1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/Analysis/GlobalsModRef.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/LoopPass.h" 33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 34 #include "llvm/Analysis/ScalarEvolutionExpander.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/PatternMatch.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Transforms/Scalar.h" 51 #include "llvm/Transforms/Scalar/LoopPassManager.h" 52 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 53 #include "llvm/Transforms/Utils/Local.h" 54 #include "llvm/Transforms/Utils/LoopUtils.h" 55 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 56 using namespace llvm; 57 58 #define DEBUG_TYPE "indvars" 59 60 STATISTIC(NumWidened , "Number of indvars widened"); 61 STATISTIC(NumReplaced , "Number of exit values replaced"); 62 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 63 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 64 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 65 66 // Trip count verification can be enabled by default under NDEBUG if we 67 // implement a strong expression equivalence checker in SCEV. Until then, we 68 // use the verify-indvars flag, which may assert in some cases. 69 static cl::opt<bool> VerifyIndvars( 70 "verify-indvars", cl::Hidden, 71 cl::desc("Verify the ScalarEvolution result after running indvars")); 72 73 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 74 75 static cl::opt<ReplaceExitVal> ReplaceExitValue( 76 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 77 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 78 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 79 clEnumValN(OnlyCheapRepl, "cheap", 80 "only replace exit value when the cost is cheap"), 81 clEnumValN(AlwaysRepl, "always", 82 "always replace exit value whenever possible"))); 83 84 static cl::opt<bool> UsePostIncrementRanges( 85 "indvars-post-increment-ranges", cl::Hidden, 86 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 87 cl::init(true)); 88 89 namespace { 90 struct RewritePhi; 91 92 class IndVarSimplify { 93 LoopInfo *LI; 94 ScalarEvolution *SE; 95 DominatorTree *DT; 96 const DataLayout &DL; 97 TargetLibraryInfo *TLI; 98 const TargetTransformInfo *TTI; 99 100 SmallVector<WeakTrackingVH, 16> DeadInsts; 101 bool Changed = false; 102 103 bool isValidRewrite(Value *FromVal, Value *ToVal); 104 105 void handleFloatingPointIV(Loop *L, PHINode *PH); 106 void rewriteNonIntegerIVs(Loop *L); 107 108 void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 109 110 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 111 void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 112 void rewriteFirstIterationLoopExitValues(Loop *L); 113 114 Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 115 PHINode *IndVar, SCEVExpander &Rewriter); 116 117 void sinkUnusedInvariants(Loop *L); 118 119 Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L, 120 Instruction *InsertPt, Type *Ty); 121 122 public: 123 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 124 const DataLayout &DL, TargetLibraryInfo *TLI, 125 TargetTransformInfo *TTI) 126 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} 127 128 bool run(Loop *L); 129 }; 130 } 131 132 /// Return true if the SCEV expansion generated by the rewriter can replace the 133 /// original value. SCEV guarantees that it produces the same value, but the way 134 /// it is produced may be illegal IR. Ideally, this function will only be 135 /// called for verification. 136 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 137 // If an SCEV expression subsumed multiple pointers, its expansion could 138 // reassociate the GEP changing the base pointer. This is illegal because the 139 // final address produced by a GEP chain must be inbounds relative to its 140 // underlying object. Otherwise basic alias analysis, among other things, 141 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 142 // producing an expression involving multiple pointers. Until then, we must 143 // bail out here. 144 // 145 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 146 // because it understands lcssa phis while SCEV does not. 147 Value *FromPtr = FromVal; 148 Value *ToPtr = ToVal; 149 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 150 FromPtr = GEP->getPointerOperand(); 151 } 152 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 153 ToPtr = GEP->getPointerOperand(); 154 } 155 if (FromPtr != FromVal || ToPtr != ToVal) { 156 // Quickly check the common case 157 if (FromPtr == ToPtr) 158 return true; 159 160 // SCEV may have rewritten an expression that produces the GEP's pointer 161 // operand. That's ok as long as the pointer operand has the same base 162 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 163 // base of a recurrence. This handles the case in which SCEV expansion 164 // converts a pointer type recurrence into a nonrecurrent pointer base 165 // indexed by an integer recurrence. 166 167 // If the GEP base pointer is a vector of pointers, abort. 168 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 169 return false; 170 171 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 172 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 173 if (FromBase == ToBase) 174 return true; 175 176 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 177 << *FromBase << " != " << *ToBase << "\n"); 178 179 return false; 180 } 181 return true; 182 } 183 184 /// Determine the insertion point for this user. By default, insert immediately 185 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 186 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 187 /// common dominator for the incoming blocks. 188 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 189 DominatorTree *DT, LoopInfo *LI) { 190 PHINode *PHI = dyn_cast<PHINode>(User); 191 if (!PHI) 192 return User; 193 194 Instruction *InsertPt = nullptr; 195 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 196 if (PHI->getIncomingValue(i) != Def) 197 continue; 198 199 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 200 if (!InsertPt) { 201 InsertPt = InsertBB->getTerminator(); 202 continue; 203 } 204 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 205 InsertPt = InsertBB->getTerminator(); 206 } 207 assert(InsertPt && "Missing phi operand"); 208 209 auto *DefI = dyn_cast<Instruction>(Def); 210 if (!DefI) 211 return InsertPt; 212 213 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 214 215 auto *L = LI->getLoopFor(DefI->getParent()); 216 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 217 218 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 219 if (LI->getLoopFor(DTN->getBlock()) == L) 220 return DTN->getBlock()->getTerminator(); 221 222 llvm_unreachable("DefI dominates InsertPt!"); 223 } 224 225 //===----------------------------------------------------------------------===// 226 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 227 //===----------------------------------------------------------------------===// 228 229 /// Convert APF to an integer, if possible. 230 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 231 bool isExact = false; 232 // See if we can convert this to an int64_t 233 uint64_t UIntVal; 234 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 235 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 236 !isExact) 237 return false; 238 IntVal = UIntVal; 239 return true; 240 } 241 242 /// If the loop has floating induction variable then insert corresponding 243 /// integer induction variable if possible. 244 /// For example, 245 /// for(double i = 0; i < 10000; ++i) 246 /// bar(i) 247 /// is converted into 248 /// for(int i = 0; i < 10000; ++i) 249 /// bar((double)i); 250 /// 251 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 252 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 253 unsigned BackEdge = IncomingEdge^1; 254 255 // Check incoming value. 256 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 257 258 int64_t InitValue; 259 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 260 return; 261 262 // Check IV increment. Reject this PN if increment operation is not 263 // an add or increment value can not be represented by an integer. 264 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 265 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 266 267 // If this is not an add of the PHI with a constantfp, or if the constant fp 268 // is not an integer, bail out. 269 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 270 int64_t IncValue; 271 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 272 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 273 return; 274 275 // Check Incr uses. One user is PN and the other user is an exit condition 276 // used by the conditional terminator. 277 Value::user_iterator IncrUse = Incr->user_begin(); 278 Instruction *U1 = cast<Instruction>(*IncrUse++); 279 if (IncrUse == Incr->user_end()) return; 280 Instruction *U2 = cast<Instruction>(*IncrUse++); 281 if (IncrUse != Incr->user_end()) return; 282 283 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 284 // only used by a branch, we can't transform it. 285 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 286 if (!Compare) 287 Compare = dyn_cast<FCmpInst>(U2); 288 if (!Compare || !Compare->hasOneUse() || 289 !isa<BranchInst>(Compare->user_back())) 290 return; 291 292 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 293 294 // We need to verify that the branch actually controls the iteration count 295 // of the loop. If not, the new IV can overflow and no one will notice. 296 // The branch block must be in the loop and one of the successors must be out 297 // of the loop. 298 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 299 if (!L->contains(TheBr->getParent()) || 300 (L->contains(TheBr->getSuccessor(0)) && 301 L->contains(TheBr->getSuccessor(1)))) 302 return; 303 304 305 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 306 // transform it. 307 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 308 int64_t ExitValue; 309 if (ExitValueVal == nullptr || 310 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 311 return; 312 313 // Find new predicate for integer comparison. 314 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 315 switch (Compare->getPredicate()) { 316 default: return; // Unknown comparison. 317 case CmpInst::FCMP_OEQ: 318 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 319 case CmpInst::FCMP_ONE: 320 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 321 case CmpInst::FCMP_OGT: 322 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 323 case CmpInst::FCMP_OGE: 324 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 325 case CmpInst::FCMP_OLT: 326 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 327 case CmpInst::FCMP_OLE: 328 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 329 } 330 331 // We convert the floating point induction variable to a signed i32 value if 332 // we can. This is only safe if the comparison will not overflow in a way 333 // that won't be trapped by the integer equivalent operations. Check for this 334 // now. 335 // TODO: We could use i64 if it is native and the range requires it. 336 337 // The start/stride/exit values must all fit in signed i32. 338 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 339 return; 340 341 // If not actually striding (add x, 0.0), avoid touching the code. 342 if (IncValue == 0) 343 return; 344 345 // Positive and negative strides have different safety conditions. 346 if (IncValue > 0) { 347 // If we have a positive stride, we require the init to be less than the 348 // exit value. 349 if (InitValue >= ExitValue) 350 return; 351 352 uint32_t Range = uint32_t(ExitValue-InitValue); 353 // Check for infinite loop, either: 354 // while (i <= Exit) or until (i > Exit) 355 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 356 if (++Range == 0) return; // Range overflows. 