1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // This transformation makes the following changes to each loop with an
15 // identifiable induction variable:
16 //   1. All loops are transformed to have a SINGLE canonical induction variable
17 //      which starts at zero and steps by one.
18 //   2. The canonical induction variable is guaranteed to be the first PHI node
19 //      in the loop header block.
20 //   3. The canonical induction variable is guaranteed to be in a wide enough
21 //      type so that IV expressions need not be (directly) zero-extended or
22 //      sign-extended.
23 //   4. Any pointer arithmetic recurrences are raised to use array subscripts.
24 //
25 // If the trip count of a loop is computable, this pass also makes the following
26 // changes:
27 //   1. The exit condition for the loop is canonicalized to compare the
28 //      induction value against the exit value.  This turns loops like:
29 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30 //   2. Any use outside of the loop of an expression derived from the indvar
31 //      is changed to compute the derived value outside of the loop, eliminating
32 //      the dependence on the exit value of the induction variable.  If the only
33 //      purpose of the loop is to compute the exit value of some derived
34 //      expression, this transformation will make the loop dead.
35 //
36 // This transformation should be followed by strength reduction after all of the
37 // desired loop transformations have been performed.
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #define DEBUG_TYPE "indvars"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/BasicBlock.h"
44 #include "llvm/Constants.h"
45 #include "llvm/Instructions.h"
46 #include "llvm/LLVMContext.h"
47 #include "llvm/Type.h"
48 #include "llvm/Analysis/Dominators.h"
49 #include "llvm/Analysis/IVUsers.h"
50 #include "llvm/Analysis/ScalarEvolutionExpander.h"
51 #include "llvm/Analysis/LoopInfo.h"
52 #include "llvm/Analysis/LoopPass.h"
53 #include "llvm/Support/CFG.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Utils/Local.h"
58 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/ADT/STLExtras.h"
62 using namespace llvm;
63 
64 STATISTIC(NumRemoved , "Number of aux indvars removed");
65 STATISTIC(NumInserted, "Number of canonical indvars added");
66 STATISTIC(NumReplaced, "Number of exit values replaced");
67 STATISTIC(NumLFTR    , "Number of loop exit tests replaced");
68 
69 namespace {
70   class IndVarSimplify : public LoopPass {
71     IVUsers         *IU;
72     LoopInfo        *LI;
73     ScalarEvolution *SE;
74     DominatorTree   *DT;
75     bool Changed;
76   public:
77 
78     static char ID; // Pass identification, replacement for typeid
79     IndVarSimplify() : LoopPass(&ID) {}
80 
81     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
82 
83     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
84       AU.addRequired<DominatorTree>();
85       AU.addRequired<LoopInfo>();
86       AU.addRequired<ScalarEvolution>();
87       AU.addRequiredID(LoopSimplifyID);
88       AU.addRequiredID(LCSSAID);
89       AU.addRequired<IVUsers>();
90       AU.addPreserved<ScalarEvolution>();
91       AU.addPreservedID(LoopSimplifyID);
92       AU.addPreservedID(LCSSAID);
93       AU.addPreserved<IVUsers>();
94       AU.setPreservesCFG();
95     }
96 
97   private:
98 
99     void RewriteNonIntegerIVs(Loop *L);
100 
101     ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
102                                    Value *IndVar,
103                                    BasicBlock *ExitingBlock,
104                                    BranchInst *BI,
105                                    SCEVExpander &Rewriter);
106     void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
107 
108     void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
109 
110     void SinkUnusedInvariants(Loop *L);
111 
112     void HandleFloatingPointIV(Loop *L, PHINode *PH);
113   };
114 }
115 
116 char IndVarSimplify::ID = 0;
117 static RegisterPass<IndVarSimplify>
118 X("indvars", "Canonicalize Induction Variables");
119 
120 Pass *llvm::createIndVarSimplifyPass() {
121   return new IndVarSimplify();
122 }
123 
124 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
125 /// loop to be a canonical != comparison against the incremented loop induction
126 /// variable.  This pass is able to rewrite the exit tests of any loop where the
127 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
128 /// is actually a much broader range than just linear tests.
