1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into simpler forms suitable for subsequent 11 // analysis and transformation. 12 // 13 // If the trip count of a loop is computable, this pass also makes the following 14 // changes: 15 // 1. The exit condition for the loop is canonicalized to compare the 16 // induction value against the exit value. This turns loops like: 17 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 18 // 2. Any use outside of the loop of an expression derived from the indvar 19 // is changed to compute the derived value outside of the loop, eliminating 20 // the dependence on the exit value of the induction variable. If the only 21 // purpose of the loop is to compute the exit value of some derived 22 // expression, this transformation will make the loop dead. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 27 #include "llvm/ADT/APFloat.h" 28 #include "llvm/ADT/APInt.h" 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/None.h" 32 #include "llvm/ADT/Optional.h" 33 #include "llvm/ADT/STLExtras.h" 34 #include "llvm/ADT/SmallPtrSet.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/ADT/Statistic.h" 37 #include "llvm/ADT/iterator_range.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/LoopPass.h" 40 #include "llvm/Analysis/ScalarEvolution.h" 41 #include "llvm/Analysis/ScalarEvolutionExpander.h" 42 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 43 #include "llvm/Analysis/TargetLibraryInfo.h" 44 #include "llvm/Analysis/TargetTransformInfo.h" 45 #include "llvm/Transforms/Utils/Local.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/ConstantRange.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/IRBuilder.h" 55 #include "llvm/IR/InstrTypes.h" 56 #include "llvm/IR/Instruction.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/Intrinsics.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/PassManager.h" 63 #include "llvm/IR/PatternMatch.h" 64 #include "llvm/IR/Type.h" 65 #include "llvm/IR/Use.h" 66 #include "llvm/IR/User.h" 67 #include "llvm/IR/Value.h" 68 #include "llvm/IR/ValueHandle.h" 69 #include "llvm/Pass.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/CommandLine.h" 72 #include "llvm/Support/Compiler.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/MathExtras.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/Transforms/Scalar.h" 78 #include "llvm/Transforms/Scalar/LoopPassManager.h" 79 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 80 #include "llvm/Transforms/Utils/LoopUtils.h" 81 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 82 #include <cassert> 83 #include <cstdint> 84 #include <utility> 85 86 using namespace llvm; 87 88 #define DEBUG_TYPE "indvars" 89 90 STATISTIC(NumWidened , "Number of indvars widened"); 91 STATISTIC(NumReplaced , "Number of exit values replaced"); 92 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 93 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 94 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 95 96 // Trip count verification can be enabled by default under NDEBUG if we 97 // implement a strong expression equivalence checker in SCEV. Until then, we 98 // use the verify-indvars flag, which may assert in some cases. 99 static cl::opt<bool> VerifyIndvars( 100 "verify-indvars", cl::Hidden, 101 cl::desc("Verify the ScalarEvolution result after running indvars")); 102 103 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 104 105 static cl::opt<ReplaceExitVal> ReplaceExitValue( 106 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 107 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 108 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 109 clEnumValN(OnlyCheapRepl, "cheap", 110 "only replace exit value when the cost is cheap"), 111 clEnumValN(AlwaysRepl, "always", 112 "always replace exit value whenever possible"))); 113 114 static cl::opt<bool> UsePostIncrementRanges( 115 "indvars-post-increment-ranges", cl::Hidden, 116 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 117 cl::init(true)); 118 119 static cl::opt<bool> 120 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 121 cl::desc("Disable Linear Function Test Replace optimization")); 122 123 namespace { 124 125 struct RewritePhi; 126 127 class IndVarSimplify { 128 LoopInfo *LI; 129 ScalarEvolution *SE; 130 DominatorTree *DT; 131 const DataLayout &DL; 132 TargetLibraryInfo *TLI; 133 const TargetTransformInfo *TTI; 134 135 SmallVector<WeakTrackingVH, 16> DeadInsts; 136 137 bool isValidRewrite(Value *FromVal, Value *ToVal); 138 139 bool handleFloatingPointIV(Loop *L, PHINode *PH); 140 bool rewriteNonIntegerIVs(Loop *L); 141 142 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 143 144 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 145 bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 146 bool rewriteFirstIterationLoopExitValues(Loop *L); 147 bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) const; 148 149 bool linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 150 PHINode *IndVar, SCEVExpander &Rewriter); 151 152 bool sinkUnusedInvariants(Loop *L); 153 154 public: 155 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 156 const DataLayout &DL, TargetLibraryInfo *TLI, 157 TargetTransformInfo *TTI) 158 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} 159 160 bool run(Loop *L); 161 }; 162 163 } // end anonymous namespace 164 165 /// Return true if the SCEV expansion generated by the rewriter can replace the 166 /// original value. SCEV guarantees that it produces the same value, but the way 167 /// it is produced may be illegal IR. Ideally, this function will only be 168 /// called for verification. 169 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 170 // If an SCEV expression subsumed multiple pointers, its expansion could 171 // reassociate the GEP changing the base pointer. This is illegal because the 172 // final address produced by a GEP chain must be inbounds relative to its 173 // underlying object. Otherwise basic alias analysis, among other things, 174 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 175 // producing an expression involving multiple pointers. Until then, we must 176 // bail out here. 177 // 178 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 179 // because it understands lcssa phis while SCEV does not. 180 Value *FromPtr = FromVal; 181 Value *ToPtr = ToVal; 182 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 183 FromPtr = GEP->getPointerOperand(); 184 } 185 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 186 ToPtr = GEP->getPointerOperand(); 187 } 188 if (FromPtr != FromVal || ToPtr != ToVal) { 189 // Quickly check the common case 190 if (FromPtr == ToPtr) 191 return true; 192 193 // SCEV may have rewritten an expression that produces the GEP's pointer 194 // operand. That's ok as long as the pointer operand has the same base 195 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 196 // base of a recurrence. This handles the case in which SCEV expansion 197 // converts a pointer type recurrence into a nonrecurrent pointer base 198 // indexed by an integer recurrence. 199 200 // If the GEP base pointer is a vector of pointers, abort. 201 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 202 return false; 203 204 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 205 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 206 if (FromBase == ToBase) 207 return true; 208 209 LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase 210 << " != " << *ToBase << "\n"); 211 212 return false; 213 } 214 return true; 215 } 216 217 /// Determine the insertion point for this user. By default, insert immediately 218 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 219 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 220 /// common dominator for the incoming blocks. 221 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 222 DominatorTree *DT, LoopInfo *LI) { 223 PHINode *PHI = dyn_cast<PHINode>(User); 224 if (!PHI) 225 return User; 226 227 Instruction *InsertPt = nullptr; 228 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 229 if (PHI->getIncomingValue(i) != Def) 230 continue; 231 232 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 233 if (!InsertPt) { 234 InsertPt = InsertBB->getTerminator(); 235 continue; 236 } 237 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 238 InsertPt = InsertBB->getTerminator(); 239 } 240 assert(InsertPt && "Missing phi operand"); 241 242 auto *DefI = dyn_cast<Instruction>(Def); 243 if (!DefI) 244 return InsertPt; 245 246 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 247 248 auto *L = LI->getLoopFor(DefI->getParent()); 249 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 250 251 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 252 if (LI->getLoopFor(DTN->getBlock()) == L) 253 return DTN->getBlock()->getTerminator(); 254 255 llvm_unreachable("DefI dominates InsertPt!"); 256 } 257 258 //===----------------------------------------------------------------------===// 259 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 260 //===----------------------------------------------------------------------===// 261 262 /// Convert APF to an integer, if possible. 263 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 264 bool isExact = false; 265 // See if we can convert this to an int64_t 266 uint64_t UIntVal; 267 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 268 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 269 !isExact) 270 return false; 271 IntVal = UIntVal; 272 return true; 273 } 274 275 /// If the loop has floating induction variable then insert corresponding 276 /// integer induction variable if possible. 277 /// For example, 278 /// for(double i = 0; i < 10000; ++i) 279 /// bar(i) 280 /// is converted into 281 /// for(int i = 0; i < 10000; ++i) 282 /// bar((double)i); 283 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 284 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 285 unsigned BackEdge = IncomingEdge^1; 286 287 // Check incoming value. 288 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 289 290 int64_t InitValue; 291 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 292 return false; 293 294 // Check IV increment. Reject this PN if increment operation is not 295 // an add or increment value can not be represented by an integer. 296 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 297 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; 298 299 // If this is not an add of the PHI with a constantfp, or if the constant fp 300 // is not an integer, bail out. 301 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 302 int64_t IncValue; 303 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 304 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 305 return false; 306 307 // Check Incr uses. One user is PN and the other user is an exit condition 308 // used by the conditional terminator. 309 Value::user_iterator IncrUse = Incr->user_begin(); 310 Instruction *U1 = cast<Instruction>(*IncrUse++); 311 if (IncrUse == Incr->user_end()) return false; 312 Instruction *U2 = cast<Instruction>(*IncrUse++); 313 if (IncrUse != Incr->user_end()) return false; 314 315 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 316 // only used by a branch, we can't transform it. 317 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 318 if (!Compare) 319 Compare = dyn_cast<FCmpInst>(U2); 320 if (!Compare || !Compare->hasOneUse() || 321 !isa<BranchInst>(Compare->user_back())) 322 return false; 323 324 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 325 326 // We need to verify that the branch actually controls the iteration count 327 // of the loop. If not, the new IV can overflow and no one will notice. 328 // The branch block must be in the loop and one of the successors must be out 329 // of the loop. 330 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 331 if (!L->contains(TheBr->getParent()) || 332 (L->contains(TheBr->getSuccessor(0)) && 333 L->contains(TheBr->getSuccessor(1)))) 334 return false; 335 336 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 337 // transform it. 338 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 339 int64_t ExitValue; 340 if (ExitValueVal == nullptr || 341 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 342 return false; 343 344 // Find new predicate for integer comparison. 345 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 346 switch (Compare->getPredicate()) { 347 default: return false; // Unknown comparison. 348 case CmpInst::FCMP_OEQ: 349 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 350 case CmpInst::FCMP_ONE: 351 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 352 case CmpInst::FCMP_OGT: 353 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 354 case CmpInst::FCMP_OGE: 355 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 356 case CmpInst::FCMP_OLT: 357 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 358 case CmpInst::FCMP_OLE: 359 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 360 } 361 362 // We convert the floating point induction variable to a signed i32 value if 363 // we can. This is only safe if the comparison will not overflow in a way 364 // that won't be trapped by the integer equivalent operations. Check for this 365 // now. 366 // TODO: We could use i64 if it is native and the range requires it. 367 368 // The start/stride/exit values must all fit in signed i32. 