1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into simpler forms suitable for subsequent
11 // analysis and transformation.
12 //
13 // If the trip count of a loop is computable, this pass also makes the following
14 // changes:
15 //   1. The exit condition for the loop is canonicalized to compare the
16 //      induction value against the exit value.  This turns loops like:
17 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18 //   2. Any use outside of the loop of an expression derived from the indvar
19 //      is changed to compute the derived value outside of the loop, eliminating
20 //      the dependence on the exit value of the induction variable.  If the only
21 //      purpose of the loop is to compute the exit value of some derived
22 //      expression, this transformation will make the loop dead.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/None.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallSet.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/iterator_range.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/LoopPass.h"
41 #include "llvm/Analysis/ScalarEvolution.h"
42 #include "llvm/Analysis/ScalarEvolutionExpander.h"
43 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
44 #include "llvm/Analysis/TargetLibraryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/Analysis/ValueTracking.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/IR/BasicBlock.h"
49 #include "llvm/IR/Constant.h"
50 #include "llvm/IR/ConstantRange.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/IR/PassManager.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/Pass.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Compiler.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/ErrorHandling.h"
77 #include "llvm/Support/MathExtras.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Transforms/Scalar.h"
80 #include "llvm/Transforms/Scalar/LoopPassManager.h"
81 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
82 #include "llvm/Transforms/Utils/LoopUtils.h"
83 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
84 #include <cassert>
85 #include <cstdint>
86 #include <utility>
87 
88 using namespace llvm;
89 
90 #define DEBUG_TYPE "indvars"
91 
92 STATISTIC(NumWidened     , "Number of indvars widened");
93 STATISTIC(NumReplaced    , "Number of exit values replaced");
94 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
95 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
96 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
97 
98 // Trip count verification can be enabled by default under NDEBUG if we
99 // implement a strong expression equivalence checker in SCEV. Until then, we
100 // use the verify-indvars flag, which may assert in some cases.
101 static cl::opt<bool> VerifyIndvars(
102   "verify-indvars", cl::Hidden,
103   cl::desc("Verify the ScalarEvolution result after running indvars"));
104 
105 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, NoHardUse, AlwaysRepl };
106 
107 static cl::opt<ReplaceExitVal> ReplaceExitValue(
108     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
109     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
110     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
111                clEnumValN(OnlyCheapRepl, "cheap",
112                           "only replace exit value when the cost is cheap"),
113                clEnumValN(NoHardUse, "noharduse",
114                           "only replace exit values when loop def likely dead"),
115                clEnumValN(AlwaysRepl, "always",
116                           "always replace exit value whenever possible")));
117 
118 static cl::opt<bool> UsePostIncrementRanges(
119   "indvars-post-increment-ranges", cl::Hidden,
120   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
121   cl::init(true));
122 
123 static cl::opt<bool>
124 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
125             cl::desc("Disable Linear Function Test Replace optimization"));
126 
127 namespace {
128 
129 struct RewritePhi;
130 
131 class IndVarSimplify {
132   LoopInfo *LI;
133   ScalarEvolution *SE;
134   DominatorTree *DT;
135   const DataLayout &DL;
136   TargetLibraryInfo *TLI;
137   const TargetTransformInfo *TTI;
138 
139   SmallVector<WeakTrackingVH, 16> DeadInsts;
140 
141   bool isValidRewrite(Value *FromVal, Value *ToVal);
142 
143   bool handleFloatingPointIV(Loop *L, PHINode *PH);
144   bool rewriteNonIntegerIVs(Loop *L);
145 
146   bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
147   bool optimizeLoopExits(Loop *L);
148 
149   bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
150   bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
151   bool rewriteFirstIterationLoopExitValues(Loop *L);
152   bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) const;
153 
154   bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
155                                  const SCEV *ExitCount,
156                                  PHINode *IndVar, SCEVExpander &Rewriter);
157 
158   bool sinkUnusedInvariants(Loop *L);
159 
160 public:
161   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
162                  const DataLayout &DL, TargetLibraryInfo *TLI,
163                  TargetTransformInfo *TTI)
164       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {}
165 
166   bool run(Loop *L);
167 };
168 
169 } // end anonymous namespace
170 
171 /// Return true if the SCEV expansion generated by the rewriter can replace the
172 /// original value. SCEV guarantees that it produces the same value, but the way
173 /// it is produced may be illegal IR.  Ideally, this function will only be
174 /// called for verification.
175 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
176   // If an SCEV expression subsumed multiple pointers, its expansion could
177   // reassociate the GEP changing the base pointer. This is illegal because the
178   // final address produced by a GEP chain must be inbounds relative to its
179   // underlying object. Otherwise basic alias analysis, among other things,
180   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
181   // producing an expression involving multiple pointers. Until then, we must
182   // bail out here.
183   //
184   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
185   // because it understands lcssa phis while SCEV does not.
186   Value *FromPtr = FromVal;
187   Value *ToPtr = ToVal;
188   if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
189     FromPtr = GEP->getPointerOperand();
190   }
191   if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
192     ToPtr = GEP->getPointerOperand();
193   }
194   if (FromPtr != FromVal || ToPtr != ToVal) {
195     // Quickly check the common case
196     if (FromPtr == ToPtr)
197       return true;
198 
199     // SCEV may have rewritten an expression that produces the GEP's pointer
200     // operand. That's ok as long as the pointer operand has the same base
201     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
202     // base of a recurrence. This handles the case in which SCEV expansion
203     // converts a pointer type recurrence into a nonrecurrent pointer base
204     // indexed by an integer recurrence.
205 
206     // If the GEP base pointer is a vector of pointers, abort.
207     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
208       return false;
209 
210     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
211     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
212     if (FromBase == ToBase)
213       return true;
214 
215     LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase
216                       << " != " << *ToBase << "\n");
217 
218     return false;
219   }
220   return true;
221 }
222 
223 /// Determine the insertion point for this user. By default, insert immediately
224 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
225 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
226 /// common dominator for the incoming blocks. A nullptr can be returned if no
227 /// viable location is found: it may happen if User is a PHI and Def only comes
228 /// to this PHI from unreachable blocks.
229 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
230                                           DominatorTree *DT, LoopInfo *LI) {
231   PHINode *PHI = dyn_cast<PHINode>(User);
232   if (!PHI)
233     return User;
234 
235   Instruction *InsertPt = nullptr;
236   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
237     if (PHI->getIncomingValue(i) != Def)
238       continue;
239 
240     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
241 
242     if (!DT->isReachableFromEntry(InsertBB))
243       continue;
244 
245     if (!InsertPt) {
246       InsertPt = InsertBB->getTerminator();
247       continue;
248     }
249     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
250     InsertPt = InsertBB->getTerminator();
251   }
252 
253   // If we have skipped all inputs, it means that Def only comes to Phi from
254   // unreachable blocks.
255   if (!InsertPt)
256     return nullptr;
257 
258   auto *DefI = dyn_cast<Instruction>(Def);
259   if (!DefI)
260     return InsertPt;
261 
262   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
263 
264   auto *L = LI->getLoopFor(DefI->getParent());
265   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
266 
267   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
268     if (LI->getLoopFor(DTN->getBlock()) == L)
269       return DTN->getBlock()->getTerminator();
270 
271   llvm_unreachable("DefI dominates InsertPt!");
272 }
273 
274 //===----------------------------------------------------------------------===//
275 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
276 //===----------------------------------------------------------------------===//
277 
278 /// Convert APF to an integer, if possible.
279 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
280   bool isExact = false;
281   // See if we can convert this to an int64_t
282   uint64_t UIntVal;
283   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
284                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
285       !isExact)
286     return false;
287   IntVal = UIntVal;
288   return true;
289 }
290 
291 /// If the loop has floating induction variable then insert corresponding
292 /// integer induction variable if possible.
293 /// For example,
294 /// for(double i = 0; i < 10000; ++i)
295 ///   bar(i)
296 /// is converted into
297 /// for(int i = 0; i < 10000; ++i)
298 ///   bar((double)i);
299 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
300   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
301   unsigned BackEdge     = IncomingEdge^1;
302 
303   // Check incoming value.
304   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
305 
306   int64_t InitValue;
307   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
308     return false;
309 
310   // Check IV increment. Reject this PN if increment operation is not
311   // an add or increment value can not be represented by an integer.
312   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
313   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
314 
315   // If this is not an add of the PHI with a constantfp, or if the constant fp
316   // is not an integer, bail out.
317   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
318   int64_t IncValue;
319   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
320       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
321     return false;
322 
323   // Check Incr uses. One user is PN and the other user is an exit condition
324   // used by the conditional terminator.
325   Value::user_iterator IncrUse = Incr->user_begin();
326   Instruction *U1 = cast<Instruction>(*IncrUse++);
327   if (IncrUse == Incr->user_end()) return false;
328   Instruction *U2 = cast<Instruction>(*IncrUse++);
329   if (IncrUse != Incr->user_end()) return false;
330 
331   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
332   // only used by a branch, we can't transform it.
333   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
334   if (!Compare)
335     Compare = dyn_cast<FCmpInst>(U2);
336   if (!Compare || !Compare->hasOneUse() ||
337       !isa<BranchInst>(Compare->user_back()))
338     return false;
339 
340   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
341 
342   // We need to verify that the branch actually controls the iteration count
343   // of the loop.  If not, the new IV can overflow and no one will notice.
344   // The branch block must be in the loop and one of the successors must be out
345   // of the loop.
346   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
347   if (!L->contains(TheBr->getParent()) ||
348       (L->contains(TheBr->getSuccessor(0)) &&
349        L->contains(TheBr->getSuccessor(1))))
350     return false;
351 
352   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
353   // transform it.
354   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
355   int64_t ExitValue;
356   if (ExitValueVal == nullptr ||
357       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
358     return false;
359 
360   // Find new predicate for integer comparison.
361   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
362   switch (Compare->getPredicate()) {
363   default: return false;  // Unknown comparison.
364   case CmpInst::FCMP_OEQ:
365   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
366   case CmpInst::FCMP_ONE:
367   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
368   case CmpInst::FCMP_OGT:
369   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
370   case CmpInst::FCMP_OGE:
371   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
372   case CmpInst::FCMP_OLT:
373   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
374   case CmpInst::FCMP_OLE:
375   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
376   }
377 
378   // We convert the floating point induction variable to a signed i32 value if
379   // we can.  This is only safe if the comparison will not overflow in a way
380   // that won't be trapped by the integer equivalent operations.  Check for this
381   // now.
382   // TODO: We could use i64 if it is native and the range requires it.
383 
384   // The start/stride/exit values must all fit in signed i32.
385   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
386     return false;
387 
388   // If not actually striding (add x, 0.0), avoid touching the code.
389   if (IncValue == 0)
390     return false;
391 
392   // Positive and negative strides have different safety conditions.
393   if (IncValue > 0) {
394     // If we have a positive stride, we require the init to be less than the
395     // exit value.
396     if (InitValue >= ExitValue)
397       return false;
398 
399     uint32_t Range = uint32_t(ExitValue-InitValue);
400     // Check for infinite loop, either:
401     // while (i <= Exit) or until (i > Exit)
402     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
403       if (++Range == 0) return false;  // Range overflows.
404     }
405 
406     unsigned Leftover = Range % uint32_t(IncValue);
407 
408     // If this is an equality comparison, we require that the strided value
409     // exactly land on the exit value, otherwise the IV condition will wrap
410     // around and do things the fp IV wouldn't.
411     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
412         Leftover != 0)
413       return false;
414 
415     // If the stride would wrap around the i32 before exiting, we can't
416     // transform the IV.
417     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
418       return false;
419   } else {
420     // If we have a negative stride, we require the init to be greater than the
421     // exit value.
422     if (InitValue <= ExitValue)
423       return false;
424 
425     uint32_t Range = uint32_t(InitValue-ExitValue);
426     // Check for infinite loop, either:
427     // while (i >= Exit) or until (i < Exit)
428     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
429       if (++Range == 0) return false;  // Range overflows.
430     }
431 
432     unsigned Leftover = Range % uint32_t(-IncValue);
433 
434     // If this is an equality comparison, we require that the strided value
435     // exactly land on the exit value, otherwise the IV condition will wrap
436     // around and do things the fp IV wouldn't.
437     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
438         Leftover != 0)
439       return false;
440 
441     // If the stride would wrap around the i32 before exiting, we can't
442     // transform the IV.
443     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
444       return false;
445   }
446 
447   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
448 
449   // Insert new integer induction variable.