357 } 358 359 unsigned Leftover = Range % uint32_t(IncValue); 360 361 // If this is an equality comparison, we require that the strided value 362 // exactly land on the exit value, otherwise the IV condition will wrap 363 // around and do things the fp IV wouldn't. 364 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 365 Leftover != 0) 366 return; 367 368 // If the stride would wrap around the i32 before exiting, we can't 369 // transform the IV. 370 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 371 return; 372 373 } else { 374 // If we have a negative stride, we require the init to be greater than the 375 // exit value. 376 if (InitValue <= ExitValue) 377 return; 378 379 uint32_t Range = uint32_t(InitValue-ExitValue); 380 // Check for infinite loop, either: 381 // while (i >= Exit) or until (i < Exit) 382 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 383 if (++Range == 0) return; // Range overflows. 384 } 385 386 unsigned Leftover = Range % uint32_t(-IncValue); 387 388 // If this is an equality comparison, we require that the strided value 389 // exactly land on the exit value, otherwise the IV condition will wrap 390 // around and do things the fp IV wouldn't. 391 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 392 Leftover != 0) 393 return; 394 395 // If the stride would wrap around the i32 before exiting, we can't 396 // transform the IV. 397 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 398 return; 399 } 400 401 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 402 403 // Insert new integer induction variable. 404 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 405 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 406 PN->getIncomingBlock(IncomingEdge)); 407 408 Value *NewAdd = 409 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 410 Incr->getName()+".int", Incr); 411 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 412 413 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 414 ConstantInt::get(Int32Ty, ExitValue), 415 Compare->getName()); 416 417 // In the following deletions, PN may become dead and may be deleted. 418 // Use a WeakTrackingVH to observe whether this happens. 419 WeakTrackingVH WeakPH = PN; 420 421 // Delete the old floating point exit comparison. The branch starts using the 422 // new comparison. 423 NewCompare->takeName(Compare); 424 Compare->replaceAllUsesWith(NewCompare); 425 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 426 427 // Delete the old floating point increment. 428 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 429 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 430 431 // If the FP induction variable still has uses, this is because something else 432 // in the loop uses its value. In order to canonicalize the induction 433 // variable, we chose to eliminate the IV and rewrite it in terms of an 434 // int->fp cast. 435 // 436 // We give preference to sitofp over uitofp because it is faster on most 437 // platforms. 438 if (WeakPH) { 439 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 440 &*PN->getParent()->getFirstInsertionPt()); 441 PN->replaceAllUsesWith(Conv); 442 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 443 } 444 Changed = true; 445 } 446 447 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 448 // First step. Check to see if there are any floating-point recurrences. 449 // If there are, change them into integer recurrences, permitting analysis by 450 // the SCEV routines. 451 // 452 BasicBlock *Header = L->getHeader(); 453 454 SmallVector<WeakTrackingVH, 8> PHIs; 455 for (BasicBlock::iterator I = Header->begin(); 456 PHINode *PN = dyn_cast<PHINode>(I); ++I) 457 PHIs.push_back(PN); 458 459 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 460 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 461 handleFloatingPointIV(L, PN); 462 463 // If the loop previously had floating-point IV, ScalarEvolution 464 // may not have been able to compute a trip count. Now that we've done some 465 // re-writing, the trip count may be computable. 466 if (Changed) 467 SE->forgetLoop(L); 468 } 469 470 namespace { 471 // Collect information about PHI nodes which can be transformed in 472 // rewriteLoopExitValues. 473 struct RewritePhi { 474 PHINode *PN; 475 unsigned Ith; // Ith incoming value. 476 Value *Val; // Exit value after expansion. 477 bool HighCost; // High Cost when expansion. 478 479 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 480 : PN(P), Ith(I), Val(V), HighCost(H) {} 481 }; 482 } 483 484 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, 485 Loop *L, Instruction *InsertPt, 486 Type *ResultTy) { 487 // Before expanding S into an expensive LLVM expression, see if we can use an 488 // already existing value as the expansion for S. 489 if (Value *ExistingValue = Rewriter.getExactExistingExpansion(S, InsertPt, L)) 490 if (ExistingValue->getType() == ResultTy) 491 return ExistingValue; 492 493 // We didn't find anything, fall back to using SCEVExpander. 494 return Rewriter.expandCodeFor(S, ResultTy, InsertPt); 495 } 496 497 //===----------------------------------------------------------------------===// 498 // rewriteLoopExitValues - Optimize IV users outside the loop. 499 // As a side effect, reduces the amount of IV processing within the loop. 500 //===----------------------------------------------------------------------===// 501 502 /// Check to see if this loop has a computable loop-invariant execution count. 503 /// If so, this means that we can compute the final value of any expressions 504 /// that are recurrent in the loop, and substitute the exit values from the loop 505 /// into any instructions outside of the loop that use the final values of the 506 /// current expressions. 507 /// 508 /// This is mostly redundant with the regular IndVarSimplify activities that 509 /// happen later, except that it's more powerful in some cases, because it's 510 /// able to brute-force evaluate arbitrary instructions as long as they have 511 /// constant operands at the beginning of the loop. 512 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 513 // Check a pre-condition. 514 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 515 "Indvars did not preserve LCSSA!"); 516 517 SmallVector<BasicBlock*, 8> ExitBlocks; 518 L->getUniqueExitBlocks(ExitBlocks); 519 520 SmallVector<RewritePhi, 8> RewritePhiSet; 521 // Find all values that are computed inside the loop, but used outside of it. 522 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 523 // the exit blocks of the loop to find them. 524 for (BasicBlock *ExitBB : ExitBlocks) { 525 // If there are no PHI nodes in this exit block, then no values defined 526 // inside the loop are used on this path, skip it. 527 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 528 if (!PN) continue; 529 530 unsigned NumPreds = PN->getNumIncomingValues(); 531 532 // Iterate over all of the PHI nodes. 533 BasicBlock::iterator BBI = ExitBB->begin(); 534 while ((PN = dyn_cast<PHINode>(BBI++))) { 535 if (PN->use_empty()) 536 continue; // dead use, don't replace it 537 538 if (!SE->isSCEVable(PN->getType())) 539 continue; 540 541 // It's necessary to tell ScalarEvolution about this explicitly so that 542 // it can walk the def-use list and forget all SCEVs, as it may not be 543 // watching the PHI itself. Once the new exit value is in place, there 544 // may not be a def-use connection between the loop and every instruction 545 // which got a SCEVAddRecExpr for that loop. 546 SE->forgetValue(PN); 547 548 // Iterate over all of the values in all the PHI nodes. 549 for (unsigned i = 0; i != NumPreds; ++i) { 550 // If the value being merged in is not integer or is not defined 551 // in the loop, skip it. 552 Value *InVal = PN->getIncomingValue(i); 553 if (!isa<Instruction>(InVal)) 554 continue; 555 556 // If this pred is for a subloop, not L itself, skip it. 557 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 558 continue; // The Block is in a subloop, skip it. 559 560 // Check that InVal is defined in the loop. 561 Instruction *Inst = cast<Instruction>(InVal); 562 if (!L->contains(Inst)) 563 continue; 564 565 // Okay, this instruction has a user outside of the current loop 566 // and varies predictably *inside* the loop. Evaluate the value it 567 // contains when the loop exits, if possible. 568 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 569 if (!SE->isLoopInvariant(ExitValue, L) || 570 !isSafeToExpand(ExitValue, *SE)) 571 continue; 572 573 // Computing the value outside of the loop brings no benefit if : 574 // - it is definitely used inside the loop in a way which can not be 575 // optimized away. 576 // - no use outside of the loop can take advantage of hoisting the 577 // computation out of the loop 578 if (ExitValue->getSCEVType()>=scMulExpr) { 579 unsigned NumHardInternalUses = 0; 580 unsigned NumSoftExternalUses = 0; 581 unsigned NumUses = 0; 582 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 583 IB != IE && NumUses <= 6; ++IB) { 584 Instruction *UseInstr = cast<Instruction>(*IB); 585 unsigned Opc = UseInstr->getOpcode(); 586 NumUses++; 587 if (L->contains(UseInstr)) { 588 if (Opc == Instruction::Call || Opc == Instruction::Ret) 589 NumHardInternalUses++; 590 } else { 591 if (Opc == Instruction::PHI) { 592 // Do not count the Phi as a use. LCSSA may have inserted 593 // plenty of trivial ones. 594 NumUses--; 595 for (auto PB = UseInstr->user_begin(), 596 PE = UseInstr->user_end(); 597 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 598 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 599 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 600 NumSoftExternalUses++; 601 } 602 continue; 603 } 604 if (Opc != Instruction::Call && Opc != Instruction::Ret) 605 NumSoftExternalUses++; 606 } 607 } 608 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 609 continue; 610 } 611 612 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 613 Value *ExitVal = 614 expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType()); 615 616 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 617 << " LoopVal = " << *Inst << "\n"); 618 619 if (!isValidRewrite(Inst, ExitVal)) { 620 DeadInsts.push_back(ExitVal); 621 continue; 622 } 623 624 // Collect all the candidate PHINodes to be rewritten. 625 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 626 } 627 } 628 } 629 630 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 631 632 // Transformation. 633 for (const RewritePhi &Phi : RewritePhiSet) { 634 PHINode *PN = Phi.PN; 635 Value *ExitVal = Phi.Val; 636 637 // Only do the rewrite when the ExitValue can be expanded cheaply. 638 // If LoopCanBeDel is true, rewrite exit value aggressively. 639 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 640 DeadInsts.push_back(ExitVal); 641 continue; 642 } 643 644 Changed = true; 645 ++NumReplaced; 646 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 647 PN->setIncomingValue(Phi.Ith, ExitVal); 648 649 // If this instruction is dead now, delete it. Don't do it now to avoid 650 // invalidating iterators. 651 if (isInstructionTriviallyDead(Inst, TLI)) 652 DeadInsts.push_back(Inst); 653 654 // Replace PN with ExitVal if that is legal and does not break LCSSA. 655 if (PN->getNumIncomingValues() == 1 && 656 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 657 PN->replaceAllUsesWith(ExitVal); 658 PN->eraseFromParent(); 659 } 660 } 661 662 // The insertion point instruction may have been deleted; clear it out 663 // so that the rewriter doesn't trip over it later. 664 Rewriter.clearInsertPoint(); 665 } 666 667 //===---------------------------------------------------------------------===// 668 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 669 // they will exit at the first iteration. 