1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 28 #include "llvm/Transforms/Scalar.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopPass.h" 34 #include "llvm/Analysis/LoopPassManager.h" 35 #include "llvm/Analysis/ScalarEvolutionExpander.h" 36 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/TargetTransformInfo.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/CFG.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/LLVMContext.h" 47 #include "llvm/IR/PatternMatch.h" 48 #include "llvm/IR/Type.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 53 #include "llvm/Transforms/Utils/Local.h" 54 #include "llvm/Transforms/Utils/LoopUtils.h" 55 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 56 using namespace llvm; 57 58 #define DEBUG_TYPE "indvars" 59 60 STATISTIC(NumWidened , "Number of indvars widened"); 61 STATISTIC(NumReplaced , "Number of exit values replaced"); 62 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 63 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 64 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 65 66 // Trip count verification can be enabled by default under NDEBUG if we 67 // implement a strong expression equivalence checker in SCEV. Until then, we 68 // use the verify-indvars flag, which may assert in some cases. 69 static cl::opt<bool> VerifyIndvars( 70 "verify-indvars", cl::Hidden, 71 cl::desc("Verify the ScalarEvolution result after running indvars")); 72 73 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 74 75 static cl::opt<ReplaceExitVal> ReplaceExitValue( 76 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 77 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 78 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 79 clEnumValN(OnlyCheapRepl, "cheap", 80 "only replace exit value when the cost is cheap"), 81 clEnumValN(AlwaysRepl, "always", 82 "always replace exit value whenever possible"))); 83 84 namespace { 85 struct RewritePhi; 86 87 class IndVarSimplify { 88 LoopInfo *LI; 89 ScalarEvolution *SE; 90 DominatorTree *DT; 91 const DataLayout &DL; 92 TargetLibraryInfo *TLI; 93 const TargetTransformInfo *TTI; 94 95 SmallVector<WeakVH, 16> DeadInsts; 96 bool Changed = false; 97 98 bool isValidRewrite(Value *FromVal, Value *ToVal); 99 100 void handleFloatingPointIV(Loop *L, PHINode *PH); 101 void rewriteNonIntegerIVs(Loop *L); 102 103 void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 104 105 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 106 void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 107 void rewriteFirstIterationLoopExitValues(Loop *L); 108 109 Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 110 PHINode *IndVar, SCEVExpander &Rewriter); 111 112 void sinkUnusedInvariants(Loop *L); 113 114 Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L, 115 Instruction *InsertPt, Type *Ty); 116 117 public: 118 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 119 const DataLayout &DL, TargetLibraryInfo *TLI, 120 TargetTransformInfo *TTI) 121 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} 122 123 bool run(Loop *L); 124 }; 125 } 126 127 /// Return true if the SCEV expansion generated by the rewriter can replace the 128 /// original value. SCEV guarantees that it produces the same value, but the way 129 /// it is produced may be illegal IR. Ideally, this function will only be 130 /// called for verification. 131 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 132 // If an SCEV expression subsumed multiple pointers, its expansion could 133 // reassociate the GEP changing the base pointer. This is illegal because the 134 // final address produced by a GEP chain must be inbounds relative to its 135 // underlying object. Otherwise basic alias analysis, among other things, 136 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 137 // producing an expression involving multiple pointers. Until then, we must 138 // bail out here. 139 // 140 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 141 // because it understands lcssa phis while SCEV does not. 142 Value *FromPtr = FromVal; 143 Value *ToPtr = ToVal; 144 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 145 FromPtr = GEP->getPointerOperand(); 146 } 147 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 148 ToPtr = GEP->getPointerOperand(); 149 } 150 if (FromPtr != FromVal || ToPtr != ToVal) { 151 // Quickly check the common case 152 if (FromPtr == ToPtr) 153 return true; 154 155 // SCEV may have rewritten an expression that produces the GEP's pointer 156 // operand. That's ok as long as the pointer operand has the same base 157 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 158 // base of a recurrence. This handles the case in which SCEV expansion 159 // converts a pointer type recurrence into a nonrecurrent pointer base 160 // indexed by an integer recurrence. 161 162 // If the GEP base pointer is a vector of pointers, abort. 163 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 164 return false; 165 166 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 167 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 168 if (FromBase == ToBase) 169 return true; 170 171 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 172 << *FromBase << " != " << *ToBase << "\n"); 173 174 return false; 175 } 176 return true; 177 } 178 179 /// Determine the insertion point for this user. By default, insert immediately 180 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 181 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 182 /// common dominator for the incoming blocks. 183 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 184 DominatorTree *DT, LoopInfo *LI) { 185 PHINode *PHI = dyn_cast<PHINode>(User); 186 if (!PHI) 187 return User; 188 189 Instruction *InsertPt = nullptr; 190 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 191 if (PHI->getIncomingValue(i) != Def) 192 continue; 193 194 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 195 if (!InsertPt) { 196 InsertPt = InsertBB->getTerminator(); 197 continue; 198 } 199 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 200 InsertPt = InsertBB->getTerminator(); 201 } 202 assert(InsertPt && "Missing phi operand"); 203 204 auto *DefI = dyn_cast<Instruction>(Def); 205 if (!DefI) 206 return InsertPt; 207 208 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 209 210 auto *L = LI->getLoopFor(DefI->getParent()); 211 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 212 213 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 214 if (LI->getLoopFor(DTN->getBlock()) == L) 215 return DTN->getBlock()->getTerminator(); 216 217 llvm_unreachable("DefI dominates InsertPt!"); 218 } 219 220 //===----------------------------------------------------------------------===// 221 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 222 //===----------------------------------------------------------------------===// 223 224 /// Convert APF to an integer, if possible. 225 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 226 bool isExact = false; 227 // See if we can convert this to an int64_t 228 uint64_t UIntVal; 229 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 230 &isExact) != APFloat::opOK || !isExact) 231 return false; 232 IntVal = UIntVal; 233 return true; 234 } 235 236 /// If the loop has floating induction variable then insert corresponding 237 /// integer induction variable if possible. 238 /// For example, 239 /// for(double i = 0; i < 10000; ++i) 240 /// bar(i) 241 /// is converted into 242 /// for(int i = 0; i < 10000; ++i) 243 /// bar((double)i); 244 /// 245 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 246 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 247 unsigned BackEdge = IncomingEdge^1; 248 249 // Check incoming value. 250 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 251 252 int64_t InitValue; 253 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 254 return; 255 256 // Check IV increment. Reject this PN if increment operation is not 257 // an add or increment value can not be represented by an integer. 258 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 259 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 260 261 // If this is not an add of the PHI with a constantfp, or if the constant fp 262 // is not an integer, bail out. 263 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 264 int64_t IncValue; 265 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 266 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 267 return; 268 269 // Check Incr uses. One user is PN and the other user is an exit condition 270 // used by the conditional terminator. 