129 ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
130                                    const SCEV *BackedgeTakenCount,
131                                    Value *IndVar,
132                                    BasicBlock *ExitingBlock,
133                                    BranchInst *BI,
134                                    SCEVExpander &Rewriter) {
135   // If the exiting block is not the same as the backedge block, we must compare
136   // against the preincremented value, otherwise we prefer to compare against
137   // the post-incremented value.
138   Value *CmpIndVar;
139   const SCEV *RHS = BackedgeTakenCount;
140   if (ExitingBlock == L->getLoopLatch()) {
141     // Add one to the "backedge-taken" count to get the trip count.
142     // If this addition may overflow, we have to be more pessimistic and
143     // cast the induction variable before doing the add.
144     const SCEV *Zero = SE->getIntegerSCEV(0, BackedgeTakenCount->getType());
145     const SCEV *N =
146       SE->getAddExpr(BackedgeTakenCount,
147                      SE->getIntegerSCEV(1, BackedgeTakenCount->getType()));
148     if ((isa<SCEVConstant>(N) && !N->isZero()) ||
149         SE->isLoopGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
150       // No overflow. Cast the sum.
151       RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
152     } else {
153       // Potential overflow. Cast before doing the add.
154       RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
155                                         IndVar->getType());
156       RHS = SE->getAddExpr(RHS,
157                            SE->getIntegerSCEV(1, IndVar->getType()));
158     }
159 
160     // The BackedgeTaken expression contains the number of times that the
161     // backedge branches to the loop header.  This is one less than the
162     // number of times the loop executes, so use the incremented indvar.
163     CmpIndVar = L->getCanonicalInductionVariableIncrement();
164   } else {
165     // We have to use the preincremented value...
166     RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
167                                       IndVar->getType());
168     CmpIndVar = IndVar;
169   }
170 
171   // Expand the code for the iteration count.
172   assert(RHS->isLoopInvariant(L) &&
173          "Computed iteration count is not loop invariant!");
174   Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);
175 
176   // Insert a new icmp_ne or icmp_eq instruction before the branch.
177   ICmpInst::Predicate Opcode;
178   if (L->contains(BI->getSuccessor(0)))
179     Opcode = ICmpInst::ICMP_NE;
180   else
181     Opcode = ICmpInst::ICMP_EQ;
182 
183   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
184                << "      LHS:" << *CmpIndVar << '\n'
185                << "       op:\t"
186                << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
187                << "      RHS:\t" << *RHS << "\n");
188 
189   ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
190 
191   Value *OrigCond = BI->getCondition();
192   // It's tempting to use replaceAllUsesWith here to fully replace the old
193   // comparison, but that's not immediately safe, since users of the old
194   // comparison may not be dominated by the new comparison. Instead, just
195   // update the branch to use the new comparison; in the common case this
196   // will make old comparison dead.
197   BI->setCondition(Cond);
198   RecursivelyDeleteTriviallyDeadInstructions(OrigCond);
199 
200   ++NumLFTR;
201   Changed = true;
202   return Cond;
203 }
204 
205 /// RewriteLoopExitValues - Check to see if this loop has a computable
206 /// loop-invariant execution count.  If so, this means that we can compute the
207 /// final value of any expressions that are recurrent in the loop, and
208 /// substitute the exit values from the loop into any instructions outside of
209 /// the loop that use the final values of the current expressions.
210 ///
211 /// This is mostly redundant with the regular IndVarSimplify activities that
212 /// happen later, except that it's more powerful in some cases, because it's
213 /// able to brute-force evaluate arbitrary instructions as long as they have
214 /// constant operands at the beginning of the loop.
215 void IndVarSimplify::RewriteLoopExitValues(Loop *L,
216                                            SCEVExpander &Rewriter) {
217   // Verify the input to the pass in already in LCSSA form.
218   assert(L->isLCSSAForm());
219 
220   SmallVector<BasicBlock*, 8> ExitBlocks;
221   L->getUniqueExitBlocks(ExitBlocks);
222 
223   // Find all values that are computed inside the loop, but used outside of it.
224   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
225   // the exit blocks of the loop to find them.
226   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
227     BasicBlock *ExitBB = ExitBlocks[i];
228 
229     // If there are no PHI nodes in this exit block, then no values defined
230     // inside the loop are used on this path, skip it.
