewrite) {
1778     for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
1779       NeedCannIV = true;
1780       const Type *Ty =
1781         SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
1782       if (!LargestType ||
1783           SE->getTypeSizeInBits(Ty) >
1784           SE->getTypeSizeInBits(LargestType))
1785         LargestType = Ty;
1786     }
1787   }
1788 
1789   // Now that we know the largest of the induction variable expressions
1790   // in this loop, insert a canonical induction variable of the largest size.
1791   PHINode *IndVar = 0;
1792   if (NeedCannIV) {
1793     // Check to see if the loop already has any canonical-looking induction
1794     // variables. If any are present and wider than the planned canonical
1795     // induction variable, temporarily remove them, so that the Rewriter
1796     // doesn't attempt to reuse them.
1797     SmallVector<PHINode *, 2> OldCannIVs;
1798     while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
1799       if (SE->getTypeSizeInBits(OldCannIV->getType()) >
1800           SE->getTypeSizeInBits(LargestType))
1801         OldCannIV->removeFromParent();
1802       else
1803         break;
1804       OldCannIVs.push_back(OldCannIV);
1805     }
1806 
1807     IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
1808 
1809     ++NumInserted;
1810     Changed = true;
1811     DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
1812 
1813     // Now that the official induction variable is established, reinsert
1814     // any old canonical-looking variables after it so that the IR remains
1815     // consistent. They will be deleted as part of the dead-PHI deletion at
1816     // the end of the pass.
1817     while (!OldCannIVs.empty()) {
1818       PHINode *OldCannIV = OldCannIVs.pop_back_val();
1819       OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
1820     }
1821   }
1822 
1823   // If we have a trip count expression, rewrite the loop's exit condition
1824   // using it.  We can currently only handle loops with a single exit.
1825   ICmpInst *NewICmp = 0;
1826   if (ExpandBECount) {
1827     assert(canExpandBackedgeTakenCount(L, SE) &&
1828            "canonical IV disrupted BackedgeTaken expansion");
1829     assert(NeedCannIV &&
1830            "LinearFunctionTestReplace requires a canonical induction variable");
1831     NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter);
1832   }
1833   // Rewrite IV-derived expressions.
1834   if (!DisableIVRewrite)
1835     RewriteIVExpressions(L, Rewriter);
1836 
1837   // Clear the rewriter cache, because values that are in the rewriter's cache
1838   // can be deleted in the loop below, causing the AssertingVH in the cache to
1839   // trigger.
1840   Rewriter.clear();
1841   ExprToIVMap.clear();
1842 
1843   // Now that we're done iterating through lists, clean up any instructions
1844   // which are now dead.
1845   while (!DeadInsts.empty())
1846     if (Instruction *Inst =
1847           dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1848       RecursivelyDeleteTriviallyDeadInstructions(Inst);
1849 
1850   // The Rewriter may not be used from this point on.
1851 
1852   // Loop-invariant instructions in the preheader that aren't used in the
1853   // loop may be sunk below the loop to reduce register pressure.
1854   SinkUnusedInvariants(L);
1855 
1856   // For completeness, inform IVUsers of the IV use in the newly-created
1857   // loop exit test instruction.
1858   if (NewICmp && IU)
1859     IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
1860 
1861   // Clean up dead instructions.
1862   Changed |= DeleteDeadPHIs(L->getHeader());
1863   // Check a post-condition.
1864   assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!");
1865   return Changed;
1866 }
1867