271 Value::user_iterator IncrUse = Incr->user_begin(); 272 Instruction *U1 = cast<Instruction>(*IncrUse++); 273 if (IncrUse == Incr->user_end()) return; 274 Instruction *U2 = cast<Instruction>(*IncrUse++); 275 if (IncrUse != Incr->user_end()) return; 276 277 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 278 // only used by a branch, we can't transform it. 279 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 280 if (!Compare) 281 Compare = dyn_cast<FCmpInst>(U2); 282 if (!Compare || !Compare->hasOneUse() || 283 !isa<BranchInst>(Compare->user_back())) 284 return; 285 286 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 287 288 // We need to verify that the branch actually controls the iteration count 289 // of the loop. If not, the new IV can overflow and no one will notice. 290 // The branch block must be in the loop and one of the successors must be out 291 // of the loop. 292 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 293 if (!L->contains(TheBr->getParent()) || 294 (L->contains(TheBr->getSuccessor(0)) && 295 L->contains(TheBr->getSuccessor(1)))) 296 return; 297 298 299 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 300 // transform it. 301 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 302 int64_t ExitValue; 303 if (ExitValueVal == nullptr || 304 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 305 return; 306 307 // Find new predicate for integer comparison. 308 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 309 switch (Compare->getPredicate()) { 310 default: return; // Unknown comparison. 311 case CmpInst::FCMP_OEQ: 312 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 313 case CmpInst::FCMP_ONE: 314 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 315 case CmpInst::FCMP_OGT: 316 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 317 case CmpInst::FCMP_OGE: 318 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 319 case CmpInst::FCMP_OLT: 320 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 321 case CmpInst::FCMP_OLE: 322 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 323 } 324 325 // We convert the floating point induction variable to a signed i32 value if 326 // we can. This is only safe if the comparison will not overflow in a way 327 // that won't be trapped by the integer equivalent operations. Check for this 328 // now. 329 // TODO: We could use i64 if it is native and the range requires it. 330 331 // The start/stride/exit values must all fit in signed i32. 332 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 333 return; 334 335 // If not actually striding (add x, 0.0), avoid touching the code. 336 if (IncValue == 0) 337 return; 338 339 // Positive and negative strides have different safety conditions. 340 if (IncValue > 0) { 341 // If we have a positive stride, we require the init to be less than the 342 // exit value. 343 if (InitValue >= ExitValue) 344 return; 345 346 uint32_t Range = uint32_t(ExitValue-InitValue); 347 // Check for infinite loop, either: 348 // while (i <= Exit) or until (i > Exit) 349 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 350 if (++Range == 0) return; // Range overflows. 351 } 352 353 unsigned Leftover = Range % uint32_t(IncValue); 354 355 // If this is an equality comparison, we require that the strided value 356 // exactly land on the exit value, otherwise the IV condition will wrap 357 // around and do things the fp IV wouldn't. 358 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 359 Leftover != 0) 360 return; 361 362 // If the stride would wrap around the i32 before exiting, we can't 363 // transform the IV. 364 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 365 return; 366 367 } else { 368 // If we have a negative stride, we require the init to be greater than the 369 // exit value. 370 if (InitValue <= ExitValue) 371 return; 372 373 uint32_t Range = uint32_t(InitValue-ExitValue); 374 // Check for infinite loop, either: 375 // while (i >= Exit) or until (i < Exit) 376 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 377 if (++Range == 0) return; // Range overflows. 378 } 379 380 unsigned Leftover = Range % uint32_t(-IncValue); 381 382 // If this is an equality comparison, we require that the strided value 383 // exactly land on the exit value, otherwise the IV condition will wrap 384 // around and do things the fp IV wouldn't. 385 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 386 Leftover != 0) 387 return; 388 389 // If the stride would wrap around the i32 before exiting, we can't 390 // transform the IV. 391 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 392 return; 393 } 394 395 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 396 397 // Insert new integer induction variable. 398 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 399 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 400 PN->getIncomingBlock(IncomingEdge)); 401 402 Value *NewAdd = 403 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 404 Incr->getName()+".int", Incr); 405 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 406 407 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 408 ConstantInt::get(Int32Ty, ExitValue), 409 Compare->getName()); 410 411 // In the following deletions, PN may become dead and may be deleted. 412 // Use a WeakVH to observe whether this happens. 413 WeakVH WeakPH = PN; 414 415 // Delete the old floating point exit comparison. The branch starts using the 416 // new comparison. 417 NewCompare->takeName(Compare); 418 Compare->replaceAllUsesWith(NewCompare); 419 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 420 421 // Delete the old floating point increment. 422 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 423 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 424 425 // If the FP induction variable still has uses, this is because something else 426 // in the loop uses its value. In order to canonicalize the induction 427 // variable, we chose to eliminate the IV and rewrite it in terms of an 428 // int->fp cast. 429 // 430 // We give preference to sitofp over uitofp because it is faster on most 431 // platforms. 432 if (WeakPH) { 433 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 434 &*PN->getParent()->getFirstInsertionPt()); 435 PN->replaceAllUsesWith(Conv); 436 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 437 } 438 Changed = true; 439 } 440 441 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 442 // First step. Check to see if there are any floating-point recurrences. 443 // If there are, change them into integer recurrences, permitting analysis by 444 // the SCEV routines. 445 // 446 BasicBlock *Header = L->getHeader(); 447 448 SmallVector<WeakVH, 8> PHIs; 449 for (BasicBlock::iterator I = Header->begin(); 450 PHINode *PN = dyn_cast<PHINode>(I); ++I) 451 PHIs.push_back(PN); 452 453 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 454 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 455 handleFloatingPointIV(L, PN); 456 457 // If the loop previously had floating-point IV, ScalarEvolution 458 // may not have been able to compute a trip count. Now that we've done some 459 // re-writing, the trip count may be computable. 460 if (Changed) 461 SE->forgetLoop(L); 462 } 463 464 namespace { 465 // Collect information about PHI nodes which can be transformed in 466 // rewriteLoopExitValues. 467 struct RewritePhi { 468 PHINode *PN; 469 unsigned Ith; // Ith incoming value. 470 Value *Val; // Exit value after expansion. 471 bool HighCost; // High Cost when expansion. 472 473 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 474 : PN(P), Ith(I), Val(V), HighCost(H) {} 475 }; 476 } 477 478 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, 479 Loop *L, Instruction *InsertPt, 480 Type *ResultTy) { 481 // Before expanding S into an expensive LLVM expression, see if we can use an 482 // already existing value as the expansion for S. 483 if (Value *ExistingValue = Rewriter.getExactExistingExpansion(S, InsertPt, L)) 484 if (ExistingValue->getType() == ResultTy) 485 return ExistingValue; 486 487 // We didn't find anything, fall back to using SCEVExpander. 488 return Rewriter.expandCodeFor(S, ResultTy, InsertPt); 489 } 490 491 //===----------------------------------------------------------------------===// 492 // rewriteLoopExitValues - Optimize IV users outside the loop. 493 // As a side effect, reduces the amount of IV processing within the loop. 494 //===----------------------------------------------------------------------===// 495 496 /// Check to see if this loop has a computable loop-invariant execution count. 497 /// If so, this means that we can compute the final value of any expressions 498 /// that are recurrent in the loop, and substitute the exit values from the loop 499 /// into any instructions outside of the loop that use the final values of the 500 /// current expressions. 