450   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
451   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
452                       PN->getIncomingBlock(IncomingEdge));
453 
454   Value *NewAdd =
455     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
456                               Incr->getName()+".int", Incr);
457   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
458 
459   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
460                                       ConstantInt::get(Int32Ty, ExitValue),
461                                       Compare->getName());
462 
463   // In the following deletions, PN may become dead and may be deleted.
464   // Use a WeakTrackingVH to observe whether this happens.
465   WeakTrackingVH WeakPH = PN;
466 
467   // Delete the old floating point exit comparison.  The branch starts using the
468   // new comparison.
469   NewCompare->takeName(Compare);
470   Compare->replaceAllUsesWith(NewCompare);
471   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
472 
473   // Delete the old floating point increment.
474   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
475   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
476 
477   // If the FP induction variable still has uses, this is because something else
478   // in the loop uses its value.  In order to canonicalize the induction
479   // variable, we chose to eliminate the IV and rewrite it in terms of an
480   // int->fp cast.
481   //
482   // We give preference to sitofp over uitofp because it is faster on most
483   // platforms.
484   if (WeakPH) {
485     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
486                                  &*PN->getParent()->getFirstInsertionPt());
487     PN->replaceAllUsesWith(Conv);
488     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
489   }
490   return true;
491 }
492 
493 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
494   // First step.  Check to see if there are any floating-point recurrences.
495   // If there are, change them into integer recurrences, permitting analysis by
496   // the SCEV routines.
497   BasicBlock *Header = L->getHeader();
498 
499   SmallVector<WeakTrackingVH, 8> PHIs;
500   for (PHINode &PN : Header->phis())
501     PHIs.push_back(&PN);
502 
503   bool Changed = false;
504   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
505     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
506       Changed |= handleFloatingPointIV(L, PN);
507 
508   // If the loop previously had floating-point IV, ScalarEvolution
509   // may not have been able to compute a trip count. Now that we've done some
510   // re-writing, the trip count may be computable.
511   if (Changed)
512     SE->forgetLoop(L);
513   return Changed;
514 }
515 
516 namespace {
517 
518 // Collect information about PHI nodes which can be transformed in
519 // rewriteLoopExitValues.
520 struct RewritePhi {
521   PHINode *PN;
522 
523   // Ith incoming value.
524   unsigned Ith;
525 
526   // Exit value after expansion.
527   Value *Val;
528 
529   // High Cost when expansion.
530   bool HighCost;
531 
532   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
533       : PN(P), Ith(I), Val(V), HighCost(H) {}
534 };
535 
536 } // end anonymous namespace
537 
538 //===----------------------------------------------------------------------===//
539 // rewriteLoopExitValues - Optimize IV users outside the loop.
540 // As a side effect, reduces the amount of IV processing within the loop.
541 //===----------------------------------------------------------------------===//
542 
543 bool IndVarSimplify::hasHardUserWithinLoop(const Loop *L, const Instruction *I) const {
544   SmallPtrSet<const Instruction *, 8> Visited;
545   SmallVector<const Instruction *, 8> WorkList;
546   Visited.insert(I);
547   WorkList.push_back(I);
548   while (!WorkList.empty()) {
549     const Instruction *Curr = WorkList.pop_back_val();
550     // This use is outside the loop, nothing to do.
551     if (!L->contains(Curr))
552       continue;
553     // Do we assume it is a "hard" use which will not be eliminated easily?
554     if (Curr->mayHaveSideEffects())
555       return true;
556     // Otherwise, add all its users to worklist.
557     for (auto U : Curr->users()) {
558       auto *UI = cast<Instruction>(U);
559       if (Visited.insert(UI).second)
560         WorkList.push_back(UI);
561     }
562   }
563   return false;
564 }
565 
566 /// Check to see if this loop has a computable loop-invariant execution count.
567 /// If so, this means that we can compute the final value of any expressions
568 /// that are recurrent in the loop, and substitute the exit values from the loop
569 /// into any instructions outside of the loop that use the final values of the
570 /// current expressions.
571 ///
572 /// This is mostly redundant with the regular IndVarSimplify activities that
573 /// happen later, except that it's more powerful in some cases, because it's
574 /// able to brute-force evaluate arbitrary instructions as long as they have
575 /// constant operands at the beginning of the loop.
576 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
577   // Check a pre-condition.
578   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
579          "Indvars did not preserve LCSSA!");
580 
581   SmallVector<BasicBlock*, 8> ExitBlocks;
582   L->getUniqueExitBlocks(ExitBlocks);
583 
584   SmallVector<RewritePhi, 8> RewritePhiSet;
585   // Find all values that are computed inside the loop, but used outside of it.
586   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
587   // the exit blocks of the loop to find them.
588   for (BasicBlock *ExitBB : ExitBlocks) {
589     // If there are no PHI nodes in this exit block, then no values defined
590     // inside the loop are used on this path, skip it.
591     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
592     if (!PN) continue;
593 
594     unsigned NumPreds = PN->getNumIncomingValues();
595 
596     // Iterate over all of the PHI nodes.
597     BasicBlock::iterator BBI = ExitBB->begin();
598     while ((PN = dyn_cast<PHINode>(BBI++))) {
599       if (PN->use_empty())
600         continue; // dead use, don't replace it
601 
602       if (!SE->isSCEVable(PN->getType()))
603         continue;
604 
605       // It's necessary to tell ScalarEvolution about this explicitly so that
606       // it can walk the def-use list and forget all SCEVs, as it may not be
607       // watching the PHI itself. Once the new exit value is in place, there
608       // may not be a def-use connection between the loop and every instruction
609       // which got a SCEVAddRecExpr for that loop.
610       SE->forgetValue(PN);
611 
612       // Iterate over all of the values in all the PHI nodes.
613       for (unsigned i = 0; i != NumPreds; ++i) {
614         // If the value being merged in is not integer or is not defined
615         // in the loop, skip it.
616         Value *InVal = PN->getIncomingValue(i);
617         if (!isa<Instruction>(InVal))
618           continue;
619 
620         // If this pred is for a subloop, not L itself, skip it.
621         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
622           continue; // The Block is in a subloop, skip it.
623 
624         // Check that InVal is defined in the loop.
625         Instruction *Inst = cast<Instruction>(InVal);
626         if (!L->contains(Inst))
627           continue;
628 
629         // Okay, this instruction has a user outside of the current loop
630         // and varies predictably *inside* the loop.  Evaluate the value it
631         // contains when the loop exits, if possible.  We prefer to start with
632         // expressions which are true for all exits (so as to maximize
633         // expression reuse by the SCEVExpander), but resort to per-exit
634         // evaluation if that fails.
635         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
636         if (isa<SCEVCouldNotCompute>(ExitValue) ||
637             !SE->isLoopInvariant(ExitValue, L) ||
638             !isSafeToExpand(ExitValue, *SE)) {
639           // TODO: This should probably be sunk into SCEV in some way; maybe a
640           // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
641           // most SCEV expressions and other recurrence types (e.g. shift
642           // recurrences).  Is there existing code we can reuse?
643           const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
644           if (isa<SCEVCouldNotCompute>(ExitCount))
645             continue;
646           if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
647             if (AddRec->getLoop() == L)
648               ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
649           if (isa<SCEVCouldNotCompute>(ExitValue) ||
650               !SE->isLoopInvariant(ExitValue, L) ||
651               !isSafeToExpand(ExitValue, *SE))
652             continue;
653         }
654 
655         // Computing the value outside of the loop brings no benefit if it is
656         // definitely used inside the loop in a way which can not be optimized
657         // away.  Avoid doing so unless we know we have a value which computes
658         // the ExitValue already.  TODO: This should be merged into SCEV
659         // expander to leverage its knowledge of existing expressions.
660         if (ReplaceExitValue != AlwaysRepl &&
661             !isa<SCEVConstant>(ExitValue) && !isa<SCEVUnknown>(ExitValue) &&
662             hasHardUserWithinLoop(L, Inst))
663           continue;
664 
665         bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
666         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
667 
668         LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
669                           << '\n'
670                           << "  LoopVal = " << *Inst << "\n");
671 
672         if (!isValidRewrite(Inst, ExitVal)) {
673           DeadInsts.push_back(ExitVal);
674           continue;
675         }
676 
677 #ifndef NDEBUG
678         // If we reuse an instruction from a loop which is neither L nor one of
679         // its containing loops, we end up breaking LCSSA form for this loop by
680         // creating a new use of its instruction.
681         if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
682           if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
683             if (EVL != L)
684               assert(EVL->contains(L) && "LCSSA breach detected!");
685 #endif
686 
687         // Collect all the candidate PHINodes to be rewritten.
688         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
689       }
690     }
691   }
692 
693   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
694 
695   bool Changed = false;
696   // Transformation.
697   for (const RewritePhi &Phi : RewritePhiSet) {
698     PHINode *PN = Phi.PN;
699     Value *ExitVal = Phi.Val;
700 
701     // Only do the rewrite when the ExitValue can be expanded cheaply.
702     // If LoopCanBeDel is true, rewrite exit value aggressively.
703     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
704       DeadInsts.push_back(ExitVal);
705       continue;
706     }
707 
708     Changed = true;
709     ++NumReplaced;
710     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
711     PN->setIncomingValue(Phi.Ith, ExitVal);
712 
713     // If this instruction is dead now, delete it. Don't do it now to avoid
714     // invalidating iterators.
715     if (isInstructionTriviallyDead(Inst, TLI))
716       DeadInsts.push_back(Inst);
717 
718     // Replace PN with ExitVal if that is legal and does not break LCSSA.
719     if (PN->getNumIncomingValues() == 1 &&
720         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
721       PN->replaceAllUsesWith(ExitVal);
722       PN->eraseFromParent();
723     }
724   }
725 
726   // The insertion point instruction may have been deleted; clear it out
727   // so that the rewriter doesn't trip over it later.
728   Rewriter.clearInsertPoint();
729   return Changed;
730 }
731 
732 //===---------------------------------------------------------------------===//
733 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
734 // they will exit at the first iteration.
735 //===---------------------------------------------------------------------===//
736 
737 /// Check to see if this loop has loop invariant conditions which lead to loop
738 /// exits. If so, we know that if the exit path is taken, it is at the first
739 /// loop iteration. This lets us predict exit values of PHI nodes that live in
740 /// loop header.
741 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
742   // Verify the input to the pass is already in LCSSA form.
743   assert(L->isLCSSAForm(*DT));
744 
745   SmallVector<BasicBlock *, 8> ExitBlocks;
746   L->getUniqueExitBlocks(ExitBlocks);
747 
748   bool MadeAnyChanges = false;
749   for (auto *ExitBB : ExitBlocks) {
750     // If there are no more PHI nodes in this exit block, then no more
751     // values defined inside the loop are used on this path.
752     for (PHINode &PN : ExitBB->phis()) {
753       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
754            IncomingValIdx != E; ++IncomingValIdx) {
755         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
756 
757         // Can we prove that the exit must run on the first iteration if it
758         // runs at all?  (i.e. early exits are fine for our purposes, but
759         // traces which lead to this exit being taken on the 2nd iteration
760         // aren't.)  Note that this is about whether the exit branch is
761         // executed, not about whether it is taken.
762         if (!L->getLoopLatch() ||
763             !DT->dominates(IncomingBB, L->getLoopLatch()))
764           continue;
765 
766         // Get condition that leads to the exit path.
767         auto *TermInst = IncomingBB->getTerminator();
768 
769         Value *Cond = nullptr;
770         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
771           // Must be a conditional branch, otherwise the block
772           // should not be in the loop.
773           Cond = BI->getCondition();
774         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
775           Cond = SI->getCondition();
776         else
777           continue;
778 
779         if (!L->isLoopInvariant(Cond))
780           continue;
781 
782         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
783 
784         // Only deal with PHIs in the loop header.
785         if (!ExitVal || ExitVal->getParent() != L->getHeader())
786           continue;
787 
788         // If ExitVal is a PHI on the loop header, then we know its
789         // value along this exit because the exit can only be taken
790         // on the first iteration.
791         auto *LoopPreheader = L->getLoopPreheader();
792         assert(LoopPreheader && "Invalid loop");
793         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
794         if (PreheaderIdx != -1) {
795           assert(ExitVal->getParent() == L->getHeader() &&
796                  "ExitVal must be in loop header");
797           MadeAnyChanges = true;
798           PN.setIncomingValue(IncomingValIdx,
799                               ExitVal->getIncomingValue(PreheaderIdx));
800         }
801       }
802     }
803   }
804   return MadeAnyChanges;
805 }
806 
807 /// Check whether it is possible to delete the loop after rewriting exit
808 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
809 /// aggressively.