670 //===---------------------------------------------------------------------===// 671 672 /// Check to see if this loop has loop invariant conditions which lead to loop 673 /// exits. If so, we know that if the exit path is taken, it is at the first 674 /// loop iteration. This lets us predict exit values of PHI nodes that live in 675 /// loop header. 676 void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 677 // Verify the input to the pass is already in LCSSA form. 678 assert(L->isLCSSAForm(*DT)); 679 680 SmallVector<BasicBlock *, 8> ExitBlocks; 681 L->getUniqueExitBlocks(ExitBlocks); 682 auto *LoopHeader = L->getHeader(); 683 assert(LoopHeader && "Invalid loop"); 684 685 for (auto *ExitBB : ExitBlocks) { 686 BasicBlock::iterator BBI = ExitBB->begin(); 687 // If there are no more PHI nodes in this exit block, then no more 688 // values defined inside the loop are used on this path. 689 while (auto *PN = dyn_cast<PHINode>(BBI++)) { 690 for (unsigned IncomingValIdx = 0, E = PN->getNumIncomingValues(); 691 IncomingValIdx != E; ++IncomingValIdx) { 692 auto *IncomingBB = PN->getIncomingBlock(IncomingValIdx); 693 694 // We currently only support loop exits from loop header. If the 695 // incoming block is not loop header, we need to recursively check 696 // all conditions starting from loop header are loop invariants. 697 // Additional support might be added in the future. 698 if (IncomingBB != LoopHeader) 699 continue; 700 701 // Get condition that leads to the exit path. 702 auto *TermInst = IncomingBB->getTerminator(); 703 704 Value *Cond = nullptr; 705 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 706 // Must be a conditional branch, otherwise the block 707 // should not be in the loop. 708 Cond = BI->getCondition(); 709 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 710 Cond = SI->getCondition(); 711 else 712 continue; 713 714 if (!L->isLoopInvariant(Cond)) 715 continue; 716 717 auto *ExitVal = 718 dyn_cast<PHINode>(PN->getIncomingValue(IncomingValIdx)); 719 720 // Only deal with PHIs. 721 if (!ExitVal) 722 continue; 723 724 // If ExitVal is a PHI on the loop header, then we know its 725 // value along this exit because the exit can only be taken 726 // on the first iteration. 727 auto *LoopPreheader = L->getLoopPreheader(); 728 assert(LoopPreheader && "Invalid loop"); 729 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 730 if (PreheaderIdx != -1) { 731 assert(ExitVal->getParent() == LoopHeader && 732 "ExitVal must be in loop header"); 733 PN->setIncomingValue(IncomingValIdx, 734 ExitVal->getIncomingValue(PreheaderIdx)); 735 } 736 } 737 } 738 } 739 } 740 741 /// Check whether it is possible to delete the loop after rewriting exit 742 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 743 /// aggressively. 744 bool IndVarSimplify::canLoopBeDeleted( 745 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 746 747 BasicBlock *Preheader = L->getLoopPreheader(); 748 // If there is no preheader, the loop will not be deleted. 749 if (!Preheader) 750 return false; 751 752 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 753 // We obviate multiple ExitingBlocks case for simplicity. 754 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 755 // after exit value rewriting, we can enhance the logic here. 756 SmallVector<BasicBlock *, 4> ExitingBlocks; 757 L->getExitingBlocks(ExitingBlocks); 758 SmallVector<BasicBlock *, 8> ExitBlocks; 759 L->getUniqueExitBlocks(ExitBlocks); 760 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 761 return false; 762 763 BasicBlock *ExitBlock = ExitBlocks[0]; 764 BasicBlock::iterator BI = ExitBlock->begin(); 765 while (PHINode *P = dyn_cast<PHINode>(BI)) { 766 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 767 768 // If the Incoming value of P is found in RewritePhiSet, we know it 769 // could be rewritten to use a loop invariant value in transformation 770 // phase later. Skip it in the loop invariant check below. 771 bool found = false; 772 for (const RewritePhi &Phi : RewritePhiSet) { 773 unsigned i = Phi.Ith; 774 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 775 found = true; 776 break; 777 } 778 } 779 780 Instruction *I; 781 if (!found && (I = dyn_cast<Instruction>(Incoming))) 782 if (!L->hasLoopInvariantOperands(I)) 783 return false; 784 785 ++BI; 786 } 787 788 for (auto *BB : L->blocks()) 789 if (any_of(*BB, [](Instruction &I) { return I.mayHaveSideEffects(); })) 790 return false; 791 792 return true; 793 } 794 795 //===----------------------------------------------------------------------===// 796 // IV Widening - Extend the width of an IV to cover its widest uses. 797 //===----------------------------------------------------------------------===// 798 799 namespace { 800 // Collect information about induction variables that are used by sign/zero 801 // extend operations. This information is recorded by CollectExtend and provides 802 // the input to WidenIV. 803 struct WideIVInfo { 804 PHINode *NarrowIV = nullptr; 805 Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext 806 bool IsSigned = false; // Was a sext user seen before a zext? 807 }; 808 } 809 810 /// Update information about the induction variable that is extended by this 811 /// sign or zero extend operation. This is used to determine the final width of 812 /// the IV before actually widening it. 813 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 814 const TargetTransformInfo *TTI) { 815 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 816 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 817 return; 818 819 Type *Ty = Cast->getType(); 820 uint64_t Width = SE->getTypeSizeInBits(Ty); 821 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 822 return; 823 824 // Check that `Cast` actually extends the induction variable (we rely on this 825 // later). This takes care of cases where `Cast` is extending a truncation of 826 // the narrow induction variable, and thus can end up being narrower than the 827 // "narrow" induction variable. 828 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 829 if (NarrowIVWidth >= Width) 830 return; 831 832 // Cast is either an sext or zext up to this point. 833 // We should not widen an indvar if arithmetics on the wider indvar are more 834 // expensive than those on the narrower indvar. We check only the cost of ADD 835 // because at least an ADD is required to increment the induction variable. We 836 // could compute more comprehensively the cost of all instructions on the 837 // induction variable when necessary. 838 if (TTI && 839 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 840 TTI->getArithmeticInstrCost(Instruction::Add, 841 Cast->getOperand(0)->getType())) { 842 return; 843 } 844 845 if (!WI.WidestNativeType) { 846 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 847 WI.IsSigned = IsSigned; 848 return; 849 } 850 851 // We extend the IV to satisfy the sign of its first user, arbitrarily. 852 if (WI.IsSigned != IsSigned) 853 return; 854 855 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 856 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 857 } 858 859 namespace { 860 861 /// Record a link in the Narrow IV def-use chain along with the WideIV that 862 /// computes the same value as the Narrow IV def. This avoids caching Use* 863 /// pointers. 864 struct NarrowIVDefUse { 865 Instruction *NarrowDef = nullptr; 866 Instruction *NarrowUse = nullptr; 867 Instruction *WideDef = nullptr; 868 869 // True if the narrow def is never negative. Tracking this information lets 870 // us use a sign extension instead of a zero extension or vice versa, when 871 // profitable and legal. 872 bool NeverNegative = false; 873 874 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 875 bool NeverNegative) 876 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 877 NeverNegative(NeverNegative) {} 878 }; 879 880 /// The goal of this transform is to remove sign and zero extends without 881 /// creating any new induction variables. To do this, it creates a new phi of 882 /// the wider type and redirects all users, either removing extends or inserting 883 /// truncs whenever we stop propagating the type. 884 /// 885 class WidenIV { 886 // Parameters 887 PHINode *OrigPhi; 888 Type *WideType; 889 890 // Context 891 LoopInfo *LI; 892 Loop *L; 893 ScalarEvolution *SE; 894 DominatorTree *DT; 895 896 // Does the module have any calls to the llvm.experimental.guard intrinsic 897 // at all? If not we can avoid scanning instructions looking for guards. 898 bool HasGuards; 899 900 // Result 901 PHINode *WidePhi; 902 Instruction *WideInc; 903 const SCEV *WideIncExpr; 904 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 905 906 SmallPtrSet<Instruction *,16> Widened; 907 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 908 909 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 910 // A map tracking the kind of extension used to widen each narrow IV 911 // and narrow IV user. 912 // Key: pointer to a narrow IV or IV user. 913 // Value: the kind of extension used to widen this Instruction. 914 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 915 916 typedef std::pair<AssertingVH<Value>, AssertingVH<Instruction>> DefUserPair; 917 // A map with control-dependent ranges for post increment IV uses. The key is 918 // a pair of IV def and a use of this def denoting the context. The value is 919 // a ConstantRange representing possible values of the def at the given 920 // context. 921 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 922 923 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 924 Instruction *UseI) { 925 DefUserPair Key(Def, UseI); 926 auto It = PostIncRangeInfos.find(Key); 927 return It == PostIncRangeInfos.end() 928 ? Optional<ConstantRange>(None) 929 : Optional<ConstantRange>(It->second); 930 } 931 932 void calculatePostIncRanges(PHINode *OrigPhi); 933 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 934 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 935 DefUserPair Key(Def, UseI); 936 auto It = PostIncRangeInfos.find(Key); 937 if (It == PostIncRangeInfos.end()) 938 PostIncRangeInfos.insert({Key, R}); 939 else 940 It->second = R.intersectWith(It->second); 941 } 942 943 public: 944 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 945 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 946 bool HasGuards) 947 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 948 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 949 HasGuards(HasGuards), WidePhi(nullptr), WideInc(nullptr), 950 WideIncExpr(nullptr), DeadInsts(DI) { 951 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 952 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 953 } 954 955 PHINode *createWideIV(SCEVExpander &Rewriter); 956 957 protected: 958 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 959 Instruction *Use); 960 961 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 962 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 963 const SCEVAddRecExpr *WideAR); 964 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 965 966 ExtendKind getExtendKind(Instruction *I); 967 968 typedef std::pair<const SCEVAddRecExpr *, ExtendKind> WidenedRecTy; 969 970 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 971 972 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 973 974 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 975 unsigned OpCode) const; 976 977 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 978 979 bool widenLoopCompare(NarrowIVDefUse DU); 980 981 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 982 }; 983 } // anonymous namespace 984 985 /// Perform a quick domtree based check for loop invariance assuming that V is 986 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 987 /// purpose. 988 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 989 Instruction *Inst = dyn_cast<Instruction>(V); 990 if (!Inst) 991 return true; 992 993 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 994 } 995 996 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 997 bool IsSigned, Instruction *Use) { 998 // Set the debug location and conservative insertion point. 