369 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 370 return false; 371 372 // If not actually striding (add x, 0.0), avoid touching the code. 373 if (IncValue == 0) 374 return false; 375 376 // Positive and negative strides have different safety conditions. 377 if (IncValue > 0) { 378 // If we have a positive stride, we require the init to be less than the 379 // exit value. 380 if (InitValue >= ExitValue) 381 return false; 382 383 uint32_t Range = uint32_t(ExitValue-InitValue); 384 // Check for infinite loop, either: 385 // while (i <= Exit) or until (i > Exit) 386 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 387 if (++Range == 0) return false; // Range overflows. 388 } 389 390 unsigned Leftover = Range % uint32_t(IncValue); 391 392 // If this is an equality comparison, we require that the strided value 393 // exactly land on the exit value, otherwise the IV condition will wrap 394 // around and do things the fp IV wouldn't. 395 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 396 Leftover != 0) 397 return false; 398 399 // If the stride would wrap around the i32 before exiting, we can't 400 // transform the IV. 401 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 402 return false; 403 } else { 404 // If we have a negative stride, we require the init to be greater than the 405 // exit value. 406 if (InitValue <= ExitValue) 407 return false; 408 409 uint32_t Range = uint32_t(InitValue-ExitValue); 410 // Check for infinite loop, either: 411 // while (i >= Exit) or until (i < Exit) 412 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 413 if (++Range == 0) return false; // Range overflows. 414 } 415 416 unsigned Leftover = Range % uint32_t(-IncValue); 417 418 // If this is an equality comparison, we require that the strided value 419 // exactly land on the exit value, otherwise the IV condition will wrap 420 // around and do things the fp IV wouldn't. 421 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 422 Leftover != 0) 423 return false; 424 425 // If the stride would wrap around the i32 before exiting, we can't 426 // transform the IV. 427 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 428 return false; 429 } 430 431 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 432 433 // Insert new integer induction variable. 434 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 435 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 436 PN->getIncomingBlock(IncomingEdge)); 437 438 Value *NewAdd = 439 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 440 Incr->getName()+".int", Incr); 441 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 442 443 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 444 ConstantInt::get(Int32Ty, ExitValue), 445 Compare->getName()); 446 447 // In the following deletions, PN may become dead and may be deleted. 448 // Use a WeakTrackingVH to observe whether this happens. 449 WeakTrackingVH WeakPH = PN; 450 451 // Delete the old floating point exit comparison. The branch starts using the 452 // new comparison. 453 NewCompare->takeName(Compare); 454 Compare->replaceAllUsesWith(NewCompare); 455 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 456 457 // Delete the old floating point increment. 458 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 459 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 460 461 // If the FP induction variable still has uses, this is because something else 462 // in the loop uses its value. In order to canonicalize the induction 463 // variable, we chose to eliminate the IV and rewrite it in terms of an 464 // int->fp cast. 465 // 466 // We give preference to sitofp over uitofp because it is faster on most 467 // platforms. 468 if (WeakPH) { 469 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 470 &*PN->getParent()->getFirstInsertionPt()); 471 PN->replaceAllUsesWith(Conv); 472 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 473 } 474 return true; 475 } 476 477 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 478 // First step. Check to see if there are any floating-point recurrences. 479 // If there are, change them into integer recurrences, permitting analysis by 480 // the SCEV routines. 481 BasicBlock *Header = L->getHeader(); 482 483 SmallVector<WeakTrackingVH, 8> PHIs; 484 for (PHINode &PN : Header->phis()) 485 PHIs.push_back(&PN); 486 487 bool Changed = false; 488 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 489 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 490 Changed |= handleFloatingPointIV(L, PN); 491 492 // If the loop previously had floating-point IV, ScalarEvolution 493 // may not have been able to compute a trip count. Now that we've done some 494 // re-writing, the trip count may be computable. 495 if (Changed) 496 SE->forgetLoop(L); 497 return Changed; 498 } 499 500 namespace { 501 502 // Collect information about PHI nodes which can be transformed in 503 // rewriteLoopExitValues. 504 struct RewritePhi { 505 PHINode *PN; 506 507 // Ith incoming value. 508 unsigned Ith; 509 510 // Exit value after expansion. 511 Value *Val; 512 513 // High Cost when expansion. 514 bool HighCost; 515 516 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 517 : PN(P), Ith(I), Val(V), HighCost(H) {} 518 }; 519 520 } // end anonymous namespace 521 522 //===----------------------------------------------------------------------===// 523 // rewriteLoopExitValues - Optimize IV users outside the loop. 524 // As a side effect, reduces the amount of IV processing within the loop. 525 //===----------------------------------------------------------------------===// 526 527 bool IndVarSimplify::hasHardUserWithinLoop(const Loop *L, const Instruction *I) const { 528 SmallPtrSet<const Instruction *, 8> Visited; 529 SmallVector<const Instruction *, 8> WorkList; 530 Visited.insert(I); 531 WorkList.push_back(I); 532 while (!WorkList.empty()) { 533 const Instruction *Curr = WorkList.pop_back_val(); 534 // This use is outside the loop, nothing to do. 535 if (!L->contains(Curr)) 536 continue; 537 // Do we assume it is a "hard" use which will not be eliminated easily? 538 if (Curr->mayHaveSideEffects()) 539 return true; 540 // Otherwise, add all its users to worklist. 541 for (auto U : Curr->users()) { 542 auto *UI = cast<Instruction>(U); 543 if (Visited.insert(UI).second) 544 WorkList.push_back(UI); 545 } 546 } 547 return false; 548 } 549 550 /// Check to see if this loop has a computable loop-invariant execution count. 551 /// If so, this means that we can compute the final value of any expressions 552 /// that are recurrent in the loop, and substitute the exit values from the loop 553 /// into any instructions outside of the loop that use the final values of the 554 /// current expressions. 555 /// 556 /// This is mostly redundant with the regular IndVarSimplify activities that 557 /// happen later, except that it's more powerful in some cases, because it's 558 /// able to brute-force evaluate arbitrary instructions as long as they have 559 /// constant operands at the beginning of the loop. 560 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 561 // Check a pre-condition. 562 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 563 "Indvars did not preserve LCSSA!"); 564 565 SmallVector<BasicBlock*, 8> ExitBlocks; 566 L->getUniqueExitBlocks(ExitBlocks); 567 568 SmallVector<RewritePhi, 8> RewritePhiSet; 569 // Find all values that are computed inside the loop, but used outside of it. 570 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 571 // the exit blocks of the loop to find them. 572 for (BasicBlock *ExitBB : ExitBlocks) { 573 // If there are no PHI nodes in this exit block, then no values defined 574 // inside the loop are used on this path, skip it. 575 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 576 if (!PN) continue; 577 578 unsigned NumPreds = PN->getNumIncomingValues(); 579 580 // Iterate over all of the PHI nodes. 581 BasicBlock::iterator BBI = ExitBB->begin(); 582 while ((PN = dyn_cast<PHINode>(BBI++))) { 583 if (PN->use_empty()) 584 continue; // dead use, don't replace it 585 586 if (!SE->isSCEVable(PN->getType())) 587 continue; 588 589 // It's necessary to tell ScalarEvolution about this explicitly so that 590 // it can walk the def-use list and forget all SCEVs, as it may not be 591 // watching the PHI itself. Once the new exit value is in place, there 592 // may not be a def-use connection between the loop and every instruction 593 // which got a SCEVAddRecExpr for that loop. 594 SE->forgetValue(PN); 595 596 // Iterate over all of the values in all the PHI nodes. 597 for (unsigned i = 0; i != NumPreds; ++i) { 598 // If the value being merged in is not integer or is not defined 599 // in the loop, skip it. 600 Value *InVal = PN->getIncomingValue(i); 601 if (!isa<Instruction>(InVal)) 602 continue; 603 604 // If this pred is for a subloop, not L itself, skip it. 605 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 606 continue; // The Block is in a subloop, skip it. 607 608 // Check that InVal is defined in the loop. 609 Instruction *Inst = cast<Instruction>(InVal); 610 if (!L->contains(Inst)) 611 continue; 612 613 // Okay, this instruction has a user outside of the current loop 614 // and varies predictably *inside* the loop. Evaluate the value it 615 // contains when the loop exits, if possible. 616 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 617 if (!SE->isLoopInvariant(ExitValue, L) || 618 !isSafeToExpand(ExitValue, *SE)) 619 continue; 620 621 // Computing the value outside of the loop brings no benefit if it is 622 // definitely used inside the loop in a way which can not be optimized 623 // away. 624 if (!isa<SCEVConstant>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 625 continue; 626 627 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 628 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 629 630 LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal 631 << '\n' 632 << " LoopVal = " << *Inst << "\n"); 633 634 if (!isValidRewrite(Inst, ExitVal)) { 635 DeadInsts.push_back(ExitVal); 636 continue; 637 } 638 639 #ifndef NDEBUG 640 // If we reuse an instruction from a loop which is neither L nor one of 641 // its containing loops, we end up breaking LCSSA form for this loop by 642 // creating a new use of its instruction. 643 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 644 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 645 if (EVL != L) 646 assert(EVL->contains(L) && "LCSSA breach detected!"); 647 #endif 648 649 // Collect all the candidate PHINodes to be rewritten. 650 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 651 } 652 } 653 } 654 655 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 656 657 bool Changed = false; 658 // Transformation. 659 for (const RewritePhi &Phi : RewritePhiSet) { 660 PHINode *PN = Phi.PN; 661 Value *ExitVal = Phi.Val; 662 663 // Only do the rewrite when the ExitValue can be expanded cheaply. 664 // If LoopCanBeDel is true, rewrite exit value aggressively. 665 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 666 DeadInsts.push_back(ExitVal); 667 continue; 668 } 669 670 Changed = true; 671 ++NumReplaced; 672 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 673 PN->setIncomingValue(Phi.Ith, ExitVal); 674 675 // If this instruction is dead now, delete it. Don't do it now to avoid 676 // invalidating iterators. 677 if (isInstructionTriviallyDead(Inst, TLI)) 678 DeadInsts.push_back(Inst); 679 680 // Replace PN with ExitVal if that is legal and does not break LCSSA. 681 if (PN->getNumIncomingValues() == 1 && 682 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 683 PN->replaceAllUsesWith(ExitVal); 684 PN->eraseFromParent(); 685 } 686 } 687 688 // The insertion point instruction may have been deleted; clear it out 689 // so that the rewriter doesn't trip over it later. 690 Rewriter.clearInsertPoint(); 691 return Changed; 692 } 693 694 //===---------------------------------------------------------------------===// 695 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 696 // they will exit at the first iteration. 697 //===---------------------------------------------------------------------===// 698 699 /// Check to see if this loop has loop invariant conditions which lead to loop 700 /// exits. If so, we know that if the exit path is taken, it is at the first 701 /// loop iteration. This lets us predict exit values of PHI nodes that live in 702 /// loop header. 