810 bool IndVarSimplify::canLoopBeDeleted(
811     Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
812   BasicBlock *Preheader = L->getLoopPreheader();
813   // If there is no preheader, the loop will not be deleted.
814   if (!Preheader)
815     return false;
816 
817   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
818   // We obviate multiple ExitingBlocks case for simplicity.
819   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
820   // after exit value rewriting, we can enhance the logic here.
821   SmallVector<BasicBlock *, 4> ExitingBlocks;
822   L->getExitingBlocks(ExitingBlocks);
823   SmallVector<BasicBlock *, 8> ExitBlocks;
824   L->getUniqueExitBlocks(ExitBlocks);
825   if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
826     return false;
827 
828   BasicBlock *ExitBlock = ExitBlocks[0];
829   BasicBlock::iterator BI = ExitBlock->begin();
830   while (PHINode *P = dyn_cast<PHINode>(BI)) {
831     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
832 
833     // If the Incoming value of P is found in RewritePhiSet, we know it
834     // could be rewritten to use a loop invariant value in transformation
835     // phase later. Skip it in the loop invariant check below.
836     bool found = false;
837     for (const RewritePhi &Phi : RewritePhiSet) {
838       unsigned i = Phi.Ith;
839       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
840         found = true;
841         break;
842       }
843     }
844 
845     Instruction *I;
846     if (!found && (I = dyn_cast<Instruction>(Incoming)))
847       if (!L->hasLoopInvariantOperands(I))
848         return false;
849 
850     ++BI;
851   }
852 
853   for (auto *BB : L->blocks())
854     if (llvm::any_of(*BB, [](Instruction &I) {
855           return I.mayHaveSideEffects();
856         }))
857       return false;
858 
859   return true;
860 }
861 
862 //===----------------------------------------------------------------------===//
863 //  IV Widening - Extend the width of an IV to cover its widest uses.
864 //===----------------------------------------------------------------------===//
865 
866 namespace {
867 
868 // Collect information about induction variables that are used by sign/zero
869 // extend operations. This information is recorded by CollectExtend and provides
870 // the input to WidenIV.
871 struct WideIVInfo {
872   PHINode *NarrowIV = nullptr;
873 
874   // Widest integer type created [sz]ext
875   Type *WidestNativeType = nullptr;
876 
877   // Was a sext user seen before a zext?
878   bool IsSigned = false;
879 };
880 
881 } // end anonymous namespace
882 
883 /// Update information about the induction variable that is extended by this
884 /// sign or zero extend operation. This is used to determine the final width of
885 /// the IV before actually widening it.
886 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
887                         const TargetTransformInfo *TTI) {
888   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
889   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
890     return;
891 
892   Type *Ty = Cast->getType();
893   uint64_t Width = SE->getTypeSizeInBits(Ty);
894   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
895     return;
896 
897   // Check that `Cast` actually extends the induction variable (we rely on this
898   // later).  This takes care of cases where `Cast` is extending a truncation of
899   // the narrow induction variable, and thus can end up being narrower than the
900   // "narrow" induction variable.
901   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
902   if (NarrowIVWidth >= Width)
903     return;
904 
905   // Cast is either an sext or zext up to this point.
906   // We should not widen an indvar if arithmetics on the wider indvar are more
907   // expensive than those on the narrower indvar. We check only the cost of ADD
908   // because at least an ADD is required to increment the induction variable. We
909   // could compute more comprehensively the cost of all instructions on the
910   // induction variable when necessary.
911   if (TTI &&
912       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
913           TTI->getArithmeticInstrCost(Instruction::Add,
914                                       Cast->getOperand(0)->getType())) {
915     return;
916   }
917 
918   if (!WI.WidestNativeType) {
919     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
920     WI.IsSigned = IsSigned;
921     return;
922   }
923 
924   // We extend the IV to satisfy the sign of its first user, arbitrarily.
925   if (WI.IsSigned != IsSigned)
926     return;
927 
928   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
929     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
930 }
931 
932 namespace {
933 
934 /// Record a link in the Narrow IV def-use chain along with the WideIV that
935 /// computes the same value as the Narrow IV def.  This avoids caching Use*
936 /// pointers.
937 struct NarrowIVDefUse {
938   Instruction *NarrowDef = nullptr;
939   Instruction *NarrowUse = nullptr;
940   Instruction *WideDef = nullptr;
941 
942   // True if the narrow def is never negative.  Tracking this information lets
943   // us use a sign extension instead of a zero extension or vice versa, when
944   // profitable and legal.
945   bool NeverNegative = false;
946 
947   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
948                  bool NeverNegative)
949       : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
950         NeverNegative(NeverNegative) {}
951 };
952 
953 /// The goal of this transform is to remove sign and zero extends without
954 /// creating any new induction variables. To do this, it creates a new phi of
955 /// the wider type and redirects all users, either removing extends or inserting
956 /// truncs whenever we stop propagating the type.
957 class WidenIV {
958   // Parameters
959   PHINode *OrigPhi;
960   Type *WideType;
961 
962   // Context
963   LoopInfo        *LI;
964   Loop            *L;
965   ScalarEvolution *SE;
966   DominatorTree   *DT;
967 
968   // Does the module have any calls to the llvm.experimental.guard intrinsic
969   // at all? If not we can avoid scanning instructions looking for guards.
970   bool HasGuards;
971 
972   // Result
973   PHINode *WidePhi = nullptr;
974   Instruction *WideInc = nullptr;
975   const SCEV *WideIncExpr = nullptr;
976   SmallVectorImpl<WeakTrackingVH> &DeadInsts;
977 
978   SmallPtrSet<Instruction *,16> Widened;
979   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
980 
981   enum ExtendKind { ZeroExtended, SignExtended, Unknown };
982 
983   // A map tracking the kind of extension used to widen each narrow IV
984   // and narrow IV user.
985   // Key: pointer to a narrow IV or IV user.
986   // Value: the kind of extension used to widen this Instruction.
987   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
988 
989   using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
990 
991   // A map with control-dependent ranges for post increment IV uses. The key is
992   // a pair of IV def and a use of this def denoting the context. The value is
993   // a ConstantRange representing possible values of the def at the given
994   // context.
995   DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
996 
997   Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
998                                               Instruction *UseI) {
999     DefUserPair Key(Def, UseI);
1000     auto It = PostIncRangeInfos.find(Key);
1001     return It == PostIncRangeInfos.end()
1002                ? Optional<ConstantRange>(None)
1003                : Optional<ConstantRange>(It->second);
1004   }
1005 
1006   void calculatePostIncRanges(PHINode *OrigPhi);
1007   void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
1008 
1009   void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
1010     DefUserPair Key(Def, UseI);
1011     auto It = PostIncRangeInfos.find(Key);
1012     if (It == PostIncRangeInfos.end())
1013       PostIncRangeInfos.insert({Key, R});
1014     else
1015       It->second = R.intersectWith(It->second);
1016   }
1017 
1018 public:
1019   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1020           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1021           bool HasGuards)
1022       : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
1023         L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
1024         HasGuards(HasGuards), DeadInsts(DI) {
1025     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
1026     ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
1027   }
1028 
1029   PHINode *createWideIV(SCEVExpander &Rewriter);
1030 
1031 protected:
1032   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1033                           Instruction *Use);
1034 
1035   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1036   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1037                                      const SCEVAddRecExpr *WideAR);
1038   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1039 
1040   ExtendKind getExtendKind(Instruction *I);
1041 
1042   using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1043 
1044   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1045 
1046   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1047 
1048   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1049                               unsigned OpCode) const;
1050 
1051   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1052 
1053   bool widenLoopCompare(NarrowIVDefUse DU);
1054   bool widenWithVariantLoadUse(NarrowIVDefUse DU);
1055   void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU);
1056 
1057   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1058 };
1059 
1060 } // end anonymous namespace
1061 
1062 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1063                                  bool IsSigned, Instruction *Use) {
1064   // Set the debug location and conservative insertion point.
1065   IRBuilder<> Builder(Use);
1066   // Hoist the insertion point into loop preheaders as far as possible.
1067   for (const Loop *L = LI->getLoopFor(Use->getParent());
1068        L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
1069        L = L->getParentLoop())
1070     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1071 
1072   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1073                     Builder.CreateZExt(NarrowOper, WideType);
1074 }
1075 
1076 /// Instantiate a wide operation to replace a narrow operation. This only needs
1077 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1078 /// 0 for any operation we decide not to clone.
1079 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
1080                                   const SCEVAddRecExpr *WideAR) {
1081   unsigned Opcode = DU.NarrowUse->getOpcode();
1082   switch (Opcode) {
1083   default:
1084     return nullptr;
1085   case Instruction::Add:
1086   case Instruction::Mul:
1087   case Instruction::UDiv:
1088   case Instruction::Sub:
1089     return cloneArithmeticIVUser(DU, WideAR);
1090 
1091   case Instruction::And:
1092   case Instruction::Or:
1093   case Instruction::Xor:
1094   case Instruction::Shl:
1095   case Instruction::LShr:
1096   case Instruction::AShr:
1097     return cloneBitwiseIVUser(DU);
1098   }
1099 }
1100 
1101 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
1102   Instruction *NarrowUse = DU.NarrowUse;
1103   Instruction *NarrowDef = DU.NarrowDef;
1104   Instruction *WideDef = DU.WideDef;
1105 
1106   LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1107 
1108   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1109   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1110   // invariant and will be folded or hoisted. If it actually comes from a
1111   // widened IV, it should be removed during a future call to widenIVUse.
1112   bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1113   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1114                    ? WideDef
1115                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1116                                       IsSigned, NarrowUse);
1117   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1118                    ? WideDef
1119                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1120                                       IsSigned, NarrowUse);
1121 
1122   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1123   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1124                                         NarrowBO->getName());
1125   IRBuilder<> Builder(NarrowUse);
1126   Builder.Insert(WideBO);
1127   WideBO->copyIRFlags(NarrowBO);
1128   return WideBO;
1129 }
1130 
1131 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
1132                                             const SCEVAddRecExpr *WideAR) {
1133   Instruction *NarrowUse = DU.NarrowUse;
1134   Instruction *NarrowDef = DU.NarrowDef;
1135   Instruction *WideDef = DU.WideDef;
1136 
1137   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1138 
1139   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1140 
1141   // We're trying to find X such that
1142   //
1143   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1144   //
1145   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1146   // and check using SCEV if any of them are correct.
1147 
1148   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1149   // correct solution to X.
1150   auto GuessNonIVOperand = [&](bool SignExt) {
1151     const SCEV *WideLHS;
1152     const SCEV *WideRHS;
1153 
1154     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1155       if (SignExt)
1156         return SE->getSignExtendExpr(S, Ty);
1157       return SE->getZeroExtendExpr(S, Ty);
1158     };
1159 
1160     if (IVOpIdx == 0) {
1161       WideLHS = SE->getSCEV(WideDef);
1162       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1163       WideRHS = GetExtend(NarrowRHS, WideType);
1164     } else {
1165       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1166       WideLHS = GetExtend(NarrowLHS, WideType);
1167       WideRHS = SE->getSCEV(WideDef);
1168     }
1169 
1170     // WideUse is "WideDef `op.wide` X" as described in the comment.
1171     const SCEV *WideUse = nullptr;
1172 
1173     switch (NarrowUse->getOpcode()) {
1174     default:
1175       llvm_unreachable("No other possibility!");
1176 
1177     case Instruction::Add:
1178       WideUse = SE->getAddExpr(WideLHS, WideRHS);
1179       break;
1180 
1181     case Instruction::Mul:
1182       WideUse = SE->getMulExpr(WideLHS, WideRHS);
1183       break;
1184 
1185     case Instruction::UDiv:
1186       WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1187       break;
1188 
1189     case Instruction::Sub:
1190       WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1191       break;
1192     }
1193 
1194     return WideUse == WideAR;
1195   };
1196 
1197   bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1198   if (!GuessNonIVOperand(SignExtend)) {
1199     SignExtend = !SignExtend;
1200     if (!GuessNonIVOperand(SignExtend))
1201       return nullptr;
1202   }
1203 
1204   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1205                    ? WideDef
1206                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1207                                       SignExtend, NarrowUse);
1208   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1209                    ? WideDef
1210                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1211                                       SignExtend, NarrowUse);
1212 
1213   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1214   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1215                                         NarrowBO->getName());
1216 
1217   IRBuilder<> Builder(NarrowUse);
1218   Builder.Insert(WideBO);
1219   WideBO->copyIRFlags(NarrowBO);
1220   return WideBO;
1221 }
1222 
1223 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1224   auto It = ExtendKindMap.find(I);
1225   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1226   return It->second;
1227 }
1228 
1229 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1230                                      unsigned OpCode) const {
1231   if (OpCode == Instruction::Add)
1232     return SE->getAddExpr(LHS, RHS);
1233   if (OpCode == Instruction::Sub)
1234     return SE->getMinusSCEV(LHS, RHS);
1235   if (OpCode == Instruction::Mul)
1236     return SE->getMulExpr(LHS, RHS);
1237 
1238   llvm_unreachable("Unsupported opcode.");
1239 }
1240 
1241 /// No-wrap operations can transfer sign extension of their result to their
1242 /// operands. Generate the SCEV value for the widened operation without
1243 /// actually modifying the IR yet. If the expression after extending the
1244 /// operands is an AddRec for this loop, return the AddRec and the kind of
1245 /// extension used.