999 IRBuilder<> Builder(Use); 1000 // Hoist the insertion point into loop preheaders as far as possible. 1001 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1002 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 1003 L = L->getParentLoop()) 1004 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1005 1006 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1007 Builder.CreateZExt(NarrowOper, WideType); 1008 } 1009 1010 /// Instantiate a wide operation to replace a narrow operation. This only needs 1011 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1012 /// 0 for any operation we decide not to clone. 1013 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 1014 const SCEVAddRecExpr *WideAR) { 1015 unsigned Opcode = DU.NarrowUse->getOpcode(); 1016 switch (Opcode) { 1017 default: 1018 return nullptr; 1019 case Instruction::Add: 1020 case Instruction::Mul: 1021 case Instruction::UDiv: 1022 case Instruction::Sub: 1023 return cloneArithmeticIVUser(DU, WideAR); 1024 1025 case Instruction::And: 1026 case Instruction::Or: 1027 case Instruction::Xor: 1028 case Instruction::Shl: 1029 case Instruction::LShr: 1030 case Instruction::AShr: 1031 return cloneBitwiseIVUser(DU); 1032 } 1033 } 1034 1035 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 1036 Instruction *NarrowUse = DU.NarrowUse; 1037 Instruction *NarrowDef = DU.NarrowDef; 1038 Instruction *WideDef = DU.WideDef; 1039 1040 DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1041 1042 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1043 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1044 // invariant and will be folded or hoisted. If it actually comes from a 1045 // widened IV, it should be removed during a future call to widenIVUse. 1046 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1047 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1048 ? WideDef 1049 : createExtendInst(NarrowUse->getOperand(0), WideType, 1050 IsSigned, NarrowUse); 1051 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1052 ? WideDef 1053 : createExtendInst(NarrowUse->getOperand(1), WideType, 1054 IsSigned, NarrowUse); 1055 1056 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1057 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1058 NarrowBO->getName()); 1059 IRBuilder<> Builder(NarrowUse); 1060 Builder.Insert(WideBO); 1061 WideBO->copyIRFlags(NarrowBO); 1062 return WideBO; 1063 } 1064 1065 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1066 const SCEVAddRecExpr *WideAR) { 1067 Instruction *NarrowUse = DU.NarrowUse; 1068 Instruction *NarrowDef = DU.NarrowDef; 1069 Instruction *WideDef = DU.WideDef; 1070 1071 DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1072 1073 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1074 1075 // We're trying to find X such that 1076 // 1077 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1078 // 1079 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1080 // and check using SCEV if any of them are correct. 1081 1082 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1083 // correct solution to X. 1084 auto GuessNonIVOperand = [&](bool SignExt) { 1085 const SCEV *WideLHS; 1086 const SCEV *WideRHS; 1087 1088 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1089 if (SignExt) 1090 return SE->getSignExtendExpr(S, Ty); 1091 return SE->getZeroExtendExpr(S, Ty); 1092 }; 1093 1094 if (IVOpIdx == 0) { 1095 WideLHS = SE->getSCEV(WideDef); 1096 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1097 WideRHS = GetExtend(NarrowRHS, WideType); 1098 } else { 1099 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1100 WideLHS = GetExtend(NarrowLHS, WideType); 1101 WideRHS = SE->getSCEV(WideDef); 1102 } 1103 1104 // WideUse is "WideDef `op.wide` X" as described in the comment. 1105 const SCEV *WideUse = nullptr; 1106 1107 switch (NarrowUse->getOpcode()) { 1108 default: 1109 llvm_unreachable("No other possibility!"); 1110 1111 case Instruction::Add: 1112 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1113 break; 1114 1115 case Instruction::Mul: 1116 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1117 break; 1118 1119 case Instruction::UDiv: 1120 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1121 break; 1122 1123 case Instruction::Sub: 1124 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1125 break; 1126 } 1127 1128 return WideUse == WideAR; 1129 }; 1130 1131 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1132 if (!GuessNonIVOperand(SignExtend)) { 1133 SignExtend = !SignExtend; 1134 if (!GuessNonIVOperand(SignExtend)) 1135 return nullptr; 1136 } 1137 1138 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1139 ? WideDef 1140 : createExtendInst(NarrowUse->getOperand(0), WideType, 1141 SignExtend, NarrowUse); 1142 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1143 ? WideDef 1144 : createExtendInst(NarrowUse->getOperand(1), WideType, 1145 SignExtend, NarrowUse); 1146 1147 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1148 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1149 NarrowBO->getName()); 1150 1151 IRBuilder<> Builder(NarrowUse); 1152 Builder.Insert(WideBO); 1153 WideBO->copyIRFlags(NarrowBO); 1154 return WideBO; 1155 } 1156 1157 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1158 auto It = ExtendKindMap.find(I); 1159 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1160 return It->second; 1161 } 1162 1163 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1164 unsigned OpCode) const { 1165 if (OpCode == Instruction::Add) 1166 return SE->getAddExpr(LHS, RHS); 1167 if (OpCode == Instruction::Sub) 1168 return SE->getMinusSCEV(LHS, RHS); 1169 if (OpCode == Instruction::Mul) 1170 return SE->getMulExpr(LHS, RHS); 1171 1172 llvm_unreachable("Unsupported opcode."); 1173 } 1174 1175 /// No-wrap operations can transfer sign extension of their result to their 1176 /// operands. Generate the SCEV value for the widened operation without 1177 /// actually modifying the IR yet. If the expression after extending the 1178 /// operands is an AddRec for this loop, return the AddRec and the kind of 1179 /// extension used. 1180 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1181 1182 // Handle the common case of add<nsw/nuw> 1183 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1184 // Only Add/Sub/Mul instructions supported yet. 1185 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1186 OpCode != Instruction::Mul) 1187 return {nullptr, Unknown}; 1188 1189 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1190 // if extending the other will lead to a recurrence. 1191 const unsigned ExtendOperIdx = 1192 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1193 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1194 1195 const SCEV *ExtendOperExpr = nullptr; 1196 const OverflowingBinaryOperator *OBO = 1197 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1198 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1199 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1200 ExtendOperExpr = SE->getSignExtendExpr( 1201 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1202 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1203 ExtendOperExpr = SE->getZeroExtendExpr( 1204 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1205 else 1206 return {nullptr, Unknown}; 1207 1208 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1209 // flags. This instruction may be guarded by control flow that the no-wrap 1210 // behavior depends on. Non-control-equivalent instructions can be mapped to 1211 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1212 // semantics to those operations. 1213 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1214 const SCEV *rhs = ExtendOperExpr; 1215 1216 // Let's swap operands to the initial order for the case of non-commutative 1217 // operations, like SUB. See PR21014. 1218 if (ExtendOperIdx == 0) 1219 std::swap(lhs, rhs); 1220 const SCEVAddRecExpr *AddRec = 1221 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1222 1223 if (!AddRec || AddRec->getLoop() != L) 1224 return {nullptr, Unknown}; 1225 1226 return {AddRec, ExtKind}; 1227 } 1228 1229 /// Is this instruction potentially interesting for further simplification after 1230 /// widening it's type? In other words, can the extend be safely hoisted out of 1231 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1232 /// so, return the extended recurrence and the kind of extension used. Otherwise 1233 /// return {nullptr, Unknown}. 1234 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) { 1235 if (!SE->isSCEVable(DU.NarrowUse->getType())) 1236 return {nullptr, Unknown}; 1237 1238 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1239 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1240 SE->getTypeSizeInBits(WideType)) { 1241 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1242 // index. So don't follow this use. 1243 return {nullptr, Unknown}; 1244 } 1245 1246 const SCEV *WideExpr; 1247 ExtendKind ExtKind; 1248 if (DU.NeverNegative) { 1249 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1250 if (isa<SCEVAddRecExpr>(WideExpr)) 1251 ExtKind = SignExtended; 1252 else { 1253 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1254 ExtKind = ZeroExtended; 1255 } 1256 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1257 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1258 ExtKind = SignExtended; 1259 } else { 1260 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1261 ExtKind = ZeroExtended; 1262 } 1263 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1264 if (!AddRec || AddRec->getLoop() != L) 1265 return {nullptr, Unknown}; 1266 return {AddRec, ExtKind}; 1267 } 1268 1269 /// This IV user cannot be widen. Replace this use of the original narrow IV 1270 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1271 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1272 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef 1273 << " for user " << *DU.NarrowUse << "\n"); 1274 IRBuilder<> Builder( 1275 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1276 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1277 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1278 } 1279 1280 /// If the narrow use is a compare instruction, then widen the compare 1281 // (and possibly the other operand). The extend operation is hoisted into the 1282 // loop preheader as far as possible. 1283 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1284 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1285 if (!Cmp) 1286 return false; 1287 1288 // We can legally widen the comparison in the following two cases: 1289 // 1290 // - The signedness of the IV extension and comparison match 1291 // 1292 // - The narrow IV is always positive (and thus its sign extension is equal 1293 // to its zero extension). For instance, let's say we're zero extending 1294 // %narrow for the following use 1295 // 1296 // icmp slt i32 %narrow, %val ... (A) 1297 // 1298 // and %narrow is always positive. Then 1299 // 1300 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1301 // == icmp slt i32 zext(%narrow), sext(%val) 1302 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1303 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1304 return false; 1305 1306 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1307 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1308 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1309 assert (CastWidth <= IVWidth && "Unexpected width while widening compare."); 1310 1311 // Widen the compare instruction. 1312 IRBuilder<> Builder( 1313 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1314 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1315 1316 // Widen the other operand of the compare, if necessary. 