501 /// 502 /// This is mostly redundant with the regular IndVarSimplify activities that 503 /// happen later, except that it's more powerful in some cases, because it's 504 /// able to brute-force evaluate arbitrary instructions as long as they have 505 /// constant operands at the beginning of the loop. 506 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 507 // Check a pre-condition. 508 assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!"); 509 510 SmallVector<BasicBlock*, 8> ExitBlocks; 511 L->getUniqueExitBlocks(ExitBlocks); 512 513 SmallVector<RewritePhi, 8> RewritePhiSet; 514 // Find all values that are computed inside the loop, but used outside of it. 515 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 516 // the exit blocks of the loop to find them. 517 for (BasicBlock *ExitBB : ExitBlocks) { 518 // If there are no PHI nodes in this exit block, then no values defined 519 // inside the loop are used on this path, skip it. 520 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 521 if (!PN) continue; 522 523 unsigned NumPreds = PN->getNumIncomingValues(); 524 525 // Iterate over all of the PHI nodes. 526 BasicBlock::iterator BBI = ExitBB->begin(); 527 while ((PN = dyn_cast<PHINode>(BBI++))) { 528 if (PN->use_empty()) 529 continue; // dead use, don't replace it 530 531 if (!SE->isSCEVable(PN->getType())) 532 continue; 533 534 // It's necessary to tell ScalarEvolution about this explicitly so that 535 // it can walk the def-use list and forget all SCEVs, as it may not be 536 // watching the PHI itself. Once the new exit value is in place, there 537 // may not be a def-use connection between the loop and every instruction 538 // which got a SCEVAddRecExpr for that loop. 539 SE->forgetValue(PN); 540 541 // Iterate over all of the values in all the PHI nodes. 542 for (unsigned i = 0; i != NumPreds; ++i) { 543 // If the value being merged in is not integer or is not defined 544 // in the loop, skip it. 545 Value *InVal = PN->getIncomingValue(i); 546 if (!isa<Instruction>(InVal)) 547 continue; 548 549 // If this pred is for a subloop, not L itself, skip it. 550 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 551 continue; // The Block is in a subloop, skip it. 552 553 // Check that InVal is defined in the loop. 554 Instruction *Inst = cast<Instruction>(InVal); 555 if (!L->contains(Inst)) 556 continue; 557 558 // Okay, this instruction has a user outside of the current loop 559 // and varies predictably *inside* the loop. Evaluate the value it 560 // contains when the loop exits, if possible. 561 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 562 if (!SE->isLoopInvariant(ExitValue, L) || 563 !isSafeToExpand(ExitValue, *SE)) 564 continue; 565 566 // Computing the value outside of the loop brings no benefit if : 567 // - it is definitely used inside the loop in a way which can not be 568 // optimized away. 569 // - no use outside of the loop can take advantage of hoisting the 570 // computation out of the loop 571 if (ExitValue->getSCEVType()>=scMulExpr) { 572 unsigned NumHardInternalUses = 0; 573 unsigned NumSoftExternalUses = 0; 574 unsigned NumUses = 0; 575 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 576 IB != IE && NumUses <= 6; ++IB) { 577 Instruction *UseInstr = cast<Instruction>(*IB); 578 unsigned Opc = UseInstr->getOpcode(); 579 NumUses++; 580 if (L->contains(UseInstr)) { 581 if (Opc == Instruction::Call || Opc == Instruction::Ret) 582 NumHardInternalUses++; 583 } else { 584 if (Opc == Instruction::PHI) { 585 // Do not count the Phi as a use. LCSSA may have inserted 586 // plenty of trivial ones. 587 NumUses--; 588 for (auto PB = UseInstr->user_begin(), 589 PE = UseInstr->user_end(); 590 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 591 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 592 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 593 NumSoftExternalUses++; 594 } 595 continue; 596 } 597 if (Opc != Instruction::Call && Opc != Instruction::Ret) 598 NumSoftExternalUses++; 599 } 600 } 601 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 602 continue; 603 } 604 605 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 606 Value *ExitVal = 607 expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType()); 608 609 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 610 << " LoopVal = " << *Inst << "\n"); 611 612 if (!isValidRewrite(Inst, ExitVal)) { 613 DeadInsts.push_back(ExitVal); 614 continue; 615 } 616 617 // Collect all the candidate PHINodes to be rewritten. 618 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 619 } 620 } 621 } 622 623 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 624 625 // Transformation. 626 for (const RewritePhi &Phi : RewritePhiSet) { 627 PHINode *PN = Phi.PN; 628 Value *ExitVal = Phi.Val; 629 630 // Only do the rewrite when the ExitValue can be expanded cheaply. 631 // If LoopCanBeDel is true, rewrite exit value aggressively. 632 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 633 DeadInsts.push_back(ExitVal); 634 continue; 635 } 636 637 Changed = true; 638 ++NumReplaced; 639 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 640 PN->setIncomingValue(Phi.Ith, ExitVal); 641 642 // If this instruction is dead now, delete it. Don't do it now to avoid 643 // invalidating iterators. 644 if (isInstructionTriviallyDead(Inst, TLI)) 645 DeadInsts.push_back(Inst); 646 647 // Replace PN with ExitVal if that is legal and does not break LCSSA. 648 if (PN->getNumIncomingValues() == 1 && 649 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 650 PN->replaceAllUsesWith(ExitVal); 651 PN->eraseFromParent(); 652 } 653 } 654 655 // The insertion point instruction may have been deleted; clear it out 656 // so that the rewriter doesn't trip over it later. 657 Rewriter.clearInsertPoint(); 658 } 659 660 //===---------------------------------------------------------------------===// 661 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 662 // they will exit at the first iteration. 663 //===---------------------------------------------------------------------===// 664 665 /// Check to see if this loop has loop invariant conditions which lead to loop 666 /// exits. If so, we know that if the exit path is taken, it is at the first 667 /// loop iteration. This lets us predict exit values of PHI nodes that live in 668 /// loop header. 669 void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 670 // Verify the input to the pass is already in LCSSA form. 671 assert(L->isLCSSAForm(*DT)); 672 673 SmallVector<BasicBlock *, 8> ExitBlocks; 674 L->getUniqueExitBlocks(ExitBlocks); 675 auto *LoopHeader = L->getHeader(); 676 assert(LoopHeader && "Invalid loop"); 677 678 for (auto *ExitBB : ExitBlocks) { 679 BasicBlock::iterator BBI = ExitBB->begin(); 680 // If there are no more PHI nodes in this exit block, then no more 681 // values defined inside the loop are used on this path. 682 while (auto *PN = dyn_cast<PHINode>(BBI++)) { 683 for (unsigned IncomingValIdx = 0, E = PN->getNumIncomingValues(); 684 IncomingValIdx != E; ++IncomingValIdx) { 685 auto *IncomingBB = PN->getIncomingBlock(IncomingValIdx); 686 687 // We currently only support loop exits from loop header. If the 688 // incoming block is not loop header, we need to recursively check 689 // all conditions starting from loop header are loop invariants. 690 // Additional support might be added in the future. 691 if (IncomingBB != LoopHeader) 692 continue; 693 694 // Get condition that leads to the exit path. 695 auto *TermInst = IncomingBB->getTerminator(); 696 697 Value *Cond = nullptr; 698 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 699 // Must be a conditional branch, otherwise the block 700 // should not be in the loop. 701 Cond = BI->getCondition(); 702 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 703 Cond = SI->getCondition(); 704 else 705 continue; 706 707 if (!L->isLoopInvariant(Cond)) 708 continue; 709 710 auto *ExitVal = 711 dyn_cast<PHINode>(PN->getIncomingValue(IncomingValIdx)); 712 713 // Only deal with PHIs. 714 if (!ExitVal) 715 continue; 716 717 // If ExitVal is a PHI on the loop header, then we know its 718 // value along this exit because the exit can only be taken 719 // on the first iteration. 720 auto *LoopPreheader = L->getLoopPreheader(); 721 assert(LoopPreheader && "Invalid loop"); 722 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 723 if (PreheaderIdx != -1) { 724 assert(ExitVal->getParent() == LoopHeader && 725 "ExitVal must be in loop header"); 726 PN->setIncomingValue(IncomingValIdx, 727 ExitVal->getIncomingValue(PreheaderIdx)); 728 } 729 } 730 } 731 } 732 } 733 734 /// Check whether it is possible to delete the loop after rewriting exit 735 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 736 /// aggressively. 