1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into simpler forms suitable for subsequent
11 // analysis and transformation.
12 //
13 // If the trip count of a loop is computable, this pass also makes the following
14 // changes:
15 //   1. The exit condition for the loop is canonicalized to compare the
16 //      induction value against the exit value.  This turns loops like:
17 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18 //   2. Any use outside of the loop of an expression derived from the indvar
19 //      is changed to compute the derived value outside of the loop, eliminating
20 //      the dependence on the exit value of the induction variable.  If the only
21 //      purpose of the loop is to compute the exit value of some derived
22 //      expression, this transformation will make the loop dead.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/None.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/iterator_range.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/LoopPass.h"
40 #include "llvm/Analysis/ScalarEvolution.h"
41 #include "llvm/Analysis/ScalarEvolutionExpander.h"
42 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
43 #include "llvm/Analysis/TargetLibraryInfo.h"
44 #include "llvm/Analysis/TargetTransformInfo.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/ConstantRange.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/InstrTypes.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/Intrinsics.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/PassManager.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/User.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/IR/ValueHandle.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/MathExtras.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/Scalar.h"
78 #include "llvm/Transforms/Scalar/LoopPassManager.h"
79 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
80 #include "llvm/Transforms/Utils/LoopUtils.h"
81 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
82 #include <cassert>
83 #include <cstdint>
84 #include <utility>
85 
86 using namespace llvm;
87 
88 #define DEBUG_TYPE "indvars"
89 
90 STATISTIC(NumWidened     , "Number of indvars widened");
91 STATISTIC(NumReplaced    , "Number of exit values replaced");
92 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
93 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
94 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
95 
96 // Trip count verification can be enabled by default under NDEBUG if we
97 // implement a strong expression equivalence checker in SCEV. Until then, we
98 // use the verify-indvars flag, which may assert in some cases.
99 static cl::opt<bool> VerifyIndvars(
100   "verify-indvars", cl::Hidden,
101   cl::desc("Verify the ScalarEvolution result after running indvars"));
102 
103 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
104 
105 static cl::opt<ReplaceExitVal> ReplaceExitValue(
106     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
107     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
108     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
109                clEnumValN(OnlyCheapRepl, "cheap",
110                           "only replace exit value when the cost is cheap"),
111                clEnumValN(AlwaysRepl, "always",
112                           "always replace exit value whenever possible")));
113 
114 static cl::opt<bool> UsePostIncrementRanges(
115   "indvars-post-increment-ranges", cl::Hidden,
116   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
117   cl::init(true));
118 
119 static cl::opt<bool>
120 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
121             cl::desc("Disable Linear Function Test Replace optimization"));
122 
123 namespace {
124 
125 struct RewritePhi;
126 
127 class IndVarSimplify {
128   LoopInfo *LI;
129   ScalarEvolution *SE;
130   DominatorTree *DT;
131   const DataLayout &DL;
132   TargetLibraryInfo *TLI;
133   const TargetTransformInfo *TTI;
134 
135   SmallVector<WeakTrackingVH, 16> DeadInsts;
136 
137   bool isValidRewrite(Value *FromVal, Value *ToVal);
138 
139   bool handleFloatingPointIV(Loop *L, PHINode *PH);
140   bool rewriteNonIntegerIVs(Loop *L);
141 
142   bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
143 
144   bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
145   bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
146   bool rewriteFirstIterationLoopExitValues(Loop *L);
147   bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) const;
148 
149   bool linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
150                                  PHINode *IndVar, SCEVExpander &Rewriter);
151 
152   bool sinkUnusedInvariants(Loop *L);
153 
154 public:
155   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
156                  const DataLayout &DL, TargetLibraryInfo *TLI,
157                  TargetTransformInfo *TTI)
158       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {}
159 
160   bool run(Loop *L);
161 };
162 
163 } // end anonymous namespace
164 
165 /// Return true if the SCEV expansion generated by the rewriter can replace the
166 /// original value. SCEV guarantees that it produces the same value, but the way
167 /// it is produced may be illegal IR.  Ideally, this function will only be
168 /// called for verification.
169 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
170   // If an SCEV expression subsumed multiple pointers, its expansion could
171   // reassociate the GEP changing the base pointer. This is illegal because the
172   // final address produced by a GEP chain must be inbounds relative to its
173   // underlying object. Otherwise basic alias analysis, among other things,
174   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
175   // producing an expression involving multiple pointers. Until then, we must
176   // bail out here.
177   //
178   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
179   // because it understands lcssa phis while SCEV does not.
180   Value *FromPtr = FromVal;
181   Value *ToPtr = ToVal;
182   if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
183     FromPtr = GEP->getPointerOperand();
184   }
185   if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
186     ToPtr = GEP->getPointerOperand();
187   }
188   if (FromPtr != FromVal || ToPtr != ToVal) {
189     // Quickly check the common case
190     if (FromPtr == ToPtr)
191       return true;
192 
193     // SCEV may have rewritten an expression that produces the GEP's pointer
194     // operand. That's ok as long as the pointer operand has the same base
195     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
196     // base of a recurrence. This handles the case in which SCEV expansion
197     // converts a pointer type recurrence into a nonrecurrent pointer base
198     // indexed by an integer recurrence.
199 
200     // If the GEP base pointer is a vector of pointers, abort.
201     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
202       return false;
203 
204     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
205     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
206     if (FromBase == ToBase)
207       return true;
208 
209     LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase
210                       << " != " << *ToBase << "\n");
211 
212     return false;
213   }
214   return true;
215 }
216 
217 /// Determine the insertion point for this user. By default, insert immediately
218 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
219 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
220 /// common dominator for the incoming blocks.
221 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
222                                           DominatorTree *DT, LoopInfo *LI) {
223   PHINode *PHI = dyn_cast<PHINode>(User);
224   if (!PHI)
225     return User;
226 
227   Instruction *InsertPt = nullptr;
228   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
229     if (PHI->getIncomingValue(i) != Def)
230       continue;
231 
232     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
233     if (!InsertPt) {
234       InsertPt = InsertBB->getTerminator();
235       continue;
236     }
237     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
238     InsertPt = InsertBB->getTerminator();
239   }
240   assert(InsertPt && "Missing phi operand");
241 
242   auto *DefI = dyn_cast<Instruction>(Def);
243   if (!DefI)
244     return InsertPt;
245 
246   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
247 
248   auto *L = LI->getLoopFor(DefI->getParent());
249   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
250 
251   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
252     if (LI->getLoopFor(DTN->getBlock()) == L)
253       return DTN->getBlock()->getTerminator();
254 
255   llvm_unreachable("DefI dominates InsertPt!");
256 }
257 
258 //===----------------------------------------------------------------------===//
259 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
260 //===----------------------------------------------------------------------===//
261 
262 /// Convert APF to an integer, if possible.
263 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
264   bool isExact = false;
265   // See if we can convert this to an int64_t
266   uint64_t UIntVal;
267   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
268                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
269       !isExact)
270     return false;
271   IntVal = UIntVal;
272   return true;
273 }
274 
275 /// If the loop has floating induction variable then insert corresponding
276 /// integer induction variable if possible.
277 /// For example,
278 /// for(double i = 0; i < 10000; ++i)
279 ///   bar(i)
280 /// is converted into
281 /// for(int i = 0; i < 10000; ++i)
282 ///   bar((double)i);
283 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
284   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
285   unsigned BackEdge     = IncomingEdge^1;
286 
287   // Check incoming value.
288   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
289 
290   int64_t InitValue;
291   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
292     return false;
293 
294   // Check IV increment. Reject this PN if increment operation is not
295   // an add or increment value can not be represented by an integer.
296   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
297   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
298 
299   // If this is not an add of the PHI with a constantfp, or if the constant fp
300   // is not an integer, bail out.
301   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
302   int64_t IncValue;
303   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
304       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
305     return false;
306 
307   // Check Incr uses. One user is PN and the other user is an exit condition
308   // used by the conditional terminator.
309   Value::user_iterator IncrUse = Incr->user_begin();
310   Instruction *U1 = cast<Instruction>(*IncrUse++);
311   if (IncrUse == Incr->user_end()) return false;
312   Instruction *U2 = cast<Instruction>(*IncrUse++);
313   if (IncrUse != Incr->user_end()) return false;
314 
315   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
316   // only used by a branch, we can't transform it.
317   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
318   if (!Compare)
319     Compare = dyn_cast<FCmpInst>(U2);
320   if (!Compare || !Compare->hasOneUse() ||
321       !isa<BranchInst>(Compare->user_back()))
322     return false;
323 
324   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
325 
326   // We need to verify that the branch actually controls the iteration count
327   // of the loop.  If not, the new IV can overflow and no one will notice.
328   // The branch block must be in the loop and one of the successors must be out
329   // of the loop.
330   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
331   if (!L->contains(TheBr->getParent()) ||
332       (L->contains(TheBr->getSuccessor(0)) &&
333        L->contains(TheBr->getSuccessor(1))))
334     return false;
335 
336   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
337   // transform it.
338   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
339   int64_t ExitValue;
340   if (ExitValueVal == nullptr ||
341       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
342     return false;
343 
344   // Find new predicate for integer comparison.
345   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
346   switch (Compare->getPredicate()) {
347   default: return false;  // Unknown comparison.
348   case CmpInst::FCMP_OEQ:
349   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
350   case CmpInst::FCMP_ONE:
351   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
352   case CmpInst::FCMP_OGT:
353   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
354   case CmpInst::FCMP_OGE:
355   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
356   case CmpInst::FCMP_OLT:
357   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
358   case CmpInst::FCMP_OLE:
359   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
360   }
361 
362   // We convert the floating point induction variable to a signed i32 value if
363   // we can.  This is only safe if the comparison will not overflow in a way
364   // that won't be trapped by the integer equivalent operations.  Check for this
365   // now.
366   // TODO: We could use i64 if it is native and the range requires it.
367 
368   // The start/stride/exit values must all fit in signed i32.
369   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
370     return false;
371 
372   // If not actually striding (add x, 0.0), avoid touching the code.
373   if (IncValue == 0)
374     return false;
375 
376   // Positive and negative strides have different safety conditions.
377   if (IncValue > 0) {
378     // If we have a positive stride, we require the init to be less than the
379     // exit value.
380     if (InitValue >= ExitValue)
381       return false;
382 
383     uint32_t Range = uint32_t(ExitValue-InitValue);
384     // Check for infinite loop, either:
385     // while (i <= Exit) or until (i > Exit)
386     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
387       if (++Range == 0) return false;  // Range overflows.
388     }
389 
390     unsigned Leftover = Range % uint32_t(IncValue);
391 
392     // If this is an equality comparison, we require that the strided value
393     // exactly land on the exit value, otherwise the IV condition will wrap
394     // around and do things the fp IV wouldn't.
395     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
396         Leftover != 0)
397       return false;
398 
399     // If the stride would wrap around the i32 before exiting, we can't
400     // transform the IV.
401     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
402       return false;
403   } else {
404     // If we have a negative stride, we require the init to be greater than the
405     // exit value.