231     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
232     if (!PN) continue;
233 
234     unsigned NumPreds = PN->getNumIncomingValues();
235 
236     // Iterate over all of the PHI nodes.
237     BasicBlock::iterator BBI = ExitBB->begin();
238     while ((PN = dyn_cast<PHINode>(BBI++))) {
239       if (PN->use_empty())
240         continue; // dead use, don't replace it
241 
242       // SCEV only supports integer expressions for now.
243       if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
244         continue;
245 
246       // It's necessary to tell ScalarEvolution about this explicitly so that
247       // it can walk the def-use list and forget all SCEVs, as it may not be
248       // watching the PHI itself. Once the new exit value is in place, there
249       // may not be a def-use connection between the loop and every instruction
250       // which got a SCEVAddRecExpr for that loop.
251       SE->forgetValue(PN);
252 
253       // Iterate over all of the values in all the PHI nodes.
254       for (unsigned i = 0; i != NumPreds; ++i) {
255         // If the value being merged in is not integer or is not defined
256         // in the loop, skip it.
257         Value *InVal = PN->getIncomingValue(i);
258         if (!isa<Instruction>(InVal))
259           continue;
260 
261         // If this pred is for a subloop, not L itself, skip it.
262         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
263           continue; // The Block is in a subloop, skip it.
264 
265         // Check that InVal is defined in the loop.
266         Instruction *Inst = cast<Instruction>(InVal);
267         if (!L->contains(Inst))
268           continue;
269 
270         // Okay, this instruction has a user outside of the current loop
271         // and varies predictably *inside* the loop.  Evaluate the value it
272         // contains when the loop exits, if possible.
273         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
274         if (!ExitValue->isLoopInvariant(L))
275           continue;
276 
277         Changed = true;
278         ++NumReplaced;
279 
280         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
281 
282         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
283                      << "  LoopVal = " << *Inst << "\n");
284 
285         PN->setIncomingValue(i, ExitVal);
286 
287         // If this instruction is dead now, delete it.
288         RecursivelyDeleteTriviallyDeadInstructions(Inst);
289 
290         if (NumPreds == 1) {
291           // Completely replace a single-pred PHI. This is safe, because the
292           // NewVal won't be variant in the loop, so we don't need an LCSSA phi
293           // node anymore.
294           PN->replaceAllUsesWith(ExitVal);
295           RecursivelyDeleteTriviallyDeadInstructions(PN);
296         }
297       }
298       if (NumPreds != 1) {
299         // Clone the PHI and delete the original one. This lets IVUsers and
300         // any other maps purge the original user from their records.
301         PHINode *NewPN = cast<PHINode>(PN->clone());
302         NewPN->takeName(PN);
303         NewPN->insertBefore(PN);
304         PN->replaceAllUsesWith(NewPN);
305         PN->eraseFromParent();
306       }
307     }
308   }
309 }
310 
311 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
312   // First step.  Check to see if there are any floating-point recurrences.
313   // If there are, change them into integer recurrences, permitting analysis by
314   // the SCEV routines.
315   //
316   BasicBlock *Header    = L->getHeader();
317 
318   SmallVector<WeakVH, 8> PHIs;
319   for (BasicBlock::iterator I = Header->begin();
320        PHINode *PN = dyn_cast<PHINode>(I); ++I)
321     PHIs.push_back(PN);
322 
323   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
324     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i]))
325       HandleFloatingPointIV(L, PN);
326 
327   // If the loop previously had floating-point IV, ScalarEvolution
328   // may not have been able to compute a trip count. Now that we've done some
329   // re-writing, the trip count may be computable.
330   if (Changed)
331     SE->forgetLoop(L);
332 }
333 
334 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
335   IU = &getAnalysis<IVUsers>();
336   LI = &getAnalysis<LoopInfo>();
337   SE = &getAnalysis<ScalarEvolution>();
338   DT = &getAnalysis<DominatorTree>();
339   Changed = false;
340 
341   // If there are any floating-point recurrences, attempt to
342   // transform them to use integer recurrences.
343   RewriteNonIntegerIVs(L);
344 
345   BasicBlock *ExitingBlock = L->getExitingBlock(); // may be null
346   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
347 
348   // Create a rewriter object which we'll use to transform the code with.