737 bool IndVarSimplify::canLoopBeDeleted( 738 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 739 740 BasicBlock *Preheader = L->getLoopPreheader(); 741 // If there is no preheader, the loop will not be deleted. 742 if (!Preheader) 743 return false; 744 745 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 746 // We obviate multiple ExitingBlocks case for simplicity. 747 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 748 // after exit value rewriting, we can enhance the logic here. 749 SmallVector<BasicBlock *, 4> ExitingBlocks; 750 L->getExitingBlocks(ExitingBlocks); 751 SmallVector<BasicBlock *, 8> ExitBlocks; 752 L->getUniqueExitBlocks(ExitBlocks); 753 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 754 return false; 755 756 BasicBlock *ExitBlock = ExitBlocks[0]; 757 BasicBlock::iterator BI = ExitBlock->begin(); 758 while (PHINode *P = dyn_cast<PHINode>(BI)) { 759 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 760 761 // If the Incoming value of P is found in RewritePhiSet, we know it 762 // could be rewritten to use a loop invariant value in transformation 763 // phase later. Skip it in the loop invariant check below. 764 bool found = false; 765 for (const RewritePhi &Phi : RewritePhiSet) { 766 unsigned i = Phi.Ith; 767 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 768 found = true; 769 break; 770 } 771 } 772 773 Instruction *I; 774 if (!found && (I = dyn_cast<Instruction>(Incoming))) 775 if (!L->hasLoopInvariantOperands(I)) 776 return false; 777 778 ++BI; 779 } 780 781 for (auto *BB : L->blocks()) 782 if (any_of(*BB, [](Instruction &I) { return I.mayHaveSideEffects(); })) 783 return false; 784 785 return true; 786 } 787 788 //===----------------------------------------------------------------------===// 789 // IV Widening - Extend the width of an IV to cover its widest uses. 790 //===----------------------------------------------------------------------===// 791 792 namespace { 793 // Collect information about induction variables that are used by sign/zero 794 // extend operations. This information is recorded by CollectExtend and provides 795 // the input to WidenIV. 796 struct WideIVInfo { 797 PHINode *NarrowIV = nullptr; 798 Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext 799 bool IsSigned = false; // Was a sext user seen before a zext? 800 }; 801 } 802 803 /// Update information about the induction variable that is extended by this 804 /// sign or zero extend operation. This is used to determine the final width of 805 /// the IV before actually widening it. 806 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 807 const TargetTransformInfo *TTI) { 808 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 809 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 810 return; 811 812 Type *Ty = Cast->getType(); 813 uint64_t Width = SE->getTypeSizeInBits(Ty); 814 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 815 return; 816 817 // Check that `Cast` actually extends the induction variable (we rely on this 818 // later). This takes care of cases where `Cast` is extending a truncation of 819 // the narrow induction variable, and thus can end up being narrower than the 820 // "narrow" induction variable. 821 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 822 if (NarrowIVWidth >= Width) 823 return; 824 825 // Cast is either an sext or zext up to this point. 826 // We should not widen an indvar if arithmetics on the wider indvar are more 827 // expensive than those on the narrower indvar. We check only the cost of ADD 828 // because at least an ADD is required to increment the induction variable. We 829 // could compute more comprehensively the cost of all instructions on the 830 // induction variable when necessary. 831 if (TTI && 832 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 833 TTI->getArithmeticInstrCost(Instruction::Add, 834 Cast->getOperand(0)->getType())) { 835 return; 836 } 837 838 if (!WI.WidestNativeType) { 839 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 840 WI.IsSigned = IsSigned; 841 return; 842 } 843 844 // We extend the IV to satisfy the sign of its first user, arbitrarily. 845 if (WI.IsSigned != IsSigned) 846 return; 847 848 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 849 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 850 } 851 852 namespace { 853 854 /// Record a link in the Narrow IV def-use chain along with the WideIV that 855 /// computes the same value as the Narrow IV def. This avoids caching Use* 856 /// pointers. 857 struct NarrowIVDefUse { 858 Instruction *NarrowDef = nullptr; 859 Instruction *NarrowUse = nullptr; 860 Instruction *WideDef = nullptr; 861 862 // True if the narrow def is never negative. Tracking this information lets 863 // us use a sign extension instead of a zero extension or vice versa, when 864 // profitable and legal. 865 bool NeverNegative = false; 866 867 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 868 bool NeverNegative) 869 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 870 NeverNegative(NeverNegative) {} 871 }; 872 873 /// The goal of this transform is to remove sign and zero extends without 874 /// creating any new induction variables. To do this, it creates a new phi of 875 /// the wider type and redirects all users, either removing extends or inserting 876 /// truncs whenever we stop propagating the type. 877 /// 878 class WidenIV { 879 // Parameters 880 PHINode *OrigPhi; 881 Type *WideType; 882 883 // Context 884 LoopInfo *LI; 885 Loop *L; 886 ScalarEvolution *SE; 887 DominatorTree *DT; 888 889 // Result 890 PHINode *WidePhi; 891 Instruction *WideInc; 892 const SCEV *WideIncExpr; 893 SmallVectorImpl<WeakVH> &DeadInsts; 894 895 SmallPtrSet<Instruction *,16> Widened; 896 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 897 898 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 899 // A map tracking the kind of extension used to widen each narrow IV 900 // and narrow IV user. 901 // Key: pointer to a narrow IV or IV user. 902 // Value: the kind of extension used to widen this Instruction. 903 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 904 905 public: 906 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 907 ScalarEvolution *SEv, DominatorTree *DTree, 908 SmallVectorImpl<WeakVH> &DI) : 909 OrigPhi(WI.NarrowIV), 910 WideType(WI.WidestNativeType), 911 LI(LInfo), 912 L(LI->getLoopFor(OrigPhi->getParent())), 913 SE(SEv), 914 DT(DTree), 915 WidePhi(nullptr), 916 WideInc(nullptr), 917 WideIncExpr(nullptr), 918 DeadInsts(DI) { 919 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 920 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 921 } 922 923 PHINode *createWideIV(SCEVExpander &Rewriter); 924 925 protected: 926 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 927 Instruction *Use); 928 929 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 930 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 931 const SCEVAddRecExpr *WideAR); 932 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 933 934 ExtendKind getExtendKind(Instruction *I); 935 936 typedef std::pair<const SCEVAddRecExpr *, ExtendKind> WidenedRecTy; 937 938 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 939 940 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 941 942 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 943 unsigned OpCode) const; 944 945 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 946 947 bool widenLoopCompare(NarrowIVDefUse DU); 948 949 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 950 }; 951 } // anonymous namespace 952 953 /// Perform a quick domtree based check for loop invariance assuming that V is 954 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 955 /// purpose. 956 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 957 Instruction *Inst = dyn_cast<Instruction>(V); 958 if (!Inst) 959 return true; 960 961 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 962 } 963 964 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 965 bool IsSigned, Instruction *Use) { 966 // Set the debug location and conservative insertion point. 967 IRBuilder<> Builder(Use); 968 // Hoist the insertion point into loop preheaders as far as possible. 969 for (const Loop *L = LI->getLoopFor(Use->getParent()); 970 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 971 L = L->getParentLoop()) 972 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 973 974 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 975 Builder.CreateZExt(NarrowOper, WideType); 976 } 977 978 /// Instantiate a wide operation to replace a narrow operation. This only needs 979 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 980 /// 0 for any operation we decide not to clone. 