1246 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1247   // Handle the common case of add<nsw/nuw>
1248   const unsigned OpCode = DU.NarrowUse->getOpcode();
1249   // Only Add/Sub/Mul instructions supported yet.
1250   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1251       OpCode != Instruction::Mul)
1252     return {nullptr, Unknown};
1253 
1254   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1255   // if extending the other will lead to a recurrence.
1256   const unsigned ExtendOperIdx =
1257       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1258   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1259 
1260   const SCEV *ExtendOperExpr = nullptr;
1261   const OverflowingBinaryOperator *OBO =
1262     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1263   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1264   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1265     ExtendOperExpr = SE->getSignExtendExpr(
1266       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1267   else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1268     ExtendOperExpr = SE->getZeroExtendExpr(
1269       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1270   else
1271     return {nullptr, Unknown};
1272 
1273   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1274   // flags. This instruction may be guarded by control flow that the no-wrap
1275   // behavior depends on. Non-control-equivalent instructions can be mapped to
1276   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1277   // semantics to those operations.
1278   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1279   const SCEV *rhs = ExtendOperExpr;
1280 
1281   // Let's swap operands to the initial order for the case of non-commutative
1282   // operations, like SUB. See PR21014.
1283   if (ExtendOperIdx == 0)
1284     std::swap(lhs, rhs);
1285   const SCEVAddRecExpr *AddRec =
1286       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1287 
1288   if (!AddRec || AddRec->getLoop() != L)
1289     return {nullptr, Unknown};
1290 
1291   return {AddRec, ExtKind};
1292 }
1293 
1294 /// Is this instruction potentially interesting for further simplification after
1295 /// widening it's type? In other words, can the extend be safely hoisted out of
1296 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1297 /// so, return the extended recurrence and the kind of extension used. Otherwise
1298 /// return {nullptr, Unknown}.
1299 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) {
1300   if (!SE->isSCEVable(DU.NarrowUse->getType()))
1301     return {nullptr, Unknown};
1302 
1303   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1304   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1305       SE->getTypeSizeInBits(WideType)) {
1306     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1307     // index. So don't follow this use.
1308     return {nullptr, Unknown};
1309   }
1310 
1311   const SCEV *WideExpr;
1312   ExtendKind ExtKind;
1313   if (DU.NeverNegative) {
1314     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1315     if (isa<SCEVAddRecExpr>(WideExpr))
1316       ExtKind = SignExtended;
1317     else {
1318       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1319       ExtKind = ZeroExtended;
1320     }
1321   } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1322     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1323     ExtKind = SignExtended;
1324   } else {
1325     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1326     ExtKind = ZeroExtended;
1327   }
1328   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1329   if (!AddRec || AddRec->getLoop() != L)
1330     return {nullptr, Unknown};
1331   return {AddRec, ExtKind};
1332 }
1333 
1334 /// This IV user cannot be widened. Replace this use of the original narrow IV
1335 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1336 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1337   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1338   if (!InsertPt)
1339     return;
1340   LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1341                     << *DU.NarrowUse << "\n");
1342   IRBuilder<> Builder(InsertPt);
1343   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1344   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1345 }
1346 
1347 /// If the narrow use is a compare instruction, then widen the compare
1348 //  (and possibly the other operand).  The extend operation is hoisted into the
1349 // loop preheader as far as possible.
1350 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1351   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1352   if (!Cmp)
1353     return false;
1354 
1355   // We can legally widen the comparison in the following two cases:
1356   //
1357   //  - The signedness of the IV extension and comparison match
1358   //
1359   //  - The narrow IV is always positive (and thus its sign extension is equal
1360   //    to its zero extension).  For instance, let's say we're zero extending
1361   //    %narrow for the following use
1362   //
1363   //      icmp slt i32 %narrow, %val   ... (A)
1364   //
1365   //    and %narrow is always positive.  Then
1366   //
1367   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1368   //          == icmp slt i32 zext(%narrow), sext(%val)
1369   bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1370   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1371     return false;
1372 
1373   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1374   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1375   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1376   assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1377 
1378   // Widen the compare instruction.
1379   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1380   if (!InsertPt)
1381     return false;
1382   IRBuilder<> Builder(InsertPt);
1383   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1384 
1385   // Widen the other operand of the compare, if necessary.
1386   if (CastWidth < IVWidth) {
1387     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1388     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1389   }
1390   return true;
1391 }
1392 
1393 /// If the narrow use is an instruction whose two operands are the defining
1394 /// instruction of DU and a load instruction, then we have the following:
1395 /// if the load is hoisted outside the loop, then we do not reach this function
1396 /// as scalar evolution analysis works fine in widenIVUse with variables
1397 /// hoisted outside the loop and efficient code is subsequently generated by
1398 /// not emitting truncate instructions. But when the load is not hoisted
1399 /// (whether due to limitation in alias analysis or due to a true legality),
1400 /// then scalar evolution can not proceed with loop variant values and
1401 /// inefficient code is generated. This function handles the non-hoisted load
1402 /// special case by making the optimization generate the same type of code for
1403 /// hoisted and non-hoisted load (widen use and eliminate sign extend
1404 /// instruction). This special case is important especially when the induction
1405 /// variables are affecting addressing mode in code generation.
1406 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) {
1407   Instruction *NarrowUse = DU.NarrowUse;
1408   Instruction *NarrowDef = DU.NarrowDef;
1409   Instruction *WideDef = DU.WideDef;
1410 
1411   // Handle the common case of add<nsw/nuw>
1412   const unsigned OpCode = NarrowUse->getOpcode();
1413   // Only Add/Sub/Mul instructions are supported.
1414   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1415       OpCode != Instruction::Mul)
1416     return false;
1417 
1418   // The operand that is not defined by NarrowDef of DU. Let's call it the
1419   // other operand.
1420   unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0;
1421   assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef &&
1422          "bad DU");
1423 
1424   const SCEV *ExtendOperExpr = nullptr;
1425   const OverflowingBinaryOperator *OBO =
1426     cast<OverflowingBinaryOperator>(NarrowUse);
1427   ExtendKind ExtKind = getExtendKind(NarrowDef);
1428   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1429     ExtendOperExpr = SE->getSignExtendExpr(
1430       SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1431   else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1432     ExtendOperExpr = SE->getZeroExtendExpr(
1433       SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1434   else
1435     return false;
1436 
1437   // We are interested in the other operand being a load instruction.
1438   // But, we should look into relaxing this restriction later on.
1439   auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx));
1440   if (I && I->getOpcode() != Instruction::Load)
1441     return false;
1442 
1443   // Verifying that Defining operand is an AddRec
1444   const SCEV *Op1 = SE->getSCEV(WideDef);
1445   const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1446   if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1447     return false;
1448   // Verifying that other operand is an Extend.
1449   if (ExtKind == SignExtended) {
1450     if (!isa<SCEVSignExtendExpr>(ExtendOperExpr))
1451       return false;
1452   } else {
1453     if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr))
1454       return false;
1455   }
1456 
1457   if (ExtKind == SignExtended) {
1458     for (Use &U : NarrowUse->uses()) {
1459       SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1460       if (!User || User->getType() != WideType)
1461         return false;
1462     }
1463   } else { // ExtKind == ZeroExtended
1464     for (Use &U : NarrowUse->uses()) {
1465       ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1466       if (!User || User->getType() != WideType)
1467         return false;
1468     }
1469   }
1470 
1471   return true;
1472 }
1473 
1474 /// Special Case for widening with variant Loads (see
1475 /// WidenIV::widenWithVariantLoadUse). This is the code generation part.
1476 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) {
1477   Instruction *NarrowUse = DU.NarrowUse;
1478   Instruction *NarrowDef = DU.NarrowDef;
1479   Instruction *WideDef = DU.WideDef;
1480 
1481   ExtendKind ExtKind = getExtendKind(NarrowDef);
1482 
1483   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1484 
1485   // Generating a widening use instruction.
1486   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1487                    ? WideDef
1488                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1489                                       ExtKind, NarrowUse);
1490   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1491                    ? WideDef
1492                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1493                                       ExtKind, NarrowUse);
1494 
1495   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1496   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1497                                         NarrowBO->getName());
1498   IRBuilder<> Builder(NarrowUse);
1499   Builder.Insert(WideBO);
1500   WideBO->copyIRFlags(NarrowBO);
1501 
1502   if (ExtKind == SignExtended)
1503     ExtendKindMap[NarrowUse] = SignExtended;
1504   else
1505     ExtendKindMap[NarrowUse] = ZeroExtended;
1506 
1507   // Update the Use.
1508   if (ExtKind == SignExtended) {
1509     for (Use &U : NarrowUse->uses()) {
1510       SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1511       if (User && User->getType() == WideType) {
1512         LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1513                           << *WideBO << "\n");
1514         ++NumElimExt;
1515         User->replaceAllUsesWith(WideBO);
1516         DeadInsts.emplace_back(User);
1517       }
1518     }
1519   } else { // ExtKind == ZeroExtended
1520     for (Use &U : NarrowUse->uses()) {
1521       ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1522       if (User && User->getType() == WideType) {
1523         LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1524                           << *WideBO << "\n");
1525         ++NumElimExt;
1526         User->replaceAllUsesWith(WideBO);
1527         DeadInsts.emplace_back(User);
1528       }
1529     }
1530   }
1531 }
1532 
1533 /// Determine whether an individual user of the narrow IV can be widened. If so,
1534 /// return the wide clone of the user.
1535 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1536   assert(ExtendKindMap.count(DU.NarrowDef) &&
1537          "Should already know the kind of extension used to widen NarrowDef");
1538 
1539   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1540   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1541     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1542       // For LCSSA phis, sink the truncate outside the loop.
1543       // After SimplifyCFG most loop exit targets have a single predecessor.
1544       // Otherwise fall back to a truncate within the loop.
1545       if (UsePhi->getNumOperands() != 1)
1546         truncateIVUse(DU, DT, LI);
1547       else {
1548         // Widening the PHI requires us to insert a trunc.  The logical place
1549         // for this trunc is in the same BB as the PHI.  This is not possible if
1550         // the BB is terminated by a catchswitch.
1551         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1552           return nullptr;
1553 
1554         PHINode *WidePhi =
1555           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1556                           UsePhi);
1557         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1558         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1559         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1560         UsePhi->replaceAllUsesWith(Trunc);
1561         DeadInsts.emplace_back(UsePhi);
1562         LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1563                           << *WidePhi << "\n");
1564       }
1565       return nullptr;
1566     }
1567   }
1568 
1569   // This narrow use can be widened by a sext if it's non-negative or its narrow
1570   // def was widended by a sext. Same for zext.
1571   auto canWidenBySExt = [&]() {
1572     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1573   };
1574   auto canWidenByZExt = [&]() {
1575     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1576   };
1577 
1578   // Our raison d'etre! Eliminate sign and zero extension.
1579   if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1580       (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1581     Value *NewDef = DU.WideDef;
1582     if (DU.NarrowUse->getType() != WideType) {
1583       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1584       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1585       if (CastWidth < IVWidth) {
1586         // The cast isn't as wide as the IV, so insert a Trunc.
1587         IRBuilder<> Builder(DU.NarrowUse);
1588         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1589       }
1590       else {
1591         // A wider extend was hidden behind a narrower one. This may induce
1592         // another round of IV widening in which the intermediate IV becomes
1593         // dead. It should be very rare.