1317 if (CastWidth < IVWidth) { 1318 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1319 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1320 } 1321 return true; 1322 } 1323 1324 /// Determine whether an individual user of the narrow IV can be widened. If so, 1325 /// return the wide clone of the user. 1326 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1327 assert(ExtendKindMap.count(DU.NarrowDef) && 1328 "Should already know the kind of extension used to widen NarrowDef"); 1329 1330 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1331 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1332 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1333 // For LCSSA phis, sink the truncate outside the loop. 1334 // After SimplifyCFG most loop exit targets have a single predecessor. 1335 // Otherwise fall back to a truncate within the loop. 1336 if (UsePhi->getNumOperands() != 1) 1337 truncateIVUse(DU, DT, LI); 1338 else { 1339 // Widening the PHI requires us to insert a trunc. The logical place 1340 // for this trunc is in the same BB as the PHI. This is not possible if 1341 // the BB is terminated by a catchswitch. 1342 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1343 return nullptr; 1344 1345 PHINode *WidePhi = 1346 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1347 UsePhi); 1348 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1349 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1350 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1351 UsePhi->replaceAllUsesWith(Trunc); 1352 DeadInsts.emplace_back(UsePhi); 1353 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi 1354 << " to " << *WidePhi << "\n"); 1355 } 1356 return nullptr; 1357 } 1358 } 1359 1360 // This narrow use can be widened by a sext if it's non-negative or its narrow 1361 // def was widended by a sext. Same for zext. 1362 auto canWidenBySExt = [&]() { 1363 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1364 }; 1365 auto canWidenByZExt = [&]() { 1366 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1367 }; 1368 1369 // Our raison d'etre! Eliminate sign and zero extension. 1370 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1371 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1372 Value *NewDef = DU.WideDef; 1373 if (DU.NarrowUse->getType() != WideType) { 1374 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1375 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1376 if (CastWidth < IVWidth) { 1377 // The cast isn't as wide as the IV, so insert a Trunc. 1378 IRBuilder<> Builder(DU.NarrowUse); 1379 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1380 } 1381 else { 1382 // A wider extend was hidden behind a narrower one. This may induce 1383 // another round of IV widening in which the intermediate IV becomes 1384 // dead. It should be very rare. 1385 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1386 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1387 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1388 NewDef = DU.NarrowUse; 1389 } 1390 } 1391 if (NewDef != DU.NarrowUse) { 1392 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1393 << " replaced by " << *DU.WideDef << "\n"); 1394 ++NumElimExt; 1395 DU.NarrowUse->replaceAllUsesWith(NewDef); 1396 DeadInsts.emplace_back(DU.NarrowUse); 1397 } 1398 // Now that the extend is gone, we want to expose it's uses for potential 1399 // further simplification. We don't need to directly inform SimplifyIVUsers 1400 // of the new users, because their parent IV will be processed later as a 1401 // new loop phi. If we preserved IVUsers analysis, we would also want to 1402 // push the uses of WideDef here. 1403 1404 // No further widening is needed. The deceased [sz]ext had done it for us. 1405 return nullptr; 1406 } 1407 1408 // Does this user itself evaluate to a recurrence after widening? 1409 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1410 if (!WideAddRec.first) 1411 WideAddRec = getWideRecurrence(DU); 1412 1413 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1414 if (!WideAddRec.first) { 1415 // If use is a loop condition, try to promote the condition instead of 1416 // truncating the IV first. 1417 if (widenLoopCompare(DU)) 1418 return nullptr; 1419 1420 // This user does not evaluate to a recurrence after widening, so don't 1421 // follow it. Instead insert a Trunc to kill off the original use, 1422 // eventually isolating the original narrow IV so it can be removed. 1423 truncateIVUse(DU, DT, LI); 1424 return nullptr; 1425 } 1426 // Assume block terminators cannot evaluate to a recurrence. We can't to 1427 // insert a Trunc after a terminator if there happens to be a critical edge. 1428 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1429 "SCEV is not expected to evaluate a block terminator"); 1430 1431 // Reuse the IV increment that SCEVExpander created as long as it dominates 1432 // NarrowUse. 1433 Instruction *WideUse = nullptr; 1434 if (WideAddRec.first == WideIncExpr && 1435 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1436 WideUse = WideInc; 1437 else { 1438 WideUse = cloneIVUser(DU, WideAddRec.first); 1439 if (!WideUse) 1440 return nullptr; 1441 } 1442 // Evaluation of WideAddRec ensured that the narrow expression could be 1443 // extended outside the loop without overflow. This suggests that the wide use 1444 // evaluates to the same expression as the extended narrow use, but doesn't 1445 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1446 // where it fails, we simply throw away the newly created wide use. 1447 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1448 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1449 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first << "\n"); 1450 DeadInsts.emplace_back(WideUse); 1451 return nullptr; 1452 } 1453 1454 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1455 // Returning WideUse pushes it on the worklist. 1456 return WideUse; 1457 } 1458 1459 /// Add eligible users of NarrowDef to NarrowIVUsers. 1460 /// 1461 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1462 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1463 bool NonNegativeDef = 1464 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1465 SE->getConstant(NarrowSCEV->getType(), 0)); 1466 for (User *U : NarrowDef->users()) { 1467 Instruction *NarrowUser = cast<Instruction>(U); 1468 1469 // Handle data flow merges and bizarre phi cycles. 1470 if (!Widened.insert(NarrowUser).second) 1471 continue; 1472 1473 bool NonNegativeUse = false; 1474 if (!NonNegativeDef) { 1475 // We might have a control-dependent range information for this context. 1476 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1477 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1478 } 1479 1480 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1481 NonNegativeDef || NonNegativeUse); 1482 } 1483 } 1484 1485 /// Process a single induction variable. First use the SCEVExpander to create a 1486 /// wide induction variable that evaluates to the same recurrence as the 1487 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1488 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1489 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1490 /// 1491 /// It would be simpler to delete uses as they are processed, but we must avoid 1492 /// invalidating SCEV expressions. 1493 /// 1494 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1495 // Is this phi an induction variable? 1496 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1497 if (!AddRec) 1498 return nullptr; 1499 1500 // Widen the induction variable expression. 1501 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1502 ? SE->getSignExtendExpr(AddRec, WideType) 1503 : SE->getZeroExtendExpr(AddRec, WideType); 1504 1505 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1506 "Expect the new IV expression to preserve its type"); 1507 1508 // Can the IV be extended outside the loop without overflow? 1509 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1510 if (!AddRec || AddRec->getLoop() != L) 1511 return nullptr; 1512 1513 // An AddRec must have loop-invariant operands. Since this AddRec is 1514 // materialized by a loop header phi, the expression cannot have any post-loop 1515 // operands, so they must dominate the loop header. 1516 assert( 1517 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1518 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1519 "Loop header phi recurrence inputs do not dominate the loop"); 1520 1521 // Iterate over IV uses (including transitive ones) looking for IV increments 1522 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1523 // the increment calculate control-dependent range information basing on 1524 // dominating conditions inside of the loop (e.g. a range check inside of the 1525 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1526 // 1527 // Control-dependent range information is later used to prove that a narrow 1528 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1529 // this on demand because when pushNarrowIVUsers needs this information some 1530 // of the dominating conditions might be already widened. 1531 if (UsePostIncrementRanges) 1532 calculatePostIncRanges(OrigPhi); 1533 1534 // The rewriter provides a value for the desired IV expression. This may 1535 // either find an existing phi or materialize a new one. Either way, we 1536 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1537 // of the phi-SCC dominates the loop entry. 1538 Instruction *InsertPt = &L->getHeader()->front(); 1539 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1540 1541 // Remembering the WideIV increment generated by SCEVExpander allows 1542 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1543 // employ a general reuse mechanism because the call above is the only call to 1544 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1545 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1546 WideInc = 1547 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1548 WideIncExpr = SE->getSCEV(WideInc); 1549 // Propagate the debug location associated with the original loop increment 1550 // to the new (widened) increment. 1551 auto *OrigInc = 1552 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1553 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1554 } 1555 1556 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1557 ++NumWidened; 1558 1559 // Traverse the def-use chain using a worklist starting at the original IV. 1560 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1561 1562 Widened.insert(OrigPhi); 1563 pushNarrowIVUsers(OrigPhi, WidePhi); 1564 1565 while (!NarrowIVUsers.empty()) { 1566 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1567 1568 // Process a def-use edge. This may replace the use, so don't hold a 1569 // use_iterator across it. 1570 Instruction *WideUse = widenIVUse(DU, Rewriter); 1571 1572 // Follow all def-use edges from the previous narrow use. 1573 if (WideUse) 1574 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1575 1576 // widenIVUse may have removed the def-use edge. 1577 if (DU.NarrowDef->use_empty()) 1578 DeadInsts.emplace_back(DU.NarrowDef); 1579 } 1580 return WidePhi; 1581 } 1582 1583 /// Calculates control-dependent range for the given def at the given context 1584 /// by looking at dominating conditions inside of the loop 1585 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1586 Instruction *NarrowUser) { 1587 using namespace llvm::PatternMatch; 1588 1589 Value *NarrowDefLHS; 1590 const APInt *NarrowDefRHS; 1591 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1592 m_APInt(NarrowDefRHS))) || 1593 !NarrowDefRHS->isNonNegative()) 1594 return; 1595 1596 auto UpdateRangeFromCondition = [&] (Value *Condition, 1597 bool TrueDest) { 1598 CmpInst::Predicate Pred; 1599 Value *CmpRHS; 1600 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 1601 m_Value(CmpRHS)))) 1602 return; 1603 1604 CmpInst::Predicate P = 1605 