981 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 982 const SCEVAddRecExpr *WideAR) { 983 unsigned Opcode = DU.NarrowUse->getOpcode(); 984 switch (Opcode) { 985 default: 986 return nullptr; 987 case Instruction::Add: 988 case Instruction::Mul: 989 case Instruction::UDiv: 990 case Instruction::Sub: 991 return cloneArithmeticIVUser(DU, WideAR); 992 993 case Instruction::And: 994 case Instruction::Or: 995 case Instruction::Xor: 996 case Instruction::Shl: 997 case Instruction::LShr: 998 case Instruction::AShr: 999 return cloneBitwiseIVUser(DU); 1000 } 1001 } 1002 1003 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 1004 Instruction *NarrowUse = DU.NarrowUse; 1005 Instruction *NarrowDef = DU.NarrowDef; 1006 Instruction *WideDef = DU.WideDef; 1007 1008 DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1009 1010 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1011 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1012 // invariant and will be folded or hoisted. If it actually comes from a 1013 // widened IV, it should be removed during a future call to widenIVUse. 1014 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1015 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1016 ? WideDef 1017 : createExtendInst(NarrowUse->getOperand(0), WideType, 1018 IsSigned, NarrowUse); 1019 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1020 ? WideDef 1021 : createExtendInst(NarrowUse->getOperand(1), WideType, 1022 IsSigned, NarrowUse); 1023 1024 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1025 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1026 NarrowBO->getName()); 1027 IRBuilder<> Builder(NarrowUse); 1028 Builder.Insert(WideBO); 1029 WideBO->copyIRFlags(NarrowBO); 1030 return WideBO; 1031 } 1032 1033 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1034 const SCEVAddRecExpr *WideAR) { 1035 Instruction *NarrowUse = DU.NarrowUse; 1036 Instruction *NarrowDef = DU.NarrowDef; 1037 Instruction *WideDef = DU.WideDef; 1038 1039 DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1040 1041 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1042 1043 // We're trying to find X such that 1044 // 1045 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1046 // 1047 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1048 // and check using SCEV if any of them are correct. 1049 1050 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1051 // correct solution to X. 1052 auto GuessNonIVOperand = [&](bool SignExt) { 1053 const SCEV *WideLHS; 1054 const SCEV *WideRHS; 1055 1056 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1057 if (SignExt) 1058 return SE->getSignExtendExpr(S, Ty); 1059 return SE->getZeroExtendExpr(S, Ty); 1060 }; 1061 1062 if (IVOpIdx == 0) { 1063 WideLHS = SE->getSCEV(WideDef); 1064 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1065 WideRHS = GetExtend(NarrowRHS, WideType); 1066 } else { 1067 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1068 WideLHS = GetExtend(NarrowLHS, WideType); 1069 WideRHS = SE->getSCEV(WideDef); 1070 } 1071 1072 // WideUse is "WideDef `op.wide` X" as described in the comment. 1073 const SCEV *WideUse = nullptr; 1074 1075 switch (NarrowUse->getOpcode()) { 1076 default: 1077 llvm_unreachable("No other possibility!"); 1078 1079 case Instruction::Add: 1080 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1081 break; 1082 1083 case Instruction::Mul: 1084 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1085 break; 1086 1087 case Instruction::UDiv: 1088 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1089 break; 1090 1091 case Instruction::Sub: 1092 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1093 break; 1094 } 1095 1096 return WideUse == WideAR; 1097 }; 1098 1099 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1100 if (!GuessNonIVOperand(SignExtend)) { 1101 SignExtend = !SignExtend; 1102 if (!GuessNonIVOperand(SignExtend)) 1103 return nullptr; 1104 } 1105 1106 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1107 ? WideDef 1108 : createExtendInst(NarrowUse->getOperand(0), WideType, 1109 SignExtend, NarrowUse); 1110 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1111 ? WideDef 1112 : createExtendInst(NarrowUse->getOperand(1), WideType, 1113 SignExtend, NarrowUse); 1114 1115 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1116 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1117 NarrowBO->getName()); 1118 1119 IRBuilder<> Builder(NarrowUse); 1120 Builder.Insert(WideBO); 1121 WideBO->copyIRFlags(NarrowBO); 1122 return WideBO; 1123 } 1124 1125 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1126 auto It = ExtendKindMap.find(I); 1127 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1128 return It->second; 1129 } 1130 1131 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1132 unsigned OpCode) const { 1133 if (OpCode == Instruction::Add) 1134 return SE->getAddExpr(LHS, RHS); 1135 if (OpCode == Instruction::Sub) 1136 return SE->getMinusSCEV(LHS, RHS); 1137 if (OpCode == Instruction::Mul) 1138 return SE->getMulExpr(LHS, RHS); 1139 1140 llvm_unreachable("Unsupported opcode."); 1141 } 1142 1143 /// No-wrap operations can transfer sign extension of their result to their 1144 /// operands. Generate the SCEV value for the widened operation without 1145 /// actually modifying the IR yet. If the expression after extending the 1146 /// operands is an AddRec for this loop, return the AddRec and the kind of 1147 /// extension used. 1148 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1149 1150 // Handle the common case of add<nsw/nuw> 1151 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1152 // Only Add/Sub/Mul instructions supported yet. 1153 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1154 OpCode != Instruction::Mul) 1155 return {nullptr, Unknown}; 1156 1157 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1158 // if extending the other will lead to a recurrence. 1159 const unsigned ExtendOperIdx = 1160 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1161 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1162 1163 const SCEV *ExtendOperExpr = nullptr; 1164 const OverflowingBinaryOperator *OBO = 1165 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1166 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1167 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1168 ExtendOperExpr = SE->getSignExtendExpr( 1169 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1170 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1171 ExtendOperExpr = SE->getZeroExtendExpr( 1172 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1173 else 1174 return {nullptr, Unknown}; 1175 1176 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1177 // flags. This instruction may be guarded by control flow that the no-wrap 1178 // behavior depends on. Non-control-equivalent instructions can be mapped to 1179 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1180 // semantics to those operations. 1181 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1182 const SCEV *rhs = ExtendOperExpr; 1183 1184 // Let's swap operands to the initial order for the case of non-commutative 1185 // operations, like SUB. See PR21014. 1186 if (ExtendOperIdx == 0) 1187 std::swap(lhs, rhs); 1188 const SCEVAddRecExpr *AddRec = 1189 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1190 1191 if (!AddRec || AddRec->getLoop() != L) 1192 return {nullptr, Unknown}; 1193 1194 return {AddRec, ExtKind}; 1195 } 1196 1197 /// Is this instruction potentially interesting for further simplification after 1198 /// widening it's type? In other words, can the extend be safely hoisted out of 1199 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1200 /// so, return the extended recurrence and the kind of extension used. Otherwise 1201 /// return {nullptr, Unknown}. 