1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #define DEBUG_TYPE "indvars" 28 #include "llvm/Transforms/Scalar.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopPass.h" 34 #include "llvm/Analysis/ScalarEvolutionExpander.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Support/CFG.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetLibraryInfo.h" 48 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 49 #include "llvm/Transforms/Utils/Local.h" 50 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 51 using namespace llvm; 52 53 STATISTIC(NumWidened , "Number of indvars widened"); 54 STATISTIC(NumReplaced , "Number of exit values replaced"); 55 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 56 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 57 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 58 59 // Trip count verification can be enabled by default under NDEBUG if we 60 // implement a strong expression equivalence checker in SCEV. Until then, we 61 // use the verify-indvars flag, which may assert in some cases. 62 static cl::opt<bool> VerifyIndvars( 63 "verify-indvars", cl::Hidden, 64 cl::desc("Verify the ScalarEvolution result after running indvars")); 65 66 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden, 67 cl::desc("Reduce live induction variables.")); 68 69 namespace { 70 class IndVarSimplify : public LoopPass { 71 LoopInfo *LI; 72 ScalarEvolution *SE; 73 DominatorTree *DT; 74 DataLayout *TD; 75 TargetLibraryInfo *TLI; 76 77 SmallVector<WeakVH, 16> DeadInsts; 78 bool Changed; 79 public: 80 81 static char ID; // Pass identification, replacement for typeid 82 IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0), 83 Changed(false) { 84 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 85 } 86 87 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 88 89 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 90 AU.addRequired<DominatorTreeWrapperPass>(); 91 AU.addRequired<LoopInfo>(); 92 AU.addRequired<ScalarEvolution>(); 93 AU.addRequiredID(LoopSimplifyID); 94 AU.addRequiredID(LCSSAID); 95 AU.addPreserved<ScalarEvolution>(); 96 AU.addPreservedID(LoopSimplifyID); 97 AU.addPreservedID(LCSSAID); 98 AU.setPreservesCFG(); 99 } 100 101 private: 102 virtual void releaseMemory() { 103 DeadInsts.clear(); 104 } 105 106 bool isValidRewrite(Value *FromVal, Value *ToVal); 107 108 void HandleFloatingPointIV(Loop *L, PHINode *PH); 109 void RewriteNonIntegerIVs(Loop *L); 110 111 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM); 112 113 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 114 115 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 116 PHINode *IndVar, SCEVExpander &Rewriter); 117 118 void SinkUnusedInvariants(Loop *L); 119 }; 120 } 121 122 char IndVarSimplify::ID = 0; 123 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 124 "Induction Variable Simplification", false, false) 125 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 126 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 127 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 128 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 129 INITIALIZE_PASS_DEPENDENCY(LCSSA) 130 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 131 "Induction Variable Simplification", false, false) 132 133 Pass *llvm::createIndVarSimplifyPass() { 134 return new IndVarSimplify(); 135 } 136 137 /// isValidRewrite - Return true if the SCEV expansion generated by the 138 /// rewriter can replace the original value. SCEV guarantees that it 139 /// produces the same value, but the way it is produced may be illegal IR. 140 /// Ideally, this function will only be called for verification. 141 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 142 // If an SCEV expression subsumed multiple pointers, its expansion could 143 // reassociate the GEP changing the base pointer. This is illegal because the 144 // final address produced by a GEP chain must be inbounds relative to its 145 // underlying object. Otherwise basic alias analysis, among other things, 146 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 147 // producing an expression involving multiple pointers. Until then, we must 148 // bail out here. 149 // 150 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 151 // because it understands lcssa phis while SCEV does not. 152 Value *FromPtr = FromVal; 153 Value *ToPtr = ToVal; 154 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) { 155 FromPtr = GEP->getPointerOperand(); 156 } 157 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) { 158 ToPtr = GEP->getPointerOperand(); 159 } 160 if (FromPtr != FromVal || ToPtr != ToVal) { 161 // Quickly check the common case 162 if (FromPtr == ToPtr) 163 return true; 164 165 // SCEV may have rewritten an expression that produces the GEP's pointer 166 // operand. That's ok as long as the pointer operand has the same base 167 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 168 // base of a recurrence. This handles the case in which SCEV expansion 169 // converts a pointer type recurrence into a nonrecurrent pointer base 170 // indexed by an integer recurrence. 171 172 // If the GEP base pointer is a vector of pointers, abort. 173 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 174 return false; 175 176 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 177 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 178 if (FromBase == ToBase) 179 return true; 180 181 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 182 << *FromBase << " != " << *ToBase << "\n"); 183 184 return false; 185 } 186 return true; 187 } 188 189 /// Determine the insertion point for this user. By default, insert immediately 190 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 191 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 192 /// common dominator for the incoming blocks. 193 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 194 DominatorTree *DT) { 195 PHINode *PHI = dyn_cast<PHINode>(User); 196 if (!PHI) 197 return User; 198 199 Instruction *InsertPt = 0; 200 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 201 if (PHI->getIncomingValue(i) != Def) 202 continue; 203 204 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 205 if (!InsertPt) { 206 InsertPt = InsertBB->getTerminator(); 207 continue; 208 } 209 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 210 InsertPt = InsertBB->getTerminator(); 211 } 212 assert(InsertPt && "Missing phi operand"); 213 assert((!isa<Instruction>(Def) || 214 DT->dominates(cast<Instruction>(Def), InsertPt)) && 215 "def does not dominate all uses"); 216 return InsertPt; 217 } 218 219 //===----------------------------------------------------------------------===// 220 // RewriteNonIntegerIVs and helpers. Prefer integer IVs. 221 //===----------------------------------------------------------------------===// 222 223 /// ConvertToSInt - Convert APF to an integer, if possible. 224 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 225 bool isExact = false; 226 // See if we can convert this to an int64_t 227 uint64_t UIntVal; 228 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 229 &isExact) != APFloat::opOK || !isExact) 230 return false; 231 IntVal = UIntVal; 232 return true; 233 } 234 235 /// HandleFloatingPointIV - If the loop has floating induction variable 236 /// then insert corresponding integer induction variable if possible. 237 /// For example, 238 /// for(double i = 0; i < 10000; ++i) 239 /// bar(i) 240 /// is converted into 241 /// for(int i = 0; i < 10000; ++i) 242 /// bar((double)i); 243 /// 244 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { 245 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 246 unsigned BackEdge = IncomingEdge^1; 247 248 // Check incoming value. 249 ConstantFP *InitValueVal = 250 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 251 252 int64_t InitValue; 253 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 254 return; 255 256 // Check IV increment. Reject this PN if increment operation is not 257 // an add or increment value can not be represented by an integer. 258 BinaryOperator *Incr = 259 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 260 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return; 261 262 // If this is not an add of the PHI with a constantfp, or if the constant fp 263 // is not an integer, bail out. 264 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 265 int64_t IncValue; 266 if (IncValueVal == 0 || Incr->getOperand(0) != PN || 267 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 268 return; 269 270 // Check Incr uses. One user is PN and the other user is an exit condition 271 // used by the conditional terminator. 