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 1606 1607 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 1608 auto CmpConstrainedLHSRange = 1609 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 1610 auto NarrowDefRange = 1611 CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS); 1612 1613 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 1614 }; 1615 1616 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 1617 if (!HasGuards) 1618 return; 1619 1620 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 1621 Ctx->getParent()->rend())) { 1622 Value *C = nullptr; 1623 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 1624 UpdateRangeFromCondition(C, /*TrueDest=*/true); 1625 } 1626 }; 1627 1628 UpdateRangeFromGuards(NarrowUser); 1629 1630 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 1631 // If NarrowUserBB is statically unreachable asking dominator queries may 1632 // yield surprising results. (e.g. the block may not have a dom tree node) 1633 if (!DT->isReachableFromEntry(NarrowUserBB)) 1634 return; 1635 1636 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 1637 L->contains(DTB->getBlock()); 1638 DTB = DTB->getIDom()) { 1639 auto *BB = DTB->getBlock(); 1640 auto *TI = BB->getTerminator(); 1641 UpdateRangeFromGuards(TI); 1642 1643 auto *BI = dyn_cast<BranchInst>(TI); 1644 if (!BI || !BI->isConditional()) 1645 continue; 1646 1647 auto *TrueSuccessor = BI->getSuccessor(0); 1648 auto *FalseSuccessor = BI->getSuccessor(1); 1649 1650 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 1651 return BBE.isSingleEdge() && 1652 DT->dominates(BBE, NarrowUser->getParent()); 1653 }; 1654 1655 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 1656 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 1657 1658 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 1659 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 1660 } 1661 } 1662 1663 /// Calculates PostIncRangeInfos map for the given IV 1664 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 1665 SmallPtrSet<Instruction *, 16> Visited; 1666 SmallVector<Instruction *, 6> Worklist; 1667 Worklist.push_back(OrigPhi); 1668 Visited.insert(OrigPhi); 1669 1670 while (!Worklist.empty()) { 1671 Instruction *NarrowDef = Worklist.pop_back_val(); 1672 1673 for (Use &U : NarrowDef->uses()) { 1674 auto *NarrowUser = cast<Instruction>(U.getUser()); 1675 1676 // Don't go looking outside the current loop. 1677 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 1678 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 1679 continue; 1680 1681 if (!Visited.insert(NarrowUser).second) 1682 continue; 1683 1684 Worklist.push_back(NarrowUser); 1685 1686 calculatePostIncRange(NarrowDef, NarrowUser); 1687 } 1688 } 1689 } 1690 1691 //===----------------------------------------------------------------------===// 1692 // Live IV Reduction - Minimize IVs live across the loop. 1693 //===----------------------------------------------------------------------===// 1694 1695 1696 //===----------------------------------------------------------------------===// 1697 // Simplification of IV users based on SCEV evaluation. 1698 //===----------------------------------------------------------------------===// 1699 1700 namespace { 1701 class IndVarSimplifyVisitor : public IVVisitor { 1702 ScalarEvolution *SE; 1703 const TargetTransformInfo *TTI; 1704 PHINode *IVPhi; 1705 1706 public: 1707 WideIVInfo WI; 1708 1709 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1710 const TargetTransformInfo *TTI, 1711 const DominatorTree *DTree) 1712 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1713 DT = DTree; 1714 WI.NarrowIV = IVPhi; 1715 } 1716 1717 // Implement the interface used by simplifyUsersOfIV. 1718 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1719 }; 1720 } 1721 1722 /// Iteratively perform simplification on a worklist of IV users. Each 1723 /// successive simplification may push more users which may themselves be 1724 /// candidates for simplification. 1725 /// 1726 /// Sign/Zero extend elimination is interleaved with IV simplification. 1727 /// 1728 void IndVarSimplify::simplifyAndExtend(Loop *L, 1729 SCEVExpander &Rewriter, 1730 LoopInfo *LI) { 1731 SmallVector<WideIVInfo, 8> WideIVs; 1732 1733 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 1734 Intrinsic::getName(Intrinsic::experimental_guard)); 1735 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 1736 1737 SmallVector<PHINode*, 8> LoopPhis; 1738 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1739 LoopPhis.push_back(cast<PHINode>(I)); 1740 } 1741 // Each round of simplification iterates through the SimplifyIVUsers worklist 1742 // for all current phis, then determines whether any IVs can be 1743 // widened. Widening adds new phis to LoopPhis, inducing another round of 1744 // simplification on the wide IVs. 1745 while (!LoopPhis.empty()) { 1746 // Evaluate as many IV expressions as possible before widening any IVs. This 1747 // forces SCEV to set no-wrap flags before evaluating sign/zero 1748 // extension. The first time SCEV attempts to normalize sign/zero extension, 1749 // the result becomes final. So for the most predictable results, we delay 1750 // evaluation of sign/zero extend evaluation until needed, and avoid running 1751 // other SCEV based analysis prior to simplifyAndExtend. 1752 do { 1753 PHINode *CurrIV = LoopPhis.pop_back_val(); 1754 1755 // Information about sign/zero extensions of CurrIV. 1756 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1757 1758 Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, &Visitor); 1759 1760 if (Visitor.WI.WidestNativeType) { 1761 WideIVs.push_back(Visitor.WI); 1762 } 1763 } while(!LoopPhis.empty()); 1764 1765 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1766 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards); 1767 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1768 Changed = true; 1769 LoopPhis.push_back(WidePhi); 1770 } 1771 } 1772 } 1773 } 1774 1775 //===----------------------------------------------------------------------===// 1776 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1777 //===----------------------------------------------------------------------===// 1778 1779 /// Return true if this loop's backedge taken count expression can be safely and 1780 /// cheaply expanded into an instruction sequence that can be used by 1781 /// linearFunctionTestReplace. 1782 /// 1783 /// TODO: This fails for pointer-type loop counters with greater than one byte 1784 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1785 /// we could skip this check in the case that the LFTR loop counter (chosen by 1786 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1787 /// the loop test to an inequality test by checking the target data's alignment 1788 /// of element types (given that the initial pointer value originates from or is 1789 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1790 /// However, we don't yet have a strong motivation for converting loop tests 1791 /// into inequality tests. 1792 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1793 SCEVExpander &Rewriter) { 1794 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1795 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1796 BackedgeTakenCount->isZero()) 1797 return false; 1798 1799 if (!L->getExitingBlock()) 1800 return false; 1801 1802 // Can't rewrite non-branch yet. 1803 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 1804 return false; 1805 1806 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 1807 return false; 1808 1809 return true; 1810 } 1811 1812 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 1813 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1814 Instruction *IncI = dyn_cast<Instruction>(IncV); 1815 if (!IncI) 1816 return nullptr; 1817 1818 switch (IncI->getOpcode()) { 1819 case Instruction::Add: 1820 case Instruction::Sub: 1821 break; 1822 case Instruction::GetElementPtr: 1823 // An IV counter must preserve its type. 1824 if (IncI->getNumOperands() == 2) 1825 break; 1826 LLVM_FALLTHROUGH; 1827 default: 1828 return nullptr; 1829 } 1830 1831 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1832 if (Phi && Phi->getParent() == L->getHeader()) { 1833 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1834 return Phi; 1835 return nullptr; 1836 } 1837 if (IncI->getOpcode() == Instruction::GetElementPtr) 1838 return nullptr; 1839 1840 // Allow add/sub to be commuted. 1841 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1842 if (Phi && Phi->getParent() == L->getHeader()) { 1843 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1844 return Phi; 1845 } 1846 return nullptr; 1847 } 1848 1849 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1850 static ICmpInst *getLoopTest(Loop *L) { 1851 assert(L->getExitingBlock() && "expected loop exit"); 1852 1853 BasicBlock *LatchBlock = L->getLoopLatch(); 1854 // Don't bother with LFTR if the loop is not properly simplified. 1855 if (!LatchBlock) 1856 return nullptr; 1857 1858 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1859 assert(BI && "expected exit branch"); 1860 1861 return dyn_cast<ICmpInst>(BI->getCondition()); 1862 } 1863 1864 /// linearFunctionTestReplace policy. Return true unless we can show that the 1865 /// current exit test is already sufficiently canonical. 1866 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1867 // Do LFTR to simplify the exit condition to an ICMP. 1868 ICmpInst *Cond = getLoopTest(L); 1869 if (!Cond) 1870 return true; 1871 1872 // Do LFTR to simplify the exit ICMP to EQ/NE 1873 ICmpInst::Predicate Pred = Cond->getPredicate(); 1874 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1875 return true; 1876 1877 // Look for a loop invariant RHS 1878 Value *LHS = Cond->getOperand(0); 1879 Value *RHS = Cond->getOperand(1); 1880 if (!isLoopInvariant(RHS, L, DT)) { 1881 if (!isLoopInvariant(LHS, L, DT)) 1882 return true; 1883 std::swap(LHS, RHS); 1884 } 1885 // Look for a simple IV counter LHS 1886 PHINode *Phi = dyn_cast<PHINode>(LHS); 1887 if (!Phi) 1888 Phi = getLoopPhiForCounter(LHS, L, DT); 1889 1890 if (!Phi) 1891 return true; 1892 1893 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1894 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1895 if (Idx < 0) 1896 return true; 1897 1898 // Do LFTR if the exit condition's IV is *not* a simple counter. 1899 Value *IncV = Phi->getIncomingValue(Idx); 1900 return Phi != getLoopPhiForCounter(IncV, L, DT); 1901 } 1902 1903 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1904 /// down to checking that all operands are constant and listing instructions 1905 /// that may hide undef. 1906 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1907 unsigned Depth) { 1908 if (isa<Constant>(V)) 1909 return !isa<UndefValue>(V); 1910 1911 if (Depth >= 6) 1912 return false; 1913 1914 // Conservatively handle non-constant non-instructions. For example, Arguments 1915 // may be undef. 1916 Instruction *I = dyn_cast<Instruction>(V); 1917 if (!I) 1918 return false; 1919 1920 // Load and return values may be undef. 1921 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1922 return false; 1923 1924 // Optimistically handle other instructions. 1925 for (Value *Op : I->operands()) { 1926 if (!Visited.insert(Op).second) 1927 continue; 1928 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 1929 return false; 1930 } 1931 return true; 1932 } 1933 1934 /// Return true if the given value is concrete. We must prove that undef can 1935 /// never reach it. 1936 /// 1937 /// TODO: If we decide that this is a good approach to checking for undef, we 1938 /// may factor it into a common location. 