703 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 704 // Verify the input to the pass is already in LCSSA form. 705 assert(L->isLCSSAForm(*DT)); 706 707 SmallVector<BasicBlock *, 8> ExitBlocks; 708 L->getUniqueExitBlocks(ExitBlocks); 709 auto *LoopHeader = L->getHeader(); 710 assert(LoopHeader && "Invalid loop"); 711 712 bool MadeAnyChanges = false; 713 for (auto *ExitBB : ExitBlocks) { 714 // If there are no more PHI nodes in this exit block, then no more 715 // values defined inside the loop are used on this path. 716 for (PHINode &PN : ExitBB->phis()) { 717 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 718 IncomingValIdx != E; ++IncomingValIdx) { 719 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 720 721 // We currently only support loop exits from loop header. If the 722 // incoming block is not loop header, we need to recursively check 723 // all conditions starting from loop header are loop invariants. 724 // Additional support might be added in the future. 725 if (IncomingBB != LoopHeader) 726 continue; 727 728 // Get condition that leads to the exit path. 729 auto *TermInst = IncomingBB->getTerminator(); 730 731 Value *Cond = nullptr; 732 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 733 // Must be a conditional branch, otherwise the block 734 // should not be in the loop. 735 Cond = BI->getCondition(); 736 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 737 Cond = SI->getCondition(); 738 else 739 continue; 740 741 if (!L->isLoopInvariant(Cond)) 742 continue; 743 744 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 745 746 // Only deal with PHIs. 747 if (!ExitVal) 748 continue; 749 750 // If ExitVal is a PHI on the loop header, then we know its 751 // value along this exit because the exit can only be taken 752 // on the first iteration. 753 auto *LoopPreheader = L->getLoopPreheader(); 754 assert(LoopPreheader && "Invalid loop"); 755 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 756 if (PreheaderIdx != -1) { 757 assert(ExitVal->getParent() == LoopHeader && 758 "ExitVal must be in loop header"); 759 MadeAnyChanges = true; 760 PN.setIncomingValue(IncomingValIdx, 761 ExitVal->getIncomingValue(PreheaderIdx)); 762 } 763 } 764 } 765 } 766 return MadeAnyChanges; 767 } 768 769 /// Check whether it is possible to delete the loop after rewriting exit 770 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 771 /// aggressively. 772 bool IndVarSimplify::canLoopBeDeleted( 773 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 774 BasicBlock *Preheader = L->getLoopPreheader(); 775 // If there is no preheader, the loop will not be deleted. 776 if (!Preheader) 777 return false; 778 779 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 780 // We obviate multiple ExitingBlocks case for simplicity. 781 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 782 // after exit value rewriting, we can enhance the logic here. 783 SmallVector<BasicBlock *, 4> ExitingBlocks; 784 L->getExitingBlocks(ExitingBlocks); 785 SmallVector<BasicBlock *, 8> ExitBlocks; 786 L->getUniqueExitBlocks(ExitBlocks); 787 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 788 return false; 789 790 BasicBlock *ExitBlock = ExitBlocks[0]; 791 BasicBlock::iterator BI = ExitBlock->begin(); 792 while (PHINode *P = dyn_cast<PHINode>(BI)) { 793 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 794 795 // If the Incoming value of P is found in RewritePhiSet, we know it 796 // could be rewritten to use a loop invariant value in transformation 797 // phase later. Skip it in the loop invariant check below. 798 bool found = false; 799 for (const RewritePhi &Phi : RewritePhiSet) { 800 unsigned i = Phi.Ith; 801 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 802 found = true; 803 break; 804 } 805 } 806 807 Instruction *I; 808 if (!found && (I = dyn_cast<Instruction>(Incoming))) 809 if (!L->hasLoopInvariantOperands(I)) 810 return false; 811 812 ++BI; 813 } 814 815 for (auto *BB : L->blocks()) 816 if (llvm::any_of(*BB, [](Instruction &I) { 817 return I.mayHaveSideEffects(); 818 })) 819 return false; 820 821 return true; 822 } 823 824 //===----------------------------------------------------------------------===// 825 // IV Widening - Extend the width of an IV to cover its widest uses. 826 //===----------------------------------------------------------------------===// 827 828 namespace { 829 830 // Collect information about induction variables that are used by sign/zero 831 // extend operations. This information is recorded by CollectExtend and provides 832 // the input to WidenIV. 833 struct WideIVInfo { 834 PHINode *NarrowIV = nullptr; 835 836 // Widest integer type created [sz]ext 837 Type *WidestNativeType = nullptr; 838 839 // Was a sext user seen before a zext? 840 bool IsSigned = false; 841 }; 842 843 } // end anonymous namespace 844 845 /// Update information about the induction variable that is extended by this 846 /// sign or zero extend operation. This is used to determine the final width of 847 /// the IV before actually widening it. 848 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 849 const TargetTransformInfo *TTI) { 850 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 851 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 852 return; 853 854 Type *Ty = Cast->getType(); 855 uint64_t Width = SE->getTypeSizeInBits(Ty); 856 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 857 return; 858 859 // Check that `Cast` actually extends the induction variable (we rely on this 860 // later). This takes care of cases where `Cast` is extending a truncation of 861 // the narrow induction variable, and thus can end up being narrower than the 862 // "narrow" induction variable. 863 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 864 if (NarrowIVWidth >= Width) 865 return; 866 867 // Cast is either an sext or zext up to this point. 868 // We should not widen an indvar if arithmetics on the wider indvar are more 869 // expensive than those on the narrower indvar. We check only the cost of ADD 870 // because at least an ADD is required to increment the induction variable. We 871 // could compute more comprehensively the cost of all instructions on the 872 // induction variable when necessary. 873 if (TTI && 874 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 875 TTI->getArithmeticInstrCost(Instruction::Add, 876 Cast->getOperand(0)->getType())) { 877 return; 878 } 879 880 if (!WI.WidestNativeType) { 881 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 882 WI.IsSigned = IsSigned; 883 return; 884 } 885 886 // We extend the IV to satisfy the sign of its first user, arbitrarily. 887 if (WI.IsSigned != IsSigned) 888 return; 889 890 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 891 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 892 } 893 894 namespace { 895 896 /// Record a link in the Narrow IV def-use chain along with the WideIV that 897 /// computes the same value as the Narrow IV def. This avoids caching Use* 898 /// pointers. 899 struct NarrowIVDefUse { 900 Instruction *NarrowDef = nullptr; 901 Instruction *NarrowUse = nullptr; 902 Instruction *WideDef = nullptr; 903 904 // True if the narrow def is never negative. Tracking this information lets 905 // us use a sign extension instead of a zero extension or vice versa, when 906 // profitable and legal. 907 bool NeverNegative = false; 908 909 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 910 bool NeverNegative) 911 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 912 NeverNegative(NeverNegative) {} 913 }; 914 915 /// The goal of this transform is to remove sign and zero extends without 916 /// creating any new induction variables. To do this, it creates a new phi of 917 /// the wider type and redirects all users, either removing extends or inserting 918 /// truncs whenever we stop propagating the type. 919 class WidenIV { 920 // Parameters 921 PHINode *OrigPhi; 922 Type *WideType; 923 924 // Context 925 LoopInfo *LI; 926 Loop *L; 927 ScalarEvolution *SE; 928 DominatorTree *DT; 929 930 // Does the module have any calls to the llvm.experimental.guard intrinsic 931 // at all? If not we can avoid scanning instructions looking for guards. 932 bool HasGuards; 933 934 // Result 935 PHINode *WidePhi = nullptr; 936 Instruction *WideInc = nullptr; 937 const SCEV *WideIncExpr = nullptr; 938 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 939 940 SmallPtrSet<Instruction *,16> Widened; 941 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 942 943 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 944 945 // A map tracking the kind of extension used to widen each narrow IV 946 // and narrow IV user. 947 // Key: pointer to a narrow IV or IV user. 948 // Value: the kind of extension used to widen this Instruction. 949 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 950 951 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 952 953 // A map with control-dependent ranges for post increment IV uses. The key is 954 // a pair of IV def and a use of this def denoting the context. The value is 955 // a ConstantRange representing possible values of the def at the given 956 // context. 957 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 958 959 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 960 Instruction *UseI) { 961 DefUserPair Key(Def, UseI); 962 auto It = PostIncRangeInfos.find(Key); 963 return It == PostIncRangeInfos.end() 964 ? Optional<ConstantRange>(None) 965 : Optional<ConstantRange>(It->second); 966 } 967 968 void calculatePostIncRanges(PHINode *OrigPhi); 969 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 970 971 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 972 DefUserPair Key(Def, UseI); 973 auto It = PostIncRangeInfos.find(Key); 974 if (It == PostIncRangeInfos.end()) 975 PostIncRangeInfos.insert({Key, R}); 976 else 977 It->second = R.intersectWith(It->second); 978 } 979 980 public: 981 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 982 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 983 bool HasGuards) 984 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 985 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 986 HasGuards(HasGuards), DeadInsts(DI) { 987 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 988 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 989 } 990 991 PHINode *createWideIV(SCEVExpander &Rewriter); 992 993 protected: 994 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 995 Instruction *Use); 996 997 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 998 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 999 const SCEVAddRecExpr *WideAR); 1000 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1001 1002 ExtendKind getExtendKind(Instruction *I); 1003 1004 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1005 1006 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1007 1008 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1009 1010 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1011 unsigned OpCode) const; 1012 1013 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1014 1015 bool widenLoopCompare(NarrowIVDefUse DU); 1016 bool widenWithVariantLoadUse(NarrowIVDefUse DU); 1017 void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU); 1018 1019 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1020 }; 1021 1022 } // end anonymous namespace 1023 1024 /// Perform a quick domtree based check for loop invariance assuming that V is 1025 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 1026 /// purpose. 1027 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 1028 Instruction *Inst = dyn_cast<Instruction>(V); 1029 if (!Inst) 1030 return true; 1031 1032 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 1033 } 1034 1035 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1036 bool IsSigned, Instruction *Use) { 1037 // Set the debug location and conservative insertion point. 1038 IRBuilder<> Builder(Use); 1039 // Hoist the insertion point into loop preheaders as far as possible. 1040 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1041 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 1042 L = L->getParentLoop()) 1043 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1044 1045 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1046 Builder.CreateZExt(NarrowOper, WideType); 1047 } 1048 1049 /// Instantiate a wide operation to replace a narrow operation. This only needs 1050 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1051 /// 0 for any operation we decide not to clone. 1052 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 1053 const SCEVAddRecExpr *WideAR) { 1054 unsigned Opcode = DU.NarrowUse->getOpcode(); 1055 switch (Opcode) { 1056 default: 1057 return nullptr; 1058 case Instruction::Add: 1059 case Instruction::Mul: 1060 case Instruction::UDiv: 1061 case Instruction::Sub: 1062 return cloneArithmeticIVUser(DU, WideAR); 1063 1064 case Instruction::And: 1065 case Instruction::Or: 1066 case Instruction::Xor: 1067 case Instruction::Shl: 1068 case Instruction::LShr: 1069 case Instruction::AShr: 1070 return cloneBitwiseIVUser(DU); 1071 } 1072 } 1073 1074 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 1075 Instruction *NarrowUse = DU.NarrowUse; 1076 Instruction *NarrowDef = DU.NarrowDef; 1077 Instruction *WideDef = DU.WideDef; 1078 1079 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1080 1081 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1082 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1083 // invariant and will be folded or hoisted. If it actually comes from a 1084 // widened IV, it should be removed during a future call to widenIVUse. 