272 Value::use_iterator IncrUse = Incr->use_begin(); 273 Instruction *U1 = cast<Instruction>(*IncrUse++); 274 if (IncrUse == Incr->use_end()) return; 275 Instruction *U2 = cast<Instruction>(*IncrUse++); 276 if (IncrUse != Incr->use_end()) return; 277 278 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 279 // only used by a branch, we can't transform it. 280 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 281 if (!Compare) 282 Compare = dyn_cast<FCmpInst>(U2); 283 if (Compare == 0 || !Compare->hasOneUse() || 284 !isa<BranchInst>(Compare->use_back())) 285 return; 286 287 BranchInst *TheBr = cast<BranchInst>(Compare->use_back()); 288 289 // We need to verify that the branch actually controls the iteration count 290 // of the loop. If not, the new IV can overflow and no one will notice. 291 // The branch block must be in the loop and one of the successors must be out 292 // of the loop. 293 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 294 if (!L->contains(TheBr->getParent()) || 295 (L->contains(TheBr->getSuccessor(0)) && 296 L->contains(TheBr->getSuccessor(1)))) 297 return; 298 299 300 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 301 // transform it. 302 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 303 int64_t ExitValue; 304 if (ExitValueVal == 0 || 305 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 306 return; 307 308 // Find new predicate for integer comparison. 309 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 310 switch (Compare->getPredicate()) { 311 default: return; // Unknown comparison. 312 case CmpInst::FCMP_OEQ: 313 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 314 case CmpInst::FCMP_ONE: 315 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 316 case CmpInst::FCMP_OGT: 317 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 318 case CmpInst::FCMP_OGE: 319 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 320 case CmpInst::FCMP_OLT: 321 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 322 case CmpInst::FCMP_OLE: 323 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 324 } 325 326 // We convert the floating point induction variable to a signed i32 value if 327 // we can. This is only safe if the comparison will not overflow in a way 328 // that won't be trapped by the integer equivalent operations. Check for this 329 // now. 330 // TODO: We could use i64 if it is native and the range requires it. 331 332 // The start/stride/exit values must all fit in signed i32. 333 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 334 return; 335 336 // If not actually striding (add x, 0.0), avoid touching the code. 337 if (IncValue == 0) 338 return; 339 340 // Positive and negative strides have different safety conditions. 341 if (IncValue > 0) { 342 // If we have a positive stride, we require the init to be less than the 343 // exit value. 344 if (InitValue >= ExitValue) 345 return; 346 347 uint32_t Range = uint32_t(ExitValue-InitValue); 348 // Check for infinite loop, either: 349 // while (i <= Exit) or until (i > Exit) 350 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 351 if (++Range == 0) return; // Range overflows. 352 } 353 354 unsigned Leftover = Range % uint32_t(IncValue); 355 356 // If this is an equality comparison, we require that the strided value 357 // exactly land on the exit value, otherwise the IV condition will wrap 358 // around and do things the fp IV wouldn't. 359 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 360 Leftover != 0) 361 return; 362 363 // If the stride would wrap around the i32 before exiting, we can't 364 // transform the IV. 365 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 366 return; 367 368 } else { 369 // If we have a negative stride, we require the init to be greater than the 370 // exit value. 371 if (InitValue <= ExitValue) 372 return; 373 374 uint32_t Range = uint32_t(InitValue-ExitValue); 375 // Check for infinite loop, either: 376 // while (i >= Exit) or until (i < Exit) 377 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 378 if (++Range == 0) return; // Range overflows. 379 } 380 381 unsigned Leftover = Range % uint32_t(-IncValue); 382 383 // If this is an equality comparison, we require that the strided value 384 // exactly land on the exit value, otherwise the IV condition will wrap 385 // around and do things the fp IV wouldn't. 386 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 387 Leftover != 0) 388 return; 389 390 // If the stride would wrap around the i32 before exiting, we can't 391 // transform the IV. 392 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 393 return; 394 } 395 396 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 397 398 // Insert new integer induction variable. 399 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 400 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 401 PN->getIncomingBlock(IncomingEdge)); 402 403 Value *NewAdd = 404 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 405 Incr->getName()+".int", Incr); 406 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 407 408 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 409 ConstantInt::get(Int32Ty, ExitValue), 410 Compare->getName()); 411 412 // In the following deletions, PN may become dead and may be deleted. 413 // Use a WeakVH to observe whether this happens. 414 WeakVH WeakPH = PN; 415 416 // Delete the old floating point exit comparison. The branch starts using the 417 // new comparison. 418 NewCompare->takeName(Compare); 419 Compare->replaceAllUsesWith(NewCompare); 420 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 421 422 // Delete the old floating point increment. 423 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 424 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 425 426 // If the FP induction variable still has uses, this is because something else 427 // in the loop uses its value. In order to canonicalize the induction 428 // variable, we chose to eliminate the IV and rewrite it in terms of an 429 // int->fp cast. 430 // 431 // We give preference to sitofp over uitofp because it is faster on most 432 // platforms. 433 if (WeakPH) { 434 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 435 PN->getParent()->getFirstInsertionPt()); 436 PN->replaceAllUsesWith(Conv); 437 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 438 } 439 Changed = true; 440 } 441 442 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { 443 // First step. Check to see if there are any floating-point recurrences. 444 // If there are, change them into integer recurrences, permitting analysis by 445 // the SCEV routines. 446 // 447 BasicBlock *Header = L->getHeader(); 448 449 SmallVector<WeakVH, 8> PHIs; 450 for (BasicBlock::iterator I = Header->begin(); 451 PHINode *PN = dyn_cast<PHINode>(I); ++I) 452 PHIs.push_back(PN); 453 454 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 455 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 456 HandleFloatingPointIV(L, PN); 457 458 // If the loop previously had floating-point IV, ScalarEvolution 459 // may not have been able to compute a trip count. Now that we've done some 460 // re-writing, the trip count may be computable. 461 if (Changed) 462 SE->forgetLoop(L); 463 } 464 465 //===----------------------------------------------------------------------===// 466 // RewriteLoopExitValues - Optimize IV users outside the loop. 467 // As a side effect, reduces the amount of IV processing within the loop. 468 //===----------------------------------------------------------------------===// 469 470 /// RewriteLoopExitValues - Check to see if this loop has a computable 471 /// loop-invariant execution count. If so, this means that we can compute the 472 /// final value of any expressions that are recurrent in the loop, and 473 /// substitute the exit values from the loop into any instructions outside of 474 /// the loop that use the final values of the current expressions. 475 /// 476 /// This is mostly redundant with the regular IndVarSimplify activities that 477 /// happen later, except that it's more powerful in some cases, because it's 478 /// able to brute-force evaluate arbitrary instructions as long as they have 479 /// constant operands at the beginning of the loop. 480 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 481 // Verify the input to the pass in already in LCSSA form. 482 assert(L->isLCSSAForm(*DT)); 483 484 SmallVector<BasicBlock*, 8> ExitBlocks; 485 L->getUniqueExitBlocks(ExitBlocks); 486 487 // Find all values that are computed inside the loop, but used outside of it. 488 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 489 // the exit blocks of the loop to find them. 490 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 491 BasicBlock *ExitBB = ExitBlocks[i]; 492 493 // If there are no PHI nodes in this exit block, then no values defined 494 // inside the loop are used on this path, skip it. 495 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 496 if (!PN) continue; 497 498 unsigned NumPreds = PN->getNumIncomingValues(); 499 500 // Iterate over all of the PHI nodes. 