406     if (InitValue <= ExitValue)
407       return false;
408 
409     uint32_t Range = uint32_t(InitValue-ExitValue);
410     // Check for infinite loop, either:
411     // while (i >= Exit) or until (i < Exit)
412     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
413       if (++Range == 0) return false;  // Range overflows.
414     }
415 
416     unsigned Leftover = Range % uint32_t(-IncValue);
417 
418     // If this is an equality comparison, we require that the strided value
419     // exactly land on the exit value, otherwise the IV condition will wrap
420     // around and do things the fp IV wouldn't.
421     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
422         Leftover != 0)
423       return false;
424 
425     // If the stride would wrap around the i32 before exiting, we can't
426     // transform the IV.
427     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
428       return false;
429   }
430 
431   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
432 
433   // Insert new integer induction variable.
434   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
435   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
436                       PN->getIncomingBlock(IncomingEdge));
437 
438   Value *NewAdd =
439     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
440                               Incr->getName()+".int", Incr);
441   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
442 
443   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
444                                       ConstantInt::get(Int32Ty, ExitValue),
445                                       Compare->getName());
446 
447   // In the following deletions, PN may become dead and may be deleted.
448   // Use a WeakTrackingVH to observe whether this happens.
449   WeakTrackingVH WeakPH = PN;
450 
451   // Delete the old floating point exit comparison.  The branch starts using the
452   // new comparison.
453   NewCompare->takeName(Compare);
454   Compare->replaceAllUsesWith(NewCompare);
455   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
456 
457   // Delete the old floating point increment.
458   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
459   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
460 
461   // If the FP induction variable still has uses, this is because something else
462   // in the loop uses its value.  In order to canonicalize the induction
463   // variable, we chose to eliminate the IV and rewrite it in terms of an
464   // int->fp cast.
465   //
466   // We give preference to sitofp over uitofp because it is faster on most
467   // platforms.
468   if (WeakPH) {
469     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
470                                  &*PN->getParent()->getFirstInsertionPt());
471     PN->replaceAllUsesWith(Conv);
472     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
473   }
474   return true;
475 }
476 
477 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
478   // First step.  Check to see if there are any floating-point recurrences.
479   // If there are, change them into integer recurrences, permitting analysis by
480   // the SCEV routines.
481   BasicBlock *Header = L->getHeader();
482 
483   SmallVector<WeakTrackingVH, 8> PHIs;
484   for (PHINode &PN : Header->phis())
485     PHIs.push_back(&PN);
486 
487   bool Changed = false;
488   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
489     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
490       Changed |= handleFloatingPointIV(L, PN);
491 
492   // If the loop previously had floating-point IV, ScalarEvolution
493   // may not have been able to compute a trip count. Now that we've done some
494   // re-writing, the trip count may be computable.
495   if (Changed)
496     SE->forgetLoop(L);
497   return Changed;
498 }
499 
500 namespace {
501 
502 // Collect information about PHI nodes which can be transformed in
503 // rewriteLoopExitValues.
504 struct RewritePhi {
505   PHINode *PN;
506 
507   // Ith incoming value.
508   unsigned Ith;
509 
510   // Exit value after expansion.
511   Value *Val;
512 
513   // High Cost when expansion.
514   bool HighCost;
515 
516   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
517       : PN(P), Ith(I), Val(V), HighCost(H) {}
518 };
519 
520 } // end anonymous namespace
521 
522 //===----------------------------------------------------------------------===//
523 // rewriteLoopExitValues - Optimize IV users outside the loop.
524 // As a side effect, reduces the amount of IV processing within the loop.
525 //===----------------------------------------------------------------------===//
526 
527 bool IndVarSimplify::hasHardUserWithinLoop(const Loop *L, const Instruction *I) const {
528   SmallPtrSet<const Instruction *, 8> Visited;
529   SmallVector<const Instruction *, 8> WorkList;
530   Visited.insert(I);
531   WorkList.push_back(I);
532   while (!WorkList.empty()) {
533     const Instruction *Curr = WorkList.pop_back_val();
534     // This use is outside the loop, nothing to do.
535     if (!L->contains(Curr))
536       continue;
537     // Do we assume it is a "hard" use which will not be eliminated easily?
538     if (Curr->mayHaveSideEffects())
539       return true;
540     // Otherwise, add all its users to worklist.
541     for (auto U : Curr->users()) {
542       auto *UI = cast<Instruction>(U);
543       if (Visited.insert(UI).second)
544         WorkList.push_back(UI);
545     }
546   }
547   return false;
548 }
549 
550 /// Check to see if this loop has a computable loop-invariant execution count.
551 /// If so, this means that we can compute the final value of any expressions
552 /// that are recurrent in the loop, and substitute the exit values from the loop
553 /// into any instructions outside of the loop that use the final values of the
554 /// current expressions.
555 ///
556 /// This is mostly redundant with the regular IndVarSimplify activities that
557 /// happen later, except that it's more powerful in some cases, because it's
558 /// able to brute-force evaluate arbitrary instructions as long as they have
559 /// constant operands at the beginning of the loop.
560 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
561   // Check a pre-condition.
562   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
563          "Indvars did not preserve LCSSA!");
564 
565   SmallVector<BasicBlock*, 8> ExitBlocks;
566   L->getUniqueExitBlocks(ExitBlocks);
567 
568   SmallVector<RewritePhi, 8> RewritePhiSet;
569   // Find all values that are computed inside the loop, but used outside of it.
570   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
571   // the exit blocks of the loop to find them.
572   for (BasicBlock *ExitBB : ExitBlocks) {
573     // If there are no PHI nodes in this exit block, then no values defined
574     // inside the loop are used on this path, skip it.
575     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
576     if (!PN) continue;
577 
578     unsigned NumPreds = PN->getNumIncomingValues();
579 
580     // Iterate over all of the PHI nodes.
581     BasicBlock::iterator BBI = ExitBB->begin();
582     while ((PN = dyn_cast<PHINode>(BBI++))) {
583       if (PN->use_empty())
584         continue; // dead use, don't replace it
585 
586       if (!SE->isSCEVable(PN->getType()))
587         continue;
588 
589       // It's necessary to tell ScalarEvolution about this explicitly so that
590       // it can walk the def-use list and forget all SCEVs, as it may not be
591       // watching the PHI itself. Once the new exit value is in place, there
592       // may not be a def-use connection between the loop and every instruction
593       // which got a SCEVAddRecExpr for that loop.
594       SE->forgetValue(PN);
595 
596       // Iterate over all of the values in all the PHI nodes.
597       for (unsigned i = 0; i != NumPreds; ++i) {
598         // If the value being merged in is not integer or is not defined
599         // in the loop, skip it.
600         Value *InVal = PN->getIncomingValue(i);
601         if (!isa<Instruction>(InVal))
602           continue;
603 
604         // If this pred is for a subloop, not L itself, skip it.
605         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
606           continue; // The Block is in a subloop, skip it.
607 
608         // Check that InVal is defined in the loop.
609         Instruction *Inst = cast<Instruction>(InVal);
610         if (!L->contains(Inst))
611           continue;
612 
613         // Okay, this instruction has a user outside of the current loop
614         // and varies predictably *inside* the loop.  Evaluate the value it
615         // contains when the loop exits, if possible.
616         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
617         if (!SE->isLoopInvariant(ExitValue, L) ||
618             !isSafeToExpand(ExitValue, *SE))
619           continue;
620 
621         // Computing the value outside of the loop brings no benefit if it is
622         // definitely used inside the loop in a way which can not be optimized
623         // away.
624         if (!isa<SCEVConstant>(ExitValue) && hasHardUserWithinLoop(L, Inst))
625           continue;
626 
627         bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
628         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
629 
630         LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
631                           << '\n'
632                           << "  LoopVal = " << *Inst << "\n");
633 
634         if (!isValidRewrite(Inst, ExitVal)) {
635           DeadInsts.push_back(ExitVal);
636           continue;
637         }
638 
639 #ifndef NDEBUG
640         // If we reuse an instruction from a loop which is neither L nor one of
641         // its containing loops, we end up breaking LCSSA form for this loop by
642         // creating a new use of its instruction.
643         if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
644           if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
645             if (EVL != L)
646               assert(EVL->contains(L) && "LCSSA breach detected!");
647 #endif
648 
649         // Collect all the candidate PHINodes to be rewritten.
650         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
651       }
652     }
653   }
654 
655   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
656 
657   bool Changed = false;
658   // Transformation.
659   for (const RewritePhi &Phi : RewritePhiSet) {
660     PHINode *PN = Phi.PN;
661     Value *ExitVal = Phi.Val;
662 
663     // Only do the rewrite when the ExitValue can be expanded cheaply.
664     // If LoopCanBeDel is true, rewrite exit value aggressively.
665     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
666       DeadInsts.push_back(ExitVal);
667       continue;
668     }
669 
670     Changed = true;
671     ++NumReplaced;
672     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
673     PN->setIncomingValue(Phi.Ith, ExitVal);
674 
675     // If this instruction is dead now, delete it. Don't do it now to avoid
676     // invalidating iterators.
677     if (isInstructionTriviallyDead(Inst, TLI))
678       DeadInsts.push_back(Inst);
679 
680     // Replace PN with ExitVal if that is legal and does not break LCSSA.
681     if (PN->getNumIncomingValues() == 1 &&
682         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
683       PN->replaceAllUsesWith(ExitVal);
684       PN->eraseFromParent();
685     }
686   }
687 
688   // The insertion point instruction may have been deleted; clear it out
689   // so that the rewriter doesn't trip over it later.
690   Rewriter.clearInsertPoint();
691   return Changed;
692 }
693 
694 //===---------------------------------------------------------------------===//
695 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
696 // they will exit at the first iteration.
697 //===---------------------------------------------------------------------===//
698 
699 /// Check to see if this loop has loop invariant conditions which lead to loop
700 /// exits. If so, we know that if the exit path is taken, it is at the first
701 /// loop iteration. This lets us predict exit values of PHI nodes that live in
702 /// loop header.
703 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
704   // Verify the input to the pass is already in LCSSA form.
705   assert(L->isLCSSAForm(*DT));
706 
707   SmallVector<BasicBlock *, 8> ExitBlocks;
708   L->getUniqueExitBlocks(ExitBlocks);
709   auto *LoopHeader = L->getHeader();
710   assert(LoopHeader && "Invalid loop");
711 
712   bool MadeAnyChanges = false;
713   for (auto *ExitBB : ExitBlocks) {
714     // If there are no more PHI nodes in this exit block, then no more
715     // values defined inside the loop are used on this path.
716     for (PHINode &PN : ExitBB->phis()) {
717       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
718            IncomingValIdx != E; ++IncomingValIdx) {
719         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
720 
721         // We currently only support loop exits from loop header. If the
722         // incoming block is not loop header, we need to recursively check
723         // all conditions starting from loop header are loop invariants.
724         // Additional support might be added in the future.
725         if (IncomingBB != LoopHeader)
726           continue;
727 
728         // Get condition that leads to the exit path.
729         auto *TermInst = IncomingBB->getTerminator();
730 
731         Value *Cond = nullptr;
732         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
733           // Must be a conditional branch, otherwise the block
734           // should not be in the loop.