1085 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1086 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1087 ? WideDef 1088 : createExtendInst(NarrowUse->getOperand(0), WideType, 1089 IsSigned, NarrowUse); 1090 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1091 ? WideDef 1092 : createExtendInst(NarrowUse->getOperand(1), WideType, 1093 IsSigned, NarrowUse); 1094 1095 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1096 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1097 NarrowBO->getName()); 1098 IRBuilder<> Builder(NarrowUse); 1099 Builder.Insert(WideBO); 1100 WideBO->copyIRFlags(NarrowBO); 1101 return WideBO; 1102 } 1103 1104 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1105 const SCEVAddRecExpr *WideAR) { 1106 Instruction *NarrowUse = DU.NarrowUse; 1107 Instruction *NarrowDef = DU.NarrowDef; 1108 Instruction *WideDef = DU.WideDef; 1109 1110 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1111 1112 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1113 1114 // We're trying to find X such that 1115 // 1116 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1117 // 1118 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1119 // and check using SCEV if any of them are correct. 1120 1121 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1122 // correct solution to X. 1123 auto GuessNonIVOperand = [&](bool SignExt) { 1124 const SCEV *WideLHS; 1125 const SCEV *WideRHS; 1126 1127 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1128 if (SignExt) 1129 return SE->getSignExtendExpr(S, Ty); 1130 return SE->getZeroExtendExpr(S, Ty); 1131 }; 1132 1133 if (IVOpIdx == 0) { 1134 WideLHS = SE->getSCEV(WideDef); 1135 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1136 WideRHS = GetExtend(NarrowRHS, WideType); 1137 } else { 1138 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1139 WideLHS = GetExtend(NarrowLHS, WideType); 1140 WideRHS = SE->getSCEV(WideDef); 1141 } 1142 1143 // WideUse is "WideDef `op.wide` X" as described in the comment. 1144 const SCEV *WideUse = nullptr; 1145 1146 switch (NarrowUse->getOpcode()) { 1147 default: 1148 llvm_unreachable("No other possibility!"); 1149 1150 case Instruction::Add: 1151 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1152 break; 1153 1154 case Instruction::Mul: 1155 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1156 break; 1157 1158 case Instruction::UDiv: 1159 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1160 break; 1161 1162 case Instruction::Sub: 1163 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1164 break; 1165 } 1166 1167 return WideUse == WideAR; 1168 }; 1169 1170 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1171 if (!GuessNonIVOperand(SignExtend)) { 1172 SignExtend = !SignExtend; 1173 if (!GuessNonIVOperand(SignExtend)) 1174 return nullptr; 1175 } 1176 1177 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1178 ? WideDef 1179 : createExtendInst(NarrowUse->getOperand(0), WideType, 1180 SignExtend, NarrowUse); 1181 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1182 ? WideDef 1183 : createExtendInst(NarrowUse->getOperand(1), WideType, 1184 SignExtend, NarrowUse); 1185 1186 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1187 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1188 NarrowBO->getName()); 1189 1190 IRBuilder<> Builder(NarrowUse); 1191 Builder.Insert(WideBO); 1192 WideBO->copyIRFlags(NarrowBO); 1193 return WideBO; 1194 } 1195 1196 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1197 auto It = ExtendKindMap.find(I); 1198 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1199 return It->second; 1200 } 1201 1202 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1203 unsigned OpCode) const { 1204 if (OpCode == Instruction::Add) 1205 return SE->getAddExpr(LHS, RHS); 1206 if (OpCode == Instruction::Sub) 1207 return SE->getMinusSCEV(LHS, RHS); 1208 if (OpCode == Instruction::Mul) 1209 return SE->getMulExpr(LHS, RHS); 1210 1211 llvm_unreachable("Unsupported opcode."); 1212 } 1213 1214 /// No-wrap operations can transfer sign extension of their result to their 1215 /// operands. Generate the SCEV value for the widened operation without 1216 /// actually modifying the IR yet. If the expression after extending the 1217 /// operands is an AddRec for this loop, return the AddRec and the kind of 1218 /// extension used. 1219 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1220 // Handle the common case of add<nsw/nuw> 1221 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1222 // Only Add/Sub/Mul instructions supported yet. 1223 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1224 OpCode != Instruction::Mul) 1225 return {nullptr, Unknown}; 1226 1227 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1228 // if extending the other will lead to a recurrence. 1229 const unsigned ExtendOperIdx = 1230 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1231 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1232 1233 const SCEV *ExtendOperExpr = nullptr; 1234 const OverflowingBinaryOperator *OBO = 1235 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1236 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1237 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1238 ExtendOperExpr = SE->getSignExtendExpr( 1239 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1240 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1241 ExtendOperExpr = SE->getZeroExtendExpr( 1242 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1243 else 1244 return {nullptr, Unknown}; 1245 1246 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1247 // flags. This instruction may be guarded by control flow that the no-wrap 1248 // behavior depends on. Non-control-equivalent instructions can be mapped to 1249 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1250 // semantics to those operations. 1251 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1252 const SCEV *rhs = ExtendOperExpr; 1253 1254 // Let's swap operands to the initial order for the case of non-commutative 1255 // operations, like SUB. See PR21014. 1256 if (ExtendOperIdx == 0) 1257 std::swap(lhs, rhs); 1258 const SCEVAddRecExpr *AddRec = 1259 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1260 1261 if (!AddRec || AddRec->getLoop() != L) 1262 return {nullptr, Unknown}; 1263 1264 return {AddRec, ExtKind}; 1265 } 1266 1267 /// Is this instruction potentially interesting for further simplification after 1268 /// widening it's type? In other words, can the extend be safely hoisted out of 1269 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1270 /// so, return the extended recurrence and the kind of extension used. Otherwise 1271 /// return {nullptr, Unknown}. 1272 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) { 1273 if (!SE->isSCEVable(DU.NarrowUse->getType())) 1274 return {nullptr, Unknown}; 1275 1276 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1277 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1278 SE->getTypeSizeInBits(WideType)) { 1279 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1280 // index. So don't follow this use. 1281 return {nullptr, Unknown}; 1282 } 1283 1284 const SCEV *WideExpr; 1285 ExtendKind ExtKind; 1286 if (DU.NeverNegative) { 1287 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1288 if (isa<SCEVAddRecExpr>(WideExpr)) 1289 ExtKind = SignExtended; 1290 else { 1291 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1292 ExtKind = ZeroExtended; 1293 } 1294 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1295 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1296 ExtKind = SignExtended; 1297 } else { 1298 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1299 ExtKind = ZeroExtended; 1300 } 1301 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1302 if (!AddRec || AddRec->getLoop() != L) 1303 return {nullptr, Unknown}; 1304 return {AddRec, ExtKind}; 1305 } 1306 1307 /// This IV user cannot be widen. Replace this use of the original narrow IV 1308 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1309 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1310 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1311 << *DU.NarrowUse << "\n"); 1312 IRBuilder<> Builder( 1313 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1314 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1315 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1316 } 1317 1318 /// If the narrow use is a compare instruction, then widen the compare 1319 // (and possibly the other operand). The extend operation is hoisted into the 1320 // loop preheader as far as possible. 1321 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1322 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1323 if (!Cmp) 1324 return false; 1325 1326 // We can legally widen the comparison in the following two cases: 1327 // 1328 // - The signedness of the IV extension and comparison match 1329 // 1330 // - The narrow IV is always positive (and thus its sign extension is equal 1331 // to its zero extension). For instance, let's say we're zero extending 1332 // %narrow for the following use 1333 // 1334 // icmp slt i32 %narrow, %val ... (A) 1335 // 1336 // and %narrow is always positive. Then 1337 // 1338 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1339 // == icmp slt i32 zext(%narrow), sext(%val) 1340 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1341 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1342 return false; 1343 1344 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1345 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1346 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1347 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1348 1349 // Widen the compare instruction. 1350 IRBuilder<> Builder( 1351 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1352 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1353 1354 // Widen the other operand of the compare, if necessary. 1355 if (CastWidth < IVWidth) { 1356 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1357 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1358 } 1359 return true; 1360 } 1361 1362 /// If the narrow use is an instruction whose two operands are the defining 1363 /// instruction of DU and a load instruction, then we have the following: 1364 /// if the load is hoisted outside the loop, then we do not reach this function 1365 /// as scalar evolution analysis works fine in widenIVUse with variables 1366 /// hoisted outside the loop and efficient code is subsequently generated by 1367 /// not emitting truncate instructions. But when the load is not hoisted 1368 /// (whether due to limitation in alias analysis or due to a true legality), 1369 /// then scalar evolution can not proceed with loop variant values and 1370 /// inefficient code is generated. This function handles the non-hoisted load 1371 /// special case by making the optimization generate the same type of code for 1372 /// hoisted and non-hoisted load (widen use and eliminate sign extend 1373 /// instruction). This special case is important especially when the induction 1374 /// variables are affecting addressing mode in code generation. 1375 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) { 1376 Instruction *NarrowUse = DU.NarrowUse; 1377 Instruction *NarrowDef = DU.NarrowDef; 1378 Instruction *WideDef = DU.WideDef; 1379 1380 // Handle the common case of add<nsw/nuw> 1381 const unsigned OpCode = NarrowUse->getOpcode(); 1382 // Only Add/Sub/Mul instructions are supported. 1383 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1384 OpCode != Instruction::Mul) 1385 return false; 1386 1387 // The operand that is not defined by NarrowDef of DU. Let's call it the 1388 // other operand. 1389 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0; 1390 assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef && 1391 "bad DU"); 1392 1393 const SCEV *ExtendOperExpr = nullptr; 1394 const OverflowingBinaryOperator *OBO = 1395 cast<OverflowingBinaryOperator>(NarrowUse); 1396 ExtendKind ExtKind = getExtendKind(NarrowDef); 1397 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1398 ExtendOperExpr = SE->getSignExtendExpr( 1399 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1400 else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1401 ExtendOperExpr = SE->getZeroExtendExpr( 1402 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1403 else 1404 return false; 1405 1406 // We are interested in the other operand being a load instruction. 