1939 static bool hasConcreteDef(Value *V) { 1940 SmallPtrSet<Value*, 8> Visited; 1941 Visited.insert(V); 1942 return hasConcreteDefImpl(V, Visited, 0); 1943 } 1944 1945 /// Return true if this IV has any uses other than the (soon to be rewritten) 1946 /// loop exit test. 1947 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1948 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1949 Value *IncV = Phi->getIncomingValue(LatchIdx); 1950 1951 for (User *U : Phi->users()) 1952 if (U != Cond && U != IncV) return false; 1953 1954 for (User *U : IncV->users()) 1955 if (U != Cond && U != Phi) return false; 1956 return true; 1957 } 1958 1959 /// Find an affine IV in canonical form. 1960 /// 1961 /// BECount may be an i8* pointer type. The pointer difference is already 1962 /// valid count without scaling the address stride, so it remains a pointer 1963 /// expression as far as SCEV is concerned. 1964 /// 1965 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1966 /// 1967 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1968 /// 1969 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1970 /// This is difficult in general for SCEV because of potential overflow. But we 1971 /// could at least handle constant BECounts. 1972 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 1973 ScalarEvolution *SE, DominatorTree *DT) { 1974 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1975 1976 Value *Cond = 1977 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1978 1979 // Loop over all of the PHI nodes, looking for a simple counter. 1980 PHINode *BestPhi = nullptr; 1981 const SCEV *BestInit = nullptr; 1982 BasicBlock *LatchBlock = L->getLoopLatch(); 1983 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1984 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1985 1986 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1987 PHINode *Phi = cast<PHINode>(I); 1988 if (!SE->isSCEVable(Phi->getType())) 1989 continue; 1990 1991 // Avoid comparing an integer IV against a pointer Limit. 1992 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1993 continue; 1994 1995 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1996 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1997 continue; 1998 1999 // AR may be a pointer type, while BECount is an integer type. 2000 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 2001 // AR may not be a narrower type, or we may never exit. 2002 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 2003 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 2004 continue; 2005 2006 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 2007 if (!Step || !Step->isOne()) 2008 continue; 2009 2010 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2011 Value *IncV = Phi->getIncomingValue(LatchIdx); 2012 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 2013 continue; 2014 2015 // Avoid reusing a potentially undef value to compute other values that may 2016 // have originally had a concrete definition. 2017 if (!hasConcreteDef(Phi)) { 2018 // We explicitly allow unknown phis as long as they are already used by 2019 // the loop test. In this case we assume that performing LFTR could not 2020 // increase the number of undef users. 2021 if (ICmpInst *Cond = getLoopTest(L)) { 2022 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) && 2023 Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 2024 continue; 2025 } 2026 } 2027 } 2028 const SCEV *Init = AR->getStart(); 2029 2030 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 2031 // Don't force a live loop counter if another IV can be used. 2032 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 2033 continue; 2034 2035 // Prefer to count-from-zero. This is a more "canonical" counter form. It 2036 // also prefers integer to pointer IVs. 2037 if (BestInit->isZero() != Init->isZero()) { 2038 if (BestInit->isZero()) 2039 continue; 2040 } 2041 // If two IVs both count from zero or both count from nonzero then the 2042 // narrower is likely a dead phi that has been widened. Use the wider phi 2043 // to allow the other to be eliminated. 2044 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 2045 continue; 2046 } 2047 BestPhi = Phi; 2048 BestInit = Init; 2049 } 2050 return BestPhi; 2051 } 2052 2053 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 2054 /// the new loop test. 2055 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 2056 SCEVExpander &Rewriter, ScalarEvolution *SE) { 2057 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2058 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 2059 const SCEV *IVInit = AR->getStart(); 2060 2061 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 2062 // finds a valid pointer IV. Sign extend BECount in order to materialize a 2063 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 2064 // the existing GEPs whenever possible. 2065 if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) { 2066 // IVOffset will be the new GEP offset that is interpreted by GEP as a 2067 // signed value. IVCount on the other hand represents the loop trip count, 2068 // which is an unsigned value. FindLoopCounter only allows induction 2069 // variables that have a positive unit stride of one. This means we don't 2070 // have to handle the case of negative offsets (yet) and just need to zero 2071 // extend IVCount. 2072 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 2073 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 2074 2075 // Expand the code for the iteration count. 2076 assert(SE->isLoopInvariant(IVOffset, L) && 2077 "Computed iteration count is not loop invariant!"); 2078 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2079 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 2080 2081 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 2082 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 2083 // We could handle pointer IVs other than i8*, but we need to compensate for 2084 // gep index scaling. See canExpandBackedgeTakenCount comments. 2085 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 2086 cast<PointerType>(GEPBase->getType()) 2087 ->getElementType())->isOne() && 2088 "unit stride pointer IV must be i8*"); 2089 2090 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2091 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 2092 } else { 2093 // In any other case, convert both IVInit and IVCount to integers before 2094 // comparing. This may result in SCEV expansion of pointers, but in practice 2095 // SCEV will fold the pointer arithmetic away as such: 2096 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 2097 // 2098 // Valid Cases: (1) both integers is most common; (2) both may be pointers 2099 // for simple memset-style loops. 2100 // 2101 // IVInit integer and IVCount pointer would only occur if a canonical IV 2102 // were generated on top of case #2, which is not expected. 2103 2104 const SCEV *IVLimit = nullptr; 2105 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 2106 // For non-zero Start, compute IVCount here. 2107 if (AR->getStart()->isZero()) 2108 IVLimit = IVCount; 2109 else { 2110 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 2111 const SCEV *IVInit = AR->getStart(); 2112 2113 // For integer IVs, truncate the IV before computing IVInit + BECount. 2114 if (SE->getTypeSizeInBits(IVInit->getType()) 2115 > SE->getTypeSizeInBits(IVCount->getType())) 2116 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 2117 2118 IVLimit = SE->getAddExpr(IVInit, IVCount); 2119 } 2120 // Expand the code for the iteration count. 2121 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2122 IRBuilder<> Builder(BI); 2123 assert(SE->isLoopInvariant(IVLimit, L) && 2124 "Computed iteration count is not loop invariant!"); 2125 // Ensure that we generate the same type as IndVar, or a smaller integer 2126 // type. In the presence of null pointer values, we have an integer type 2127 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 2128 Type *LimitTy = IVCount->getType()->isPointerTy() ? 2129 IndVar->getType() : IVCount->getType(); 2130 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 2131 } 2132 } 2133 2134 /// This method rewrites the exit condition of the loop to be a canonical != 2135 /// comparison against the incremented loop induction variable. This pass is 2136 /// able to rewrite the exit tests of any loop where the SCEV analysis can 2137 /// determine a loop-invariant trip count of the loop, which is actually a much 2138 /// broader range than just linear tests. 2139 Value *IndVarSimplify:: 2140 linearFunctionTestReplace(Loop *L, 2141 const SCEV *BackedgeTakenCount, 2142 PHINode *IndVar, 2143 SCEVExpander &Rewriter) { 2144 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 2145 2146 // Initialize CmpIndVar and IVCount to their preincremented values. 2147 Value *CmpIndVar = IndVar; 2148 const SCEV *IVCount = BackedgeTakenCount; 2149 2150 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 2151 2152 // If the exiting block is the same as the backedge block, we prefer to 2153 // compare against the post-incremented value, otherwise we must compare 2154 // against the preincremented value. 2155 if (L->getExitingBlock() == L->getLoopLatch()) { 2156 // Add one to the "backedge-taken" count to get the trip count. 2157 // This addition may overflow, which is valid as long as the comparison is 2158 // truncated to BackedgeTakenCount->getType(). 2159 IVCount = SE->getAddExpr(BackedgeTakenCount, 2160 SE->getOne(BackedgeTakenCount->getType())); 2161 // The BackedgeTaken expression contains the number of times that the 2162 // backedge branches to the loop header. This is one less than the 2163 // number of times the loop executes, so use the incremented indvar. 2164 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 2165 } 2166 2167 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 2168 assert(ExitCnt->getType()->isPointerTy() == 2169 IndVar->getType()->isPointerTy() && 2170 "genLoopLimit missed a cast"); 2171 2172 // Insert a new icmp_ne or icmp_eq instruction before the branch. 2173 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2174 ICmpInst::Predicate P; 2175 if (L->contains(BI->getSuccessor(0))) 2176 P = ICmpInst::ICMP_NE; 2177 else 2178 P = ICmpInst::ICMP_EQ; 2179 2180 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 2181 << " LHS:" << *CmpIndVar << '\n' 2182 << " op:\t" 2183 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 2184 << " RHS:\t" << *ExitCnt << "\n" 2185 << " IVCount:\t" << *IVCount << "\n"); 2186 2187 IRBuilder<> Builder(BI); 2188 2189 // The new loop exit condition should reuse the debug location of the 2190 // original loop exit condition. 2191 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 2192 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 2193 2194 // LFTR can ignore IV overflow and truncate to the width of 2195 // BECount. This avoids materializing the add(zext(add)) expression. 2196 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 2197 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 2198 if (CmpIndVarSize > ExitCntSize) { 2199 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2200 const SCEV *ARStart = AR->getStart(); 2201 const SCEV *ARStep = AR->getStepRecurrence(*SE); 2202 // For constant IVCount, avoid truncation. 