735           Cond = BI->getCondition();
736         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
737           Cond = SI->getCondition();
738         else
739           continue;
740 
741         if (!L->isLoopInvariant(Cond))
742           continue;
743 
744         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
745 
746         // Only deal with PHIs.
747         if (!ExitVal)
748           continue;
749 
750         // If ExitVal is a PHI on the loop header, then we know its
751         // value along this exit because the exit can only be taken
752         // on the first iteration.
753         auto *LoopPreheader = L->getLoopPreheader();
754         assert(LoopPreheader && "Invalid loop");
755         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
756         if (PreheaderIdx != -1) {
757           assert(ExitVal->getParent() == LoopHeader &&
758                  "ExitVal must be in loop header");
759           MadeAnyChanges = true;
760           PN.setIncomingValue(IncomingValIdx,
761                               ExitVal->getIncomingValue(PreheaderIdx));
762         }
763       }
764     }
765   }
766   return MadeAnyChanges;
767 }
768 
769 /// Check whether it is possible to delete the loop after rewriting exit
770 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
771 /// aggressively.
772 bool IndVarSimplify::canLoopBeDeleted(
773     Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
774   BasicBlock *Preheader = L->getLoopPreheader();
775   // If there is no preheader, the loop will not be deleted.
776   if (!Preheader)
777     return false;
778 
779   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
780   // We obviate multiple ExitingBlocks case for simplicity.
781   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
782   // after exit value rewriting, we can enhance the logic here.
783   SmallVector<BasicBlock *, 4> ExitingBlocks;
784   L->getExitingBlocks(ExitingBlocks);
785   SmallVector<BasicBlock *, 8> ExitBlocks;
786   L->getUniqueExitBlocks(ExitBlocks);
787   if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
788     return false;
789 
790   BasicBlock *ExitBlock = ExitBlocks[0];
791   BasicBlock::iterator BI = ExitBlock->begin();
792   while (PHINode *P = dyn_cast<PHINode>(BI)) {
793     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
794 
795     // If the Incoming value of P is found in RewritePhiSet, we know it
796     // could be rewritten to use a loop invariant value in transformation
797     // phase later. Skip it in the loop invariant check below.
798     bool found = false;
799     for (const RewritePhi &Phi : RewritePhiSet) {
800       unsigned i = Phi.Ith;
801       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
802         found = true;
803         break;
804       }
805     }
806 
807     Instruction *I;
808     if (!found && (I = dyn_cast<Instruction>(Incoming)))
809       if (!L->hasLoopInvariantOperands(I))
810         return false;
811 
812     ++BI;
813   }
814 
815   for (auto *BB : L->blocks())
816     if (llvm::any_of(*BB, [](Instruction &I) {
817           return I.mayHaveSideEffects();
818         }))
819       return false;
820 
821   return true;
822 }
823 
824 //===----------------------------------------------------------------------===//
825 //  IV Widening - Extend the width of an IV to cover its widest uses.
826 //===----------------------------------------------------------------------===//
827 
828 namespace {
829 
830 // Collect information about induction variables that are used by sign/zero
831 // extend operations. This information is recorded by CollectExtend and provides
832 // the input to WidenIV.
833 struct WideIVInfo {
834   PHINode *NarrowIV = nullptr;
835 
836   // Widest integer type created [sz]ext
837   Type *WidestNativeType = nullptr;
838 
839   // Was a sext user seen before a zext?
840   bool IsSigned = false;
841 };
842 
843 } // end anonymous namespace
844 
845 /// Update information about the induction variable that is extended by this
846 /// sign or zero extend operation. This is used to determine the final width of
847 /// the IV before actually widening it.
848 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
849                         const TargetTransformInfo *TTI) {
850   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
851   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
852     return;
853 
854   Type *Ty = Cast->getType();
855   uint64_t Width = SE->getTypeSizeInBits(Ty);
856   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
857     return;
858 
859   // Check that `Cast` actually extends the induction variable (we rely on this
860   // later).  This takes care of cases where `Cast` is extending a truncation of
861   // the narrow induction variable, and thus can end up being narrower than the
862   // "narrow" induction variable.
863   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
864   if (NarrowIVWidth >= Width)
865     return;
866 
867   // Cast is either an sext or zext up to this point.
868   // We should not widen an indvar if arithmetics on the wider indvar are more
869   // expensive than those on the narrower indvar. We check only the cost of ADD
870   // because at least an ADD is required to increment the induction variable. We
871   // could compute more comprehensively the cost of all instructions on the
872   // induction variable when necessary.
873   if (TTI &&
874       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
875           TTI->getArithmeticInstrCost(Instruction::Add,
876                                       Cast->getOperand(0)->getType())) {
877     return;
878   }
879 
880   if (!WI.WidestNativeType) {
881     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
882     WI.IsSigned = IsSigned;
883     return;
884   }
885 
886   // We extend the IV to satisfy the sign of its first user, arbitrarily.
887   if (WI.IsSigned != IsSigned)
888     return;
889 
890   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
891     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
892 }
893 
894 namespace {
895 
896 /// Record a link in the Narrow IV def-use chain along with the WideIV that
897 /// computes the same value as the Narrow IV def.  This avoids caching Use*
898 /// pointers.
899 struct NarrowIVDefUse {
900   Instruction *NarrowDef = nullptr;
901   Instruction *NarrowUse = nullptr;
902   Instruction *WideDef = nullptr;
903 
904   // True if the narrow def is never negative.  Tracking this information lets
905   // us use a sign extension instead of a zero extension or vice versa, when
906   // profitable and legal.
907   bool NeverNegative = false;
908 
909   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
910                  bool NeverNegative)
911       : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
912         NeverNegative(NeverNegative) {}
913 };
914 
915 /// The goal of this transform is to remove sign and zero extends without
916 /// creating any new induction variables. To do this, it creates a new phi of
917 /// the wider type and redirects all users, either removing extends or inserting
918 /// truncs whenever we stop propagating the type.
919 class WidenIV {
920   // Parameters
921   PHINode *OrigPhi;
922   Type *WideType;
923 
924   // Context
925   LoopInfo        *LI;
926   Loop            *L;
927   ScalarEvolution *SE;
928   DominatorTree   *DT;
929 
930   // Does the module have any calls to the llvm.experimental.guard intrinsic
931   // at all? If not we can avoid scanning instructions looking for guards.
932   bool HasGuards;
933 
934   // Result
935   PHINode *WidePhi = nullptr;
936   Instruction *WideInc = nullptr;
937   const SCEV *WideIncExpr = nullptr;
938   SmallVectorImpl<WeakTrackingVH> &DeadInsts;
939 
940   SmallPtrSet<Instruction *,16> Widened;
941   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
942 
943   enum ExtendKind { ZeroExtended, SignExtended, Unknown };
944 
945   // A map tracking the kind of extension used to widen each narrow IV
946   // and narrow IV user.
947   // Key: pointer to a narrow IV or IV user.
948   // Value: the kind of extension used to widen this Instruction.
949   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
950 
951   using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
952 
953   // A map with control-dependent ranges for post increment IV uses. The key is
954   // a pair of IV def and a use of this def denoting the context. The value is
955   // a ConstantRange representing possible values of the def at the given
956   // context.
957   DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
958 
959   Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
960                                               Instruction *UseI) {
961     DefUserPair Key(Def, UseI);
962     auto It = PostIncRangeInfos.find(Key);
963     return It == PostIncRangeInfos.end()
964                ? Optional<ConstantRange>(None)
965                : Optional<ConstantRange>(It->second);
966   }
967 
968   void calculatePostIncRanges(PHINode *OrigPhi);
969   void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
970 
971   void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
972     DefUserPair Key(Def, UseI);
973     auto It = PostIncRangeInfos.find(Key);
974     if (It == PostIncRangeInfos.end())
975       PostIncRangeInfos.insert({Key, R});
976     else
977       It->second = R.intersectWith(It->second);
978   }
979 
980 public:
981   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
982           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
983           bool HasGuards)
984       : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
985         L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
986         HasGuards(HasGuards), DeadInsts(DI) {
987     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
988     ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
989   }
990 
991   PHINode *createWideIV(SCEVExpander &Rewriter);
992 
993 protected:
994   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
995                           Instruction *Use);
996 
997   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
998   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
999                                      const SCEVAddRecExpr *WideAR);
1000   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1001 
1002   ExtendKind getExtendKind(Instruction *I);
1003 
1004   using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1005 
1006   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1007 
1008   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1009 
1010   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1011                               unsigned OpCode) const;
1012 
1013   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1014 
1015   bool widenLoopCompare(NarrowIVDefUse DU);
1016   bool widenWithVariantLoadUse(NarrowIVDefUse DU);
1017   void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU);
1018 
1019   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1020 };
1021 
1022 } // end anonymous namespace
1023 
1024 /// Perform a quick domtree based check for loop invariance assuming that V is
1025 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this
1026 /// purpose.
1027 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
1028   Instruction *Inst = dyn_cast<Instruction>(V);
1029   if (!Inst)
1030     return true;
1031 
1032   return DT->properlyDominates(Inst->getParent(), L->getHeader());
1033 }
1034 
1035 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1036                                  bool IsSigned, Instruction *Use) {
1037   // Set the debug location and conservative insertion point.
1038   IRBuilder<> Builder(Use);
1039   // Hoist the insertion point into loop preheaders as far as possible.
1040   for (const Loop *L = LI->getLoopFor(Use->getParent());
1041        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
1042        L = L->getParentLoop())
1043     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1044 
1045   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1046                     Builder.CreateZExt(NarrowOper, WideType);
1047 }
1048 
1049 /// Instantiate a wide operation to replace a narrow operation. This only needs
1050 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1051 /// 0 for any operation we decide not to clone.
1052 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
1053                                   const SCEVAddRecExpr *WideAR) {
1054   unsigned Opcode = DU.NarrowUse->getOpcode();
1055   switch (Opcode) {
1056   default:
1057     return nullptr;
1058   case Instruction::Add:
1059   case Instruction::Mul:
1060   case Instruction::UDiv:
1061   case Instruction::Sub:
1062     return cloneArithmeticIVUser(DU, WideAR);
1063 
1064   case Instruction::And:
1065   case Instruction::Or:
1066   case Instruction::Xor:
1067   case Instruction::Shl:
1068   case Instruction::LShr:
1069   case Instruction::AShr:
1070     return cloneBitwiseIVUser(DU);
1071   }
1072 }
1073 
1074 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
1075   Instruction *NarrowUse = DU.NarrowUse;
1076   Instruction *NarrowDef = DU.NarrowDef;
1077   Instruction *WideDef = DU.WideDef;
1078 
1079   LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1080 
1081   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1082   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1083   // invariant and will be folded or hoisted. If it actually comes from a
1084   // widened IV, it should be removed during a future call to widenIVUse.