349   SCEVExpander Rewriter(*SE);
350 
351   // Check to see if this loop has a computable loop-invariant execution count.
352   // If so, this means that we can compute the final value of any expressions
353   // that are recurrent in the loop, and substitute the exit values from the
354   // loop into any instructions outside of the loop that use the final values of
355   // the current expressions.
356   //
357   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
358     RewriteLoopExitValues(L, Rewriter);
359 
360   // Compute the type of the largest recurrence expression, and decide whether
361   // a canonical induction variable should be inserted.
362   const Type *LargestType = 0;
363   bool NeedCannIV = false;
364   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
365     LargestType = BackedgeTakenCount->getType();
366     LargestType = SE->getEffectiveSCEVType(LargestType);
367     // If we have a known trip count and a single exit block, we'll be
368     // rewriting the loop exit test condition below, which requires a
369     // canonical induction variable.
370     if (ExitingBlock)
371       NeedCannIV = true;
372   }
373   for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
374     const Type *Ty =
375       SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
376     if (!LargestType ||
377         SE->getTypeSizeInBits(Ty) >
378           SE->getTypeSizeInBits(LargestType))
379       LargestType = Ty;
380     NeedCannIV = true;
381   }
382 
383   // Now that we know the largest of the induction variable expressions
384   // in this loop, insert a canonical induction variable of the largest size.
385   Value *IndVar = 0;
386   if (NeedCannIV) {
387     // Check to see if the loop already has a canonical-looking induction
388     // variable. If one is present and it's wider than the planned canonical
389     // induction variable, temporarily remove it, so that the Rewriter
390     // doesn't attempt to reuse it.
391     PHINode *OldCannIV = L->getCanonicalInductionVariable();
392     if (OldCannIV) {
393       if (SE->getTypeSizeInBits(OldCannIV->getType()) >
394           SE->getTypeSizeInBits(LargestType))
395         OldCannIV->removeFromParent();
396       else
397         OldCannIV = 0;
398     }
399 
400     IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
401 
402     ++NumInserted;
403     Changed = true;
404     DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
405 
406     // Now that the official induction variable is established, reinsert
407     // the old canonical-looking variable after it so that the IR remains
408     // consistent. It will be deleted as part of the dead-PHI deletion at
409     // the end of the pass.
410     if (OldCannIV)
411       OldCannIV->insertAfter(cast<Instruction>(IndVar));
412   }
413 
414   // If we have a trip count expression, rewrite the loop's exit condition
415   // using it.  We can currently only handle loops with a single exit.
416   ICmpInst *NewICmp = 0;
417   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && ExitingBlock) {
418     assert(NeedCannIV &&
419            "LinearFunctionTestReplace requires a canonical induction variable");
420     // Can't rewrite non-branch yet.
421     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
422       NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
423                                           ExitingBlock, BI, Rewriter);
424   }
425 
426   // Rewrite IV-derived expressions. Clears the rewriter cache.
427   RewriteIVExpressions(L, Rewriter);
428 
429   // The Rewriter may not be used from this point on.
430 
431   // Loop-invariant instructions in the preheader that aren't used in the
432   // loop may be sunk below the loop to reduce register pressure.
433   SinkUnusedInvariants(L);
434 
435   // For completeness, inform IVUsers of the IV use in the newly-created
436   // loop exit test instruction.
437   if (NewICmp)
438     IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
439 
440   // Clean up dead instructions.
441   Changed |= DeleteDeadPHIs(L->getHeader());
442   // Check a post-condition.
443   assert(L->isLCSSAForm() && "Indvars did not leave the loop in lcssa form!");
444   return Changed;
445 }
446 
447 void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
448   SmallVector<WeakVH, 16> DeadInsts;
449 
450   // Rewrite all induction variable expressions in terms of the canonical
451   // induction variable.
452   //
453   // If there were induction variables of other sizes or offsets, manually
454   // add the offsets to the primary induction variable and cast, avoiding
455   // the need for the code evaluation methods to insert induction variables
456   // of different sizes.
457   for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
458     const SCEV *Stride = UI->getStride();
459     Value *Op = UI->getOperandValToReplace();
460     const Type *UseTy = Op->getType();
461     Instruction *User = UI->getUser();
462 
463     // Compute the final addrec to expand into code.