1594         LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1595                           << " not wide enough to subsume " << *DU.NarrowUse
1596                           << "\n");
1597         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1598         NewDef = DU.NarrowUse;
1599       }
1600     }
1601     if (NewDef != DU.NarrowUse) {
1602       LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1603                         << " replaced by " << *DU.WideDef << "\n");
1604       ++NumElimExt;
1605       DU.NarrowUse->replaceAllUsesWith(NewDef);
1606       DeadInsts.emplace_back(DU.NarrowUse);
1607     }
1608     // Now that the extend is gone, we want to expose it's uses for potential
1609     // further simplification. We don't need to directly inform SimplifyIVUsers
1610     // of the new users, because their parent IV will be processed later as a
1611     // new loop phi. If we preserved IVUsers analysis, we would also want to
1612     // push the uses of WideDef here.
1613 
1614     // No further widening is needed. The deceased [sz]ext had done it for us.
1615     return nullptr;
1616   }
1617 
1618   // Does this user itself evaluate to a recurrence after widening?
1619   WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1620   if (!WideAddRec.first)
1621     WideAddRec = getWideRecurrence(DU);
1622 
1623   assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1624   if (!WideAddRec.first) {
1625     // If use is a loop condition, try to promote the condition instead of
1626     // truncating the IV first.
1627     if (widenLoopCompare(DU))
1628       return nullptr;
1629 
1630     // We are here about to generate a truncate instruction that may hurt
1631     // performance because the scalar evolution expression computed earlier
1632     // in WideAddRec.first does not indicate a polynomial induction expression.
1633     // In that case, look at the operands of the use instruction to determine
1634     // if we can still widen the use instead of truncating its operand.
1635     if (widenWithVariantLoadUse(DU)) {
1636       widenWithVariantLoadUseCodegen(DU);
1637       return nullptr;
1638     }
1639 
1640     // This user does not evaluate to a recurrence after widening, so don't
1641     // follow it. Instead insert a Trunc to kill off the original use,
1642     // eventually isolating the original narrow IV so it can be removed.
1643     truncateIVUse(DU, DT, LI);
1644     return nullptr;
1645   }
1646   // Assume block terminators cannot evaluate to a recurrence. We can't to
1647   // insert a Trunc after a terminator if there happens to be a critical edge.
1648   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1649          "SCEV is not expected to evaluate a block terminator");
1650 
1651   // Reuse the IV increment that SCEVExpander created as long as it dominates
1652   // NarrowUse.
1653   Instruction *WideUse = nullptr;
1654   if (WideAddRec.first == WideIncExpr &&
1655       Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1656     WideUse = WideInc;
1657   else {
1658     WideUse = cloneIVUser(DU, WideAddRec.first);
1659     if (!WideUse)
1660       return nullptr;
1661   }
1662   // Evaluation of WideAddRec ensured that the narrow expression could be
1663   // extended outside the loop without overflow. This suggests that the wide use
1664   // evaluates to the same expression as the extended narrow use, but doesn't
1665   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1666   // where it fails, we simply throw away the newly created wide use.
1667   if (WideAddRec.first != SE->getSCEV(WideUse)) {
1668     LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1669                       << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1670                       << "\n");
1671     DeadInsts.emplace_back(WideUse);
1672     return nullptr;
1673   }
1674 
1675   // if we reached this point then we are going to replace
1676   // DU.NarrowUse with WideUse. Reattach DbgValue then.
1677   replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);
1678 
1679   ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1680   // Returning WideUse pushes it on the worklist.
1681   return WideUse;
1682 }
1683 
1684 /// Add eligible users of NarrowDef to NarrowIVUsers.
1685 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1686   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1687   bool NonNegativeDef =
1688       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1689                            SE->getConstant(NarrowSCEV->getType(), 0));
1690   for (User *U : NarrowDef->users()) {
1691     Instruction *NarrowUser = cast<Instruction>(U);
1692 
1693     // Handle data flow merges and bizarre phi cycles.
1694     if (!Widened.insert(NarrowUser).second)
1695       continue;
1696 
1697     bool NonNegativeUse = false;
1698     if (!NonNegativeDef) {
1699       // We might have a control-dependent range information for this context.
1700       if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1701         NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1702     }
1703 
1704     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1705                                NonNegativeDef || NonNegativeUse);
1706   }
1707 }
1708 
1709 /// Process a single induction variable. First use the SCEVExpander to create a
1710 /// wide induction variable that evaluates to the same recurrence as the
1711 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1712 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1713 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1714 ///
1715 /// It would be simpler to delete uses as they are processed, but we must avoid
1716 /// invalidating SCEV expressions.
1717 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1718   // Is this phi an induction variable?
1719   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1720   if (!AddRec)
1721     return nullptr;
1722 
1723   // Widen the induction variable expression.
1724   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1725                                ? SE->getSignExtendExpr(AddRec, WideType)
1726                                : SE->getZeroExtendExpr(AddRec, WideType);
1727 
1728   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1729          "Expect the new IV expression to preserve its type");
1730 
1731   // Can the IV be extended outside the loop without overflow?
1732   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1733   if (!AddRec || AddRec->getLoop() != L)
1734     return nullptr;
1735 
1736   // An AddRec must have loop-invariant operands. Since this AddRec is
1737   // materialized by a loop header phi, the expression cannot have any post-loop
1738   // operands, so they must dominate the loop header.
1739   assert(
1740       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1741       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1742       "Loop header phi recurrence inputs do not dominate the loop");
1743 
1744   // Iterate over IV uses (including transitive ones) looking for IV increments
1745   // of the form 'add nsw %iv, <const>'. For each increment and each use of
1746   // the increment calculate control-dependent range information basing on
1747   // dominating conditions inside of the loop (e.g. a range check inside of the
1748   // loop). Calculated ranges are stored in PostIncRangeInfos map.
1749   //
1750   // Control-dependent range information is later used to prove that a narrow
1751   // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1752   // this on demand because when pushNarrowIVUsers needs this information some
1753   // of the dominating conditions might be already widened.
1754   if (UsePostIncrementRanges)
1755     calculatePostIncRanges(OrigPhi);
1756 
1757   // The rewriter provides a value for the desired IV expression. This may
1758   // either find an existing phi or materialize a new one. Either way, we
1759   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1760   // of the phi-SCC dominates the loop entry.
1761   Instruction *InsertPt = &L->getHeader()->front();
1762   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1763 
1764   // Remembering the WideIV increment generated by SCEVExpander allows
1765   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1766   // employ a general reuse mechanism because the call above is the only call to
1767   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1768   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1769     WideInc =
1770       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1771     WideIncExpr = SE->getSCEV(WideInc);
1772     // Propagate the debug location associated with the original loop increment
1773     // to the new (widened) increment.
1774     auto *OrigInc =
1775       cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1776     WideInc->setDebugLoc(OrigInc->getDebugLoc());
1777   }
1778 
1779   LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1780   ++NumWidened;
1781 
1782   // Traverse the def-use chain using a worklist starting at the original IV.
1783   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1784 
1785   Widened.insert(OrigPhi);
1786   pushNarrowIVUsers(OrigPhi, WidePhi);
1787 
1788   while (!NarrowIVUsers.empty()) {
1789     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1790 
1791     // Process a def-use edge. This may replace the use, so don't hold a
1792     // use_iterator across it.
1793     Instruction *WideUse = widenIVUse(DU, Rewriter);
1794 
1795     // Follow all def-use edges from the previous narrow use.
1796     if (WideUse)
1797       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1798 
1799     // widenIVUse may have removed the def-use edge.
1800     if (DU.NarrowDef->use_empty())
1801       DeadInsts.emplace_back(DU.NarrowDef);
1802   }
1803 
1804   // Attach any debug information to the new PHI.
1805   replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT);
1806 
1807   return WidePhi;
1808 }
1809 
1810 /// Calculates control-dependent range for the given def at the given context
1811 /// by looking at dominating conditions inside of the loop
1812 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1813                                     Instruction *NarrowUser) {
1814   using namespace llvm::PatternMatch;
1815 
1816   Value *NarrowDefLHS;
1817   const APInt *NarrowDefRHS;
1818   if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1819                                  m_APInt(NarrowDefRHS))) ||
1820       !NarrowDefRHS->isNonNegative())
1821     return;
1822 
1823   auto UpdateRangeFromCondition = [&] (Value *Condition,
1824                                        bool TrueDest) {
1825     CmpInst::Predicate Pred;
1826     Value *CmpRHS;
1827     if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1828                                  m_Value(CmpRHS))))
1829       return;
1830 
1831     CmpInst::Predicate P =
1832             TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1833 
1834     auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1835     auto CmpConstrainedLHSRange =
1836             ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1837     auto NarrowDefRange =
1838             CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS);
1839 
1840     updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
1841   };
1842 
1843   auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
1844     if (!HasGuards)
1845       return;
1846 
1847     for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
1848                                      Ctx->getParent()->rend())) {
1849       Value *C = nullptr;
1850       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
1851         UpdateRangeFromCondition(C, /*TrueDest=*/true);
1852     }
1853   };
1854 
1855   UpdateRangeFromGuards(NarrowUser);
1856 
1857   BasicBlock *NarrowUserBB = NarrowUser->getParent();
1858   // If NarrowUserBB is statically unreachable asking dominator queries may
1859   // yield surprising results. (e.g. the block may not have a dom tree node)
1860   if (!DT->isReachableFromEntry(NarrowUserBB))
1861     return;
1862 
1863   for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
1864        L->contains(DTB->getBlock());
1865        DTB = DTB->getIDom()) {
1866     auto *BB = DTB->getBlock();
1867     auto *TI = BB->getTerminator();
1868     UpdateRangeFromGuards(TI);
1869 
1870     auto *BI = dyn_cast<BranchInst>(TI);
1871     if (!BI || !BI->isConditional())
1872       continue;
1873 
1874     auto *TrueSuccessor = BI->getSuccessor(0);
1875     auto *FalseSuccessor = BI->getSuccessor(1);
1876 
1877     auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
1878       return BBE.isSingleEdge() &&
1879              DT->dominates(BBE, NarrowUser->getParent());
1880     };
1881 
1882     if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
1883       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
1884 
1885     if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
1886       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
1887   }
1888 }
1889 
1890 /// Calculates PostIncRangeInfos map for the given IV
1891 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
1892   SmallPtrSet<Instruction *, 16> Visited;
1893   SmallVector<Instruction *, 6> Worklist;
1894   Worklist.push_back(OrigPhi);
1895   Visited.insert(OrigPhi);
1896 
1897   while (!Worklist.empty()) {
1898     Instruction *NarrowDef = Worklist.pop_back_val();
1899 
1900     for (Use &U : NarrowDef->uses()) {
1901       auto *NarrowUser = cast<Instruction>(U.getUser());
1902 
1903       // Don't go looking outside the current loop.
1904       auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
1905       if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
1906         continue;
1907 
1908       if (!Visited.insert(NarrowUser).second)
1909         continue;
1910 
1911       Worklist.push_back(NarrowUser);
1912 
1913       calculatePostIncRange(NarrowDef, NarrowUser);
1914     }
1915   }
1916 }
1917 
1918 //===----------------------------------------------------------------------===//
1919 //  Live IV Reduction - Minimize IVs live across the loop.
1920 //===----------------------------------------------------------------------===//
1921 
1922 //===----------------------------------------------------------------------===//
1923 //  Simplification of IV users based on SCEV evaluation.
1924 //===----------------------------------------------------------------------===//
1925 
1926 namespace {
1927 
1928 class IndVarSimplifyVisitor : public IVVisitor {
1929   ScalarEvolution *SE;
1930   const TargetTransformInfo *TTI;
1931   PHINode *IVPhi;
1932 
1933 public:
1934   WideIVInfo WI;
1935 
1936   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1937                         const TargetTransformInfo *TTI,
1938                         const DominatorTree *DTree)
1939     : SE(SCEV), TTI(TTI), IVPhi(IV) {
1940     DT = DTree;
1941     WI.NarrowIV = IVPhi;
1942   }
1943 
1944   // Implement the interface used by simplifyUsersOfIV.
1945   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1946 };
1947 
1948 } // end anonymous namespace
1949 
1950 /// Iteratively perform simplification on a worklist of IV users. Each
1951 /// successive simplification may push more users which may themselves be
1952 /// candidates for simplification.
1953 ///
1954 /// Sign/Zero extend elimination is interleaved with IV simplification.