1085   bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1086   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1087                    ? WideDef
1088                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1089                                       IsSigned, NarrowUse);
1090   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1091                    ? WideDef
1092                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1093                                       IsSigned, NarrowUse);
1094 
1095   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1096   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1097                                         NarrowBO->getName());
1098   IRBuilder<> Builder(NarrowUse);
1099   Builder.Insert(WideBO);
1100   WideBO->copyIRFlags(NarrowBO);
1101   return WideBO;
1102 }
1103 
1104 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
1105                                             const SCEVAddRecExpr *WideAR) {
1106   Instruction *NarrowUse = DU.NarrowUse;
1107   Instruction *NarrowDef = DU.NarrowDef;
1108   Instruction *WideDef = DU.WideDef;
1109 
1110   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1111 
1112   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1113 
1114   // We're trying to find X such that
1115   //
1116   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1117   //
1118   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1119   // and check using SCEV if any of them are correct.
1120 
1121   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1122   // correct solution to X.
1123   auto GuessNonIVOperand = [&](bool SignExt) {
1124     const SCEV *WideLHS;
1125     const SCEV *WideRHS;
1126 
1127     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1128       if (SignExt)
1129         return SE->getSignExtendExpr(S, Ty);
1130       return SE->getZeroExtendExpr(S, Ty);
1131     };
1132 
1133     if (IVOpIdx == 0) {
1134       WideLHS = SE->getSCEV(WideDef);
1135       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1136       WideRHS = GetExtend(NarrowRHS, WideType);
1137     } else {
1138       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1139       WideLHS = GetExtend(NarrowLHS, WideType);
1140       WideRHS = SE->getSCEV(WideDef);
1141     }
1142 
1143     // WideUse is "WideDef `op.wide` X" as described in the comment.
1144     const SCEV *WideUse = nullptr;
1145 
1146     switch (NarrowUse->getOpcode()) {
1147     default:
1148       llvm_unreachable("No other possibility!");
1149 
1150     case Instruction::Add:
1151       WideUse = SE->getAddExpr(WideLHS, WideRHS);
1152       break;
1153 
1154     case Instruction::Mul:
1155       WideUse = SE->getMulExpr(WideLHS, WideRHS);
1156       break;
1157 
1158     case Instruction::UDiv:
1159       WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1160       break;
1161 
1162     case Instruction::Sub:
1163       WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1164       break;
1165     }
1166 
1167     return WideUse == WideAR;
1168   };
1169 
1170   bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1171   if (!GuessNonIVOperand(SignExtend)) {
1172     SignExtend = !SignExtend;
1173     if (!GuessNonIVOperand(SignExtend))
1174       return nullptr;
1175   }
1176 
1177   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1178                    ? WideDef
1179                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1180                                       SignExtend, NarrowUse);
1181   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1182                    ? WideDef
1183                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1184                                       SignExtend, NarrowUse);
1185 
1186   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1187   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1188                                         NarrowBO->getName());
1189 
1190   IRBuilder<> Builder(NarrowUse);
1191   Builder.Insert(WideBO);
1192   WideBO->copyIRFlags(NarrowBO);
1193   return WideBO;
1194 }
1195 
1196 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1197   auto It = ExtendKindMap.find(I);
1198   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1199   return It->second;
1200 }
1201 
1202 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1203                                      unsigned OpCode) const {
1204   if (OpCode == Instruction::Add)
1205     return SE->getAddExpr(LHS, RHS);
1206   if (OpCode == Instruction::Sub)
1207     return SE->getMinusSCEV(LHS, RHS);
1208   if (OpCode == Instruction::Mul)
1209     return SE->getMulExpr(LHS, RHS);
1210 
1211   llvm_unreachable("Unsupported opcode.");
1212 }
1213 
1214 /// No-wrap operations can transfer sign extension of their result to their
1215 /// operands. Generate the SCEV value for the widened operation without
1216 /// actually modifying the IR yet. If the expression after extending the
1217 /// operands is an AddRec for this loop, return the AddRec and the kind of
1218 /// extension used.
1219 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1220   // Handle the common case of add<nsw/nuw>
1221   const unsigned OpCode = DU.NarrowUse->getOpcode();
1222   // Only Add/Sub/Mul instructions supported yet.
1223   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1224       OpCode != Instruction::Mul)
1225     return {nullptr, Unknown};
1226 
1227   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1228   // if extending the other will lead to a recurrence.
1229   const unsigned ExtendOperIdx =
1230       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1231   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1232 
1233   const SCEV *ExtendOperExpr = nullptr;
1234   const OverflowingBinaryOperator *OBO =
1235     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1236   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1237   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1238     ExtendOperExpr = SE->getSignExtendExpr(
1239       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1240   else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1241     ExtendOperExpr = SE->getZeroExtendExpr(
1242       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1243   else
1244     return {nullptr, Unknown};
1245 
1246   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1247   // flags. This instruction may be guarded by control flow that the no-wrap
1248   // behavior depends on. Non-control-equivalent instructions can be mapped to
1249   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1250   // semantics to those operations.
1251   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1252   const SCEV *rhs = ExtendOperExpr;
1253 
1254   // Let's swap operands to the initial order for the case of non-commutative
1255   // operations, like SUB. See PR21014.
1256   if (ExtendOperIdx == 0)
1257     std::swap(lhs, rhs);
1258   const SCEVAddRecExpr *AddRec =
1259       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1260 
1261   if (!AddRec || AddRec->getLoop() != L)
1262     return {nullptr, Unknown};
1263 
1264   return {AddRec, ExtKind};
1265 }
1266 
1267 /// Is this instruction potentially interesting for further simplification after
1268 /// widening it's type? In other words, can the extend be safely hoisted out of
1269 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1270 /// so, return the extended recurrence and the kind of extension used. Otherwise
1271 /// return {nullptr, Unknown}.
1272 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) {
1273   if (!SE->isSCEVable(DU.NarrowUse->getType()))
1274     return {nullptr, Unknown};
1275 
1276   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1277   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1278       SE->getTypeSizeInBits(WideType)) {
1279     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1280     // index. So don't follow this use.
1281     return {nullptr, Unknown};
1282   }
1283 
1284   const SCEV *WideExpr;
1285   ExtendKind ExtKind;
1286   if (DU.NeverNegative) {
1287     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1288     if (isa<SCEVAddRecExpr>(WideExpr))
1289       ExtKind = SignExtended;
1290     else {
1291       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1292       ExtKind = ZeroExtended;
1293     }
1294   } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1295     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1296     ExtKind = SignExtended;
1297   } else {
1298     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1299     ExtKind = ZeroExtended;
1300   }
1301   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1302   if (!AddRec || AddRec->getLoop() != L)
1303     return {nullptr, Unknown};
1304   return {AddRec, ExtKind};
1305 }
1306 
1307 /// This IV user cannot be widen. Replace this use of the original narrow IV
1308 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1309 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1310   LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1311                     << *DU.NarrowUse << "\n");
1312   IRBuilder<> Builder(
1313       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1314   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1315   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1316 }
1317 
1318 /// If the narrow use is a compare instruction, then widen the compare
1319 //  (and possibly the other operand).  The extend operation is hoisted into the
1320 // loop preheader as far as possible.
1321 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1322   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1323   if (!Cmp)
1324     return false;
1325 
1326   // We can legally widen the comparison in the following two cases:
1327   //
1328   //  - The signedness of the IV extension and comparison match
1329   //
1330   //  - The narrow IV is always positive (and thus its sign extension is equal
1331   //    to its zero extension).  For instance, let's say we're zero extending
1332   //    %narrow for the following use
1333   //
1334   //      icmp slt i32 %narrow, %val   ... (A)
1335   //
1336   //    and %narrow is always positive.  Then
1337   //
1338   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1339   //          == icmp slt i32 zext(%narrow), sext(%val)
1340   bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1341   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1342     return false;
1343 
1344   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1345   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1346   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1347   assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1348 
1349   // Widen the compare instruction.
1350   IRBuilder<> Builder(
1351       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1352   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1353 
1354   // Widen the other operand of the compare, if necessary.
1355   if (CastWidth < IVWidth) {
1356     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1357     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1358   }
1359   return true;
1360 }
1361 
1362 /// If the narrow use is an instruction whose two operands are the defining
1363 /// instruction of DU and a load instruction, then we have the following:
1364 /// if the load is hoisted outside the loop, then we do not reach this function
1365 /// as scalar evolution analysis works fine in widenIVUse with variables
1366 /// hoisted outside the loop and efficient code is subsequently generated by
1367 /// not emitting truncate instructions. But when the load is not hoisted
1368 /// (whether due to limitation in alias analysis or due to a true legality),
1369 /// then scalar evolution can not proceed with loop variant values and
1370 /// inefficient code is generated. This function handles the non-hoisted load
1371 /// special case by making the optimization generate the same type of code for
1372 /// hoisted and non-hoisted load (widen use and eliminate sign extend
1373 /// instruction). This special case is important especially when the induction
1374 /// variables are affecting addressing mode in code generation.
1375 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) {
1376   Instruction *NarrowUse = DU.NarrowUse;
1377   Instruction *NarrowDef = DU.NarrowDef;
1378   Instruction *WideDef = DU.WideDef;
1379 
1380   // Handle the common case of add<nsw/nuw>
1381   const unsigned OpCode = NarrowUse->getOpcode();
1382   // Only Add/Sub/Mul instructions are supported.
1383   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1384       OpCode != Instruction::Mul)
1385     return false;
1386 
1387   // The operand that is not defined by NarrowDef of DU. Let's call it the
1388   // other operand.
1389   unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0;
1390   assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef &&
1391          "bad DU");
1392 
1393   const SCEV *ExtendOperExpr = nullptr;
1394   const OverflowingBinaryOperator *OBO =
1395     cast<OverflowingBinaryOperator>(NarrowUse);
1396   ExtendKind ExtKind = getExtendKind(NarrowDef);
1397   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1398     ExtendOperExpr = SE->getSignExtendExpr(
1399       SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1400   else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1401     ExtendOperExpr = SE->getZeroExtendExpr(
1402       SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1403   else
1404     return false;
1405 
1406   // We are interested in the other operand being a load instruction.
1407   // But, we should look into relaxing this restriction later on.
1408   auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx));
1409   if (I && I->getOpcode() != Instruction::Load)
1410     return false;
1411 
1412   // Verifying that Defining operand is an AddRec
1413   const SCEV *Op1 = SE->getSCEV(WideDef);
1414   const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1415   if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1416     return false;
1417   // Verifying that other operand is an Extend.
1418   if (ExtKind == SignExtended) {
1419     if (!isa<SCEVSignExtendExpr>(ExtendOperExpr))
1420       return false;
1421   } else {
1422     if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr))
1423       return false;
1424   }
1425 
1426   if (ExtKind == SignExtended) {
1427     for (Use &U : NarrowUse->uses()) {
1428       SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1429       if (!User || User->getType() != WideType)
1430         return false;
1431     }
1432   } else { // ExtKind == ZeroExtended
1433     for (Use &U : NarrowUse->uses()) {
1434       ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1435       if (!User || User->getType() != WideType)
1436         return false;
1437     }
1438   }
1439 
1440   return true;
1441 }
1442 
1443 /// Special Case for widening with variant Loads (see
1444 /// WidenIV::widenWithVariantLoadUse). This is the code generation part.
1445 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) {
1446   Instruction *NarrowUse = DU.NarrowUse;
1447   Instruction *NarrowDef = DU.NarrowDef;
1448   Instruction *WideDef = DU.WideDef;
1449 
1450   ExtendKind ExtKind = getExtendKind(NarrowDef);
1451 
1452   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1453 
1454   // Generating a widening use instruction.