464     const SCEV *AR = IU->getReplacementExpr(*UI);
465 
466     // Evaluate the expression out of the loop, if possible.
467     if (!L->contains(UI->getUser())) {
468       const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
469       if (ExitVal->isLoopInvariant(L))
470         AR = ExitVal;
471     }
472 
473     // FIXME: It is an extremely bad idea to indvar substitute anything more
474     // complex than affine induction variables.  Doing so will put expensive
475     // polynomial evaluations inside of the loop, and the str reduction pass
476     // currently can only reduce affine polynomials.  For now just disable
477     // indvar subst on anything more complex than an affine addrec, unless
478     // it can be expanded to a trivial value.
479     if (!AR->isLoopInvariant(L) && !Stride->isLoopInvariant(L))
480       continue;
481 
482     // Determine the insertion point for this user. By default, insert
483     // immediately before the user. The SCEVExpander class will automatically
484     // hoist loop invariants out of the loop. For PHI nodes, there may be
485     // multiple uses, so compute the nearest common dominator for the
486     // incoming blocks.
487     Instruction *InsertPt = User;
488     if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
489       for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
490         if (PHI->getIncomingValue(i) == Op) {
491           if (InsertPt == User)
492             InsertPt = PHI->getIncomingBlock(i)->getTerminator();
493           else
494             InsertPt =
495               DT->findNearestCommonDominator(InsertPt->getParent(),
496                                              PHI->getIncomingBlock(i))
497                     ->getTerminator();
498         }
499 
500     // Now expand it into actual Instructions and patch it into place.
501     Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
502 
503     // Patch the new value into place.
504     if (Op->hasName())
505       NewVal->takeName(Op);
506     User->replaceUsesOfWith(Op, NewVal);
507     UI->setOperandValToReplace(NewVal);
508     DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
509                  << "   into = " << *NewVal << "\n");
510     ++NumRemoved;
511     Changed = true;
512 
513     // The old value may be dead now.
514     DeadInsts.push_back(Op);
515   }
516 
517   // Clear the rewriter cache, because values that are in the rewriter's cache
518   // can be deleted in the loop below, causing the AssertingVH in the cache to
519   // trigger.
520   Rewriter.clear();
521   // Now that we're done iterating through lists, clean up any instructions
522   // which are now dead.
523   while (!DeadInsts.empty())
524     if (Instruction *Inst =
525           dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
526       RecursivelyDeleteTriviallyDeadInstructions(Inst);
527 }
528 
529 /// If there's a single exit block, sink any loop-invariant values that
530 /// were defined in the preheader but not used inside the loop into the
531 /// exit block to reduce register pressure in the loop.
532 void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
533   BasicBlock *ExitBlock = L->getExitBlock();
534   if (!ExitBlock) return;
535 
536   BasicBlock *Preheader = L->getLoopPreheader();
537   if (!Preheader) return;
538 
539   Instruction *InsertPt = ExitBlock->getFirstNonPHI();
540   BasicBlock::iterator I = Preheader->getTerminator();
541   while (I != Preheader->begin()) {
542     --I;
543     // New instructions were inserted at the end of the preheader.
544     if (isa<PHINode>(I))
545       break;
546     // Don't move instructions which might have side effects, since the side
547     // effects need to complete before instructions inside the loop.  Also
548     // don't move instructions which might read memory, since the loop may
549     // modify memory. Note that it's okay if the instruction might have
550     // undefined behavior: LoopSimplify guarantees that the preheader
551     // dominates the exit block.
552     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
553       continue;
554     // Don't sink static AllocaInsts out of the entry block, which would
555     // turn them into dynamic allocas!
556     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
557       if (AI->isStaticAlloca())
558         continue;
559     // Determine if there is a use in or before the loop (direct or
560     // otherwise).
561     bool UsedInLoop = false;
562     for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
563          UI != UE; ++UI) {
564       BasicBlock *UseBB = cast<Instruction>(UI)->getParent();
565       if (PHINode *P = dyn_cast<PHINode>(UI)) {
566         unsigned i =
567           PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
568         UseBB = P->getIncomingBlock(i);
569       }
570       if (UseBB == Preheader || L->contains(UseBB)) {
571         UsedInLoop = true;
572         break;
573       }
574     }
575     // If there is, the def must remain in the preheader.