501 BasicBlock::iterator BBI = ExitBB->begin(); 502 while ((PN = dyn_cast<PHINode>(BBI++))) { 503 if (PN->use_empty()) 504 continue; // dead use, don't replace it 505 506 // SCEV only supports integer expressions for now. 507 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 508 continue; 509 510 // It's necessary to tell ScalarEvolution about this explicitly so that 511 // it can walk the def-use list and forget all SCEVs, as it may not be 512 // watching the PHI itself. Once the new exit value is in place, there 513 // may not be a def-use connection between the loop and every instruction 514 // which got a SCEVAddRecExpr for that loop. 515 SE->forgetValue(PN); 516 517 // Iterate over all of the values in all the PHI nodes. 518 for (unsigned i = 0; i != NumPreds; ++i) { 519 // If the value being merged in is not integer or is not defined 520 // in the loop, skip it. 521 Value *InVal = PN->getIncomingValue(i); 522 if (!isa<Instruction>(InVal)) 523 continue; 524 525 // If this pred is for a subloop, not L itself, skip it. 526 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 527 continue; // The Block is in a subloop, skip it. 528 529 // Check that InVal is defined in the loop. 530 Instruction *Inst = cast<Instruction>(InVal); 531 if (!L->contains(Inst)) 532 continue; 533 534 // Okay, this instruction has a user outside of the current loop 535 // and varies predictably *inside* the loop. Evaluate the value it 536 // contains when the loop exits, if possible. 537 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 538 if (!SE->isLoopInvariant(ExitValue, L) || 539 !isSafeToExpand(ExitValue, *SE)) 540 continue; 541 542 // Computing the value outside of the loop brings no benefit if : 543 // - it is definitely used inside the loop in a way which can not be 544 // optimized away. 545 // - no use outside of the loop can take advantage of hoisting the 546 // computation out of the loop 547 if (ExitValue->getSCEVType()>=scMulExpr) { 548 unsigned NumHardInternalUses = 0; 549 unsigned NumSoftExternalUses = 0; 550 unsigned NumUses = 0; 551 for (Value::use_iterator IB=Inst->use_begin(), IE=Inst->use_end(); 552 IB!=IE && NumUses<=6 ; ++IB) { 553 Instruction *UseInstr = cast<Instruction>(*IB); 554 unsigned Opc = UseInstr->getOpcode(); 555 NumUses++; 556 if (L->contains(UseInstr)) { 557 if (Opc == Instruction::Call || Opc == Instruction::Ret) 558 NumHardInternalUses++; 559 } else { 560 if (Opc == Instruction::PHI) { 561 // Do not count the Phi as a use. LCSSA may have inserted 562 // plenty of trivial ones. 563 NumUses--; 564 for (Value::use_iterator PB=UseInstr->use_begin(), 565 PE=UseInstr->use_end(); 566 PB!=PE && NumUses<=6 ; ++PB, ++NumUses) { 567 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 568 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 569 NumSoftExternalUses++; 570 } 571 continue; 572 } 573 if (Opc != Instruction::Call && Opc != Instruction::Ret) 574 NumSoftExternalUses++; 575 } 576 } 577 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 578 continue; 579 } 580 581 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 582 583 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 584 << " LoopVal = " << *Inst << "\n"); 585 586 if (!isValidRewrite(Inst, ExitVal)) { 587 DeadInsts.push_back(ExitVal); 588 continue; 589 } 590 Changed = true; 591 ++NumReplaced; 592 593 PN->setIncomingValue(i, ExitVal); 594 595 // If this instruction is dead now, delete it. Don't do it now to avoid 596 // invalidating iterators. 597 if (isInstructionTriviallyDead(Inst, TLI)) 598 DeadInsts.push_back(Inst); 599 600 if (NumPreds == 1) { 601 // Completely replace a single-pred PHI. This is safe, because the 602 // NewVal won't be variant in the loop, so we don't need an LCSSA phi 603 // node anymore. 604 PN->replaceAllUsesWith(ExitVal); 605 PN->eraseFromParent(); 606 } 607 } 608 if (NumPreds != 1) { 609 // Clone the PHI and delete the original one. This lets IVUsers and 610 // any other maps purge the original user from their records. 611 PHINode *NewPN = cast<PHINode>(PN->clone()); 612 NewPN->takeName(PN); 613 NewPN->insertBefore(PN); 614 PN->replaceAllUsesWith(NewPN); 615 PN->eraseFromParent(); 616 } 617 } 618 } 619 620 // The insertion point instruction may have been deleted; clear it out 621 // so that the rewriter doesn't trip over it later. 622 Rewriter.clearInsertPoint(); 623 } 624 625 //===----------------------------------------------------------------------===// 626 // IV Widening - Extend the width of an IV to cover its widest uses. 627 //===----------------------------------------------------------------------===// 628 629 namespace { 630 // Collect information about induction variables that are used by sign/zero 631 // extend operations. This information is recorded by CollectExtend and 632 // provides the input to WidenIV. 633 struct WideIVInfo { 634 PHINode *NarrowIV; 635 Type *WidestNativeType; // Widest integer type created [sz]ext 636 bool IsSigned; // Was an sext user seen before a zext? 637 638 WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {} 639 }; 640 } 641 642 /// visitCast - Update information about the induction variable that is 643 /// extended by this sign or zero extend operation. This is used to determine 644 /// the final width of the IV before actually widening it. 645 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 646 const DataLayout *TD) { 647 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 648 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 649 return; 650 651 Type *Ty = Cast->getType(); 652 uint64_t Width = SE->getTypeSizeInBits(Ty); 653 if (TD && !TD->isLegalInteger(Width)) 654 return; 655 656 if (!WI.WidestNativeType) { 657 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 658 WI.IsSigned = IsSigned; 659 return; 660 } 661 662 // We extend the IV to satisfy the sign of its first user, arbitrarily. 663 if (WI.IsSigned != IsSigned) 664 return; 665 666 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 667 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 668 } 669 670 namespace { 671 672 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the 673 /// WideIV that computes the same value as the Narrow IV def. This avoids 674 /// caching Use* pointers. 675 struct NarrowIVDefUse { 676 Instruction *NarrowDef; 677 Instruction *NarrowUse; 678 Instruction *WideDef; 679 680 NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {} 681 682 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD): 683 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {} 684 }; 685 686 /// WidenIV - The goal of this transform is to remove sign and zero extends 687 /// without creating any new induction variables. To do this, it creates a new 688 /// phi of the wider type and redirects all users, either removing extends or 689 /// inserting truncs whenever we stop propagating the type. 690 /// 691 class WidenIV { 692 // Parameters 693 PHINode *OrigPhi; 694 Type *WideType; 695 bool IsSigned; 696 697 // Context 698 LoopInfo *LI; 699 Loop *L; 700 ScalarEvolution *SE; 701 DominatorTree *DT; 702 703 // Result 704 PHINode *WidePhi; 705 Instruction *WideInc; 706 const SCEV *WideIncExpr; 707 SmallVectorImpl<WeakVH> &DeadInsts; 708 709 SmallPtrSet<Instruction*,16> Widened; 710 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 711 712 public: 713 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 714 ScalarEvolution *SEv, DominatorTree *DTree, 715 SmallVectorImpl<WeakVH> &DI) : 716 OrigPhi(WI.NarrowIV), 717 WideType(WI.WidestNativeType), 718 IsSigned(WI.IsSigned), 719 LI(LInfo), 720 L(LI->getLoopFor(OrigPhi->getParent())), 721 SE(SEv), 722 DT(DTree), 723 WidePhi(0), 724 WideInc(0), 725 WideIncExpr(0), 726 DeadInsts(DI) { 727 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 728 } 729 730 PHINode *CreateWideIV(SCEVExpander &Rewriter); 731 732 protected: 733 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 734 Instruction *Use); 735 736 Instruction *CloneIVUser(NarrowIVDefUse DU); 737 738 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse); 739 740 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU); 741 742 Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 743 744 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 745 }; 746 } // anonymous namespace 747 748 /// isLoopInvariant - Perform a quick domtree based check for loop invariance 749 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems 750 /// gratuitous for this purpose. 751 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 752 Instruction *Inst = dyn_cast<Instruction>(V); 753 if (!Inst) 754 return true; 755 756 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 757 } 758 759 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 760 Instruction *Use) { 761 // Set the debug location and conservative insertion point. 762 IRBuilder<> Builder(Use); 763 // Hoist the insertion point into loop preheaders as far as possible. 