1407 // But, we should look into relaxing this restriction later on. 1408 auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx)); 1409 if (I && I->getOpcode() != Instruction::Load) 1410 return false; 1411 1412 // Verifying that Defining operand is an AddRec 1413 const SCEV *Op1 = SE->getSCEV(WideDef); 1414 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); 1415 if (!AddRecOp1 || AddRecOp1->getLoop() != L) 1416 return false; 1417 // Verifying that other operand is an Extend. 1418 if (ExtKind == SignExtended) { 1419 if (!isa<SCEVSignExtendExpr>(ExtendOperExpr)) 1420 return false; 1421 } else { 1422 if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr)) 1423 return false; 1424 } 1425 1426 if (ExtKind == SignExtended) { 1427 for (Use &U : NarrowUse->uses()) { 1428 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1429 if (!User || User->getType() != WideType) 1430 return false; 1431 } 1432 } else { // ExtKind == ZeroExtended 1433 for (Use &U : NarrowUse->uses()) { 1434 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1435 if (!User || User->getType() != WideType) 1436 return false; 1437 } 1438 } 1439 1440 return true; 1441 } 1442 1443 /// Special Case for widening with variant Loads (see 1444 /// WidenIV::widenWithVariantLoadUse). This is the code generation part. 1445 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) { 1446 Instruction *NarrowUse = DU.NarrowUse; 1447 Instruction *NarrowDef = DU.NarrowDef; 1448 Instruction *WideDef = DU.WideDef; 1449 1450 ExtendKind ExtKind = getExtendKind(NarrowDef); 1451 1452 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1453 1454 // Generating a widening use instruction. 1455 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1456 ? WideDef 1457 : createExtendInst(NarrowUse->getOperand(0), WideType, 1458 ExtKind, NarrowUse); 1459 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1460 ? WideDef 1461 : createExtendInst(NarrowUse->getOperand(1), WideType, 1462 ExtKind, NarrowUse); 1463 1464 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1465 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1466 NarrowBO->getName()); 1467 IRBuilder<> Builder(NarrowUse); 1468 Builder.Insert(WideBO); 1469 WideBO->copyIRFlags(NarrowBO); 1470 1471 if (ExtKind == SignExtended) 1472 ExtendKindMap[NarrowUse] = SignExtended; 1473 else 1474 ExtendKindMap[NarrowUse] = ZeroExtended; 1475 1476 // Update the Use. 1477 if (ExtKind == SignExtended) { 1478 for (Use &U : NarrowUse->uses()) { 1479 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1480 if (User && User->getType() == WideType) { 1481 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1482 << *WideBO << "\n"); 1483 ++NumElimExt; 1484 User->replaceAllUsesWith(WideBO); 1485 DeadInsts.emplace_back(User); 1486 } 1487 } 1488 } else { // ExtKind == ZeroExtended 1489 for (Use &U : NarrowUse->uses()) { 1490 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1491 if (User && User->getType() == WideType) { 1492 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1493 << *WideBO << "\n"); 1494 ++NumElimExt; 1495 User->replaceAllUsesWith(WideBO); 1496 DeadInsts.emplace_back(User); 1497 } 1498 } 1499 } 1500 } 1501 1502 /// Determine whether an individual user of the narrow IV can be widened. If so, 1503 /// return the wide clone of the user. 1504 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1505 assert(ExtendKindMap.count(DU.NarrowDef) && 1506 "Should already know the kind of extension used to widen NarrowDef"); 1507 1508 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1509 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1510 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1511 // For LCSSA phis, sink the truncate outside the loop. 1512 // After SimplifyCFG most loop exit targets have a single predecessor. 1513 // Otherwise fall back to a truncate within the loop. 1514 if (UsePhi->getNumOperands() != 1) 1515 truncateIVUse(DU, DT, LI); 1516 else { 1517 // Widening the PHI requires us to insert a trunc. The logical place 1518 // for this trunc is in the same BB as the PHI. This is not possible if 1519 // the BB is terminated by a catchswitch. 1520 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1521 return nullptr; 1522 1523 PHINode *WidePhi = 1524 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1525 UsePhi); 1526 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1527 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1528 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1529 UsePhi->replaceAllUsesWith(Trunc); 1530 DeadInsts.emplace_back(UsePhi); 1531 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1532 << *WidePhi << "\n"); 1533 } 1534 return nullptr; 1535 } 1536 } 1537 1538 // This narrow use can be widened by a sext if it's non-negative or its narrow 1539 // def was widended by a sext. Same for zext. 1540 auto canWidenBySExt = [&]() { 1541 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1542 }; 1543 auto canWidenByZExt = [&]() { 1544 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1545 }; 1546 1547 // Our raison d'etre! Eliminate sign and zero extension. 1548 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1549 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1550 Value *NewDef = DU.WideDef; 1551 if (DU.NarrowUse->getType() != WideType) { 1552 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1553 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1554 if (CastWidth < IVWidth) { 1555 // The cast isn't as wide as the IV, so insert a Trunc. 1556 IRBuilder<> Builder(DU.NarrowUse); 1557 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1558 } 1559 else { 1560 // A wider extend was hidden behind a narrower one. This may induce 1561 // another round of IV widening in which the intermediate IV becomes 1562 // dead. It should be very rare. 1563 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1564 << " not wide enough to subsume " << *DU.NarrowUse 1565 << "\n"); 1566 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1567 NewDef = DU.NarrowUse; 1568 } 1569 } 1570 if (NewDef != DU.NarrowUse) { 1571 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1572 << " replaced by " << *DU.WideDef << "\n"); 1573 ++NumElimExt; 1574 DU.NarrowUse->replaceAllUsesWith(NewDef); 1575 DeadInsts.emplace_back(DU.NarrowUse); 1576 } 1577 // Now that the extend is gone, we want to expose it's uses for potential 1578 // further simplification. We don't need to directly inform SimplifyIVUsers 1579 // of the new users, because their parent IV will be processed later as a 1580 // new loop phi. If we preserved IVUsers analysis, we would also want to 1581 // push the uses of WideDef here. 1582 1583 // No further widening is needed. The deceased [sz]ext had done it for us. 1584 return nullptr; 1585 } 1586 1587 // Does this user itself evaluate to a recurrence after widening? 1588 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1589 if (!WideAddRec.first) 1590 WideAddRec = getWideRecurrence(DU); 1591 1592 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1593 if (!WideAddRec.first) { 1594 // If use is a loop condition, try to promote the condition instead of 1595 // truncating the IV first. 1596 if (widenLoopCompare(DU)) 1597 return nullptr; 1598 1599 // We are here about to generate a truncate instruction that may hurt 1600 // performance because the scalar evolution expression computed earlier 1601 // in WideAddRec.first does not indicate a polynomial induction expression. 1602 // In that case, look at the operands of the use instruction to determine 1603 // if we can still widen the use instead of truncating its operand. 1604 if (widenWithVariantLoadUse(DU)) { 1605 widenWithVariantLoadUseCodegen(DU); 1606 return nullptr; 1607 } 1608 1609 // This user does not evaluate to a recurrence after widening, so don't 1610 // follow it. Instead insert a Trunc to kill off the original use, 1611 // eventually isolating the original narrow IV so it can be removed. 1612 truncateIVUse(DU, DT, LI); 1613 return nullptr; 1614 } 1615 // Assume block terminators cannot evaluate to a recurrence. We can't to 1616 // insert a Trunc after a terminator if there happens to be a critical edge. 1617 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1618 "SCEV is not expected to evaluate a block terminator"); 1619 1620 // Reuse the IV increment that SCEVExpander created as long as it dominates 1621 // NarrowUse. 1622 Instruction *WideUse = nullptr; 1623 if (WideAddRec.first == WideIncExpr && 1624 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1625 WideUse = WideInc; 1626 else { 1627 WideUse = cloneIVUser(DU, WideAddRec.first); 1628 if (!WideUse) 1629 return nullptr; 1630 } 1631 // Evaluation of WideAddRec ensured that the narrow expression could be 1632 // extended outside the loop without overflow. This suggests that the wide use 1633 // evaluates to the same expression as the extended narrow use, but doesn't 1634 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1635 // where it fails, we simply throw away the newly created wide use. 1636 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1637 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1638 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1639 << "\n"); 1640 DeadInsts.emplace_back(WideUse); 1641 return nullptr; 1642 } 1643 1644 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1645 // Returning WideUse pushes it on the worklist. 1646 return WideUse; 1647 } 1648 1649 /// Add eligible users of NarrowDef to NarrowIVUsers. 1650 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1651 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1652 bool NonNegativeDef = 1653 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1654 SE->getConstant(NarrowSCEV->getType(), 0)); 1655 for (User *U : NarrowDef->users()) { 1656 Instruction *NarrowUser = cast<Instruction>(U); 1657 1658 // Handle data flow merges and bizarre phi cycles. 1659 if (!Widened.insert(NarrowUser).second) 1660 continue; 1661 1662 bool NonNegativeUse = false; 1663 if (!NonNegativeDef) { 1664 // We might have a control-dependent range information for this context. 1665 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1666 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1667 } 1668 1669 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1670 NonNegativeDef || NonNegativeUse); 1671 } 1672 } 1673 1674 /// Process a single induction variable. First use the SCEVExpander to create a 1675 /// wide induction variable that evaluates to the same recurrence as the 1676 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1677 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1678 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1679 /// 1680 /// It would be simpler to delete uses as they are processed, but we must avoid 1681 /// invalidating SCEV expressions. 1682 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1683 // Is this phi an induction variable? 1684 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1685 if (!AddRec) 1686 return nullptr; 1687 1688 // Widen the induction variable expression. 1689 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1690 ? SE->getSignExtendExpr(AddRec, WideType) 1691 : SE->getZeroExtendExpr(AddRec, WideType); 1692 1693 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1694 "Expect the new IV expression to preserve its type"); 1695 1696 // Can the IV be extended outside the loop without overflow? 1697 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1698 if (!AddRec || AddRec->getLoop() != L) 1699 return nullptr; 1700 1701 // An AddRec must have loop-invariant operands. Since this AddRec is 1702 // materialized by a loop header phi, the expression cannot have any post-loop 1703 // operands, so they must dominate the loop header. 1704 assert( 1705 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1706 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1707 "Loop header phi recurrence inputs do not dominate the loop"); 1708 1709 // Iterate over IV uses (including transitive ones) looking for IV increments 1710 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1711 // the increment calculate control-dependent range information basing on 1712 // dominating conditions inside of the loop (e.g. a range check inside of the 1713 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1714 // 1715 // Control-dependent range information is later used to prove that a narrow 1716 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1717 // this on demand because when pushNarrowIVUsers needs this information some 1718 // of the dominating conditions might be already widened. 1719 if (UsePostIncrementRanges) 1720 calculatePostIncRanges(OrigPhi); 1721 1722 // The rewriter provides a value for the desired IV expression. This may 1723 // either find an existing phi or materialize a new one. Either way, we 1724 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1725 // of the phi-SCC dominates the loop entry. 