576     if (UsedInLoop)
577       continue;
578     // Otherwise, sink it to the exit block.
579     Instruction *ToMove = I;
580     bool Done = false;
581     if (I != Preheader->begin())
582       --I;
583     else
584       Done = true;
585     ToMove->moveBefore(InsertPt);
586     if (Done)
587       break;
588     InsertPt = ToMove;
589   }
590 }
591 
592 /// Return true if it is OK to use SIToFPInst for an inducation variable
593 /// with given inital and exit values.
594 static bool useSIToFPInst(ConstantFP &InitV, ConstantFP &ExitV,
595                           uint64_t intIV, uint64_t intEV) {
596 
597   if (InitV.getValueAPF().isNegative() || ExitV.getValueAPF().isNegative())
598     return true;
599 
600   // If the iteration range can be handled by SIToFPInst then use it.
601   APInt Max = APInt::getSignedMaxValue(32);
602   if (Max.getZExtValue() > static_cast<uint64_t>(abs64(intEV - intIV)))
603     return true;
604 
605   return false;
606 }
607 
608 /// convertToInt - Convert APF to an integer, if possible.
609 static bool convertToInt(const APFloat &APF, uint64_t *intVal) {
610 
611   bool isExact = false;
612   if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
613     return false;
614   if (APF.convertToInteger(intVal, 32, APF.isNegative(),
615                            APFloat::rmTowardZero, &isExact)
616       != APFloat::opOK)
617     return false;
618   if (!isExact)
619     return false;
620   return true;
621 
622 }
623 
624 /// HandleFloatingPointIV - If the loop has floating induction variable
625 /// then insert corresponding integer induction variable if possible.
626 /// For example,
627 /// for(double i = 0; i < 10000; ++i)
628 ///   bar(i)
629 /// is converted into
630 /// for(int i = 0; i < 10000; ++i)
631 ///   bar((double)i);
632 ///
633 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH) {
634 
635   unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0));
636   unsigned BackEdge     = IncomingEdge^1;
637 
638   // Check incoming value.
639   ConstantFP *InitValue = dyn_cast<ConstantFP>(PH->getIncomingValue(IncomingEdge));
640   if (!InitValue) return;
641   uint64_t newInitValue =
642               Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
643   if (!convertToInt(InitValue->getValueAPF(), &newInitValue))
644     return;
645 
646   // Check IV increment. Reject this PH if increement operation is not
647   // an add or increment value can not be represented by an integer.
648   BinaryOperator *Incr =
649     dyn_cast<BinaryOperator>(PH->getIncomingValue(BackEdge));
650   if (!Incr) return;
651   if (Incr->getOpcode() != Instruction::FAdd) return;
652   ConstantFP *IncrValue = NULL;
653   unsigned IncrVIndex = 1;
654   if (Incr->getOperand(1) == PH)
655     IncrVIndex = 0;
656   IncrValue = dyn_cast<ConstantFP>(Incr->getOperand(IncrVIndex));
657   if (!IncrValue) return;
658   uint64_t newIncrValue =
659               Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
660   if (!convertToInt(IncrValue->getValueAPF(), &newIncrValue))
661     return;
662 
663   // Check Incr uses. One user is PH and the other users is exit condition used
664   // by the conditional terminator.
665   Value::use_iterator IncrUse = Incr->use_begin();
666   Instruction *U1 = cast<Instruction>(IncrUse++);
667   if (IncrUse == Incr->use_end()) return;
668   Instruction *U2 = cast<Instruction>(IncrUse++);
669   if (IncrUse != Incr->use_end()) return;
670 
671   // Find exit condition.
672   FCmpInst *EC = dyn_cast<FCmpInst>(U1);
673   if (!EC)
674     EC = dyn_cast<FCmpInst>(U2);
675   if (!EC) return;
676 
677   if (BranchInst *BI = dyn_cast<BranchInst>(EC->getParent()->getTerminator())) {
678     if (!BI->isConditional()) return;
679     if (BI->getCondition() != EC) return;
680   }
681 
682   // Find exit value. If exit value can not be represented as an interger then
683   // do not handle this floating point PH.