764 for (const Loop *L = LI->getLoopFor(Use->getParent()); 765 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 766 L = L->getParentLoop()) 767 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 768 769 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 770 Builder.CreateZExt(NarrowOper, WideType); 771 } 772 773 /// CloneIVUser - Instantiate a wide operation to replace a narrow 774 /// operation. This only needs to handle operations that can evaluation to 775 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone. 776 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) { 777 unsigned Opcode = DU.NarrowUse->getOpcode(); 778 switch (Opcode) { 779 default: 780 return 0; 781 case Instruction::Add: 782 case Instruction::Mul: 783 case Instruction::UDiv: 784 case Instruction::Sub: 785 case Instruction::And: 786 case Instruction::Or: 787 case Instruction::Xor: 788 case Instruction::Shl: 789 case Instruction::LShr: 790 case Instruction::AShr: 791 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n"); 792 793 // Replace NarrowDef operands with WideDef. Otherwise, we don't know 794 // anything about the narrow operand yet so must insert a [sz]ext. It is 795 // probably loop invariant and will be folded or hoisted. If it actually 796 // comes from a widened IV, it should be removed during a future call to 797 // WidenIVUse. 798 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef : 799 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse); 800 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef : 801 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse); 802 803 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse); 804 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), 805 LHS, RHS, 806 NarrowBO->getName()); 807 IRBuilder<> Builder(DU.NarrowUse); 808 Builder.Insert(WideBO); 809 if (const OverflowingBinaryOperator *OBO = 810 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) { 811 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap(); 812 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap(); 813 } 814 return WideBO; 815 } 816 } 817 818 /// No-wrap operations can transfer sign extension of their result to their 819 /// operands. Generate the SCEV value for the widened operation without 820 /// actually modifying the IR yet. If the expression after extending the 821 /// operands is an AddRec for this loop, return it. 822 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) { 823 // Handle the common case of add<nsw/nuw> 824 if (DU.NarrowUse->getOpcode() != Instruction::Add) 825 return 0; 826 827 // One operand (NarrowDef) has already been extended to WideDef. Now determine 828 // if extending the other will lead to a recurrence. 829 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 830 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 831 832 const SCEV *ExtendOperExpr = 0; 833 const OverflowingBinaryOperator *OBO = 834 cast<OverflowingBinaryOperator>(DU.NarrowUse); 835 if (IsSigned && OBO->hasNoSignedWrap()) 836 ExtendOperExpr = SE->getSignExtendExpr( 837 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 838 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 839 ExtendOperExpr = SE->getZeroExtendExpr( 840 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 841 else 842 return 0; 843 844 // When creating this AddExpr, don't apply the current operations NSW or NUW 845 // flags. This instruction may be guarded by control flow that the no-wrap 846 // behavior depends on. Non-control-equivalent instructions can be mapped to 847 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 848 // semantics to those operations. 849 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>( 850 SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr)); 851 852 if (!AddRec || AddRec->getLoop() != L) 853 return 0; 854 return AddRec; 855 } 856 857 /// GetWideRecurrence - Is this instruction potentially interesting from 858 /// IVUsers' perspective after widening it's type? In other words, can the 859 /// extend be safely hoisted out of the loop with SCEV reducing the value to a 860 /// recurrence on the same loop. If so, return the sign or zero extended 861 /// recurrence. Otherwise return NULL. 862 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) { 863 if (!SE->isSCEVable(NarrowUse->getType())) 864 return 0; 865 866 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 867 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 868 >= SE->getTypeSizeInBits(WideType)) { 869 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 870 // index. So don't follow this use. 871 return 0; 872 } 873 874 const SCEV *WideExpr = IsSigned ? 875 SE->getSignExtendExpr(NarrowExpr, WideType) : 876 SE->getZeroExtendExpr(NarrowExpr, WideType); 877 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 878 if (!AddRec || AddRec->getLoop() != L) 879 return 0; 880 return AddRec; 881 } 882 883 /// This IV user cannot be widen. Replace this use of the original narrow IV 884 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 885 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) { 886 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef 887 << " for user " << *DU.NarrowUse << "\n"); 888 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 889 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 890 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 891 } 892 893 /// WidenIVUse - Determine whether an individual user of the narrow IV can be 894 /// widened. If so, return the wide clone of the user. 895 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 896 897 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 898 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 899 if (LI->getLoopFor(UsePhi->getParent()) != L) { 900 // For LCSSA phis, sink the truncate outside the loop. 901 // After SimplifyCFG most loop exit targets have a single predecessor. 902 // Otherwise fall back to a truncate within the loop. 903 if (UsePhi->getNumOperands() != 1) 904 truncateIVUse(DU, DT); 905 else { 906 PHINode *WidePhi = 907 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 908 UsePhi); 909 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 910 IRBuilder<> Builder(WidePhi->getParent()->getFirstInsertionPt()); 911 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 912 UsePhi->replaceAllUsesWith(Trunc); 913 DeadInsts.push_back(UsePhi); 914 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi 915 << " to " << *WidePhi << "\n"); 916 } 917 return 0; 918 } 919 } 920 // Our raison d'etre! Eliminate sign and zero extension. 921 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 922 Value *NewDef = DU.WideDef; 923 if (DU.NarrowUse->getType() != WideType) { 924 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 925 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 926 if (CastWidth < IVWidth) { 927 // The cast isn't as wide as the IV, so insert a Trunc. 928 IRBuilder<> Builder(DU.NarrowUse); 929 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 930 } 931 else { 932 // A wider extend was hidden behind a narrower one. This may induce 933 // another round of IV widening in which the intermediate IV becomes 934 // dead. It should be very rare. 935 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 936 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 937 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 938 NewDef = DU.NarrowUse; 939 } 940 } 941 if (NewDef != DU.NarrowUse) { 942 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 943 << " replaced by " << *DU.WideDef << "\n"); 944 ++NumElimExt; 945 DU.NarrowUse->replaceAllUsesWith(NewDef); 946 DeadInsts.push_back(DU.NarrowUse); 947 } 948 // Now that the extend is gone, we want to expose it's uses for potential 949 // further simplification. We don't need to directly inform SimplifyIVUsers 950 // of the new users, because their parent IV will be processed later as a 951 // new loop phi. If we preserved IVUsers analysis, we would also want to 952 // push the uses of WideDef here. 953 954 // No further widening is needed. The deceased [sz]ext had done it for us. 955 return 0; 956 } 957 958 // Does this user itself evaluate to a recurrence after widening? 959 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse); 960 if (!WideAddRec) { 961 WideAddRec = GetExtendedOperandRecurrence(DU); 962 } 963 if (!WideAddRec) { 964 // This user does not evaluate to a recurence after widening, so don't 965 // follow it. Instead insert a Trunc to kill off the original use, 966 // eventually isolating the original narrow IV so it can be removed. 967 truncateIVUse(DU, DT); 968 return 0; 969 } 970 // Assume block terminators cannot evaluate to a recurrence. We can't to 971 // insert a Trunc after a terminator if there happens to be a critical edge. 972 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 973 "SCEV is not expected to evaluate a block terminator"); 974 975 // Reuse the IV increment that SCEVExpander created as long as it dominates 976 // NarrowUse. 