1202 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) { 1203 if (!SE->isSCEVable(DU.NarrowUse->getType())) 1204 return {nullptr, Unknown}; 1205 1206 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1207 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1208 SE->getTypeSizeInBits(WideType)) { 1209 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1210 // index. So don't follow this use. 1211 return {nullptr, Unknown}; 1212 } 1213 1214 const SCEV *WideExpr; 1215 ExtendKind ExtKind; 1216 if (DU.NeverNegative) { 1217 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1218 if (isa<SCEVAddRecExpr>(WideExpr)) 1219 ExtKind = SignExtended; 1220 else { 1221 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1222 ExtKind = ZeroExtended; 1223 } 1224 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1225 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1226 ExtKind = SignExtended; 1227 } else { 1228 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1229 ExtKind = ZeroExtended; 1230 } 1231 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1232 if (!AddRec || AddRec->getLoop() != L) 1233 return {nullptr, Unknown}; 1234 return {AddRec, ExtKind}; 1235 } 1236 1237 /// This IV user cannot be widen. Replace this use of the original narrow IV 1238 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1239 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1240 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef 1241 << " for user " << *DU.NarrowUse << "\n"); 1242 IRBuilder<> Builder( 1243 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1244 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1245 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1246 } 1247 1248 /// If the narrow use is a compare instruction, then widen the compare 1249 // (and possibly the other operand). The extend operation is hoisted into the 1250 // loop preheader as far as possible. 1251 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1252 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1253 if (!Cmp) 1254 return false; 1255 1256 // We can legally widen the comparison in the following two cases: 1257 // 1258 // - The signedness of the IV extension and comparison match 1259 // 1260 // - The narrow IV is always positive (and thus its sign extension is equal 1261 // to its zero extension). For instance, let's say we're zero extending 1262 // %narrow for the following use 1263 // 1264 // icmp slt i32 %narrow, %val ... (A) 1265 // 1266 // and %narrow is always positive. Then 1267 // 1268 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1269 // == icmp slt i32 zext(%narrow), sext(%val) 1270 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1271 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1272 return false; 1273 1274 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1275 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1276 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1277 assert (CastWidth <= IVWidth && "Unexpected width while widening compare."); 1278 1279 // Widen the compare instruction. 1280 IRBuilder<> Builder( 1281 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1282 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1283 1284 // Widen the other operand of the compare, if necessary. 1285 if (CastWidth < IVWidth) { 1286 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1287 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1288 } 1289 return true; 1290 } 1291 1292 /// Determine whether an individual user of the narrow IV can be widened. If so, 1293 /// return the wide clone of the user. 1294 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1295 assert(ExtendKindMap.count(DU.NarrowDef) && 1296 "Should already know the kind of extension used to widen NarrowDef"); 1297 1298 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1299 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1300 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1301 // For LCSSA phis, sink the truncate outside the loop. 1302 // After SimplifyCFG most loop exit targets have a single predecessor. 1303 // Otherwise fall back to a truncate within the loop. 1304 if (UsePhi->getNumOperands() != 1) 1305 truncateIVUse(DU, DT, LI); 1306 else { 1307 // Widening the PHI requires us to insert a trunc. The logical place 1308 // for this trunc is in the same BB as the PHI. This is not possible if 1309 // the BB is terminated by a catchswitch. 1310 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1311 return nullptr; 1312 1313 PHINode *WidePhi = 1314 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1315 UsePhi); 1316 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1317 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1318 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1319 UsePhi->replaceAllUsesWith(Trunc); 1320 DeadInsts.emplace_back(UsePhi); 1321 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi 1322 << " to " << *WidePhi << "\n"); 1323 } 1324 return nullptr; 1325 } 1326 } 1327 1328 // This narrow use can be widened by a sext if it's non-negative or its narrow 1329 // def was widended by a sext. Same for zext. 1330 auto canWidenBySExt = [&]() { 1331 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1332 }; 1333 auto canWidenByZExt = [&]() { 1334 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1335 }; 1336 1337 // Our raison d'etre! Eliminate sign and zero extension. 1338 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1339 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1340 Value *NewDef = DU.WideDef; 1341 if (DU.NarrowUse->getType() != WideType) { 1342 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1343 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1344 if (CastWidth < IVWidth) { 1345 // The cast isn't as wide as the IV, so insert a Trunc. 1346 IRBuilder<> Builder(DU.NarrowUse); 1347 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1348 } 1349 else { 1350 // A wider extend was hidden behind a narrower one. This may induce 1351 // another round of IV widening in which the intermediate IV becomes 1352 // dead. It should be very rare. 1353 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1354 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1355 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1356 NewDef = DU.NarrowUse; 1357 } 1358 } 1359 if (NewDef != DU.NarrowUse) { 1360 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1361 << " replaced by " << *DU.WideDef << "\n"); 1362 ++NumElimExt; 1363 DU.NarrowUse->replaceAllUsesWith(NewDef); 1364 DeadInsts.emplace_back(DU.NarrowUse); 1365 } 1366 // Now that the extend is gone, we want to expose it's uses for potential 1367 // further simplification. We don't need to directly inform SimplifyIVUsers 1368 // of the new users, because their parent IV will be processed later as a 1369 // new loop phi. If we preserved IVUsers analysis, we would also want to 1370 // push the uses of WideDef here. 1371 1372 // No further widening is needed. The deceased [sz]ext had done it for us. 1373 return nullptr; 1374 } 1375 1376 // Does this user itself evaluate to a recurrence after widening? 1377 WidenedRecTy WideAddRec = getWideRecurrence(DU); 1378 if (!WideAddRec.first) 1379 WideAddRec = getExtendedOperandRecurrence(DU); 1380 1381 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1382 if (!WideAddRec.first) { 1383 // If use is a loop condition, try to promote the condition instead of 1384 // truncating the IV first. 1385 if (widenLoopCompare(DU)) 1386 return nullptr; 1387 1388 // This user does not evaluate to a recurence after widening, so don't 1389 // follow it. Instead insert a Trunc to kill off the original use, 1390 // eventually isolating the original narrow IV so it can be removed. 1391 truncateIVUse(DU, DT, LI); 1392 return nullptr; 1393 } 1394 // Assume block terminators cannot evaluate to a recurrence. We can't to 1395 // insert a Trunc after a terminator if there happens to be a critical edge. 1396 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1397 "SCEV is not expected to evaluate a block terminator"); 1398 1399 // Reuse the IV increment that SCEVExpander created as long as it dominates 1400 // NarrowUse. 1401 Instruction *WideUse = nullptr; 1402 if (WideAddRec.first == WideIncExpr && 1403 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1404 WideUse = WideInc; 1405 else { 1406 WideUse = cloneIVUser(DU, WideAddRec.first); 1407 if (!WideUse) 1408 return nullptr; 1409 } 1410 // Evaluation of WideAddRec ensured that the narrow expression could be 1411 // extended outside the loop without overflow. This suggests that the wide use 1412 // evaluates to the same expression as the extended narrow use, but doesn't 1413 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1414 // where it fails, we simply throw away the newly created wide use. 1415 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1416 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1417 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first << "\n"); 1418 DeadInsts.emplace_back(WideUse); 1419 return nullptr; 1420 } 1421 1422 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1423 // Returning WideUse pushes it on the worklist. 1424 return WideUse; 1425 } 1426 1427 /// Add eligible users of NarrowDef to NarrowIVUsers. 1428 /// 1429 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1430 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1431 bool NeverNegative = 1432 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1433 SE->getConstant(NarrowSCEV->getType(), 0)); 1434 for (User *U : NarrowDef->users()) { 1435 Instruction *NarrowUser = cast<Instruction>(U); 1436 1437 // Handle data flow merges and bizarre phi cycles. 