1726 Instruction *InsertPt = &L->getHeader()->front(); 1727 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1728 1729 // Remembering the WideIV increment generated by SCEVExpander allows 1730 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1731 // employ a general reuse mechanism because the call above is the only call to 1732 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1733 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1734 WideInc = 1735 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1736 WideIncExpr = SE->getSCEV(WideInc); 1737 // Propagate the debug location associated with the original loop increment 1738 // to the new (widened) increment. 1739 auto *OrigInc = 1740 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1741 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1742 } 1743 1744 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1745 ++NumWidened; 1746 1747 // Traverse the def-use chain using a worklist starting at the original IV. 1748 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1749 1750 Widened.insert(OrigPhi); 1751 pushNarrowIVUsers(OrigPhi, WidePhi); 1752 1753 while (!NarrowIVUsers.empty()) { 1754 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1755 1756 // Process a def-use edge. This may replace the use, so don't hold a 1757 // use_iterator across it. 1758 Instruction *WideUse = widenIVUse(DU, Rewriter); 1759 1760 // Follow all def-use edges from the previous narrow use. 1761 if (WideUse) 1762 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1763 1764 // widenIVUse may have removed the def-use edge. 1765 if (DU.NarrowDef->use_empty()) 1766 DeadInsts.emplace_back(DU.NarrowDef); 1767 } 1768 1769 // Attach any debug information to the new PHI. Since OrigPhi and WidePHI 1770 // evaluate the same recurrence, we can just copy the debug info over. 1771 SmallVector<DbgValueInst *, 1> DbgValues; 1772 llvm::findDbgValues(DbgValues, OrigPhi); 1773 auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(), 1774 ValueAsMetadata::get(WidePhi)); 1775 for (auto &DbgValue : DbgValues) 1776 DbgValue->setOperand(0, MDPhi); 1777 return WidePhi; 1778 } 1779 1780 /// Calculates control-dependent range for the given def at the given context 1781 /// by looking at dominating conditions inside of the loop 1782 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1783 Instruction *NarrowUser) { 1784 using namespace llvm::PatternMatch; 1785 1786 Value *NarrowDefLHS; 1787 const APInt *NarrowDefRHS; 1788 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1789 m_APInt(NarrowDefRHS))) || 1790 !NarrowDefRHS->isNonNegative()) 1791 return; 1792 1793 auto UpdateRangeFromCondition = [&] (Value *Condition, 1794 bool TrueDest) { 1795 CmpInst::Predicate Pred; 1796 Value *CmpRHS; 1797 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 1798 m_Value(CmpRHS)))) 1799 return; 1800 1801 CmpInst::Predicate P = 1802 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 1803 1804 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 1805 auto CmpConstrainedLHSRange = 1806 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 1807 auto NarrowDefRange = 1808 CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS); 1809 1810 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 1811 }; 1812 1813 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 1814 if (!HasGuards) 1815 return; 1816 1817 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 1818 Ctx->getParent()->rend())) { 1819 Value *C = nullptr; 1820 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 1821 UpdateRangeFromCondition(C, /*TrueDest=*/true); 1822 } 1823 }; 1824 1825 UpdateRangeFromGuards(NarrowUser); 1826 1827 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 1828 // If NarrowUserBB is statically unreachable asking dominator queries may 1829 // yield surprising results. (e.g. the block may not have a dom tree node) 1830 if (!DT->isReachableFromEntry(NarrowUserBB)) 1831 return; 1832 1833 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 1834 L->contains(DTB->getBlock()); 1835 DTB = DTB->getIDom()) { 1836 auto *BB = DTB->getBlock(); 1837 auto *TI = BB->getTerminator(); 1838 UpdateRangeFromGuards(TI); 1839 1840 auto *BI = dyn_cast<BranchInst>(TI); 1841 if (!BI || !BI->isConditional()) 1842 continue; 1843 1844 auto *TrueSuccessor = BI->getSuccessor(0); 1845 auto *FalseSuccessor = BI->getSuccessor(1); 1846 1847 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 1848 return BBE.isSingleEdge() && 1849 DT->dominates(BBE, NarrowUser->getParent()); 1850 }; 1851 1852 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 1853 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 1854 1855 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 1856 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 1857 } 1858 } 1859 1860 /// Calculates PostIncRangeInfos map for the given IV 1861 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 1862 SmallPtrSet<Instruction *, 16> Visited; 1863 SmallVector<Instruction *, 6> Worklist; 1864 Worklist.push_back(OrigPhi); 1865 Visited.insert(OrigPhi); 1866 1867 while (!Worklist.empty()) { 1868 Instruction *NarrowDef = Worklist.pop_back_val(); 1869 1870 for (Use &U : NarrowDef->uses()) { 1871 auto *NarrowUser = cast<Instruction>(U.getUser()); 1872 1873 // Don't go looking outside the current loop. 1874 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 1875 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 1876 continue; 1877 1878 if (!Visited.insert(NarrowUser).second) 1879 continue; 1880 1881 Worklist.push_back(NarrowUser); 1882 1883 calculatePostIncRange(NarrowDef, NarrowUser); 1884 } 1885 } 1886 } 1887 1888 //===----------------------------------------------------------------------===// 1889 // Live IV Reduction - Minimize IVs live across the loop. 1890 //===----------------------------------------------------------------------===// 1891 1892 //===----------------------------------------------------------------------===// 1893 // Simplification of IV users based on SCEV evaluation. 1894 //===----------------------------------------------------------------------===// 1895 1896 namespace { 1897 1898 class IndVarSimplifyVisitor : public IVVisitor { 1899 ScalarEvolution *SE; 1900 const TargetTransformInfo *TTI; 1901 PHINode *IVPhi; 1902 1903 public: 1904 WideIVInfo WI; 1905 1906 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1907 const TargetTransformInfo *TTI, 1908 const DominatorTree *DTree) 1909 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1910 DT = DTree; 1911 WI.NarrowIV = IVPhi; 1912 } 1913 1914 // Implement the interface used by simplifyUsersOfIV. 1915 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1916 }; 1917 1918 } // end anonymous namespace 1919 1920 /// Iteratively perform simplification on a worklist of IV users. Each 1921 /// successive simplification may push more users which may themselves be 1922 /// candidates for simplification. 1923 /// 1924 /// Sign/Zero extend elimination is interleaved with IV simplification. 1925 bool IndVarSimplify::simplifyAndExtend(Loop *L, 1926 SCEVExpander &Rewriter, 1927 LoopInfo *LI) { 1928 SmallVector<WideIVInfo, 8> WideIVs; 1929 1930 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 1931 Intrinsic::getName(Intrinsic::experimental_guard)); 1932 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 1933 1934 SmallVector<PHINode*, 8> LoopPhis; 1935 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1936 LoopPhis.push_back(cast<PHINode>(I)); 1937 } 1938 // Each round of simplification iterates through the SimplifyIVUsers worklist 1939 // for all current phis, then determines whether any IVs can be 1940 // widened. Widening adds new phis to LoopPhis, inducing another round of 1941 // simplification on the wide IVs. 1942 bool Changed = false; 1943 while (!LoopPhis.empty()) { 1944 // Evaluate as many IV expressions as possible before widening any IVs. This 1945 // forces SCEV to set no-wrap flags before evaluating sign/zero 1946 // extension. The first time SCEV attempts to normalize sign/zero extension, 1947 // the result becomes final. So for the most predictable results, we delay 1948 // evaluation of sign/zero extend evaluation until needed, and avoid running 1949 // other SCEV based analysis prior to simplifyAndExtend. 1950 do { 1951 PHINode *CurrIV = LoopPhis.pop_back_val(); 1952 1953 // Information about sign/zero extensions of CurrIV. 1954 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1955 1956 Changed |= 1957 simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor); 1958 1959 if (Visitor.WI.WidestNativeType) { 1960 WideIVs.push_back(Visitor.WI); 1961 } 1962 } while(!LoopPhis.empty()); 1963 1964 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1965 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards); 1966 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1967 Changed = true; 1968 LoopPhis.push_back(WidePhi); 1969 } 1970 } 1971 } 1972 return Changed; 1973 } 1974 1975 //===----------------------------------------------------------------------===// 1976 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1977 //===----------------------------------------------------------------------===// 1978 1979 /// Return true if this loop's backedge taken count expression can be safely and 1980 /// cheaply expanded into an instruction sequence that can be used by 1981 /// linearFunctionTestReplace. 1982 /// 1983 /// TODO: This fails for pointer-type loop counters with greater than one byte 1984 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1985 /// we could skip this check in the case that the LFTR loop counter (chosen by 1986 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1987 /// the loop test to an inequality test by checking the target data's alignment 1988 /// of element types (given that the initial pointer value originates from or is 1989 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1990 /// However, we don't yet have a strong motivation for converting loop tests 1991 /// into inequality tests. 1992 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1993 SCEVExpander &Rewriter) { 1994 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1995 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1996 BackedgeTakenCount->isZero()) 1997 return false; 1998 1999 if (!L->getExitingBlock()) 2000 return false; 2001 2002 // Can't rewrite non-branch yet. 2003 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 2004 return false; 2005 2006 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 2007 return false; 2008 2009 return true; 2010 } 2011 2012 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 2013 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 2014 Instruction *IncI = dyn_cast<Instruction>(IncV); 2015 if (!IncI) 2016 return nullptr; 2017 2018 switch (IncI->getOpcode()) { 2019 case Instruction::Add: 2020 case Instruction::Sub: 2021 break; 2022 case Instruction::GetElementPtr: 2023 // An IV counter must preserve its type. 2024 if (IncI->getNumOperands() == 2) 2025 break; 2026 LLVM_FALLTHROUGH; 2027 default: 2028 return nullptr; 2029 } 2030 2031 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 2032 if (Phi && Phi->getParent() == L->getHeader()) { 2033 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 2034 return Phi; 2035 return nullptr; 2036 } 2037 if (IncI->getOpcode() == Instruction::GetElementPtr) 2038 return nullptr; 2039 2040 // Allow add/sub to be commuted. 2041 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 2042 if (Phi && Phi->getParent() == L->getHeader()) { 2043 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 2044 return Phi; 2045 } 2046 return nullptr; 2047 } 2048 2049 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 2050 static ICmpInst *getLoopTest(Loop *L) { 2051 assert(L->getExitingBlock() && "expected loop exit"); 2052 2053 BasicBlock *LatchBlock = L->getLoopLatch(); 2054 // Don't bother with LFTR if the loop is not properly simplified. 2055 if (!LatchBlock) 2056 return nullptr; 2057 2058 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2059 assert(BI && "expected exit branch"); 2060 2061 return dyn_cast<ICmpInst>(BI->getCondition()); 2062 } 2063 2064 /// linearFunctionTestReplace policy. Return true unless we can show that the 2065 /// current exit test is already sufficiently canonical. 2066 static bool needsLFTR(Loop *L, DominatorTree *DT) { 2067 // Do LFTR to simplify the exit condition to an ICMP. 2068 ICmpInst *Cond = getLoopTest(L); 2069 if (!Cond) 2070 return true; 2071 2072 // Do LFTR to simplify the exit ICMP to EQ/NE 2073 ICmpInst::Predicate Pred = Cond->getPredicate(); 2074 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 2075 return true; 2076 2077 // Look for a loop invariant RHS 2078 Value *LHS = Cond->getOperand(0); 2079 Value *RHS = Cond->getOperand(1); 2080 if (!isLoopInvariant(RHS, L, DT)) { 2081 if (!isLoopInvariant(LHS, L, DT)) 2082 return true; 2083 std::swap(LHS, RHS); 2084 } 2085 // Look for a simple IV counter LHS 2086 PHINode *Phi = dyn_cast<PHINode>(LHS); 2087 if (!Phi) 2088 Phi = getLoopPhiForCounter(LHS, L, DT); 2089 2090 if (!Phi) 2091 return true; 2092 2093 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 2094 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 2095 if (Idx < 0) 2096 return true; 2097 2098 // Do LFTR if the exit condition's IV is *not* a simple counter. 