977 Instruction *WideUse = 0; 978 if (WideAddRec == WideIncExpr 979 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 980 WideUse = WideInc; 981 else { 982 WideUse = CloneIVUser(DU); 983 if (!WideUse) 984 return 0; 985 } 986 // Evaluation of WideAddRec ensured that the narrow expression could be 987 // extended outside the loop without overflow. This suggests that the wide use 988 // evaluates to the same expression as the extended narrow use, but doesn't 989 // absolutely guarantee it. Hence the following failsafe check. In rare cases 990 // where it fails, we simply throw away the newly created wide use. 991 if (WideAddRec != SE->getSCEV(WideUse)) { 992 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 993 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 994 DeadInsts.push_back(WideUse); 995 return 0; 996 } 997 998 // Returning WideUse pushes it on the worklist. 999 return WideUse; 1000 } 1001 1002 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers. 1003 /// 1004 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1005 for (Value::use_iterator UI = NarrowDef->use_begin(), 1006 UE = NarrowDef->use_end(); UI != UE; ++UI) { 1007 Instruction *NarrowUse = cast<Instruction>(*UI); 1008 1009 // Handle data flow merges and bizarre phi cycles. 1010 if (!Widened.insert(NarrowUse)) 1011 continue; 1012 1013 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef)); 1014 } 1015 } 1016 1017 /// CreateWideIV - Process a single induction variable. First use the 1018 /// SCEVExpander to create a wide induction variable that evaluates to the same 1019 /// recurrence as the original narrow IV. Then use a worklist to forward 1020 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all 1021 /// interesting IV users, the narrow IV will be isolated for removal by 1022 /// DeleteDeadPHIs. 1023 /// 1024 /// It would be simpler to delete uses as they are processed, but we must avoid 1025 /// invalidating SCEV expressions. 1026 /// 1027 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) { 1028 // Is this phi an induction variable? 1029 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1030 if (!AddRec) 1031 return NULL; 1032 1033 // Widen the induction variable expression. 1034 const SCEV *WideIVExpr = IsSigned ? 1035 SE->getSignExtendExpr(AddRec, WideType) : 1036 SE->getZeroExtendExpr(AddRec, WideType); 1037 1038 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1039 "Expect the new IV expression to preserve its type"); 1040 1041 // Can the IV be extended outside the loop without overflow? 1042 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1043 if (!AddRec || AddRec->getLoop() != L) 1044 return NULL; 1045 1046 // An AddRec must have loop-invariant operands. Since this AddRec is 1047 // materialized by a loop header phi, the expression cannot have any post-loop 1048 // operands, so they must dominate the loop header. 1049 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1050 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1051 && "Loop header phi recurrence inputs do not dominate the loop"); 1052 1053 // The rewriter provides a value for the desired IV expression. This may 1054 // either find an existing phi or materialize a new one. Either way, we 1055 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1056 // of the phi-SCC dominates the loop entry. 1057 Instruction *InsertPt = L->getHeader()->begin(); 1058 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1059 1060 // Remembering the WideIV increment generated by SCEVExpander allows 1061 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't 1062 // employ a general reuse mechanism because the call above is the only call to 1063 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1064 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1065 WideInc = 1066 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1067 WideIncExpr = SE->getSCEV(WideInc); 1068 } 1069 1070 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1071 ++NumWidened; 1072 1073 // Traverse the def-use chain using a worklist starting at the original IV. 1074 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1075 1076 Widened.insert(OrigPhi); 1077 pushNarrowIVUsers(OrigPhi, WidePhi); 1078 1079 while (!NarrowIVUsers.empty()) { 1080 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1081 1082 // Process a def-use edge. This may replace the use, so don't hold a 1083 // use_iterator across it. 1084 Instruction *WideUse = WidenIVUse(DU, Rewriter); 1085 1086 // Follow all def-use edges from the previous narrow use. 1087 if (WideUse) 1088 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1089 1090 // WidenIVUse may have removed the def-use edge. 1091 if (DU.NarrowDef->use_empty()) 1092 DeadInsts.push_back(DU.NarrowDef); 1093 } 1094 return WidePhi; 1095 } 1096 1097 //===----------------------------------------------------------------------===// 1098 // Live IV Reduction - Minimize IVs live across the loop. 1099 //===----------------------------------------------------------------------===// 1100 1101 1102 //===----------------------------------------------------------------------===// 1103 // Simplification of IV users based on SCEV evaluation. 1104 //===----------------------------------------------------------------------===// 1105 1106 namespace { 1107 class IndVarSimplifyVisitor : public IVVisitor { 1108 ScalarEvolution *SE; 1109 const DataLayout *TD; 1110 PHINode *IVPhi; 1111 1112 public: 1113 WideIVInfo WI; 1114 1115 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1116 const DataLayout *TData, const DominatorTree *DTree): 1117 SE(SCEV), TD(TData), IVPhi(IV) { 1118 DT = DTree; 1119 WI.NarrowIV = IVPhi; 1120 if (ReduceLiveIVs) 1121 setSplitOverflowIntrinsics(); 1122 } 1123 1124 // Implement the interface used by simplifyUsersOfIV. 1125 virtual void visitCast(CastInst *Cast) { visitIVCast(Cast, WI, SE, TD); } 1126 }; 1127 } 1128 1129 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV 1130 /// users. Each successive simplification may push more users which may 1131 /// themselves be candidates for simplification. 1132 /// 1133 /// Sign/Zero extend elimination is interleaved with IV simplification. 1134 /// 1135 void IndVarSimplify::SimplifyAndExtend(Loop *L, 1136 SCEVExpander &Rewriter, 1137 LPPassManager &LPM) { 1138 SmallVector<WideIVInfo, 8> WideIVs; 1139 1140 SmallVector<PHINode*, 8> LoopPhis; 1141 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1142 LoopPhis.push_back(cast<PHINode>(I)); 1143 } 1144 // Each round of simplification iterates through the SimplifyIVUsers worklist 1145 // for all current phis, then determines whether any IVs can be 1146 // widened. Widening adds new phis to LoopPhis, inducing another round of 1147 // simplification on the wide IVs. 1148 while (!LoopPhis.empty()) { 1149 // Evaluate as many IV expressions as possible before widening any IVs. This 1150 // forces SCEV to set no-wrap flags before evaluating sign/zero 1151 // extension. The first time SCEV attempts to normalize sign/zero extension, 1152 // the result becomes final. So for the most predictable results, we delay 1153 // evaluation of sign/zero extend evaluation until needed, and avoid running 1154 // other SCEV based analysis prior to SimplifyAndExtend. 1155 do { 1156 PHINode *CurrIV = LoopPhis.pop_back_val(); 1157 1158 // Information about sign/zero extensions of CurrIV. 1159 IndVarSimplifyVisitor Visitor(CurrIV, SE, TD, DT); 1160 1161 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor); 1162 1163 if (Visitor.WI.WidestNativeType) { 1164 WideIVs.push_back(Visitor.WI); 1165 } 1166 } while(!LoopPhis.empty()); 1167 1168 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1169 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1170 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) { 1171 Changed = true; 1172 LoopPhis.push_back(WidePhi); 1173 } 1174 } 1175 } 1176 } 1177 1178 //===----------------------------------------------------------------------===// 1179 // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1180 //===----------------------------------------------------------------------===// 1181 1182 /// Check for expressions that ScalarEvolution generates to compute 1183 /// BackedgeTakenInfo. If these expressions have not been reduced, then 1184 /// expanding them may incur additional cost (albeit in the loop preheader). 1185 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI, 1186 SmallPtrSet<const SCEV*, 8> &Processed, 1187 ScalarEvolution *SE) { 1188 if (!Processed.insert(S)) 1189 return false; 1190 1191 // If the backedge-taken count is a UDiv, it's very likely a UDiv that 1192 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a 1193 // precise expression, rather than a UDiv from the user's code. If we can't 1194 // find a UDiv in the code with some simple searching, assume the former and 1195 // forego rewriting the loop. 1196 if (isa<SCEVUDivExpr>(S)) { 1197 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition()); 1198 if (!OrigCond) return true; 1199 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1)); 1200 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1)); 1201 if (R != S) { 1202 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0)); 1203 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1)); 1204 if (L != S) 1205 return true; 1206 } 1207 } 1208 1209 // Recurse past add expressions, which commonly occur in the 1210 // BackedgeTakenCount. They may already exist in program code, and if not, 1211 // they are not too expensive rematerialize. 