1455   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1456                    ? WideDef
1457                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1458                                       ExtKind, NarrowUse);
1459   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1460                    ? WideDef
1461                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1462                                       ExtKind, NarrowUse);
1463 
1464   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1465   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1466                                         NarrowBO->getName());
1467   IRBuilder<> Builder(NarrowUse);
1468   Builder.Insert(WideBO);
1469   WideBO->copyIRFlags(NarrowBO);
1470 
1471   if (ExtKind == SignExtended)
1472     ExtendKindMap[NarrowUse] = SignExtended;
1473   else
1474     ExtendKindMap[NarrowUse] = ZeroExtended;
1475 
1476   // Update the Use.
1477   if (ExtKind == SignExtended) {
1478     for (Use &U : NarrowUse->uses()) {
1479       SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1480       if (User && User->getType() == WideType) {
1481         LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1482                           << *WideBO << "\n");
1483         ++NumElimExt;
1484         User->replaceAllUsesWith(WideBO);
1485         DeadInsts.emplace_back(User);
1486       }
1487     }
1488   } else { // ExtKind == ZeroExtended
1489     for (Use &U : NarrowUse->uses()) {
1490       ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1491       if (User && User->getType() == WideType) {
1492         LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1493                           << *WideBO << "\n");
1494         ++NumElimExt;
1495         User->replaceAllUsesWith(WideBO);
1496         DeadInsts.emplace_back(User);
1497       }
1498     }
1499   }
1500 }
1501 
1502 /// Determine whether an individual user of the narrow IV can be widened. If so,
1503 /// return the wide clone of the user.
1504 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1505   assert(ExtendKindMap.count(DU.NarrowDef) &&
1506          "Should already know the kind of extension used to widen NarrowDef");
1507 
1508   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1509   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1510     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1511       // For LCSSA phis, sink the truncate outside the loop.
1512       // After SimplifyCFG most loop exit targets have a single predecessor.
1513       // Otherwise fall back to a truncate within the loop.
1514       if (UsePhi->getNumOperands() != 1)
1515         truncateIVUse(DU, DT, LI);
1516       else {
1517         // Widening the PHI requires us to insert a trunc.  The logical place
1518         // for this trunc is in the same BB as the PHI.  This is not possible if
1519         // the BB is terminated by a catchswitch.
1520         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1521           return nullptr;
1522 
1523         PHINode *WidePhi =
1524           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1525                           UsePhi);
1526         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1527         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1528         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1529         UsePhi->replaceAllUsesWith(Trunc);
1530         DeadInsts.emplace_back(UsePhi);
1531         LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1532                           << *WidePhi << "\n");
1533       }
1534       return nullptr;
1535     }
1536   }
1537 
1538   // This narrow use can be widened by a sext if it's non-negative or its narrow
1539   // def was widended by a sext. Same for zext.
1540   auto canWidenBySExt = [&]() {
1541     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1542   };
1543   auto canWidenByZExt = [&]() {
1544     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1545   };
1546 
1547   // Our raison d'etre! Eliminate sign and zero extension.
1548   if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1549       (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1550     Value *NewDef = DU.WideDef;
1551     if (DU.NarrowUse->getType() != WideType) {
1552       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1553       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1554       if (CastWidth < IVWidth) {
1555         // The cast isn't as wide as the IV, so insert a Trunc.
1556         IRBuilder<> Builder(DU.NarrowUse);
1557         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1558       }
1559       else {
1560         // A wider extend was hidden behind a narrower one. This may induce
1561         // another round of IV widening in which the intermediate IV becomes
1562         // dead. It should be very rare.
1563         LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1564                           << " not wide enough to subsume " << *DU.NarrowUse
1565                           << "\n");
1566         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1567         NewDef = DU.NarrowUse;
1568       }
1569     }
1570     if (NewDef != DU.NarrowUse) {
1571       LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1572                         << " replaced by " << *DU.WideDef << "\n");
1573       ++NumElimExt;
1574       DU.NarrowUse->replaceAllUsesWith(NewDef);
1575       DeadInsts.emplace_back(DU.NarrowUse);
1576     }
1577     // Now that the extend is gone, we want to expose it's uses for potential
1578     // further simplification. We don't need to directly inform SimplifyIVUsers
1579     // of the new users, because their parent IV will be processed later as a
1580     // new loop phi. If we preserved IVUsers analysis, we would also want to
1581     // push the uses of WideDef here.
1582 
1583     // No further widening is needed. The deceased [sz]ext had done it for us.
1584     return nullptr;
1585   }
1586 
1587   // Does this user itself evaluate to a recurrence after widening?
1588   WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1589   if (!WideAddRec.first)
1590     WideAddRec = getWideRecurrence(DU);
1591 
1592   assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1593   if (!WideAddRec.first) {
1594     // If use is a loop condition, try to promote the condition instead of
1595     // truncating the IV first.
1596     if (widenLoopCompare(DU))
1597       return nullptr;
1598 
1599     // We are here about to generate a truncate instruction that may hurt
1600     // performance because the scalar evolution expression computed earlier
1601     // in WideAddRec.first does not indicate a polynomial induction expression.
1602     // In that case, look at the operands of the use instruction to determine
1603     // if we can still widen the use instead of truncating its operand.
1604     if (widenWithVariantLoadUse(DU)) {
1605       widenWithVariantLoadUseCodegen(DU);
1606       return nullptr;
1607     }
1608 
1609     // This user does not evaluate to a recurrence after widening, so don't
1610     // follow it. Instead insert a Trunc to kill off the original use,
1611     // eventually isolating the original narrow IV so it can be removed.
1612     truncateIVUse(DU, DT, LI);
1613     return nullptr;
1614   }
1615   // Assume block terminators cannot evaluate to a recurrence. We can't to
1616   // insert a Trunc after a terminator if there happens to be a critical edge.
1617   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1618          "SCEV is not expected to evaluate a block terminator");
1619 
1620   // Reuse the IV increment that SCEVExpander created as long as it dominates
1621   // NarrowUse.
1622   Instruction *WideUse = nullptr;
1623   if (WideAddRec.first == WideIncExpr &&
1624       Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1625     WideUse = WideInc;
1626   else {
1627     WideUse = cloneIVUser(DU, WideAddRec.first);
1628     if (!WideUse)
1629       return nullptr;
1630   }
1631   // Evaluation of WideAddRec ensured that the narrow expression could be
1632   // extended outside the loop without overflow. This suggests that the wide use
1633   // evaluates to the same expression as the extended narrow use, but doesn't
1634   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1635   // where it fails, we simply throw away the newly created wide use.
1636   if (WideAddRec.first != SE->getSCEV(WideUse)) {
1637     LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1638                       << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1639                       << "\n");
1640     DeadInsts.emplace_back(WideUse);
1641     return nullptr;
1642   }
1643 
1644   ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1645   // Returning WideUse pushes it on the worklist.
1646   return WideUse;
1647 }
1648 
1649 /// Add eligible users of NarrowDef to NarrowIVUsers.
1650 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1651   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1652   bool NonNegativeDef =
1653       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1654                            SE->getConstant(NarrowSCEV->getType(), 0));
1655   for (User *U : NarrowDef->users()) {
1656     Instruction *NarrowUser = cast<Instruction>(U);
1657 
1658     // Handle data flow merges and bizarre phi cycles.
1659     if (!Widened.insert(NarrowUser).second)
1660       continue;
1661 
1662     bool NonNegativeUse = false;
1663     if (!NonNegativeDef) {
1664       // We might have a control-dependent range information for this context.
1665       if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1666         NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1667     }
1668 
1669     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1670                                NonNegativeDef || NonNegativeUse);
1671   }
1672 }
1673 
1674 /// Process a single induction variable. First use the SCEVExpander to create a
1675 /// wide induction variable that evaluates to the same recurrence as the
1676 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1677 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1678 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1679 ///
1680 /// It would be simpler to delete uses as they are processed, but we must avoid
1681 /// invalidating SCEV expressions.
1682 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1683   // Is this phi an induction variable?
1684   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1685   if (!AddRec)
1686     return nullptr;
1687 
1688   // Widen the induction variable expression.
1689   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1690                                ? SE->getSignExtendExpr(AddRec, WideType)
1691                                : SE->getZeroExtendExpr(AddRec, WideType);
1692 
1693   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1694          "Expect the new IV expression to preserve its type");
1695 
1696   // Can the IV be extended outside the loop without overflow?
1697   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1698   if (!AddRec || AddRec->getLoop() != L)
1699     return nullptr;
1700 
1701   // An AddRec must have loop-invariant operands. Since this AddRec is
1702   // materialized by a loop header phi, the expression cannot have any post-loop
1703   // operands, so they must dominate the loop header.
1704   assert(
1705       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1706       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1707       "Loop header phi recurrence inputs do not dominate the loop");
1708 
1709   // Iterate over IV uses (including transitive ones) looking for IV increments
1710   // of the form 'add nsw %iv, <const>'. For each increment and each use of
1711   // the increment calculate control-dependent range information basing on
1712   // dominating conditions inside of the loop (e.g. a range check inside of the
1713   // loop). Calculated ranges are stored in PostIncRangeInfos map.
1714   //
1715   // Control-dependent range information is later used to prove that a narrow
1716   // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1717   // this on demand because when pushNarrowIVUsers needs this information some
1718   // of the dominating conditions might be already widened.
1719   if (UsePostIncrementRanges)
1720     calculatePostIncRanges(OrigPhi);
1721 
1722   // The rewriter provides a value for the desired IV expression. This may
1723   // either find an existing phi or materialize a new one. Either way, we
1724   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1725   // of the phi-SCC dominates the loop entry.
1726   Instruction *InsertPt = &L->getHeader()->front();
1727   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1728 
1729   // Remembering the WideIV increment generated by SCEVExpander allows
1730   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1731   // employ a general reuse mechanism because the call above is the only call to
1732   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1733   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1734     WideInc =
1735       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1736     WideIncExpr = SE->getSCEV(WideInc);
1737     // Propagate the debug location associated with the original loop increment
1738     // to the new (widened) increment.
1739     auto *OrigInc =
1740       cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1741     WideInc->setDebugLoc(OrigInc->getDebugLoc());
1742   }
1743 
1744   LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1745   ++NumWidened;
1746 
1747   // Traverse the def-use chain using a worklist starting at the original IV.
1748   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1749 
1750   Widened.insert(OrigPhi);
1751   pushNarrowIVUsers(OrigPhi, WidePhi);
1752 
1753   while (!NarrowIVUsers.empty()) {
1754     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1755 
1756     // Process a def-use edge. This may replace the use, so don't hold a
1757     // use_iterator across it.
1758     Instruction *WideUse = widenIVUse(DU, Rewriter);
1759 
1760     // Follow all def-use edges from the previous narrow use.
1761     if (WideUse)
1762       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1763 
1764     // widenIVUse may have removed the def-use edge.
1765     if (DU.NarrowDef->use_empty())
1766       DeadInsts.emplace_back(DU.NarrowDef);
1767   }
1768 
1769   // Attach any debug information to the new PHI. Since OrigPhi and WidePHI
1770   // evaluate the same recurrence, we can just copy the debug info over.