2099 Value *IncV = Phi->getIncomingValue(Idx); 2100 return Phi != getLoopPhiForCounter(IncV, L, DT); 2101 } 2102 2103 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 2104 /// down to checking that all operands are constant and listing instructions 2105 /// that may hide undef. 2106 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 2107 unsigned Depth) { 2108 if (isa<Constant>(V)) 2109 return !isa<UndefValue>(V); 2110 2111 if (Depth >= 6) 2112 return false; 2113 2114 // Conservatively handle non-constant non-instructions. For example, Arguments 2115 // may be undef. 2116 Instruction *I = dyn_cast<Instruction>(V); 2117 if (!I) 2118 return false; 2119 2120 // Load and return values may be undef. 2121 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 2122 return false; 2123 2124 // Optimistically handle other instructions. 2125 for (Value *Op : I->operands()) { 2126 if (!Visited.insert(Op).second) 2127 continue; 2128 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 2129 return false; 2130 } 2131 return true; 2132 } 2133 2134 /// Return true if the given value is concrete. We must prove that undef can 2135 /// never reach it. 2136 /// 2137 /// TODO: If we decide that this is a good approach to checking for undef, we 2138 /// may factor it into a common location. 2139 static bool hasConcreteDef(Value *V) { 2140 SmallPtrSet<Value*, 8> Visited; 2141 Visited.insert(V); 2142 return hasConcreteDefImpl(V, Visited, 0); 2143 } 2144 2145 /// Return true if this IV has any uses other than the (soon to be rewritten) 2146 /// loop exit test. 2147 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 2148 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2149 Value *IncV = Phi->getIncomingValue(LatchIdx); 2150 2151 for (User *U : Phi->users()) 2152 if (U != Cond && U != IncV) return false; 2153 2154 for (User *U : IncV->users()) 2155 if (U != Cond && U != Phi) return false; 2156 return true; 2157 } 2158 2159 /// Find an affine IV in canonical form. 2160 /// 2161 /// BECount may be an i8* pointer type. The pointer difference is already 2162 /// valid count without scaling the address stride, so it remains a pointer 2163 /// expression as far as SCEV is concerned. 2164 /// 2165 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 2166 /// 2167 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 2168 /// 2169 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 2170 /// This is difficult in general for SCEV because of potential overflow. But we 2171 /// could at least handle constant BECounts. 2172 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 2173 ScalarEvolution *SE, DominatorTree *DT) { 2174 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 2175 2176 Value *Cond = 2177 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 2178 2179 // Loop over all of the PHI nodes, looking for a simple counter. 2180 PHINode *BestPhi = nullptr; 2181 const SCEV *BestInit = nullptr; 2182 BasicBlock *LatchBlock = L->getLoopLatch(); 2183 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 2184 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2185 2186 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 2187 PHINode *Phi = cast<PHINode>(I); 2188 if (!SE->isSCEVable(Phi->getType())) 2189 continue; 2190 2191 // Avoid comparing an integer IV against a pointer Limit. 2192 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 2193 continue; 2194 2195 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 2196 if (!AR || AR->getLoop() != L || !AR->isAffine()) 2197 continue; 2198 2199 // AR may be a pointer type, while BECount is an integer type. 2200 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 2201 // AR may not be a narrower type, or we may never exit. 2202 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 2203 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 2204 continue; 2205 2206 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 2207 if (!Step || !Step->isOne()) 2208 continue; 2209 2210 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2211 Value *IncV = Phi->getIncomingValue(LatchIdx); 2212 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 2213 continue; 2214 2215 // Avoid reusing a potentially undef value to compute other values that may 2216 // have originally had a concrete definition. 2217 if (!hasConcreteDef(Phi)) { 2218 // We explicitly allow unknown phis as long as they are already used by 2219 // the loop test. In this case we assume that performing LFTR could not 2220 // increase the number of undef users. 2221 if (ICmpInst *Cond = getLoopTest(L)) { 2222 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) && 2223 Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 2224 continue; 2225 } 2226 } 2227 } 2228 const SCEV *Init = AR->getStart(); 2229 2230 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 2231 // Don't force a live loop counter if another IV can be used. 2232 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 2233 continue; 2234 2235 // Prefer to count-from-zero. This is a more "canonical" counter form. It 2236 // also prefers integer to pointer IVs. 2237 if (BestInit->isZero() != Init->isZero()) { 2238 if (BestInit->isZero()) 2239 continue; 2240 } 2241 // If two IVs both count from zero or both count from nonzero then the 2242 // narrower is likely a dead phi that has been widened. Use the wider phi 2243 // to allow the other to be eliminated. 2244 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 2245 continue; 2246 } 2247 BestPhi = Phi; 2248 BestInit = Init; 2249 } 2250 return BestPhi; 2251 } 2252 2253 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 2254 /// the new loop test. 2255 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 2256 SCEVExpander &Rewriter, ScalarEvolution *SE) { 2257 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2258 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 2259 const SCEV *IVInit = AR->getStart(); 2260 2261 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 2262 // finds a valid pointer IV. Sign extend BECount in order to materialize a 2263 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 2264 // the existing GEPs whenever possible. 2265 if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) { 2266 // IVOffset will be the new GEP offset that is interpreted by GEP as a 2267 // signed value. IVCount on the other hand represents the loop trip count, 2268 // which is an unsigned value. FindLoopCounter only allows induction 2269 // variables that have a positive unit stride of one. This means we don't 2270 // have to handle the case of negative offsets (yet) and just need to zero 2271 // extend IVCount. 2272 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 2273 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 2274 2275 // Expand the code for the iteration count. 2276 assert(SE->isLoopInvariant(IVOffset, L) && 2277 "Computed iteration count is not loop invariant!"); 2278 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2279 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 2280 2281 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 2282 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 2283 // We could handle pointer IVs other than i8*, but we need to compensate for 2284 // gep index scaling. See canExpandBackedgeTakenCount comments. 2285 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 2286 cast<PointerType>(GEPBase->getType()) 2287 ->getElementType())->isOne() && 2288 "unit stride pointer IV must be i8*"); 2289 2290 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2291 return Builder.CreateGEP(GEPBase->getType()->getPointerElementType(), 2292 GEPBase, GEPOffset, "lftr.limit"); 2293 } else { 2294 // In any other case, convert both IVInit and IVCount to integers before 2295 // comparing. This may result in SCEV expansion of pointers, but in practice 2296 // SCEV will fold the pointer arithmetic away as such: 2297 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 2298 // 2299 // Valid Cases: (1) both integers is most common; (2) both may be pointers 2300 // for simple memset-style loops. 2301 // 2302 // IVInit integer and IVCount pointer would only occur if a canonical IV 2303 // were generated on top of case #2, which is not expected. 2304 2305 const SCEV *IVLimit = nullptr; 2306 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 2307 // For non-zero Start, compute IVCount here. 2308 if (AR->getStart()->isZero()) 2309 IVLimit = IVCount; 2310 else { 2311 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 2312 const SCEV *IVInit = AR->getStart(); 2313 2314 // For integer IVs, truncate the IV before computing IVInit + BECount. 2315 if (SE->getTypeSizeInBits(IVInit->getType()) 2316 > SE->getTypeSizeInBits(IVCount->getType())) 2317 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 2318 2319 IVLimit = SE->getAddExpr(IVInit, IVCount); 2320 } 2321 // Expand the code for the iteration count. 2322 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2323 IRBuilder<> Builder(BI); 2324 assert(SE->isLoopInvariant(IVLimit, L) && 2325 "Computed iteration count is not loop invariant!"); 2326 // Ensure that we generate the same type as IndVar, or a smaller integer 2327 // type. In the presence of null pointer values, we have an integer type 2328 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 2329 Type *LimitTy = IVCount->getType()->isPointerTy() ? 2330 IndVar->getType() : IVCount->getType(); 2331 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 2332 } 2333 } 2334 2335 /// This method rewrites the exit condition of the loop to be a canonical != 2336 /// comparison against the incremented loop induction variable. This pass is 2337 /// able to rewrite the exit tests of any loop where the SCEV analysis can 2338 /// determine a loop-invariant trip count of the loop, which is actually a much 2339 /// broader range than just linear tests. 2340 bool IndVarSimplify:: 2341 linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 2342 PHINode *IndVar, SCEVExpander &Rewriter) { 2343 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 2344 2345 // Initialize CmpIndVar and IVCount to their preincremented values. 2346 Value *CmpIndVar = IndVar; 2347 const SCEV *IVCount = BackedgeTakenCount; 2348 2349 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 2350 2351 // If the exiting block is the same as the backedge block, we prefer to 2352 // compare against the post-incremented value, otherwise we must compare 2353 // against the preincremented value. 2354 if (L->getExitingBlock() == L->getLoopLatch()) { 2355 // Add one to the "backedge-taken" count to get the trip count. 2356 // This addition may overflow, which is valid as long as the comparison is 2357 // truncated to BackedgeTakenCount->getType(). 2358 IVCount = SE->getAddExpr(BackedgeTakenCount, 2359 SE->getOne(BackedgeTakenCount->getType())); 2360 // The BackedgeTaken expression contains the number of times that the 2361 // backedge branches to the loop header. This is one less than the 2362 // number of times the loop executes, so use the incremented indvar. 2363 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 2364 } 2365 2366 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 2367 assert(ExitCnt->getType()->isPointerTy() == 2368 IndVar->getType()->isPointerTy() && 2369 "genLoopLimit missed a cast"); 2370 2371 // Insert a new icmp_ne or icmp_eq instruction before the branch. 2372 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2373 ICmpInst::Predicate P; 2374 if (L->contains(BI->getSuccessor(0))) 2375 P = ICmpInst::ICMP_NE; 2376 else 2377 P = ICmpInst::ICMP_EQ; 2378 2379 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 2380 << " LHS:" << *CmpIndVar << '\n' 2381 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 2382 << "\n" 2383 << " RHS:\t" << *ExitCnt << "\n" 2384 << " IVCount:\t" << *IVCount << "\n"); 2385 2386 IRBuilder<> Builder(BI); 2387 2388 // The new loop exit condition should reuse the debug location of the 2389 // original loop exit condition. 2390 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 2391 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 2392 2393 // LFTR can ignore IV overflow and truncate to the width of 2394 // BECount. This avoids materializing the add(zext(add)) expression. 2395 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 2396 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 2397 if (CmpIndVarSize > ExitCntSize) { 2398 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2399 const SCEV *ARStart = AR->getStart(); 2400 const SCEV *ARStep = AR->getStepRecurrence(*SE); 2401 // For constant IVCount, avoid truncation. 