1212 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 1213 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1214 I != E; ++I) { 1215 if (isHighCostExpansion(*I, BI, Processed, SE)) 1216 return true; 1217 } 1218 return false; 1219 } 1220 1221 // HowManyLessThans uses a Max expression whenever the loop is not guarded by 1222 // the exit condition. 1223 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S)) 1224 return true; 1225 1226 // If we haven't recognized an expensive SCEV pattern, assume it's an 1227 // expression produced by program code. 1228 return false; 1229 } 1230 1231 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken 1232 /// count expression can be safely and cheaply expanded into an instruction 1233 /// sequence that can be used by LinearFunctionTestReplace. 1234 /// 1235 /// TODO: This fails for pointer-type loop counters with greater than one byte 1236 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1237 /// we could skip this check in the case that the LFTR loop counter (chosen by 1238 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1239 /// the loop test to an inequality test by checking the target data's alignment 1240 /// of element types (given that the initial pointer value originates from or is 1241 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1242 /// However, we don't yet have a strong motivation for converting loop tests 1243 /// into inequality tests. 1244 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) { 1245 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1246 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1247 BackedgeTakenCount->isZero()) 1248 return false; 1249 1250 if (!L->getExitingBlock()) 1251 return false; 1252 1253 // Can't rewrite non-branch yet. 1254 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1255 if (!BI) 1256 return false; 1257 1258 SmallPtrSet<const SCEV*, 8> Processed; 1259 if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE)) 1260 return false; 1261 1262 return true; 1263 } 1264 1265 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop 1266 /// invariant value to the phi. 1267 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1268 Instruction *IncI = dyn_cast<Instruction>(IncV); 1269 if (!IncI) 1270 return 0; 1271 1272 switch (IncI->getOpcode()) { 1273 case Instruction::Add: 1274 case Instruction::Sub: 1275 break; 1276 case Instruction::GetElementPtr: 1277 // An IV counter must preserve its type. 1278 if (IncI->getNumOperands() == 2) 1279 break; 1280 default: 1281 return 0; 1282 } 1283 1284 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1285 if (Phi && Phi->getParent() == L->getHeader()) { 1286 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1287 return Phi; 1288 return 0; 1289 } 1290 if (IncI->getOpcode() == Instruction::GetElementPtr) 1291 return 0; 1292 1293 // Allow add/sub to be commuted. 1294 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1295 if (Phi && Phi->getParent() == L->getHeader()) { 1296 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1297 return Phi; 1298 } 1299 return 0; 1300 } 1301 1302 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1303 static ICmpInst *getLoopTest(Loop *L) { 1304 assert(L->getExitingBlock() && "expected loop exit"); 1305 1306 BasicBlock *LatchBlock = L->getLoopLatch(); 1307 // Don't bother with LFTR if the loop is not properly simplified. 1308 if (!LatchBlock) 1309 return 0; 1310 1311 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1312 assert(BI && "expected exit branch"); 1313 1314 return dyn_cast<ICmpInst>(BI->getCondition()); 1315 } 1316 1317 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show 1318 /// that the current exit test is already sufficiently canonical. 1319 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1320 // Do LFTR to simplify the exit condition to an ICMP. 1321 ICmpInst *Cond = getLoopTest(L); 1322 if (!Cond) 1323 return true; 1324 1325 // Do LFTR to simplify the exit ICMP to EQ/NE 1326 ICmpInst::Predicate Pred = Cond->getPredicate(); 1327 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1328 return true; 1329 1330 // Look for a loop invariant RHS 1331 Value *LHS = Cond->getOperand(0); 1332 Value *RHS = Cond->getOperand(1); 1333 if (!isLoopInvariant(RHS, L, DT)) { 1334 if (!isLoopInvariant(LHS, L, DT)) 1335 return true; 1336 std::swap(LHS, RHS); 1337 } 1338 // Look for a simple IV counter LHS 1339 PHINode *Phi = dyn_cast<PHINode>(LHS); 1340 if (!Phi) 1341 Phi = getLoopPhiForCounter(LHS, L, DT); 1342 1343 if (!Phi) 1344 return true; 1345 1346 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1347 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1348 if (Idx < 0) 1349 return true; 1350 1351 // Do LFTR if the exit condition's IV is *not* a simple counter. 1352 Value *IncV = Phi->getIncomingValue(Idx); 1353 return Phi != getLoopPhiForCounter(IncV, L, DT); 1354 } 1355 1356 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1357 /// down to checking that all operands are constant and listing instructions 1358 /// that may hide undef. 1359 static bool hasConcreteDefImpl(Value *V, SmallPtrSet<Value*, 8> &Visited, 1360 unsigned Depth) { 1361 if (isa<Constant>(V)) 1362 return !isa<UndefValue>(V); 1363 1364 if (Depth >= 6) 1365 return false; 1366 1367 // Conservatively handle non-constant non-instructions. For example, Arguments 1368 // may be undef. 1369 Instruction *I = dyn_cast<Instruction>(V); 1370 if (!I) 1371 return false; 1372 1373 // Load and return values may be undef. 1374 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1375 return false; 1376 1377 // Optimistically handle other instructions. 1378 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { 1379 if (!Visited.insert(*OI)) 1380 continue; 1381 if (!hasConcreteDefImpl(*OI, Visited, Depth+1)) 1382 return false; 1383 } 1384 return true; 1385 } 1386 1387 /// Return true if the given value is concrete. We must prove that undef can 1388 /// never reach it. 1389 /// 1390 /// TODO: If we decide that this is a good approach to checking for undef, we 1391 /// may factor it into a common location. 1392 static bool hasConcreteDef(Value *V) { 1393 SmallPtrSet<Value*, 8> Visited; 1394 Visited.insert(V); 1395 return hasConcreteDefImpl(V, Visited, 0); 1396 } 1397 1398 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to 1399 /// be rewritten) loop exit test. 1400 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1401 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1402 Value *IncV = Phi->getIncomingValue(LatchIdx); 1403 1404 for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end(); 1405 UI != UE; ++UI) { 1406 if (*UI != Cond && *UI != IncV) return false; 1407 } 1408 1409 for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end(); 1410 UI != UE; ++UI) { 1411 if (*UI != Cond && *UI != Phi) return false; 1412 } 1413 return true; 1414 } 1415 1416 /// FindLoopCounter - Find an affine IV in canonical form. 1417 /// 1418 /// BECount may be an i8* pointer type. The pointer difference is already 1419 /// valid count without scaling the address stride, so it remains a pointer 1420 /// expression as far as SCEV is concerned. 1421 /// 1422 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1423 /// 1424 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1425 /// 1426 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1427 /// This is difficult in general for SCEV because of potential overflow. But we 1428 /// could at least handle constant BECounts. 1429 static PHINode * 1430 FindLoopCounter(Loop *L, const SCEV *BECount, 1431 ScalarEvolution *SE, DominatorTree *DT, const DataLayout *TD) { 1432 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1433 1434 Value *Cond = 1435 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1436 1437 // Loop over all of the PHI nodes, looking for a simple counter. 1438 PHINode *BestPhi = 0; 1439 const SCEV *BestInit = 0; 1440 BasicBlock *LatchBlock = L->getLoopLatch(); 1441 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1442 1443 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1444 PHINode *Phi = cast<PHINode>(I); 1445 if (!SE->isSCEVable(Phi->getType())) 1446 continue; 1447 1448 // Avoid comparing an integer IV against a pointer Limit. 1449 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1450 continue; 1451 1452 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1453 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1454 continue; 1455 1456 // AR may be a pointer type, while BECount is an integer type. 1457 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1458 // AR may not be a narrower type, or we may never exit. 1459 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1460 if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth))) 1461 continue; 1462 1463 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1464 if (!Step || !Step->isOne()) 1465 continue; 1466 1467 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1468 Value *IncV = Phi->getIncomingValue(LatchIdx); 1469 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1470 continue; 1471 1472 // Avoid reusing a potentially undef value to compute other values that may 1473 // have originally had a concrete definition. 