1955 bool IndVarSimplify::simplifyAndExtend(Loop *L,
1956                                        SCEVExpander &Rewriter,
1957                                        LoopInfo *LI) {
1958   SmallVector<WideIVInfo, 8> WideIVs;
1959 
1960   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
1961           Intrinsic::getName(Intrinsic::experimental_guard));
1962   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
1963 
1964   SmallVector<PHINode*, 8> LoopPhis;
1965   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1966     LoopPhis.push_back(cast<PHINode>(I));
1967   }
1968   // Each round of simplification iterates through the SimplifyIVUsers worklist
1969   // for all current phis, then determines whether any IVs can be
1970   // widened. Widening adds new phis to LoopPhis, inducing another round of
1971   // simplification on the wide IVs.
1972   bool Changed = false;
1973   while (!LoopPhis.empty()) {
1974     // Evaluate as many IV expressions as possible before widening any IVs. This
1975     // forces SCEV to set no-wrap flags before evaluating sign/zero
1976     // extension. The first time SCEV attempts to normalize sign/zero extension,
1977     // the result becomes final. So for the most predictable results, we delay
1978     // evaluation of sign/zero extend evaluation until needed, and avoid running
1979     // other SCEV based analysis prior to simplifyAndExtend.
1980     do {
1981       PHINode *CurrIV = LoopPhis.pop_back_val();
1982 
1983       // Information about sign/zero extensions of CurrIV.
1984       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1985 
1986       Changed |=
1987           simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor);
1988 
1989       if (Visitor.WI.WidestNativeType) {
1990         WideIVs.push_back(Visitor.WI);
1991       }
1992     } while(!LoopPhis.empty());
1993 
1994     for (; !WideIVs.empty(); WideIVs.pop_back()) {
1995       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards);
1996       if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1997         Changed = true;
1998         LoopPhis.push_back(WidePhi);
1999       }
2000     }
2001   }
2002   return Changed;
2003 }
2004 
2005 //===----------------------------------------------------------------------===//
2006 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
2007 //===----------------------------------------------------------------------===//
2008 
2009 /// Given an Value which is hoped to be part of an add recurance in the given
2010 /// loop, return the associated Phi node if so.  Otherwise, return null.  Note
2011 /// that this is less general than SCEVs AddRec checking.
2012 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) {
2013   Instruction *IncI = dyn_cast<Instruction>(IncV);
2014   if (!IncI)
2015     return nullptr;
2016 
2017   switch (IncI->getOpcode()) {
2018   case Instruction::Add:
2019   case Instruction::Sub:
2020     break;
2021   case Instruction::GetElementPtr:
2022     // An IV counter must preserve its type.
2023     if (IncI->getNumOperands() == 2)
2024       break;
2025     LLVM_FALLTHROUGH;
2026   default:
2027     return nullptr;
2028   }
2029 
2030   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
2031   if (Phi && Phi->getParent() == L->getHeader()) {
2032     if (L->isLoopInvariant(IncI->getOperand(1)))
2033       return Phi;
2034     return nullptr;
2035   }
2036   if (IncI->getOpcode() == Instruction::GetElementPtr)
2037     return nullptr;
2038 
2039   // Allow add/sub to be commuted.
2040   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
2041   if (Phi && Phi->getParent() == L->getHeader()) {
2042     if (L->isLoopInvariant(IncI->getOperand(0)))
2043       return Phi;
2044   }
2045   return nullptr;
2046 }
2047 
2048 /// Whether the current loop exit test is based on this value.  Currently this
2049 /// is limited to a direct use in the loop condition.
2050 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) {
2051   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
2052   ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
2053   // TODO: Allow non-icmp loop test.
2054   if (!ICmp)
2055     return false;
2056 
2057   // TODO: Allow indirect use.
2058   return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V;
2059 }
2060 
2061 /// linearFunctionTestReplace policy. Return true unless we can show that the
2062 /// current exit test is already sufficiently canonical.
2063 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
2064   assert(L->getLoopLatch() && "Must be in simplified form");
2065 
2066   // Avoid converting a constant or loop invariant test back to a runtime
2067   // test.  This is critical for when SCEV's cached ExitCount is less precise
2068   // than the current IR (such as after we've proven a particular exit is
2069   // actually dead and thus the BE count never reaches our ExitCount.)
2070   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
2071   if (L->isLoopInvariant(BI->getCondition()))
2072     return false;
2073 
2074   // Do LFTR to simplify the exit condition to an ICMP.
2075   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
2076   if (!Cond)
2077     return true;
2078 
2079   // Do LFTR to simplify the exit ICMP to EQ/NE
2080   ICmpInst::Predicate Pred = Cond->getPredicate();
2081   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
2082     return true;
2083 
2084   // Look for a loop invariant RHS
2085   Value *LHS = Cond->getOperand(0);
2086   Value *RHS = Cond->getOperand(1);
2087   if (!L->isLoopInvariant(RHS)) {
2088     if (!L->isLoopInvariant(LHS))
2089       return true;
2090     std::swap(LHS, RHS);
2091   }
2092   // Look for a simple IV counter LHS
2093   PHINode *Phi = dyn_cast<PHINode>(LHS);
2094   if (!Phi)
2095     Phi = getLoopPhiForCounter(LHS, L);
2096 
2097   if (!Phi)
2098     return true;
2099 
2100   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
2101   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
2102   if (Idx < 0)
2103     return true;
2104 
2105   // Do LFTR if the exit condition's IV is *not* a simple counter.
2106   Value *IncV = Phi->getIncomingValue(Idx);
2107   return Phi != getLoopPhiForCounter(IncV, L);
2108 }
2109 
2110 /// Return true if undefined behavior would provable be executed on the path to
2111 /// OnPathTo if Root produced a posion result.  Note that this doesn't say
2112 /// anything about whether OnPathTo is actually executed or whether Root is
2113 /// actually poison.  This can be used to assess whether a new use of Root can
2114 /// be added at a location which is control equivalent with OnPathTo (such as
2115 /// immediately before it) without introducing UB which didn't previously
2116 /// exist.  Note that a false result conveys no information.
2117 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
2118                                           Instruction *OnPathTo,
2119                                           DominatorTree *DT) {
2120   // Basic approach is to assume Root is poison, propagate poison forward
2121   // through all users we can easily track, and then check whether any of those
2122   // users are provable UB and must execute before out exiting block might
2123   // exit.
2124 
2125   // The set of all recursive users we've visited (which are assumed to all be
2126   // poison because of said visit)
2127   SmallSet<const Value *, 16> KnownPoison;
2128   SmallVector<const Instruction*, 16> Worklist;
2129   Worklist.push_back(Root);
2130   while (!Worklist.empty()) {
2131     const Instruction *I = Worklist.pop_back_val();
2132 
2133     // If we know this must trigger UB on a path leading our target.
2134     if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
2135       return true;
2136 
2137     // If we can't analyze propagation through this instruction, just skip it
2138     // and transitive users.  Safe as false is a conservative result.
2139     if (!propagatesFullPoison(I) && I != Root)
2140       continue;
2141 
2142     if (KnownPoison.insert(I).second)
2143       for (const User *User : I->users())
2144         Worklist.push_back(cast<Instruction>(User));
2145   }
2146 
2147   // Might be non-UB, or might have a path we couldn't prove must execute on
2148   // way to exiting bb.
2149   return false;
2150 }
2151 
2152 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
2153 /// down to checking that all operands are constant and listing instructions
2154 /// that may hide undef.
2155 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
2156                                unsigned Depth) {
2157   if (isa<Constant>(V))
2158     return !isa<UndefValue>(V);
2159 
2160   if (Depth >= 6)
2161     return false;
2162 
2163   // Conservatively handle non-constant non-instructions. For example, Arguments
2164   // may be undef.
2165   Instruction *I = dyn_cast<Instruction>(V);
2166   if (!I)
2167     return false;
2168 
2169   // Load and return values may be undef.
2170   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
2171     return false;
2172 
2173   // Optimistically handle other instructions.
2174   for (Value *Op : I->operands()) {
2175     if (!Visited.insert(Op).second)
2176       continue;
2177     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
2178       return false;
2179   }
2180   return true;
2181 }
2182 
2183 /// Return true if the given value is concrete. We must prove that undef can
2184 /// never reach it.
2185 ///
2186 /// TODO: If we decide that this is a good approach to checking for undef, we
2187 /// may factor it into a common location.
2188 static bool hasConcreteDef(Value *V) {
2189   SmallPtrSet<Value*, 8> Visited;
2190   Visited.insert(V);
2191   return hasConcreteDefImpl(V, Visited, 0);
2192 }
2193 
2194 /// Return true if this IV has any uses other than the (soon to be rewritten)
2195 /// loop exit test.
2196 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
2197   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2198   Value *IncV = Phi->getIncomingValue(LatchIdx);
2199 
2200   for (User *U : Phi->users())
2201     if (U != Cond && U != IncV) return false;
2202 
2203   for (User *U : IncV->users())
2204     if (U != Cond && U != Phi) return false;
2205   return true;
2206 }
2207 
2208 /// Return true if the given phi is a "counter" in L.  A counter is an
2209 /// add recurance (of integer or pointer type) with an arbitrary start, and a
2210 /// step of 1.  Note that L must have exactly one latch.
2211 static bool isLoopCounter(PHINode* Phi, Loop *L,
2212                           ScalarEvolution *SE) {
2213   assert(Phi->getParent() == L->getHeader());
2214   assert(L->getLoopLatch());
2215 
2216   if (!SE->isSCEVable(Phi->getType()))
2217     return false;
2218 
2219   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
2220   if (!AR || AR->getLoop() != L || !AR->isAffine())
2221     return false;
2222 
2223   const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
2224   if (!Step || !Step->isOne())
2225     return false;
2226 
2227   int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
2228   Value *IncV = Phi->getIncomingValue(LatchIdx);
2229   return (getLoopPhiForCounter(IncV, L) == Phi);
2230 }
2231 
2232 /// Search the loop header for a loop counter (anadd rec w/step of one)
2233 /// suitable for use by LFTR.  If multiple counters are available, select the
2234 /// "best" one based profitable heuristics.
2235 ///
2236 /// BECount may be an i8* pointer type. The pointer difference is already
2237 /// valid count without scaling the address stride, so it remains a pointer
2238 /// expression as far as SCEV is concerned.
2239 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
2240                                 const SCEV *BECount,
2241                                 ScalarEvolution *SE, DominatorTree *DT) {
2242   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
2243 
2244   Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
2245 
2246   // Loop over all of the PHI nodes, looking for a simple counter.
2247   PHINode *BestPhi = nullptr;
2248   const SCEV *BestInit = nullptr;
2249   BasicBlock *LatchBlock = L->getLoopLatch();
2250   assert(LatchBlock && "Must be in simplified form");
2251   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2252 
2253   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
2254     PHINode *Phi = cast<PHINode>(I);
2255     if (!isLoopCounter(Phi, L, SE))
2256       continue;
2257 
2258     // Avoid comparing an integer IV against a pointer Limit.
2259     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
2260       continue;
2261 
2262     const auto *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
2263 
2264     // AR may be a pointer type, while BECount is an integer type.
2265     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
2266     // AR may not be a narrower type, or we may never exit.
2267     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
2268     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
2269       continue;
2270 
2271     // Avoid reusing a potentially undef value to compute other values that may
2272     // have originally had a concrete definition.
2273     if (!hasConcreteDef(Phi)) {
2274       // We explicitly allow unknown phis as long as they are already used by
2275       // the loop exit test.  This is legal since performing LFTR could not
2276       // increase the number of undef users.
2277       Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock);
2278       if (!isLoopExitTestBasedOn(Phi, ExitingBB) &&
2279           !isLoopExitTestBasedOn(IncPhi, ExitingBB))
2280         continue;
2281     }
2282 
2283     // Avoid introducing undefined behavior due to poison which didn't exist in
2284     // the original program.  (Annoyingly, the rules for poison and undef
2285     // propagation are distinct, so this does NOT cover the undef case above.)
2286     // We have to ensure that we don't introduce UB by introducing a use on an
2287     // iteration where said IV produces poison.  Our strategy here differs for
2288     // pointers and integer IVs.  For integers, we strip and reinfer as needed,
2289     // see code in linearFunctionTestReplace.  For pointers, we restrict
2290     // transforms as there is no good way to reinfer inbounds once lost.
2291     if (!Phi->getType()->isIntegerTy() &&
2292         !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT))
2293       continue;
2294 
2295     const SCEV *Init = AR->getStart();
2296 
2297     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
2298       // Don't force a live loop counter if another IV can be used.
2299       if (AlmostDeadIV(Phi, LatchBlock, Cond))
2300         continue;
2301 
2302       // Prefer to count-from-zero. This is a more "canonical" counter form. It
2303       // also prefers integer to pointer IVs.