2203 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 2204 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 2205 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 2206 // Note that the post-inc value of BackedgeTakenCount may have overflowed 2207 // above such that IVCount is now zero. 2208 if (IVCount != BackedgeTakenCount && Count == 0) { 2209 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 2210 ++Count; 2211 } 2212 else 2213 Count = Count.zext(CmpIndVarSize); 2214 APInt NewLimit; 2215 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 2216 NewLimit = Start - Count; 2217 else 2218 NewLimit = Start + Count; 2219 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 2220 2221 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 2222 } else { 2223 // We try to extend trip count first. If that doesn't work we truncate IV. 2224 // Zext(trunc(IV)) == IV implies equivalence of the following two: 2225 // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If 2226 // one of the two holds, extend the trip count, otherwise we truncate IV. 2227 bool Extended = false; 2228 const SCEV *IV = SE->getSCEV(CmpIndVar); 2229 const SCEV *ZExtTrunc = 2230 SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2231 ExitCnt->getType()), 2232 CmpIndVar->getType()); 2233 2234 if (ZExtTrunc == IV) { 2235 Extended = true; 2236 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 2237 "wide.trip.count"); 2238 } else { 2239 const SCEV *SExtTrunc = 2240 SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2241 ExitCnt->getType()), 2242 CmpIndVar->getType()); 2243 if (SExtTrunc == IV) { 2244 Extended = true; 2245 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 2246 "wide.trip.count"); 2247 } 2248 } 2249 2250 if (!Extended) 2251 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 2252 "lftr.wideiv"); 2253 } 2254 } 2255 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 2256 Value *OrigCond = BI->getCondition(); 2257 // It's tempting to use replaceAllUsesWith here to fully replace the old 2258 // comparison, but that's not immediately safe, since users of the old 2259 // comparison may not be dominated by the new comparison. Instead, just 2260 // update the branch to use the new comparison; in the common case this 2261 // will make old comparison dead. 2262 BI->setCondition(Cond); 2263 DeadInsts.push_back(OrigCond); 2264 2265 ++NumLFTR; 2266 Changed = true; 2267 return Cond; 2268 } 2269 2270 //===----------------------------------------------------------------------===// 2271 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2272 //===----------------------------------------------------------------------===// 2273 2274 /// If there's a single exit block, sink any loop-invariant values that 2275 /// were defined in the preheader but not used inside the loop into the 2276 /// exit block to reduce register pressure in the loop. 2277 void IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2278 BasicBlock *ExitBlock = L->getExitBlock(); 2279 if (!ExitBlock) return; 2280 2281 BasicBlock *Preheader = L->getLoopPreheader(); 2282 if (!Preheader) return; 2283 2284 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 2285 BasicBlock::iterator I(Preheader->getTerminator()); 2286 while (I != Preheader->begin()) { 2287 --I; 2288 // New instructions were inserted at the end of the preheader. 2289 if (isa<PHINode>(I)) 2290 break; 2291 2292 // Don't move instructions which might have side effects, since the side 2293 // effects need to complete before instructions inside the loop. Also don't 2294 // move instructions which might read memory, since the loop may modify 2295 // memory. Note that it's okay if the instruction might have undefined 2296 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2297 // block. 2298 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2299 continue; 2300 2301 // Skip debug info intrinsics. 2302 if (isa<DbgInfoIntrinsic>(I)) 2303 continue; 2304 2305 // Skip eh pad instructions. 2306 if (I->isEHPad()) 2307 continue; 2308 2309 // Don't sink alloca: we never want to sink static alloca's out of the 2310 // entry block, and correctly sinking dynamic alloca's requires 2311 // checks for stacksave/stackrestore intrinsics. 2312 // FIXME: Refactor this check somehow? 2313 if (isa<AllocaInst>(I)) 2314 continue; 2315 2316 // Determine if there is a use in or before the loop (direct or 2317 // otherwise). 2318 bool UsedInLoop = false; 2319 for (Use &U : I->uses()) { 2320 Instruction *User = cast<Instruction>(U.getUser()); 2321 BasicBlock *UseBB = User->getParent(); 2322 if (PHINode *P = dyn_cast<PHINode>(User)) { 2323 unsigned i = 2324 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2325 UseBB = P->getIncomingBlock(i); 2326 } 2327 if (UseBB == Preheader || L->contains(UseBB)) { 2328 UsedInLoop = true; 2329 break; 2330 } 2331 } 2332 2333 // If there is, the def must remain in the preheader. 2334 if (UsedInLoop) 2335 continue; 2336 2337 // Otherwise, sink it to the exit block. 2338 Instruction *ToMove = &*I; 2339 bool Done = false; 2340 2341 if (I != Preheader->begin()) { 2342 // Skip debug info intrinsics. 2343 do { 2344 --I; 2345 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2346 2347 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2348 Done = true; 2349 } else { 2350 Done = true; 2351 } 2352 2353 ToMove->moveBefore(*ExitBlock, InsertPt); 2354 if (Done) break; 2355 InsertPt = ToMove->getIterator(); 2356 } 2357 } 2358 2359 //===----------------------------------------------------------------------===// 2360 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2361 //===----------------------------------------------------------------------===// 2362 2363 bool IndVarSimplify::run(Loop *L) { 2364 // We need (and expect!) the incoming loop to be in LCSSA. 2365 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2366 "LCSSA required to run indvars!"); 2367 2368 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2369 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2370 // canonicalization can be a pessimization without LSR to "clean up" 2371 // afterwards. 2372 // - We depend on having a preheader; in particular, 2373 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2374 // and we're in trouble if we can't find the induction variable even when 2375 // we've manually inserted one. 2376 // - LFTR relies on having a single backedge. 2377 if (!L->isLoopSimplifyForm()) 2378 return false; 2379 2380 // If there are any floating-point recurrences, attempt to 2381 // transform them to use integer recurrences. 2382 rewriteNonIntegerIVs(L); 2383 2384 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2385 2386 // Create a rewriter object which we'll use to transform the code with. 2387 SCEVExpander Rewriter(*SE, DL, "indvars"); 2388 #ifndef NDEBUG 2389 Rewriter.setDebugType(DEBUG_TYPE); 2390 #endif 2391 2392 // Eliminate redundant IV users. 2393 // 2394 // Simplification works best when run before other consumers of SCEV. We 2395 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2396 // other expressions involving loop IVs have been evaluated. This helps SCEV 2397 // set no-wrap flags before normalizing sign/zero extension. 2398 Rewriter.disableCanonicalMode(); 2399 simplifyAndExtend(L, Rewriter, LI); 2400 2401 // Check to see if this loop has a computable loop-invariant execution count. 2402 // If so, this means that we can compute the final value of any expressions 2403 // that are recurrent in the loop, and substitute the exit values from the 2404 // loop into any instructions outside of the loop that use the final values of 2405 // the current expressions. 2406 // 2407 if (ReplaceExitValue != NeverRepl && 2408 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2409 rewriteLoopExitValues(L, Rewriter); 2410 2411 // Eliminate redundant IV cycles. 2412 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2413 2414 // If we have a trip count expression, rewrite the loop's exit condition 2415 // using it. We can currently only handle loops with a single exit. 2416 if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) { 2417 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2418 if (IndVar) { 2419 // Check preconditions for proper SCEVExpander operation. SCEV does not 2420 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2421 // pass that uses the SCEVExpander must do it. This does not work well for 2422 // loop passes because SCEVExpander makes assumptions about all loops, 2423 // while LoopPassManager only forces the current loop to be simplified. 2424 // 2425 // FIXME: SCEV expansion has no way to bail out, so the caller must 2426 // explicitly check any assumptions made by SCEV. Brittle. 2427 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2428 if (!AR || AR->getLoop()->getLoopPreheader()) 2429 (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2430 Rewriter); 2431 } 2432 } 2433 // Clear the rewriter cache, because values that are in the rewriter's cache 2434 // can be deleted in the loop below, causing the AssertingVH in the cache to 2435 // trigger. 2436 Rewriter.clear(); 2437 2438 // Now that we're done iterating through lists, clean up any instructions 2439 // which are now dead. 2440 while (!DeadInsts.empty()) 2441 if (Instruction *Inst = 2442 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2443 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2444 2445 // The Rewriter may not be used from this point on. 2446 2447 // Loop-invariant instructions in the preheader that aren't used in the 2448 // loop may be sunk below the loop to reduce register pressure. 2449 sinkUnusedInvariants(L); 2450 2451 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2452 // trip count and therefore can further simplify exit values in addition to 2453 // rewriteLoopExitValues. 2454 rewriteFirstIterationLoopExitValues(L); 2455 2456 // Clean up dead instructions. 2457 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2458 2459 // Check a post-condition. 2460 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2461 "Indvars did not preserve LCSSA!"); 2462 2463 // Verify that LFTR, and any other change have not interfered with SCEV's 2464 // ability to compute trip count. 2465 #ifndef NDEBUG 2466 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2467 SE->forgetLoop(L); 2468 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2469 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2470 SE->getTypeSizeInBits(NewBECount->getType())) 2471 NewBECount = SE->getTruncateOrNoop(NewBECount, 2472 BackedgeTakenCount->getType()); 2473 else 2474 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2475 NewBECount->getType()); 2476 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2477 } 2478 #endif 2479 2480 return Changed; 2481 } 2482 2483 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 2484 LoopStandardAnalysisResults &AR, 2485 LPMUpdater &) { 2486 Function *F = L.getHeader()->getParent(); 2487 const DataLayout &DL = F->getParent()->getDataLayout(); 2488 2489 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI); 2490 if (!IVS.run(&L)) 2491 return PreservedAnalyses::all(); 2492 2493 auto PA = getLoopPassPreservedAnalyses(); 2494 PA.preserveSet<CFGAnalyses>(); 2495 return PA; 2496 } 2497 2498 namespace { 2499 struct IndVarSimplifyLegacyPass : public LoopPass { 2500 static char ID; // Pass identification, replacement for typeid 2501 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2502 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2503 } 2504 2505 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2506 if (skipLoop(L)) 2507 return false; 2508 2509 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2510 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2511 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2512 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2513 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2514 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2515 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2516 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2517 2518 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2519 return IVS.run(L); 2520 } 2521 2522 void getAnalysisUsage(AnalysisUsage &AU) const override { 2523 AU.setPreservesCFG(); 2524 getLoopAnalysisUsage(AU); 2525 } 2526 }; 2527 } 2528 2529 char IndVarSimplifyLegacyPass::ID = 0; 2530 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2531 "Induction Variable Simplification", false, false) 2532 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2533 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2534 "Induction Variable Simplification", false, false) 2535 2536 Pass *llvm::createIndVarSimplifyPass() { 2537 return new IndVarSimplifyLegacyPass(); 2538 } 2539