1474 if (!hasConcreteDef(Phi)) { 1475 // We explicitly allow unknown phis as long as they are already used by 1476 // the loop test. In this case we assume that performing LFTR could not 1477 // increase the number of undef users. 1478 if (ICmpInst *Cond = getLoopTest(L)) { 1479 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) 1480 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 1481 continue; 1482 } 1483 } 1484 } 1485 const SCEV *Init = AR->getStart(); 1486 1487 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1488 // Don't force a live loop counter if another IV can be used. 1489 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1490 continue; 1491 1492 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1493 // also prefers integer to pointer IVs. 1494 if (BestInit->isZero() != Init->isZero()) { 1495 if (BestInit->isZero()) 1496 continue; 1497 } 1498 // If two IVs both count from zero or both count from nonzero then the 1499 // narrower is likely a dead phi that has been widened. Use the wider phi 1500 // to allow the other to be eliminated. 1501 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1502 continue; 1503 } 1504 BestPhi = Phi; 1505 BestInit = Init; 1506 } 1507 return BestPhi; 1508 } 1509 1510 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that 1511 /// holds the RHS of the new loop test. 1512 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1513 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1514 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1515 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1516 const SCEV *IVInit = AR->getStart(); 1517 1518 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1519 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1520 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1521 // the existing GEPs whenever possible. 1522 if (IndVar->getType()->isPointerTy() 1523 && !IVCount->getType()->isPointerTy()) { 1524 1525 // IVOffset will be the new GEP offset that is interpreted by GEP as a 1526 // signed value. IVCount on the other hand represents the loop trip count, 1527 // which is an unsigned value. FindLoopCounter only allows induction 1528 // variables that have a positive unit stride of one. This means we don't 1529 // have to handle the case of negative offsets (yet) and just need to zero 1530 // extend IVCount. 1531 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1532 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 1533 1534 // Expand the code for the iteration count. 1535 assert(SE->isLoopInvariant(IVOffset, L) && 1536 "Computed iteration count is not loop invariant!"); 1537 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1538 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1539 1540 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1541 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1542 // We could handle pointer IVs other than i8*, but we need to compensate for 1543 // gep index scaling. See canExpandBackedgeTakenCount comments. 1544 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1545 cast<PointerType>(GEPBase->getType())->getElementType())->isOne() 1546 && "unit stride pointer IV must be i8*"); 1547 1548 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1549 return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit"); 1550 } 1551 else { 1552 // In any other case, convert both IVInit and IVCount to integers before 1553 // comparing. This may result in SCEV expension of pointers, but in practice 1554 // SCEV will fold the pointer arithmetic away as such: 1555 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1556 // 1557 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1558 // for simple memset-style loops. 1559 // 1560 // IVInit integer and IVCount pointer would only occur if a canonical IV 1561 // were generated on top of case #2, which is not expected. 1562 1563 const SCEV *IVLimit = 0; 1564 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1565 // For non-zero Start, compute IVCount here. 1566 if (AR->getStart()->isZero()) 1567 IVLimit = IVCount; 1568 else { 1569 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1570 const SCEV *IVInit = AR->getStart(); 1571 1572 // For integer IVs, truncate the IV before computing IVInit + BECount. 1573 if (SE->getTypeSizeInBits(IVInit->getType()) 1574 > SE->getTypeSizeInBits(IVCount->getType())) 1575 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1576 1577 IVLimit = SE->getAddExpr(IVInit, IVCount); 1578 } 1579 // Expand the code for the iteration count. 1580 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1581 IRBuilder<> Builder(BI); 1582 assert(SE->isLoopInvariant(IVLimit, L) && 1583 "Computed iteration count is not loop invariant!"); 1584 // Ensure that we generate the same type as IndVar, or a smaller integer 1585 // type. In the presence of null pointer values, we have an integer type 1586 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1587 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1588 IndVar->getType() : IVCount->getType(); 1589 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1590 } 1591 } 1592 1593 /// LinearFunctionTestReplace - This method rewrites the exit condition of the 1594 /// loop to be a canonical != comparison against the incremented loop induction 1595 /// variable. This pass is able to rewrite the exit tests of any loop where the 1596 /// SCEV analysis can determine a loop-invariant trip count of the loop, which 1597 /// is actually a much broader range than just linear tests. 1598 Value *IndVarSimplify:: 1599 LinearFunctionTestReplace(Loop *L, 1600 const SCEV *BackedgeTakenCount, 1601 PHINode *IndVar, 1602 SCEVExpander &Rewriter) { 1603 assert(canExpandBackedgeTakenCount(L, SE) && "precondition"); 1604 1605 // Initialize CmpIndVar and IVCount to their preincremented values. 1606 Value *CmpIndVar = IndVar; 1607 const SCEV *IVCount = BackedgeTakenCount; 1608 1609 // If the exiting block is the same as the backedge block, we prefer to 1610 // compare against the post-incremented value, otherwise we must compare 1611 // against the preincremented value. 1612 if (L->getExitingBlock() == L->getLoopLatch()) { 1613 // Add one to the "backedge-taken" count to get the trip count. 1614 // This addition may overflow, which is valid as long as the comparison is 1615 // truncated to BackedgeTakenCount->getType(). 1616 IVCount = SE->getAddExpr(BackedgeTakenCount, 1617 SE->getConstant(BackedgeTakenCount->getType(), 1)); 1618 // The BackedgeTaken expression contains the number of times that the 1619 // backedge branches to the loop header. This is one less than the 1620 // number of times the loop executes, so use the incremented indvar. 1621 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1622 } 1623 1624 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1625 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() 1626 && "genLoopLimit missed a cast"); 1627 1628 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1629 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1630 ICmpInst::Predicate P; 1631 if (L->contains(BI->getSuccessor(0))) 1632 P = ICmpInst::ICMP_NE; 1633 else 1634 P = ICmpInst::ICMP_EQ; 1635 1636 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1637 << " LHS:" << *CmpIndVar << '\n' 1638 << " op:\t" 1639 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1640 << " RHS:\t" << *ExitCnt << "\n" 1641 << " IVCount:\t" << *IVCount << "\n"); 1642 1643 IRBuilder<> Builder(BI); 1644 1645 // LFTR can ignore IV overflow and truncate to the width of 1646 // BECount. This avoids materializing the add(zext(add)) expression. 1647 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1648 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1649 if (CmpIndVarSize > ExitCntSize) { 1650 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1651 const SCEV *ARStart = AR->getStart(); 1652 const SCEV *ARStep = AR->getStepRecurrence(*SE); 1653 // For constant IVCount, avoid truncation. 