2402 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 2403 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 2404 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 2405 // Note that the post-inc value of BackedgeTakenCount may have overflowed 2406 // above such that IVCount is now zero. 2407 if (IVCount != BackedgeTakenCount && Count == 0) { 2408 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 2409 ++Count; 2410 } 2411 else 2412 Count = Count.zext(CmpIndVarSize); 2413 APInt NewLimit; 2414 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 2415 NewLimit = Start - Count; 2416 else 2417 NewLimit = Start + Count; 2418 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 2419 2420 LLVM_DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 2421 } else { 2422 // We try to extend trip count first. If that doesn't work we truncate IV. 2423 // Zext(trunc(IV)) == IV implies equivalence of the following two: 2424 // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If 2425 // one of the two holds, extend the trip count, otherwise we truncate IV. 2426 bool Extended = false; 2427 const SCEV *IV = SE->getSCEV(CmpIndVar); 2428 const SCEV *ZExtTrunc = 2429 SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2430 ExitCnt->getType()), 2431 CmpIndVar->getType()); 2432 2433 if (ZExtTrunc == IV) { 2434 Extended = true; 2435 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 2436 "wide.trip.count"); 2437 } else { 2438 const SCEV *SExtTrunc = 2439 SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2440 ExitCnt->getType()), 2441 CmpIndVar->getType()); 2442 if (SExtTrunc == IV) { 2443 Extended = true; 2444 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 2445 "wide.trip.count"); 2446 } 2447 } 2448 2449 if (!Extended) 2450 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 2451 "lftr.wideiv"); 2452 } 2453 } 2454 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 2455 Value *OrigCond = BI->getCondition(); 2456 // It's tempting to use replaceAllUsesWith here to fully replace the old 2457 // comparison, but that's not immediately safe, since users of the old 2458 // comparison may not be dominated by the new comparison. Instead, just 2459 // update the branch to use the new comparison; in the common case this 2460 // will make old comparison dead. 2461 BI->setCondition(Cond); 2462 DeadInsts.push_back(OrigCond); 2463 2464 ++NumLFTR; 2465 return true; 2466 } 2467 2468 //===----------------------------------------------------------------------===// 2469 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2470 //===----------------------------------------------------------------------===// 2471 2472 /// If there's a single exit block, sink any loop-invariant values that 2473 /// were defined in the preheader but not used inside the loop into the 2474 /// exit block to reduce register pressure in the loop. 2475 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2476 BasicBlock *ExitBlock = L->getExitBlock(); 2477 if (!ExitBlock) return false; 2478 2479 BasicBlock *Preheader = L->getLoopPreheader(); 2480 if (!Preheader) return false; 2481 2482 bool MadeAnyChanges = false; 2483 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 2484 BasicBlock::iterator I(Preheader->getTerminator()); 2485 while (I != Preheader->begin()) { 2486 --I; 2487 // New instructions were inserted at the end of the preheader. 2488 if (isa<PHINode>(I)) 2489 break; 2490 2491 // Don't move instructions which might have side effects, since the side 2492 // effects need to complete before instructions inside the loop. Also don't 2493 // move instructions which might read memory, since the loop may modify 2494 // memory. Note that it's okay if the instruction might have undefined 2495 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2496 // block. 2497 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2498 continue; 2499 2500 // Skip debug info intrinsics. 2501 if (isa<DbgInfoIntrinsic>(I)) 2502 continue; 2503 2504 // Skip eh pad instructions. 2505 if (I->isEHPad()) 2506 continue; 2507 2508 // Don't sink alloca: we never want to sink static alloca's out of the 2509 // entry block, and correctly sinking dynamic alloca's requires 2510 // checks for stacksave/stackrestore intrinsics. 2511 // FIXME: Refactor this check somehow? 2512 if (isa<AllocaInst>(I)) 2513 continue; 2514 2515 // Determine if there is a use in or before the loop (direct or 2516 // otherwise). 2517 bool UsedInLoop = false; 2518 for (Use &U : I->uses()) { 2519 Instruction *User = cast<Instruction>(U.getUser()); 2520 BasicBlock *UseBB = User->getParent(); 2521 if (PHINode *P = dyn_cast<PHINode>(User)) { 2522 unsigned i = 2523 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2524 UseBB = P->getIncomingBlock(i); 2525 } 2526 if (UseBB == Preheader || L->contains(UseBB)) { 2527 UsedInLoop = true; 2528 break; 2529 } 2530 } 2531 2532 // If there is, the def must remain in the preheader. 2533 if (UsedInLoop) 2534 continue; 2535 2536 // Otherwise, sink it to the exit block. 2537 Instruction *ToMove = &*I; 2538 bool Done = false; 2539 2540 if (I != Preheader->begin()) { 2541 // Skip debug info intrinsics. 2542 do { 2543 --I; 2544 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2545 2546 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2547 Done = true; 2548 } else { 2549 Done = true; 2550 } 2551 2552 MadeAnyChanges = true; 2553 ToMove->moveBefore(*ExitBlock, InsertPt); 2554 if (Done) break; 2555 InsertPt = ToMove->getIterator(); 2556 } 2557 2558 return MadeAnyChanges; 2559 } 2560 2561 //===----------------------------------------------------------------------===// 2562 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2563 //===----------------------------------------------------------------------===// 2564 2565 bool IndVarSimplify::run(Loop *L) { 2566 // We need (and expect!) the incoming loop to be in LCSSA. 2567 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2568 "LCSSA required to run indvars!"); 2569 bool Changed = false; 2570 2571 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2572 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2573 // canonicalization can be a pessimization without LSR to "clean up" 2574 // afterwards. 2575 // - We depend on having a preheader; in particular, 2576 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2577 // and we're in trouble if we can't find the induction variable even when 2578 // we've manually inserted one. 2579 // - LFTR relies on having a single backedge. 2580 if (!L->isLoopSimplifyForm()) 2581 return false; 2582 2583 // If there are any floating-point recurrences, attempt to 2584 // transform them to use integer recurrences. 2585 Changed |= rewriteNonIntegerIVs(L); 2586 2587 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2588 2589 // Create a rewriter object which we'll use to transform the code with. 2590 SCEVExpander Rewriter(*SE, DL, "indvars"); 2591 #ifndef NDEBUG 2592 Rewriter.setDebugType(DEBUG_TYPE); 2593 #endif 2594 2595 // Eliminate redundant IV users. 2596 // 2597 // Simplification works best when run before other consumers of SCEV. We 2598 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2599 // other expressions involving loop IVs have been evaluated. This helps SCEV 2600 // set no-wrap flags before normalizing sign/zero extension. 2601 Rewriter.disableCanonicalMode(); 2602 Changed |= simplifyAndExtend(L, Rewriter, LI); 2603 2604 // Check to see if this loop has a computable loop-invariant execution count. 2605 // If so, this means that we can compute the final value of any expressions 2606 // that are recurrent in the loop, and substitute the exit values from the 2607 // loop into any instructions outside of the loop that use the final values of 2608 // the current expressions. 2609 // 2610 if (ReplaceExitValue != NeverRepl && 2611 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2612 Changed |= rewriteLoopExitValues(L, Rewriter); 2613 2614 // Eliminate redundant IV cycles. 2615 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2616 2617 // If we have a trip count expression, rewrite the loop's exit condition 2618 // using it. We can currently only handle loops with a single exit. 2619 if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) && 2620 needsLFTR(L, DT)) { 2621 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2622 if (IndVar) { 2623 // Check preconditions for proper SCEVExpander operation. SCEV does not 2624 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2625 // pass that uses the SCEVExpander must do it. This does not work well for 2626 // loop passes because SCEVExpander makes assumptions about all loops, 2627 // while LoopPassManager only forces the current loop to be simplified. 2628 // 2629 // FIXME: SCEV expansion has no way to bail out, so the caller must 2630 // explicitly check any assumptions made by SCEV. Brittle. 2631 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2632 if (!AR || AR->getLoop()->getLoopPreheader()) 2633 Changed |= linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2634 Rewriter); 2635 } 2636 } 2637 // Clear the rewriter cache, because values that are in the rewriter's cache 2638 // can be deleted in the loop below, causing the AssertingVH in the cache to 2639 // trigger. 2640 Rewriter.clear(); 2641 2642 // Now that we're done iterating through lists, clean up any instructions 2643 // which are now dead. 2644 while (!DeadInsts.empty()) 2645 if (Instruction *Inst = 2646 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2647 Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2648 2649 // The Rewriter may not be used from this point on. 2650 2651 // Loop-invariant instructions in the preheader that aren't used in the 2652 // loop may be sunk below the loop to reduce register pressure. 2653 Changed |= sinkUnusedInvariants(L); 2654 2655 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2656 // trip count and therefore can further simplify exit values in addition to 2657 // rewriteLoopExitValues. 2658 Changed |= rewriteFirstIterationLoopExitValues(L); 2659 2660 // Clean up dead instructions. 2661 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2662 2663 // Check a post-condition. 2664 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2665 "Indvars did not preserve LCSSA!"); 2666 2667 // Verify that LFTR, and any other change have not interfered with SCEV's 2668 // ability to compute trip count. 2669 #ifndef NDEBUG 2670 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2671 SE->forgetLoop(L); 2672 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2673 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2674 SE->getTypeSizeInBits(NewBECount->getType())) 2675 NewBECount = SE->getTruncateOrNoop(NewBECount, 2676 BackedgeTakenCount->getType()); 2677 else 2678 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2679 NewBECount->getType()); 2680 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2681 } 2682 #endif 2683 2684 return Changed; 2685 } 2686 2687 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 2688 LoopStandardAnalysisResults &AR, 2689 LPMUpdater &) { 2690 Function *F = L.getHeader()->getParent(); 2691 const DataLayout &DL = F->getParent()->getDataLayout(); 2692 2693 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI); 2694 if (!IVS.run(&L)) 2695 return PreservedAnalyses::all(); 2696 2697 auto PA = getLoopPassPreservedAnalyses(); 2698 PA.preserveSet<CFGAnalyses>(); 2699 return PA; 2700 } 2701 2702 namespace { 2703 2704 struct IndVarSimplifyLegacyPass : public LoopPass { 2705 static char ID; // Pass identification, replacement for typeid 2706 2707 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2708 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2709 } 2710 2711 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2712 if (skipLoop(L)) 2713 return false; 2714 2715 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2716 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2717 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2718 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2719 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2720 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2721 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2722 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2723 2724 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2725 return IVS.run(L); 2726 } 2727 2728 void getAnalysisUsage(AnalysisUsage &AU) const override { 2729 AU.setPreservesCFG(); 2730 getLoopAnalysisUsage(AU); 2731 } 2732 }; 2733 2734 } // end anonymous namespace 2735 2736 char IndVarSimplifyLegacyPass::ID = 0; 2737 2738 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2739 "Induction Variable Simplification", false, false) 2740 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2741 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2742 "Induction Variable Simplification", false, false) 2743 2744 Pass *llvm::createIndVarSimplifyPass() { 2745 return new IndVarSimplifyLegacyPass(); 2746 } 2747