1438 if (!Widened.insert(NarrowUser).second) 1439 continue; 1440 1441 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, NeverNegative); 1442 } 1443 } 1444 1445 /// Process a single induction variable. First use the SCEVExpander to create a 1446 /// wide induction variable that evaluates to the same recurrence as the 1447 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1448 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1449 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1450 /// 1451 /// It would be simpler to delete uses as they are processed, but we must avoid 1452 /// invalidating SCEV expressions. 1453 /// 1454 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1455 // Is this phi an induction variable? 1456 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1457 if (!AddRec) 1458 return nullptr; 1459 1460 // Widen the induction variable expression. 1461 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1462 ? SE->getSignExtendExpr(AddRec, WideType) 1463 : SE->getZeroExtendExpr(AddRec, WideType); 1464 1465 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1466 "Expect the new IV expression to preserve its type"); 1467 1468 // Can the IV be extended outside the loop without overflow? 1469 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1470 if (!AddRec || AddRec->getLoop() != L) 1471 return nullptr; 1472 1473 // An AddRec must have loop-invariant operands. Since this AddRec is 1474 // materialized by a loop header phi, the expression cannot have any post-loop 1475 // operands, so they must dominate the loop header. 1476 assert( 1477 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1478 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1479 "Loop header phi recurrence inputs do not dominate the loop"); 1480 1481 // The rewriter provides a value for the desired IV expression. This may 1482 // either find an existing phi or materialize a new one. Either way, we 1483 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1484 // of the phi-SCC dominates the loop entry. 1485 Instruction *InsertPt = &L->getHeader()->front(); 1486 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1487 1488 // Remembering the WideIV increment generated by SCEVExpander allows 1489 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1490 // employ a general reuse mechanism because the call above is the only call to 1491 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1492 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1493 WideInc = 1494 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1495 WideIncExpr = SE->getSCEV(WideInc); 1496 } 1497 1498 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1499 ++NumWidened; 1500 1501 // Traverse the def-use chain using a worklist starting at the original IV. 1502 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1503 1504 Widened.insert(OrigPhi); 1505 pushNarrowIVUsers(OrigPhi, WidePhi); 1506 1507 while (!NarrowIVUsers.empty()) { 1508 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1509 1510 // Process a def-use edge. This may replace the use, so don't hold a 1511 // use_iterator across it. 1512 Instruction *WideUse = widenIVUse(DU, Rewriter); 1513 1514 // Follow all def-use edges from the previous narrow use. 1515 if (WideUse) 1516 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1517 1518 // widenIVUse may have removed the def-use edge. 1519 if (DU.NarrowDef->use_empty()) 1520 DeadInsts.emplace_back(DU.NarrowDef); 1521 } 1522 return WidePhi; 1523 } 1524 1525 //===----------------------------------------------------------------------===// 1526 // Live IV Reduction - Minimize IVs live across the loop. 1527 //===----------------------------------------------------------------------===// 1528 1529 1530 //===----------------------------------------------------------------------===// 1531 // Simplification of IV users based on SCEV evaluation. 1532 //===----------------------------------------------------------------------===// 1533 1534 namespace { 1535 class IndVarSimplifyVisitor : public IVVisitor { 1536 ScalarEvolution *SE; 1537 const TargetTransformInfo *TTI; 1538 PHINode *IVPhi; 1539 1540 public: 1541 WideIVInfo WI; 1542 1543 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1544 const TargetTransformInfo *TTI, 1545 const DominatorTree *DTree) 1546 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1547 DT = DTree; 1548 WI.NarrowIV = IVPhi; 1549 } 1550 1551 // Implement the interface used by simplifyUsersOfIV. 1552 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1553 }; 1554 } 1555 1556 /// Iteratively perform simplification on a worklist of IV users. Each 1557 /// successive simplification may push more users which may themselves be 1558 /// candidates for simplification. 1559 /// 1560 /// Sign/Zero extend elimination is interleaved with IV simplification. 1561 /// 1562 void IndVarSimplify::simplifyAndExtend(Loop *L, 1563 SCEVExpander &Rewriter, 1564 LoopInfo *LI) { 1565 SmallVector<WideIVInfo, 8> WideIVs; 1566 1567 SmallVector<PHINode*, 8> LoopPhis; 1568 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1569 LoopPhis.push_back(cast<PHINode>(I)); 1570 } 1571 // Each round of simplification iterates through the SimplifyIVUsers worklist 1572 // for all current phis, then determines whether any IVs can be 1573 // widened. Widening adds new phis to LoopPhis, inducing another round of 1574 // simplification on the wide IVs. 1575 while (!LoopPhis.empty()) { 1576 // Evaluate as many IV expressions as possible before widening any IVs. This 1577 // forces SCEV to set no-wrap flags before evaluating sign/zero 1578 // extension. The first time SCEV attempts to normalize sign/zero extension, 1579 // the result becomes final. So for the most predictable results, we delay 1580 // evaluation of sign/zero extend evaluation until needed, and avoid running 1581 // other SCEV based analysis prior to simplifyAndExtend. 1582 do { 1583 PHINode *CurrIV = LoopPhis.pop_back_val(); 1584 1585 // Information about sign/zero extensions of CurrIV. 1586 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1587 1588 Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, &Visitor); 1589 1590 if (Visitor.WI.WidestNativeType) { 1591 WideIVs.push_back(Visitor.WI); 1592 } 1593 } while(!LoopPhis.empty()); 1594 1595 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1596 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1597 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1598 Changed = true; 1599 LoopPhis.push_back(WidePhi); 1600 } 1601 } 1602 } 1603 } 1604 1605 //===----------------------------------------------------------------------===// 1606 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1607 //===----------------------------------------------------------------------===// 1608 1609 /// Return true if this loop's backedge taken count expression can be safely and 1610 /// cheaply expanded into an instruction sequence that can be used by 1611 /// linearFunctionTestReplace. 1612 /// 1613 /// TODO: This fails for pointer-type loop counters with greater than one byte 1614 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1615 /// we could skip this check in the case that the LFTR loop counter (chosen by 1616 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1617 /// the loop test to an inequality test by checking the target data's alignment 1618 /// of element types (given that the initial pointer value originates from or is 1619 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1620 /// However, we don't yet have a strong motivation for converting loop tests 1621 /// into inequality tests. 1622 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1623 SCEVExpander &Rewriter) { 1624 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1625 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1626 BackedgeTakenCount->isZero()) 1627 return false; 1628 1629 if (!L->getExitingBlock()) 1630 return false; 1631 1632 // Can't rewrite non-branch yet. 1633 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 1634 return false; 1635 1636 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 1637 return false; 1638 1639 return true; 1640 } 1641 1642 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 1643 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1644 Instruction *IncI = dyn_cast<Instruction>(IncV); 1645 if (!IncI) 1646 return nullptr; 1647 1648 switch (IncI->getOpcode()) { 1649 case Instruction::Add: 1650 case Instruction::Sub: 1651 break; 1652 case Instruction::GetElementPtr: 1653 // An IV counter must preserve its type. 1654 if (IncI->getNumOperands() == 2) 1655 break; 1656 default: 1657 return nullptr; 1658 } 1659 1660 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1661 if (Phi && Phi->getParent() == L->getHeader()) { 1662 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1663 return Phi; 1664 return nullptr; 1665 } 1666 if (IncI->getOpcode() == Instruction::GetElementPtr) 1667 return nullptr; 1668 1669 // Allow add/sub to be commuted. 