1654 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 1655 const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue(); 1656 APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue(); 1657 // Note that the post-inc value of BackedgeTakenCount may have overflowed 1658 // above such that IVCount is now zero. 1659 if (IVCount != BackedgeTakenCount && Count == 0) { 1660 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 1661 ++Count; 1662 } 1663 else 1664 Count = Count.zext(CmpIndVarSize); 1665 APInt NewLimit; 1666 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 1667 NewLimit = Start - Count; 1668 else 1669 NewLimit = Start + Count; 1670 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 1671 1672 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 1673 } else { 1674 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1675 "lftr.wideiv"); 1676 } 1677 } 1678 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1679 Value *OrigCond = BI->getCondition(); 1680 // It's tempting to use replaceAllUsesWith here to fully replace the old 1681 // comparison, but that's not immediately safe, since users of the old 1682 // comparison may not be dominated by the new comparison. Instead, just 1683 // update the branch to use the new comparison; in the common case this 1684 // will make old comparison dead. 1685 BI->setCondition(Cond); 1686 DeadInsts.push_back(OrigCond); 1687 1688 ++NumLFTR; 1689 Changed = true; 1690 return Cond; 1691 } 1692 1693 //===----------------------------------------------------------------------===// 1694 // SinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1695 //===----------------------------------------------------------------------===// 1696 1697 /// If there's a single exit block, sink any loop-invariant values that 1698 /// were defined in the preheader but not used inside the loop into the 1699 /// exit block to reduce register pressure in the loop. 1700 void IndVarSimplify::SinkUnusedInvariants(Loop *L) { 1701 BasicBlock *ExitBlock = L->getExitBlock(); 1702 if (!ExitBlock) return; 1703 1704 BasicBlock *Preheader = L->getLoopPreheader(); 1705 if (!Preheader) return; 1706 1707 Instruction *InsertPt = ExitBlock->getFirstInsertionPt(); 1708 BasicBlock::iterator I = Preheader->getTerminator(); 1709 while (I != Preheader->begin()) { 1710 --I; 1711 // New instructions were inserted at the end of the preheader. 1712 if (isa<PHINode>(I)) 1713 break; 1714 1715 // Don't move instructions which might have side effects, since the side 1716 // effects need to complete before instructions inside the loop. Also don't 1717 // move instructions which might read memory, since the loop may modify 1718 // memory. Note that it's okay if the instruction might have undefined 1719 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1720 // block. 1721 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1722 continue; 1723 1724 // Skip debug info intrinsics. 1725 if (isa<DbgInfoIntrinsic>(I)) 1726 continue; 1727 1728 // Skip landingpad instructions. 1729 if (isa<LandingPadInst>(I)) 1730 continue; 1731 1732 // Don't sink alloca: we never want to sink static alloca's out of the 1733 // entry block, and correctly sinking dynamic alloca's requires 1734 // checks for stacksave/stackrestore intrinsics. 1735 // FIXME: Refactor this check somehow? 1736 if (isa<AllocaInst>(I)) 1737 continue; 1738 1739 // Determine if there is a use in or before the loop (direct or 1740 // otherwise). 1741 bool UsedInLoop = false; 1742 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 1743 UI != UE; ++UI) { 1744 User *U = *UI; 1745 BasicBlock *UseBB = cast<Instruction>(U)->getParent(); 1746 if (PHINode *P = dyn_cast<PHINode>(U)) { 1747 unsigned i = 1748 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()); 1749 UseBB = P->getIncomingBlock(i); 1750 } 1751 if (UseBB == Preheader || L->contains(UseBB)) { 1752 UsedInLoop = true; 1753 break; 1754 } 1755 } 1756 1757 // If there is, the def must remain in the preheader. 1758 if (UsedInLoop) 1759 continue; 1760 1761 // Otherwise, sink it to the exit block. 1762 Instruction *ToMove = I; 1763 bool Done = false; 1764 1765 if (I != Preheader->begin()) { 1766 // Skip debug info intrinsics. 1767 do { 1768 --I; 1769 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1770 1771 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1772 Done = true; 1773 } else { 1774 Done = true; 1775 } 1776 1777 ToMove->moveBefore(InsertPt); 1778 if (Done) break; 1779 InsertPt = ToMove; 1780 } 1781 } 1782 1783 //===----------------------------------------------------------------------===// 1784 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1785 //===----------------------------------------------------------------------===// 1786 1787 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 1788 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1789 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1790 // canonicalization can be a pessimization without LSR to "clean up" 1791 // afterwards. 1792 // - We depend on having a preheader; in particular, 1793 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1794 // and we're in trouble if we can't find the induction variable even when 1795 // we've manually inserted one. 1796 if (!L->isLoopSimplifyForm()) 1797 return false; 1798 1799 LI = &getAnalysis<LoopInfo>(); 1800 SE = &getAnalysis<ScalarEvolution>(); 1801 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1802 TD = getAnalysisIfAvailable<DataLayout>(); 1803 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 1804 1805 DeadInsts.clear(); 1806 Changed = false; 1807 1808 // If there are any floating-point recurrences, attempt to 1809 // transform them to use integer recurrences. 1810 RewriteNonIntegerIVs(L); 1811 1812 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1813 1814 // Create a rewriter object which we'll use to transform the code with. 1815 SCEVExpander Rewriter(*SE, "indvars"); 1816 #ifndef NDEBUG 1817 Rewriter.setDebugType(DEBUG_TYPE); 1818 #endif 1819 1820 // Eliminate redundant IV users. 1821 // 1822 // Simplification works best when run before other consumers of SCEV. We 1823 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 1824 // other expressions involving loop IVs have been evaluated. This helps SCEV 1825 // set no-wrap flags before normalizing sign/zero extension. 1826 Rewriter.disableCanonicalMode(); 1827 SimplifyAndExtend(L, Rewriter, LPM); 1828 1829 // Check to see if this loop has a computable loop-invariant execution count. 1830 // If so, this means that we can compute the final value of any expressions 1831 // that are recurrent in the loop, and substitute the exit values from the 1832 // loop into any instructions outside of the loop that use the final values of 1833 // the current expressions. 1834 // 1835 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1836 RewriteLoopExitValues(L, Rewriter); 1837 1838 // Eliminate redundant IV cycles. 1839 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 1840 1841 // If we have a trip count expression, rewrite the loop's exit condition 1842 // using it. We can currently only handle loops with a single exit. 1843 if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) { 1844 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD); 1845 if (IndVar) { 1846 // Check preconditions for proper SCEVExpander operation. SCEV does not 1847 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 1848 // pass that uses the SCEVExpander must do it. This does not work well for 1849 // loop passes because SCEVExpander makes assumptions about all loops, 1850 // while LoopPassManager only forces the current loop to be simplified. 1851 // 1852 // FIXME: SCEV expansion has no way to bail out, so the caller must 1853 // explicitly check any assumptions made by SCEV. Brittle. 1854 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 1855 if (!AR || AR->getLoop()->getLoopPreheader()) 1856 (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 1857 Rewriter); 1858 } 1859 } 1860 // Clear the rewriter cache, because values that are in the rewriter's cache 1861 // can be deleted in the loop below, causing the AssertingVH in the cache to 1862 // trigger. 1863 Rewriter.clear(); 1864 1865 // Now that we're done iterating through lists, clean up any instructions 1866 // which are now dead. 1867 while (!DeadInsts.empty()) 1868 if (Instruction *Inst = 1869 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 1870 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 1871 1872 // The Rewriter may not be used from this point on. 1873 1874 // Loop-invariant instructions in the preheader that aren't used in the 1875 // loop may be sunk below the loop to reduce register pressure. 1876 SinkUnusedInvariants(L); 1877 1878 // Clean up dead instructions. 1879 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 1880 // Check a post-condition. 1881 assert(L->isLCSSAForm(*DT) && 1882 "Indvars did not leave the loop in lcssa form!"); 1883 1884 // Verify that LFTR, and any other change have not interfered with SCEV's 1885 // ability to compute trip count. 1886 #ifndef NDEBUG 1887 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 1888 SE->forgetLoop(L); 1889 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 1890 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 1891 SE->getTypeSizeInBits(NewBECount->getType())) 1892 NewBECount = SE->getTruncateOrNoop(NewBECount, 1893 BackedgeTakenCount->getType()); 1894 else 1895 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 1896 NewBECount->getType()); 1897 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 1898 } 1899 #endif 1900 1901 return Changed; 1902 } 1903