2304       if (BestInit->isZero() != Init->isZero()) {
2305         if (BestInit->isZero())
2306           continue;
2307       }
2308       // If two IVs both count from zero or both count from nonzero then the
2309       // narrower is likely a dead phi that has been widened. Use the wider phi
2310       // to allow the other to be eliminated.
2311       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
2312         continue;
2313     }
2314     BestPhi = Phi;
2315     BestInit = Init;
2316   }
2317   return BestPhi;
2318 }
2319 
2320 /// Insert an IR expression which computes the value held by the IV IndVar
2321 /// (which must be an loop counter w/unit stride) after the backedge of loop L
2322 /// is taken ExitCount times.
2323 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
2324                            const SCEV *ExitCount, bool UsePostInc, Loop *L,
2325                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
2326   assert(isLoopCounter(IndVar, L, SE));
2327   const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2328   const SCEV *IVInit = AR->getStart();
2329 
2330   // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter
2331   // finds a valid pointer IV. Sign extend ExitCount in order to materialize a
2332   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
2333   // the existing GEPs whenever possible.
2334   if (IndVar->getType()->isPointerTy() &&
2335       !ExitCount->getType()->isPointerTy()) {
2336     // IVOffset will be the new GEP offset that is interpreted by GEP as a
2337     // signed value. ExitCount on the other hand represents the loop trip count,
2338     // which is an unsigned value. FindLoopCounter only allows induction
2339     // variables that have a positive unit stride of one. This means we don't
2340     // have to handle the case of negative offsets (yet) and just need to zero
2341     // extend ExitCount.
2342     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
2343     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy);
2344     if (UsePostInc)
2345       IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy));
2346 
2347     // Expand the code for the iteration count.
2348     assert(SE->isLoopInvariant(IVOffset, L) &&
2349            "Computed iteration count is not loop invariant!");
2350 
2351     // We could handle pointer IVs other than i8*, but we need to compensate for
2352     // gep index scaling.
2353     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
2354                              cast<PointerType>(IndVar->getType())
2355                                  ->getElementType())->isOne() &&
2356            "unit stride pointer IV must be i8*");
2357 
2358     const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset);
2359     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
2360     return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI);
2361   } else {
2362     // In any other case, convert both IVInit and ExitCount to integers before
2363     // comparing. This may result in SCEV expansion of pointers, but in practice
2364     // SCEV will fold the pointer arithmetic away as such:
2365     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
2366     //
2367     // Valid Cases: (1) both integers is most common; (2) both may be pointers
2368     // for simple memset-style loops.
2369     //
2370     // IVInit integer and ExitCount pointer would only occur if a canonical IV
2371     // were generated on top of case #2, which is not expected.
2372 
2373     assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
2374     // For unit stride, IVCount = Start + ExitCount with 2's complement
2375     // overflow.
2376 
2377     // For integer IVs, truncate the IV before computing IVInit + BECount,
2378     // unless we know apriori that the limit must be a constant when evaluated
2379     // in the bitwidth of the IV.  We prefer (potentially) keeping a truncate
2380     // of the IV in the loop over a (potentially) expensive expansion of the
2381     // widened exit count add(zext(add)) expression.
2382     if (SE->getTypeSizeInBits(IVInit->getType())
2383         > SE->getTypeSizeInBits(ExitCount->getType())) {
2384       if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount))
2385         ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType());
2386       else
2387         IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType());
2388     }
2389 
2390     const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount);
2391 
2392     if (UsePostInc)
2393       IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType()));
2394 
2395     // Expand the code for the iteration count.
2396     assert(SE->isLoopInvariant(IVLimit, L) &&
2397            "Computed iteration count is not loop invariant!");
2398     // Ensure that we generate the same type as IndVar, or a smaller integer
2399     // type. In the presence of null pointer values, we have an integer type
2400     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
2401     Type *LimitTy = ExitCount->getType()->isPointerTy() ?
2402       IndVar->getType() : ExitCount->getType();
2403     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
2404     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
2405   }
2406 }
2407 
2408 /// This method rewrites the exit condition of the loop to be a canonical !=
2409 /// comparison against the incremented loop induction variable.  This pass is
2410 /// able to rewrite the exit tests of any loop where the SCEV analysis can
2411 /// determine a loop-invariant trip count of the loop, which is actually a much
2412 /// broader range than just linear tests.
2413 bool IndVarSimplify::
2414 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
2415                           const SCEV *ExitCount,
2416                           PHINode *IndVar, SCEVExpander &Rewriter) {
2417   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
2418   assert(isLoopCounter(IndVar, L, SE));
2419   Instruction * const IncVar =
2420     cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch()));
2421 
2422   // Initialize CmpIndVar to the preincremented IV.
2423   Value *CmpIndVar = IndVar;
2424   bool UsePostInc = false;
2425 
2426   // If the exiting block is the same as the backedge block, we prefer to
2427   // compare against the post-incremented value, otherwise we must compare
2428   // against the preincremented value.
2429   if (ExitingBB == L->getLoopLatch()) {
2430     // For pointer IVs, we chose to not strip inbounds which requires us not
2431     // to add a potentially UB introducing use.  We need to either a) show
2432     // the loop test we're modifying is already in post-inc form, or b) show
2433     // that adding a use must not introduce UB.
2434     bool SafeToPostInc =
2435         IndVar->getType()->isIntegerTy() ||
2436         isLoopExitTestBasedOn(IncVar, ExitingBB) ||
2437         mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT);
2438     if (SafeToPostInc) {
2439       UsePostInc = true;
2440       CmpIndVar = IncVar;
2441     }
2442   }
2443 
2444   // It may be necessary to drop nowrap flags on the incrementing instruction
2445   // if either LFTR moves from a pre-inc check to a post-inc check (in which
2446   // case the increment might have previously been poison on the last iteration
2447   // only) or if LFTR switches to a different IV that was previously dynamically
2448   // dead (and as such may be arbitrarily poison). We remove any nowrap flags
2449   // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
2450   // check), because the pre-inc addrec flags may be adopted from the original
2451   // instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
2452   // TODO: This handling is inaccurate for one case: If we switch to a
2453   // dynamically dead IV that wraps on the first loop iteration only, which is
2454   // not covered by the post-inc addrec. (If the new IV was not dynamically
2455   // dead, it could not be poison on the first iteration in the first place.)
2456   if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
2457     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
2458     if (BO->hasNoUnsignedWrap())
2459       BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
2460     if (BO->hasNoSignedWrap())
2461       BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
2462   }
2463 
2464   Value *ExitCnt = genLoopLimit(
2465       IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
2466   assert(ExitCnt->getType()->isPointerTy() ==
2467              IndVar->getType()->isPointerTy() &&
2468          "genLoopLimit missed a cast");
2469 
2470   // Insert a new icmp_ne or icmp_eq instruction before the branch.
2471   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
2472   ICmpInst::Predicate P;
2473   if (L->contains(BI->getSuccessor(0)))
2474     P = ICmpInst::ICMP_NE;
2475   else
2476     P = ICmpInst::ICMP_EQ;
2477 
2478   IRBuilder<> Builder(BI);
2479 
2480   // The new loop exit condition should reuse the debug location of the
2481   // original loop exit condition.
2482   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
2483     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
2484 
2485   // For integer IVs, if we evaluated the limit in the narrower bitwidth to
2486   // avoid the expensive expansion of the limit expression in the wider type,
2487   // emit a truncate to narrow the IV to the ExitCount type.  This is safe
2488   // since we know (from the exit count bitwidth), that we can't self-wrap in
2489   // the narrower type.
2490   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
2491   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
2492   if (CmpIndVarSize > ExitCntSize) {
2493     assert(!CmpIndVar->getType()->isPointerTy() &&
2494            !ExitCnt->getType()->isPointerTy());
2495 
2496     // Before resorting to actually inserting the truncate, use the same
2497     // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend
2498     // the other side of the comparison instead.  We still evaluate the limit
2499     // in the narrower bitwidth, we just prefer a zext/sext outside the loop to
2500     // a truncate within in.
2501     bool Extended = false;
2502     const SCEV *IV = SE->getSCEV(CmpIndVar);
2503     const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2504                                                   ExitCnt->getType());
2505     const SCEV *ZExtTrunc =
2506       SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType());
2507 
2508     if (ZExtTrunc == IV) {
2509       Extended = true;
2510       ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
2511                                    "wide.trip.count");
2512     } else {
2513       const SCEV *SExtTrunc =
2514         SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType());
2515       if (SExtTrunc == IV) {
2516         Extended = true;
2517         ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
2518                                      "wide.trip.count");
2519       }
2520     }
2521 
2522     if (Extended) {
2523       bool Discard;
2524       L->makeLoopInvariant(ExitCnt, Discard);
2525     } else
2526       CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
2527                                       "lftr.wideiv");
2528   }
2529   LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
2530                     << "      LHS:" << *CmpIndVar << '\n'
2531                     << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
2532                     << "\n"
2533                     << "      RHS:\t" << *ExitCnt << "\n"
2534                     << "ExitCount:\t" << *ExitCount << "\n"
2535                     << "  was: " << *BI->getCondition() << "\n");
2536 
2537   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
2538   Value *OrigCond = BI->getCondition();
2539   // It's tempting to use replaceAllUsesWith here to fully replace the old
2540   // comparison, but that's not immediately safe, since users of the old
2541   // comparison may not be dominated by the new comparison. Instead, just
2542   // update the branch to use the new comparison; in the common case this
2543   // will make old comparison dead.
2544   BI->setCondition(Cond);
2545   DeadInsts.push_back(OrigCond);
2546 
2547   ++NumLFTR;
2548   return true;
2549 }
2550 
2551 //===----------------------------------------------------------------------===//
2552 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2553 //===----------------------------------------------------------------------===//
2554 
2555 /// If there's a single exit block, sink any loop-invariant values that
2556 /// were defined in the preheader but not used inside the loop into the
2557 /// exit block to reduce register pressure in the loop.
2558 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
2559   BasicBlock *ExitBlock = L->getExitBlock();
2560   if (!ExitBlock) return false;
2561 
2562   BasicBlock *Preheader = L->getLoopPreheader();
2563   if (!Preheader) return false;
2564 
2565   bool MadeAnyChanges = false;
2566   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
2567   BasicBlock::iterator I(Preheader->getTerminator());
2568   while (I != Preheader->begin()) {
2569     --I;
2570     // New instructions were inserted at the end of the preheader.
2571     if (isa<PHINode>(I))
2572       break;
2573 
2574     // Don't move instructions which might have side effects, since the side
2575     // effects need to complete before instructions inside the loop.  Also don't
2576     // move instructions which might read memory, since the loop may modify
2577     // memory. Note that it's okay if the instruction might have undefined
2578     // behavior: LoopSimplify guarantees that the preheader dominates the exit
2579     // block.
2580     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2581       continue;
2582 
2583     // Skip debug info intrinsics.
2584     if (isa<DbgInfoIntrinsic>(I))
2585       continue;
2586 
2587     // Skip eh pad instructions.
2588     if (I->isEHPad())
2589       continue;
2590 
2591     // Don't sink alloca: we never want to sink static alloca's out of the
2592     // entry block, and correctly sinking dynamic alloca's requires
2593     // checks for stacksave/stackrestore intrinsics.
2594     // FIXME: Refactor this check somehow?
2595     if (isa<AllocaInst>(I))
2596       continue;
2597 
2598     // Determine if there is a use in or before the loop (direct or
2599     // otherwise).
2600     bool UsedInLoop = false;
2601     for (Use &U : I->uses()) {
2602       Instruction *User = cast<Instruction>(U.getUser());
2603       BasicBlock *UseBB = User->getParent();
2604       if (PHINode *P = dyn_cast<PHINode>(User)) {
2605         unsigned i =
2606           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2607         UseBB = P->getIncomingBlock(i);
2608       }
2609       if (UseBB == Preheader || L->contains(UseBB)) {
2610         UsedInLoop = true;
2611         break;
2612       }
2613     }
2614 
2615     // If there is, the def must remain in the preheader.
2616     if (UsedInLoop)
2617       continue;
2618 
2619     // Otherwise, sink it to the exit block.
2620     Instruction *ToMove = &*I;
2621     bool Done = false;
2622 
2623     if (I != Preheader->begin()) {
2624       // Skip debug info intrinsics.