1771   SmallVector<DbgValueInst *, 1> DbgValues;
1772   llvm::findDbgValues(DbgValues, OrigPhi);
1773   auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(),
1774                                      ValueAsMetadata::get(WidePhi));
1775   for (auto &DbgValue : DbgValues)
1776     DbgValue->setOperand(0, MDPhi);
1777   return WidePhi;
1778 }
1779 
1780 /// Calculates control-dependent range for the given def at the given context
1781 /// by looking at dominating conditions inside of the loop
1782 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1783                                     Instruction *NarrowUser) {
1784   using namespace llvm::PatternMatch;
1785 
1786   Value *NarrowDefLHS;
1787   const APInt *NarrowDefRHS;
1788   if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1789                                  m_APInt(NarrowDefRHS))) ||
1790       !NarrowDefRHS->isNonNegative())
1791     return;
1792 
1793   auto UpdateRangeFromCondition = [&] (Value *Condition,
1794                                        bool TrueDest) {
1795     CmpInst::Predicate Pred;
1796     Value *CmpRHS;
1797     if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1798                                  m_Value(CmpRHS))))
1799       return;
1800 
1801     CmpInst::Predicate P =
1802             TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1803 
1804     auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1805     auto CmpConstrainedLHSRange =
1806             ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1807     auto NarrowDefRange =
1808             CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS);
1809 
1810     updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
1811   };
1812 
1813   auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
1814     if (!HasGuards)
1815       return;
1816 
1817     for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
1818                                      Ctx->getParent()->rend())) {
1819       Value *C = nullptr;
1820       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
1821         UpdateRangeFromCondition(C, /*TrueDest=*/true);
1822     }
1823   };
1824 
1825   UpdateRangeFromGuards(NarrowUser);
1826 
1827   BasicBlock *NarrowUserBB = NarrowUser->getParent();
1828   // If NarrowUserBB is statically unreachable asking dominator queries may
1829   // yield surprising results. (e.g. the block may not have a dom tree node)
1830   if (!DT->isReachableFromEntry(NarrowUserBB))
1831     return;
1832 
1833   for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
1834        L->contains(DTB->getBlock());
1835        DTB = DTB->getIDom()) {
1836     auto *BB = DTB->getBlock();
1837     auto *TI = BB->getTerminator();
1838     UpdateRangeFromGuards(TI);
1839 
1840     auto *BI = dyn_cast<BranchInst>(TI);
1841     if (!BI || !BI->isConditional())
1842       continue;
1843 
1844     auto *TrueSuccessor = BI->getSuccessor(0);
1845     auto *FalseSuccessor = BI->getSuccessor(1);
1846 
1847     auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
1848       return BBE.isSingleEdge() &&
1849              DT->dominates(BBE, NarrowUser->getParent());
1850     };
1851 
1852     if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
1853       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
1854 
1855     if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
1856       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
1857   }
1858 }
1859 
1860 /// Calculates PostIncRangeInfos map for the given IV
1861 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
1862   SmallPtrSet<Instruction *, 16> Visited;
1863   SmallVector<Instruction *, 6> Worklist;
1864   Worklist.push_back(OrigPhi);
1865   Visited.insert(OrigPhi);
1866 
1867   while (!Worklist.empty()) {
1868     Instruction *NarrowDef = Worklist.pop_back_val();
1869 
1870     for (Use &U : NarrowDef->uses()) {
1871       auto *NarrowUser = cast<Instruction>(U.getUser());
1872 
1873       // Don't go looking outside the current loop.
1874       auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
1875       if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
1876         continue;
1877 
1878       if (!Visited.insert(NarrowUser).second)
1879         continue;
1880 
1881       Worklist.push_back(NarrowUser);
1882 
1883       calculatePostIncRange(NarrowDef, NarrowUser);
1884     }
1885   }
1886 }
1887 
1888 //===----------------------------------------------------------------------===//
1889 //  Live IV Reduction - Minimize IVs live across the loop.
1890 //===----------------------------------------------------------------------===//
1891 
1892 //===----------------------------------------------------------------------===//
1893 //  Simplification of IV users based on SCEV evaluation.
1894 //===----------------------------------------------------------------------===//
1895 
1896 namespace {
1897 
1898 class IndVarSimplifyVisitor : public IVVisitor {
1899   ScalarEvolution *SE;
1900   const TargetTransformInfo *TTI;
1901   PHINode *IVPhi;
1902 
1903 public:
1904   WideIVInfo WI;
1905 
1906   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1907                         const TargetTransformInfo *TTI,
1908                         const DominatorTree *DTree)
1909     : SE(SCEV), TTI(TTI), IVPhi(IV) {
1910     DT = DTree;
1911     WI.NarrowIV = IVPhi;
1912   }
1913 
1914   // Implement the interface used by simplifyUsersOfIV.
1915   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1916 };
1917 
1918 } // end anonymous namespace
1919 
1920 /// Iteratively perform simplification on a worklist of IV users. Each
1921 /// successive simplification may push more users which may themselves be
1922 /// candidates for simplification.
1923 ///
1924 /// Sign/Zero extend elimination is interleaved with IV simplification.
1925 bool IndVarSimplify::simplifyAndExtend(Loop *L,
1926                                        SCEVExpander &Rewriter,
1927                                        LoopInfo *LI) {
1928   SmallVector<WideIVInfo, 8> WideIVs;
1929 
1930   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
1931           Intrinsic::getName(Intrinsic::experimental_guard));
1932   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
1933 
1934   SmallVector<PHINode*, 8> LoopPhis;
1935   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1936     LoopPhis.push_back(cast<PHINode>(I));
1937   }
1938   // Each round of simplification iterates through the SimplifyIVUsers worklist
1939   // for all current phis, then determines whether any IVs can be
1940   // widened. Widening adds new phis to LoopPhis, inducing another round of
1941   // simplification on the wide IVs.
1942   bool Changed = false;
1943   while (!LoopPhis.empty()) {
1944     // Evaluate as many IV expressions as possible before widening any IVs. This
1945     // forces SCEV to set no-wrap flags before evaluating sign/zero
1946     // extension. The first time SCEV attempts to normalize sign/zero extension,
1947     // the result becomes final. So for the most predictable results, we delay
1948     // evaluation of sign/zero extend evaluation until needed, and avoid running
1949     // other SCEV based analysis prior to simplifyAndExtend.
1950     do {
1951       PHINode *CurrIV = LoopPhis.pop_back_val();
1952 
1953       // Information about sign/zero extensions of CurrIV.
1954       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1955 
1956       Changed |=
1957           simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor);
1958 
1959       if (Visitor.WI.WidestNativeType) {
1960         WideIVs.push_back(Visitor.WI);
1961       }
1962     } while(!LoopPhis.empty());
1963 
1964     for (; !WideIVs.empty(); WideIVs.pop_back()) {
1965       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards);
1966       if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1967         Changed = true;
1968         LoopPhis.push_back(WidePhi);
1969       }
1970     }
1971   }
1972   return Changed;
1973 }
1974 
1975 //===----------------------------------------------------------------------===//
1976 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1977 //===----------------------------------------------------------------------===//
1978 
1979 /// Return true if this loop's backedge taken count expression can be safely and
1980 /// cheaply expanded into an instruction sequence that can be used by
1981 /// linearFunctionTestReplace.
1982 ///
1983 /// TODO: This fails for pointer-type loop counters with greater than one byte
1984 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
1985 /// we could skip this check in the case that the LFTR loop counter (chosen by
1986 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
1987 /// the loop test to an inequality test by checking the target data's alignment
1988 /// of element types (given that the initial pointer value originates from or is
1989 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1990 /// However, we don't yet have a strong motivation for converting loop tests
1991 /// into inequality tests.
1992 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
1993                                         SCEVExpander &Rewriter) {
1994   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1995   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1996       BackedgeTakenCount->isZero())
1997     return false;
1998 
1999   if (!L->getExitingBlock())
2000     return false;
2001 
2002   // Can't rewrite non-branch yet.
2003   if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
2004     return false;
2005 
2006   if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
2007     return false;
2008 
2009   return true;
2010 }
2011 
2012 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi.
2013 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
2014   Instruction *IncI = dyn_cast<Instruction>(IncV);
2015   if (!IncI)
2016     return nullptr;
2017 
2018   switch (IncI->getOpcode()) {
2019   case Instruction::Add:
2020   case Instruction::Sub:
2021     break;
2022   case Instruction::GetElementPtr:
2023     // An IV counter must preserve its type.
2024     if (IncI->getNumOperands() == 2)
2025       break;
2026     LLVM_FALLTHROUGH;
2027   default:
2028     return nullptr;
2029   }
2030 
2031   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
2032   if (Phi && Phi->getParent() == L->getHeader()) {
2033     if (isLoopInvariant(IncI->getOperand(1), L, DT))
2034       return Phi;
2035     return nullptr;
2036   }
2037   if (IncI->getOpcode() == Instruction::GetElementPtr)
2038     return nullptr;
2039 
2040   // Allow add/sub to be commuted.
2041   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
2042   if (Phi && Phi->getParent() == L->getHeader()) {
2043     if (isLoopInvariant(IncI->getOperand(0), L, DT))
2044       return Phi;
2045   }
2046   return nullptr;
2047 }
2048 
2049 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
2050 static ICmpInst *getLoopTest(Loop *L) {
2051   assert(L->getExitingBlock() && "expected loop exit");
2052 
2053   BasicBlock *LatchBlock = L->getLoopLatch();
2054   // Don't bother with LFTR if the loop is not properly simplified.
2055   if (!LatchBlock)
2056     return nullptr;
2057 
2058   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
2059   assert(BI && "expected exit branch");
2060 
2061   return dyn_cast<ICmpInst>(BI->getCondition());
2062 }
2063 
2064 /// linearFunctionTestReplace policy. Return true unless we can show that the
2065 /// current exit test is already sufficiently canonical.
2066 static bool needsLFTR(Loop *L, DominatorTree *DT) {
2067   // Do LFTR to simplify the exit condition to an ICMP.
2068   ICmpInst *Cond = getLoopTest(L);
2069   if (!Cond)
2070     return true;
2071 
2072   // Do LFTR to simplify the exit ICMP to EQ/NE
2073   ICmpInst::Predicate Pred = Cond->getPredicate();
2074   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
2075     return true;
2076 
2077   // Look for a loop invariant RHS
2078   Value *LHS = Cond->getOperand(0);
2079   Value *RHS = Cond->getOperand(1);
2080   if (!isLoopInvariant(RHS, L, DT)) {
2081     if (!isLoopInvariant(LHS, L, DT))
2082       return true;
2083     std::swap(LHS, RHS);
2084   }
2085   // Look for a simple IV counter LHS
2086   PHINode *Phi = dyn_cast<PHINode>(LHS);
2087   if (!Phi)
2088     Phi = getLoopPhiForCounter(LHS, L, DT);
2089 
2090   if (!Phi)
2091     return true;
2092 
2093   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
2094   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
2095   if (Idx < 0)
2096     return true;
2097 
2098   // Do LFTR if the exit condition's IV is *not* a simple counter.