684   ConstantFP *EV = NULL;
685   unsigned EVIndex = 1;
686   if (EC->getOperand(1) == Incr)
687     EVIndex = 0;
688   EV = dyn_cast<ConstantFP>(EC->getOperand(EVIndex));
689   if (!EV) return;
690   uint64_t intEV = Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
691   if (!convertToInt(EV->getValueAPF(), &intEV))
692     return;
693 
694   // Find new predicate for integer comparison.
695   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
696   switch (EC->getPredicate()) {
697   case CmpInst::FCMP_OEQ:
698   case CmpInst::FCMP_UEQ:
699     NewPred = CmpInst::ICMP_EQ;
700     break;
701   case CmpInst::FCMP_OGT:
702   case CmpInst::FCMP_UGT:
703     NewPred = CmpInst::ICMP_UGT;
704     break;
705   case CmpInst::FCMP_OGE:
706   case CmpInst::FCMP_UGE:
707     NewPred = CmpInst::ICMP_UGE;
708     break;
709   case CmpInst::FCMP_OLT:
710   case CmpInst::FCMP_ULT:
711     NewPred = CmpInst::ICMP_ULT;
712     break;
713   case CmpInst::FCMP_OLE:
714   case CmpInst::FCMP_ULE:
715     NewPred = CmpInst::ICMP_ULE;
716     break;
717   default:
718     break;
719   }
720   if (NewPred == CmpInst::BAD_ICMP_PREDICATE) return;
721 
722   // Insert new integer induction variable.
723   PHINode *NewPHI = PHINode::Create(Type::getInt32Ty(PH->getContext()),
724                                     PH->getName()+".int", PH);
725   NewPHI->addIncoming(ConstantInt::get(Type::getInt32Ty(PH->getContext()),
726                                        newInitValue),
727                       PH->getIncomingBlock(IncomingEdge));
728 
729   Value *NewAdd = BinaryOperator::CreateAdd(NewPHI,
730                            ConstantInt::get(Type::getInt32Ty(PH->getContext()),
731                                                              newIncrValue),
732                                             Incr->getName()+".int", Incr);
733   NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge));
734 
735   // The back edge is edge 1 of newPHI, whatever it may have been in the
736   // original PHI.
737   ConstantInt *NewEV = ConstantInt::get(Type::getInt32Ty(PH->getContext()),
738                                         intEV);
739   Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(1) : NewEV);
740   Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(1));
741   ICmpInst *NewEC = new ICmpInst(EC->getParent()->getTerminator(),
742                                  NewPred, LHS, RHS, EC->getName());
743 
744   // In the following deltions, PH may become dead and may be deleted.
745   // Use a WeakVH to observe whether this happens.
746   WeakVH WeakPH = PH;
747 
748   // Delete old, floating point, exit comparision instruction.
749   NewEC->takeName(EC);
750   EC->replaceAllUsesWith(NewEC);
751   RecursivelyDeleteTriviallyDeadInstructions(EC);
752 
753   // Delete old, floating point, increment instruction.
754   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
755   RecursivelyDeleteTriviallyDeadInstructions(Incr);
756 
757   // Replace floating induction variable, if it isn't already deleted.
758   // Give SIToFPInst preference over UIToFPInst because it is faster on
759   // platforms that are widely used.
760   if (WeakPH && !PH->use_empty()) {
761     if (useSIToFPInst(*InitValue, *EV, newInitValue, intEV)) {
762       SIToFPInst *Conv = new SIToFPInst(NewPHI, PH->getType(), "indvar.conv",
763                                         PH->getParent()->getFirstNonPHI());
764       PH->replaceAllUsesWith(Conv);
765     } else {
766       UIToFPInst *Conv = new UIToFPInst(NewPHI, PH->getType(), "indvar.conv",
767                                         PH->getParent()->getFirstNonPHI());
768       PH->replaceAllUsesWith(Conv);
769     }
770     RecursivelyDeleteTriviallyDeadInstructions(PH);
771   }
772 
773   // Add a new IVUsers entry for the newly-created integer PHI.
774   IU->AddUsersIfInteresting(NewPHI);
775 }
776