2625       do {
2626         --I;
2627       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2628 
2629       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2630         Done = true;
2631     } else {
2632       Done = true;
2633     }
2634 
2635     MadeAnyChanges = true;
2636     ToMove->moveBefore(*ExitBlock, InsertPt);
2637     if (Done) break;
2638     InsertPt = ToMove->getIterator();
2639   }
2640 
2641   return MadeAnyChanges;
2642 }
2643 
2644 bool IndVarSimplify::optimizeLoopExits(Loop *L) {
2645   SmallVector<BasicBlock*, 16> ExitingBlocks;
2646   L->getExitingBlocks(ExitingBlocks);
2647 
2648   // Form an expression for the maximum exit count possible for this loop. We
2649   // merge the max and exact information to approximate a version of
2650   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
2651   // TODO: factor this out as a version of getConstantMaxBackedgeTakenCount which
2652   // isn't guaranteed to return a constant.
2653   SmallVector<const SCEV*, 4> ExitCounts;
2654   const SCEV *MaxConstEC = SE->getConstantMaxBackedgeTakenCount(L);
2655   if (!isa<SCEVCouldNotCompute>(MaxConstEC))
2656     ExitCounts.push_back(MaxConstEC);
2657   for (BasicBlock *ExitingBB : ExitingBlocks) {
2658     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
2659     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
2660       assert(DT->dominates(ExitingBB, L->getLoopLatch()) &&
2661              "We should only have known counts for exiting blocks that "
2662              "dominate latch!");
2663       ExitCounts.push_back(ExitCount);
2664     }
2665   }
2666   if (ExitCounts.empty())
2667     return false;
2668   const SCEV *MaxExitCount = SE->getUMinFromMismatchedTypes(ExitCounts);
2669 
2670   bool Changed = false;
2671   for (BasicBlock *ExitingBB : ExitingBlocks) {
2672     // If our exitting block exits multiple loops, we can only rewrite the
2673     // innermost one.  Otherwise, we're changing how many times the innermost
2674     // loop runs before it exits.
2675     if (LI->getLoopFor(ExitingBB) != L)
2676       continue;
2677 
2678     // Can't rewrite non-branch yet.
2679     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
2680     if (!BI)
2681       continue;
2682 
2683     // If already constant, nothing to do.
2684     if (isa<Constant>(BI->getCondition()))
2685       continue;
2686 
2687     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
2688     if (isa<SCEVCouldNotCompute>(ExitCount))
2689       continue;
2690 
2691     // If we know we'd exit on the first iteration, rewrite the exit to
2692     // reflect this.  This does not imply the loop must exit through this
2693     // exit; there may be an earlier one taken on the first iteration.
2694     // TODO: Given we know the backedge can't be taken, we should go ahead
2695     // and break it.  Or at least, kill all the header phis and simplify.
2696     if (ExitCount->isZero()) {
2697       bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
2698       auto *OldCond = BI->getCondition();
2699       auto *NewCond = ExitIfTrue ? ConstantInt::getTrue(OldCond->getType()) :
2700         ConstantInt::getFalse(OldCond->getType());
2701       BI->setCondition(NewCond);
2702       if (OldCond->use_empty())
2703         DeadInsts.push_back(OldCond);
2704       Changed = true;
2705       continue;
2706     }
2707 
2708     // If we end up with a pointer exit count, bail.  Note that we can end up
2709     // with a pointer exit count for one exiting block, and not for another in
2710     // the same loop.
2711     if (!ExitCount->getType()->isIntegerTy() ||
2712         !MaxExitCount->getType()->isIntegerTy())
2713       continue;
2714 
2715     Type *WiderType =
2716       SE->getWiderType(MaxExitCount->getType(), ExitCount->getType());
2717     ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType);
2718     MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType);
2719     assert(MaxExitCount->getType() == ExitCount->getType());
2720 
2721     // Can we prove that some other exit must be taken strictly before this
2722     // one?  TODO: handle cases where ule is known, and equality is covered
2723     // by a dominating exit
2724     if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT,
2725                                      MaxExitCount, ExitCount)) {
2726       bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
2727       auto *OldCond = BI->getCondition();
2728       auto *NewCond = ExitIfTrue ? ConstantInt::getFalse(OldCond->getType()) :
2729         ConstantInt::getTrue(OldCond->getType());
2730       BI->setCondition(NewCond);
2731       if (OldCond->use_empty())
2732         DeadInsts.push_back(OldCond);
2733       Changed = true;
2734       continue;
2735     }
2736 
2737     // TODO: If we can prove that the exiting iteration is equal to the exit
2738     // count for this exit and that no previous exit oppurtunities exist within
2739     // the loop, then we can discharge all other exits.  (May fall out of
2740     // previous TODO.)
2741 
2742     // TODO: If we can't prove any relation between our exit count and the
2743     // loops exit count, but taking this exit doesn't require actually running
2744     // the loop (i.e. no side effects, no computed values used in exit), then
2745     // we can replace the exit test with a loop invariant test which exits on
2746     // the first iteration.
2747   }
2748   return Changed;
2749 }
2750 
2751 //===----------------------------------------------------------------------===//
2752 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
2753 //===----------------------------------------------------------------------===//
2754 
2755 bool IndVarSimplify::run(Loop *L) {
2756   // We need (and expect!) the incoming loop to be in LCSSA.
2757   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2758          "LCSSA required to run indvars!");
2759   bool Changed = false;
2760 
2761   // If LoopSimplify form is not available, stay out of trouble. Some notes:
2762   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2763   //    canonicalization can be a pessimization without LSR to "clean up"
2764   //    afterwards.
2765   //  - We depend on having a preheader; in particular,
2766   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2767   //    and we're in trouble if we can't find the induction variable even when
2768   //    we've manually inserted one.
2769   //  - LFTR relies on having a single backedge.
2770   if (!L->isLoopSimplifyForm())
2771     return false;
2772 
2773   // If there are any floating-point recurrences, attempt to
2774   // transform them to use integer recurrences.
2775   Changed |= rewriteNonIntegerIVs(L);
2776 
2777 #ifndef NDEBUG
2778   // Used below for a consistency check only
2779   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2780 #endif
2781 
2782   // Create a rewriter object which we'll use to transform the code with.
2783   SCEVExpander Rewriter(*SE, DL, "indvars");
2784 #ifndef NDEBUG
2785   Rewriter.setDebugType(DEBUG_TYPE);
2786 #endif
2787 
2788   // Eliminate redundant IV users.
2789   //
2790   // Simplification works best when run before other consumers of SCEV. We
2791   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2792   // other expressions involving loop IVs have been evaluated. This helps SCEV
2793   // set no-wrap flags before normalizing sign/zero extension.
2794   Rewriter.disableCanonicalMode();
2795   Changed |= simplifyAndExtend(L, Rewriter, LI);
2796 
2797   // Check to see if we can compute the final value of any expressions
2798   // that are recurrent in the loop, and substitute the exit values from the
2799   // loop into any instructions outside of the loop that use the final values
2800   // of the current expressions.
2801   if (ReplaceExitValue != NeverRepl)
2802     Changed |= rewriteLoopExitValues(L, Rewriter);
2803 
2804   // Eliminate redundant IV cycles.
2805   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2806 
2807   Changed |= optimizeLoopExits(L);
2808 
2809   // If we have a trip count expression, rewrite the loop's exit condition
2810   // using it.
2811   if (!DisableLFTR) {
2812     SmallVector<BasicBlock*, 16> ExitingBlocks;
2813     L->getExitingBlocks(ExitingBlocks);
2814     for (BasicBlock *ExitingBB : ExitingBlocks) {
2815       // Can't rewrite non-branch yet.
2816       if (!isa<BranchInst>(ExitingBB->getTerminator()))
2817         continue;
2818 
2819       // If our exitting block exits multiple loops, we can only rewrite the
2820       // innermost one.  Otherwise, we're changing how many times the innermost
2821       // loop runs before it exits.
2822       if (LI->getLoopFor(ExitingBB) != L)
2823         continue;
2824 
2825       if (!needsLFTR(L, ExitingBB))
2826         continue;
2827 
2828       const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
2829       if (isa<SCEVCouldNotCompute>(ExitCount))
2830         continue;
2831 
2832       // This was handled above, but as we form SCEVs, we can sometimes refine
2833       // existing ones; this allows exit counts to be folded to zero which
2834       // weren't when optimizeLoopExits saw them.  Arguably, we should iterate
2835       // until stable to handle cases like this better.
2836       if (ExitCount->isZero())
2837         continue;
2838 
2839       PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT);
2840       if (!IndVar)
2841         continue;
2842 
2843       // Avoid high cost expansions.  Note: This heuristic is questionable in
2844       // that our definition of "high cost" is not exactly principled.
2845       if (Rewriter.isHighCostExpansion(ExitCount, L))
2846         continue;
2847 
2848       // Check preconditions for proper SCEVExpander operation. SCEV does not
2849       // express SCEVExpander's dependencies, such as LoopSimplify. Instead
2850       // any pass that uses the SCEVExpander must do it. This does not work
2851       // well for loop passes because SCEVExpander makes assumptions about
2852       // all loops, while LoopPassManager only forces the current loop to be
2853       // simplified.
2854       //
2855       // FIXME: SCEV expansion has no way to bail out, so the caller must
2856       // explicitly check any assumptions made by SCEV. Brittle.
2857       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount);
2858       if (!AR || AR->getLoop()->getLoopPreheader())
2859         Changed |= linearFunctionTestReplace(L, ExitingBB,
2860                                              ExitCount, IndVar,
2861                                              Rewriter);
2862     }
2863   }
2864   // Clear the rewriter cache, because values that are in the rewriter's cache
2865   // can be deleted in the loop below, causing the AssertingVH in the cache to
2866   // trigger.
2867   Rewriter.clear();
2868 
2869   // Now that we're done iterating through lists, clean up any instructions
2870   // which are now dead.
2871   while (!DeadInsts.empty())
2872     if (Instruction *Inst =
2873             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2874       Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2875 
2876   // The Rewriter may not be used from this point on.
2877 
2878   // Loop-invariant instructions in the preheader that aren't used in the
2879   // loop may be sunk below the loop to reduce register pressure.
2880   Changed |= sinkUnusedInvariants(L);
2881 
2882   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2883   // trip count and therefore can further simplify exit values in addition to
2884   // rewriteLoopExitValues.
2885   Changed |= rewriteFirstIterationLoopExitValues(L);
2886 
2887   // Clean up dead instructions.
2888   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2889 
2890   // Check a post-condition.
2891   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2892          "Indvars did not preserve LCSSA!");
2893 
2894   // Verify that LFTR, and any other change have not interfered with SCEV's
2895   // ability to compute trip count.
2896 #ifndef NDEBUG
2897   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2898     SE->forgetLoop(L);
2899     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2900     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2901         SE->getTypeSizeInBits(NewBECount->getType()))
2902       NewBECount = SE->getTruncateOrNoop(NewBECount,
2903                                          BackedgeTakenCount->getType());
2904     else
2905       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2906                                                  NewBECount->getType());
2907     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2908   }
2909 #endif
2910 
2911   return Changed;
2912 }
2913 
2914 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
2915                                           LoopStandardAnalysisResults &AR,
2916                                           LPMUpdater &) {
2917   Function *F = L.getHeader()->getParent();
2918   const DataLayout &DL = F->getParent()->getDataLayout();
2919 
2920   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI);
2921   if (!IVS.run(&L))
2922     return PreservedAnalyses::all();
2923 
2924   auto PA = getLoopPassPreservedAnalyses();
2925   PA.preserveSet<CFGAnalyses>();
2926   return PA;
2927 }
2928 
2929 namespace {
2930 
2931 struct IndVarSimplifyLegacyPass : public LoopPass {
2932   static char ID; // Pass identification, replacement for typeid
2933 
2934   IndVarSimplifyLegacyPass() : LoopPass(ID) {
2935     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2936   }
2937 
2938   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2939     if (skipLoop(L))
2940       return false;
2941 
2942     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2943     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2944     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2945     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2946     auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr;
2947     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2948     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2949     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2950 
2951     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI);
2952     return IVS.run(L);
2953   }
2954 
2955   void getAnalysisUsage(AnalysisUsage &AU) const override {
2956     AU.setPreservesCFG();
2957     getLoopAnalysisUsage(AU);
2958   }
2959 };
2960 
2961 } // end anonymous namespace
2962 
2963 char IndVarSimplifyLegacyPass::ID = 0;
2964 
2965 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2966                       "Induction Variable Simplification", false, false)
2967 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2968 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2969                     "Induction Variable Simplification", false, false)
2970 
2971 Pass *llvm::createIndVarSimplifyPass() {
2972   return new IndVarSimplifyLegacyPass();
2973 }
2974