2099   Value *IncV = Phi->getIncomingValue(Idx);
2100   return Phi != getLoopPhiForCounter(IncV, L, DT);
2101 }
2102 
2103 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
2104 /// down to checking that all operands are constant and listing instructions
2105 /// that may hide undef.
2106 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
2107                                unsigned Depth) {
2108   if (isa<Constant>(V))
2109     return !isa<UndefValue>(V);
2110 
2111   if (Depth >= 6)
2112     return false;
2113 
2114   // Conservatively handle non-constant non-instructions. For example, Arguments
2115   // may be undef.
2116   Instruction *I = dyn_cast<Instruction>(V);
2117   if (!I)
2118     return false;
2119 
2120   // Load and return values may be undef.
2121   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
2122     return false;
2123 
2124   // Optimistically handle other instructions.
2125   for (Value *Op : I->operands()) {
2126     if (!Visited.insert(Op).second)
2127       continue;
2128     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
2129       return false;
2130   }
2131   return true;
2132 }
2133 
2134 /// Return true if the given value is concrete. We must prove that undef can
2135 /// never reach it.
2136 ///
2137 /// TODO: If we decide that this is a good approach to checking for undef, we
2138 /// may factor it into a common location.
2139 static bool hasConcreteDef(Value *V) {
2140   SmallPtrSet<Value*, 8> Visited;
2141   Visited.insert(V);
2142   return hasConcreteDefImpl(V, Visited, 0);
2143 }
2144 
2145 /// Return true if this IV has any uses other than the (soon to be rewritten)
2146 /// loop exit test.
2147 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
2148   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2149   Value *IncV = Phi->getIncomingValue(LatchIdx);
2150 
2151   for (User *U : Phi->users())
2152     if (U != Cond && U != IncV) return false;
2153 
2154   for (User *U : IncV->users())
2155     if (U != Cond && U != Phi) return false;
2156   return true;
2157 }
2158 
2159 /// Find an affine IV in canonical form.
2160 ///
2161 /// BECount may be an i8* pointer type. The pointer difference is already
2162 /// valid count without scaling the address stride, so it remains a pointer
2163 /// expression as far as SCEV is concerned.
2164 ///
2165 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
2166 ///
2167 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
2168 ///
2169 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
2170 /// This is difficult in general for SCEV because of potential overflow. But we
2171 /// could at least handle constant BECounts.
2172 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
2173                                 ScalarEvolution *SE, DominatorTree *DT) {
2174   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
2175 
2176   Value *Cond =
2177     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
2178 
2179   // Loop over all of the PHI nodes, looking for a simple counter.
2180   PHINode *BestPhi = nullptr;
2181   const SCEV *BestInit = nullptr;
2182   BasicBlock *LatchBlock = L->getLoopLatch();
2183   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
2184   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2185 
2186   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
2187     PHINode *Phi = cast<PHINode>(I);
2188     if (!SE->isSCEVable(Phi->getType()))
2189       continue;
2190 
2191     // Avoid comparing an integer IV against a pointer Limit.
2192     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
2193       continue;
2194 
2195     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
2196     if (!AR || AR->getLoop() != L || !AR->isAffine())
2197       continue;
2198 
2199     // AR may be a pointer type, while BECount is an integer type.
2200     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
2201     // AR may not be a narrower type, or we may never exit.
2202     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
2203     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
2204       continue;
2205 
2206     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
2207     if (!Step || !Step->isOne())
2208       continue;
2209 
2210     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2211     Value *IncV = Phi->getIncomingValue(LatchIdx);
2212     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
2213       continue;
2214 
2215     // Avoid reusing a potentially undef value to compute other values that may
2216     // have originally had a concrete definition.
2217     if (!hasConcreteDef(Phi)) {
2218       // We explicitly allow unknown phis as long as they are already used by
2219       // the loop test. In this case we assume that performing LFTR could not
2220       // increase the number of undef users.
2221       if (ICmpInst *Cond = getLoopTest(L)) {
2222         if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) &&
2223             Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
2224           continue;
2225         }
2226       }
2227     }
2228     const SCEV *Init = AR->getStart();
2229 
2230     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
2231       // Don't force a live loop counter if another IV can be used.
2232       if (AlmostDeadIV(Phi, LatchBlock, Cond))
2233         continue;
2234 
2235       // Prefer to count-from-zero. This is a more "canonical" counter form. It
2236       // also prefers integer to pointer IVs.
2237       if (BestInit->isZero() != Init->isZero()) {
2238         if (BestInit->isZero())
2239           continue;
2240       }
2241       // If two IVs both count from zero or both count from nonzero then the
2242       // narrower is likely a dead phi that has been widened. Use the wider phi
2243       // to allow the other to be eliminated.
2244       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
2245         continue;
2246     }
2247     BestPhi = Phi;
2248     BestInit = Init;
2249   }
2250   return BestPhi;
2251 }
2252 
2253 /// Help linearFunctionTestReplace by generating a value that holds the RHS of
2254 /// the new loop test.
2255 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
2256                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
2257   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2258   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
2259   const SCEV *IVInit = AR->getStart();
2260 
2261   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
2262   // finds a valid pointer IV. Sign extend BECount in order to materialize a
2263   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
2264   // the existing GEPs whenever possible.
2265   if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) {
2266     // IVOffset will be the new GEP offset that is interpreted by GEP as a
2267     // signed value. IVCount on the other hand represents the loop trip count,
2268     // which is an unsigned value. FindLoopCounter only allows induction
2269     // variables that have a positive unit stride of one. This means we don't
2270     // have to handle the case of negative offsets (yet) and just need to zero
2271     // extend IVCount.
2272     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
2273     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
2274 
2275     // Expand the code for the iteration count.
2276     assert(SE->isLoopInvariant(IVOffset, L) &&
2277            "Computed iteration count is not loop invariant!");
2278     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2279     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
2280 
2281     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
2282     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
2283     // We could handle pointer IVs other than i8*, but we need to compensate for
2284     // gep index scaling. See canExpandBackedgeTakenCount comments.
2285     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
2286                              cast<PointerType>(GEPBase->getType())
2287                                  ->getElementType())->isOne() &&
2288            "unit stride pointer IV must be i8*");
2289 
2290     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2291     return Builder.CreateGEP(GEPBase->getType()->getPointerElementType(),
2292                              GEPBase, GEPOffset, "lftr.limit");
2293   } else {
2294     // In any other case, convert both IVInit and IVCount to integers before
2295     // comparing. This may result in SCEV expansion of pointers, but in practice
2296     // SCEV will fold the pointer arithmetic away as such:
2297     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
2298     //
2299     // Valid Cases: (1) both integers is most common; (2) both may be pointers
2300     // for simple memset-style loops.
2301     //
2302     // IVInit integer and IVCount pointer would only occur if a canonical IV
2303     // were generated on top of case #2, which is not expected.
2304 
2305     const SCEV *IVLimit = nullptr;
2306     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
2307     // For non-zero Start, compute IVCount here.
2308     if (AR->getStart()->isZero())
2309       IVLimit = IVCount;
2310     else {
2311       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
2312       const SCEV *IVInit = AR->getStart();
2313 
2314       // For integer IVs, truncate the IV before computing IVInit + BECount.
2315       if (SE->getTypeSizeInBits(IVInit->getType())
2316           > SE->getTypeSizeInBits(IVCount->getType()))
2317         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
2318 
2319       IVLimit = SE->getAddExpr(IVInit, IVCount);
2320     }
2321     // Expand the code for the iteration count.
2322     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2323     IRBuilder<> Builder(BI);
2324     assert(SE->isLoopInvariant(IVLimit, L) &&
2325            "Computed iteration count is not loop invariant!");
2326     // Ensure that we generate the same type as IndVar, or a smaller integer
2327     // type. In the presence of null pointer values, we have an integer type
2328     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
2329     Type *LimitTy = IVCount->getType()->isPointerTy() ?
2330       IndVar->getType() : IVCount->getType();
2331     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
2332   }
2333 }
2334 
2335 /// This method rewrites the exit condition of the loop to be a canonical !=
2336 /// comparison against the incremented loop induction variable.  This pass is
2337 /// able to rewrite the exit tests of any loop where the SCEV analysis can
2338 /// determine a loop-invariant trip count of the loop, which is actually a much
2339 /// broader range than just linear tests.
2340 bool IndVarSimplify::
2341 linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
2342                           PHINode *IndVar, SCEVExpander &Rewriter) {
2343   assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
2344 
2345   // Initialize CmpIndVar and IVCount to their preincremented values.
2346   Value *CmpIndVar = IndVar;
2347   const SCEV *IVCount = BackedgeTakenCount;
2348 
2349   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
2350 
2351   // If the exiting block is the same as the backedge block, we prefer to
2352   // compare against the post-incremented value, otherwise we must compare
2353   // against the preincremented value.
2354   if (L->getExitingBlock() == L->getLoopLatch()) {
2355     // Add one to the "backedge-taken" count to get the trip count.
2356     // This addition may overflow, which is valid as long as the comparison is
2357     // truncated to BackedgeTakenCount->getType().
2358     IVCount = SE->getAddExpr(BackedgeTakenCount,
2359                              SE->getOne(BackedgeTakenCount->getType()));
2360     // The BackedgeTaken expression contains the number of times that the
2361     // backedge branches to the loop header.  This is one less than the
2362     // number of times the loop executes, so use the incremented indvar.
2363     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
2364   }
2365 
2366   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
2367   assert(ExitCnt->getType()->isPointerTy() ==
2368              IndVar->getType()->isPointerTy() &&
2369          "genLoopLimit missed a cast");
2370 
2371   // Insert a new icmp_ne or icmp_eq instruction before the branch.
2372   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2373   ICmpInst::Predicate P;
2374   if (L->contains(BI->getSuccessor(0)))
2375     P = ICmpInst::ICMP_NE;
2376   else
2377     P = ICmpInst::ICMP_EQ;
2378 
2379   LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
2380                     << "      LHS:" << *CmpIndVar << '\n'
2381                     << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
2382                     << "\n"
2383                     << "      RHS:\t" << *ExitCnt << "\n"
2384                     << "  IVCount:\t" << *IVCount << "\n");
2385 
2386   IRBuilder<> Builder(BI);
2387 
2388   // The new loop exit condition should reuse the debug location of the
2389   // original loop exit condition.
2390   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
2391     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
2392 
2393   // LFTR can ignore IV overflow and truncate to the width of
2394   // BECount. This avoids materializing the add(zext(add)) expression.
2395   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
2396   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
2397   if (CmpIndVarSize > ExitCntSize) {
2398     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2399     const SCEV *ARStart = AR->getStart();
2400     const SCEV *ARStep = AR->getStepRecurrence(*SE);
2401     // For constant IVCount, avoid truncation.
2402     if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
2403       const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
2404       APInt Count = cast<SCEVConstant>(IVCount)->getAPInt();
2405       // Note that the post-inc value of BackedgeTakenCount may have overflowed
2406       // above such that IVCount is now zero.
2407       if (IVCount != BackedgeTakenCount && Count == 0) {
2408         Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
2409         ++Count;
2410       }
2411       else
2412         Count = Count.zext(CmpIndVarSize);
2413       APInt NewLimit;
2414       if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
2415         NewLimit = Start - Count;
2416       else
2417         NewLimit = Start + Count;
2418       ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
2419 
2420       LLVM_DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
2421     } else {
2422       // We try to extend trip count first. If that doesn't work we truncate IV.
2423       // Zext(trunc(IV)) == IV implies equivalence of the following two:
2424       // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If
2425       // one of the two holds, extend the trip count, otherwise we truncate IV.
2426       bool Extended = false;
2427       const SCEV *IV = SE->getSCEV(CmpIndVar);
2428       const SCEV *ZExtTrunc =
2429            SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2430                                                      ExitCnt->getType()),
2431                                  CmpIndVar->getType());
2432 
2433       if (ZExtTrunc == IV) {
2434         Extended = true;
2435         ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
2436                                      "wide.trip.count");
2437       } else {
2438         const SCEV *SExtTrunc =
2439           SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2440                                                     ExitCnt->getType()),
2441                                 CmpIndVar->getType());
2442         if (SExtTrunc == IV) {
2443           Extended = true;
2444           ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
2445                                        "wide.trip.count");
2446         }
2447       }
2448 
2449       if (!Extended)
2450         CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
2451                                         "lftr.wideiv");
2452     }
2453   }
2454   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
2455   Value *OrigCond = BI->getCondition();
2456   // It's tempting to use replaceAllUsesWith here to fully replace the old
2457   // comparison, but that's not immediately safe, since users of the old
2458   // comparison may not be dominated by the new comparison. Instead, just
2459   // update the branch to use the new comparison; in the common case this
2460   // will make old comparison dead.
2461   BI->setCondition(Cond);
2462   DeadInsts.push_back(OrigCond);
2463 
2464   ++NumLFTR;
2465   return true;
2466 }
2467 
2468 //===----------------------------------------------------------------------===//
2469 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2470 //===----------------------------------------------------------------------===//
2471 
2472 /// If there's a single exit block, sink any loop-invariant values that
2473 /// were defined in the preheader but not used inside the loop into the
2474 /// exit block to reduce register pressure in the loop.
2475 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
2476   BasicBlock *ExitBlock = L->getExitBlock();
2477   if (!ExitBlock) return false;
2478 
2479   BasicBlock *Preheader = L->getLoopPreheader();
2480   if (!Preheader) return false;
2481 
2482   bool MadeAnyChanges = false;
2483   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
2484   BasicBlock::iterator I(Preheader->getTerminator());
2485   while (I != Preheader->begin()) {
2486     --I;
2487     // New instructions were inserted at the end of the preheader.
2488     if (isa<PHINode>(I))
2489       break;
2490 
2491     // Don't move instructions which might have side effects, since the side
2492     // effects need to complete before instructions inside the loop.  Also don't
2493     // move instructions which might read memory, since the loop may modify
2494     // memory. Note that it's okay if the instruction might have undefined
2495     // behavior: LoopSimplify guarantees that the preheader dominates the exit
2496     // block.
2497     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2498       continue;
2499 
2500     // Skip debug info intrinsics.
2501     if (isa<DbgInfoIntrinsic>(I))
2502       continue;
2503 
2504     // Skip eh pad instructions.
2505     if (I->isEHPad())
2506       continue;
2507 
2508     // Don't sink alloca: we never want to sink static alloca's out of the
2509     // entry block, and correctly sinking dynamic alloca's requires
2510     // checks for stacksave/stackrestore intrinsics.
2511     // FIXME: Refactor this check somehow?
2512     if (isa<AllocaInst>(I))
2513       continue;
2514 
2515     // Determine if there is a use in or before the loop (direct or
2516     // otherwise).
2517     bool UsedInLoop = false;
2518     for (Use &U : I->uses()) {
2519       Instruction *User = cast<Instruction>(U.getUser());
2520       BasicBlock *UseBB = User->getParent();
2521       if (PHINode *P = dyn_cast<PHINode>(User)) {
2522         unsigned i =
2523           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2524         UseBB = P->getIncomingBlock(i);
2525       }
2526       if (UseBB == Preheader || L->contains(UseBB)) {
2527         UsedInLoop = true;
2528         break;
2529       }
2530     }
2531 
2532     // If there is, the def must remain in the preheader.
2533     if (UsedInLoop)
2534       continue;
2535 
2536     // Otherwise, sink it to the exit block.
2537     Instruction *ToMove = &*I;
2538     bool Done = false;
2539 
2540     if (I != Preheader->begin()) {
2541       // Skip debug info intrinsics.
2542       do {
2543         --I;
2544       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2545 
2546       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2547         Done = true;
2548     } else {
2549       Done = true;
2550     }
2551 
2552     MadeAnyChanges = true;
2553     ToMove->moveBefore(*ExitBlock, InsertPt);
2554     if (Done) break;
2555     InsertPt = ToMove->getIterator();
2556   }
2557 
2558   return MadeAnyChanges;
2559 }
2560 
2561 //===----------------------------------------------------------------------===//
2562 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
2563 //===----------------------------------------------------------------------===//
2564 
2565 bool IndVarSimplify::run(Loop *L) {
2566   // We need (and expect!) the incoming loop to be in LCSSA.
2567   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2568          "LCSSA required to run indvars!");
2569   bool Changed = false;
2570 
2571   // If LoopSimplify form is not available, stay out of trouble. Some notes:
2572   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2573   //    canonicalization can be a pessimization without LSR to "clean up"
2574   //    afterwards.
2575   //  - We depend on having a preheader; in particular,
2576   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2577   //    and we're in trouble if we can't find the induction variable even when
2578   //    we've manually inserted one.
2579   //  - LFTR relies on having a single backedge.
2580   if (!L->isLoopSimplifyForm())
2581     return false;
2582 
2583   // If there are any floating-point recurrences, attempt to
2584   // transform them to use integer recurrences.
2585   Changed |= rewriteNonIntegerIVs(L);
2586 
2587   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2588 
2589   // Create a rewriter object which we'll use to transform the code with.
2590   SCEVExpander Rewriter(*SE, DL, "indvars");
2591 #ifndef NDEBUG
2592   Rewriter.setDebugType(DEBUG_TYPE);
2593 #endif
2594 
2595   // Eliminate redundant IV users.
2596   //
2597   // Simplification works best when run before other consumers of SCEV. We
2598   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2599   // other expressions involving loop IVs have been evaluated. This helps SCEV
2600   // set no-wrap flags before normalizing sign/zero extension.
2601   Rewriter.disableCanonicalMode();
2602   Changed |= simplifyAndExtend(L, Rewriter, LI);
2603 
2604   // Check to see if this loop has a computable loop-invariant execution count.
2605   // If so, this means that we can compute the final value of any expressions
2606   // that are recurrent in the loop, and substitute the exit values from the
2607   // loop into any instructions outside of the loop that use the final values of
2608   // the current expressions.
2609   //
2610   if (ReplaceExitValue != NeverRepl &&
2611       !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2612     Changed |= rewriteLoopExitValues(L, Rewriter);
2613 
2614   // Eliminate redundant IV cycles.
2615   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2616 
2617   // If we have a trip count expression, rewrite the loop's exit condition
2618   // using it.  We can currently only handle loops with a single exit.
2619   if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) &&
2620       needsLFTR(L, DT)) {
2621     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
2622     if (IndVar) {
2623       // Check preconditions for proper SCEVExpander operation. SCEV does not
2624       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2625       // pass that uses the SCEVExpander must do it. This does not work well for
2626       // loop passes because SCEVExpander makes assumptions about all loops,
2627       // while LoopPassManager only forces the current loop to be simplified.
2628       //
2629       // FIXME: SCEV expansion has no way to bail out, so the caller must
2630       // explicitly check any assumptions made by SCEV. Brittle.
2631       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2632       if (!AR || AR->getLoop()->getLoopPreheader())
2633         Changed |= linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
2634                                              Rewriter);
2635     }
2636   }
2637   // Clear the rewriter cache, because values that are in the rewriter's cache
2638   // can be deleted in the loop below, causing the AssertingVH in the cache to
2639   // trigger.
2640   Rewriter.clear();
2641 
2642   // Now that we're done iterating through lists, clean up any instructions
2643   // which are now dead.
2644   while (!DeadInsts.empty())
2645     if (Instruction *Inst =
2646             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2647       Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2648 
2649   // The Rewriter may not be used from this point on.
2650 
2651   // Loop-invariant instructions in the preheader that aren't used in the
2652   // loop may be sunk below the loop to reduce register pressure.
2653   Changed |= sinkUnusedInvariants(L);
2654 
2655   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2656   // trip count and therefore can further simplify exit values in addition to
2657   // rewriteLoopExitValues.
2658   Changed |= rewriteFirstIterationLoopExitValues(L);
2659 
2660   // Clean up dead instructions.
2661   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2662 
2663   // Check a post-condition.
2664   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2665          "Indvars did not preserve LCSSA!");
2666 
2667   // Verify that LFTR, and any other change have not interfered with SCEV's
2668   // ability to compute trip count.
2669 #ifndef NDEBUG
2670   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2671     SE->forgetLoop(L);
2672     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2673     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2674         SE->getTypeSizeInBits(NewBECount->getType()))
2675       NewBECount = SE->getTruncateOrNoop(NewBECount,
2676                                          BackedgeTakenCount->getType());
2677     else
2678       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2679                                                  NewBECount->getType());
2680     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2681   }
2682 #endif
2683 
2684   return Changed;
2685 }
2686 
2687 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
2688                                           LoopStandardAnalysisResults &AR,
2689                                           LPMUpdater &) {
2690   Function *F = L.getHeader()->getParent();
2691   const DataLayout &DL = F->getParent()->getDataLayout();
2692 
2693   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI);
2694   if (!IVS.run(&L))
2695     return PreservedAnalyses::all();
2696 
2697   auto PA = getLoopPassPreservedAnalyses();
2698   PA.preserveSet<CFGAnalyses>();
2699   return PA;
2700 }
2701 
2702 namespace {
2703 
2704 struct IndVarSimplifyLegacyPass : public LoopPass {
2705   static char ID; // Pass identification, replacement for typeid
2706 
2707   IndVarSimplifyLegacyPass() : LoopPass(ID) {
2708     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2709   }
2710 
2711   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2712     if (skipLoop(L))
2713       return false;
2714 
2715     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2716     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2717     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2718     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2719     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
2720     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2721     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2722     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2723 
2724     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI);
2725     return IVS.run(L);
2726   }
2727 
2728   void getAnalysisUsage(AnalysisUsage &AU) const override {
2729     AU.setPreservesCFG();
2730     getLoopAnalysisUsage(AU);
2731   }
2732 };
2733 
2734 } // end anonymous namespace
2735 
2736 char IndVarSimplifyLegacyPass::ID = 0;
2737 
2738 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2739                       "Induction Variable Simplification", false, false)
2740 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2741 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2742                     "Induction Variable Simplification", false, false)
2743 
2744 Pass *llvm::createIndVarSimplifyPass() {
2745   return new IndVarSimplifyLegacyPass();
2746 }
2747