1670 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1671 if (Phi && Phi->getParent() == L->getHeader()) { 1672 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1673 return Phi; 1674 } 1675 return nullptr; 1676 } 1677 1678 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1679 static ICmpInst *getLoopTest(Loop *L) { 1680 assert(L->getExitingBlock() && "expected loop exit"); 1681 1682 BasicBlock *LatchBlock = L->getLoopLatch(); 1683 // Don't bother with LFTR if the loop is not properly simplified. 1684 if (!LatchBlock) 1685 return nullptr; 1686 1687 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1688 assert(BI && "expected exit branch"); 1689 1690 return dyn_cast<ICmpInst>(BI->getCondition()); 1691 } 1692 1693 /// linearFunctionTestReplace policy. Return true unless we can show that the 1694 /// current exit test is already sufficiently canonical. 1695 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1696 // Do LFTR to simplify the exit condition to an ICMP. 1697 ICmpInst *Cond = getLoopTest(L); 1698 if (!Cond) 1699 return true; 1700 1701 // Do LFTR to simplify the exit ICMP to EQ/NE 1702 ICmpInst::Predicate Pred = Cond->getPredicate(); 1703 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1704 return true; 1705 1706 // Look for a loop invariant RHS 1707 Value *LHS = Cond->getOperand(0); 1708 Value *RHS = Cond->getOperand(1); 1709 if (!isLoopInvariant(RHS, L, DT)) { 1710 if (!isLoopInvariant(LHS, L, DT)) 1711 return true; 1712 std::swap(LHS, RHS); 1713 } 1714 // Look for a simple IV counter LHS 1715 PHINode *Phi = dyn_cast<PHINode>(LHS); 1716 if (!Phi) 1717 Phi = getLoopPhiForCounter(LHS, L, DT); 1718 1719 if (!Phi) 1720 return true; 1721 1722 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1723 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1724 if (Idx < 0) 1725 return true; 1726 1727 // Do LFTR if the exit condition's IV is *not* a simple counter. 1728 Value *IncV = Phi->getIncomingValue(Idx); 1729 return Phi != getLoopPhiForCounter(IncV, L, DT); 1730 } 1731 1732 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1733 /// down to checking that all operands are constant and listing instructions 1734 /// that may hide undef. 1735 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1736 unsigned Depth) { 1737 if (isa<Constant>(V)) 1738 return !isa<UndefValue>(V); 1739 1740 if (Depth >= 6) 1741 return false; 1742 1743 // Conservatively handle non-constant non-instructions. For example, Arguments 1744 // may be undef. 1745 Instruction *I = dyn_cast<Instruction>(V); 1746 if (!I) 1747 return false; 1748 1749 // Load and return values may be undef. 1750 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1751 return false; 1752 1753 // Optimistically handle other instructions. 1754 for (Value *Op : I->operands()) { 1755 if (!Visited.insert(Op).second) 1756 continue; 1757 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 1758 return false; 1759 } 1760 return true; 1761 } 1762 1763 /// Return true if the given value is concrete. We must prove that undef can 1764 /// never reach it. 1765 /// 1766 /// TODO: If we decide that this is a good approach to checking for undef, we 1767 /// may factor it into a common location. 1768 static bool hasConcreteDef(Value *V) { 1769 SmallPtrSet<Value*, 8> Visited; 1770 Visited.insert(V); 1771 return hasConcreteDefImpl(V, Visited, 0); 1772 } 1773 1774 /// Return true if this IV has any uses other than the (soon to be rewritten) 1775 /// loop exit test. 1776 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1777 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1778 Value *IncV = Phi->getIncomingValue(LatchIdx); 1779 1780 for (User *U : Phi->users()) 1781 if (U != Cond && U != IncV) return false; 1782 1783 for (User *U : IncV->users()) 1784 if (U != Cond && U != Phi) return false; 1785 return true; 1786 } 1787 1788 /// Find an affine IV in canonical form. 1789 /// 1790 /// BECount may be an i8* pointer type. The pointer difference is already 1791 /// valid count without scaling the address stride, so it remains a pointer 1792 /// expression as far as SCEV is concerned. 1793 /// 1794 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1795 /// 1796 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1797 /// 1798 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1799 /// This is difficult in general for SCEV because of potential overflow. But we 1800 /// could at least handle constant BECounts. 1801 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 1802 ScalarEvolution *SE, DominatorTree *DT) { 1803 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1804 1805 Value *Cond = 1806 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1807 1808 // Loop over all of the PHI nodes, looking for a simple counter. 1809 PHINode *BestPhi = nullptr; 1810 const SCEV *BestInit = nullptr; 1811 BasicBlock *LatchBlock = L->getLoopLatch(); 1812 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1813 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1814 1815 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1816 PHINode *Phi = cast<PHINode>(I); 1817 if (!SE->isSCEVable(Phi->getType())) 1818 continue; 1819 1820 // Avoid comparing an integer IV against a pointer Limit. 1821 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1822 continue; 1823 1824 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1825 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1826 continue; 1827 1828 // AR may be a pointer type, while BECount is an integer type. 1829 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1830 // AR may not be a narrower type, or we may never exit. 1831 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1832 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 1833 continue; 1834 1835 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1836 if (!Step || !Step->isOne()) 1837 continue; 1838 1839 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1840 Value *IncV = Phi->getIncomingValue(LatchIdx); 1841 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1842 continue; 1843 1844 // Avoid reusing a potentially undef value to compute other values that may 1845 // have originally had a concrete definition. 1846 if (!hasConcreteDef(Phi)) { 1847 // We explicitly allow unknown phis as long as they are already used by 1848 // the loop test. In this case we assume that performing LFTR could not 1849 // increase the number of undef users. 1850 if (ICmpInst *Cond = getLoopTest(L)) { 1851 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) && 1852 Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 1853 continue; 1854 } 1855 } 1856 } 1857 const SCEV *Init = AR->getStart(); 1858 1859 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1860 // Don't force a live loop counter if another IV can be used. 1861 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1862 continue; 1863 1864 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1865 // also prefers integer to pointer IVs. 1866 if (BestInit->isZero() != Init->isZero()) { 1867 if (BestInit->isZero()) 1868 continue; 1869 } 1870 // If two IVs both count from zero or both count from nonzero then the 1871 // narrower is likely a dead phi that has been widened. Use the wider phi 1872 // to allow the other to be eliminated. 1873 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1874 continue; 1875 } 1876 BestPhi = Phi; 1877 BestInit = Init; 1878 } 1879 return BestPhi; 1880 } 1881 1882 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 1883 /// the new loop test. 1884 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1885 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1886 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1887 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1888 const SCEV *IVInit = AR->getStart(); 1889 1890 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1891 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1892 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1893 // the existing GEPs whenever possible. 1894 if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) { 1895 // IVOffset will be the new GEP offset that is interpreted by GEP as a 1896 // signed value. IVCount on the other hand represents the loop trip count, 1897 // which is an unsigned value. FindLoopCounter only allows induction 1898 // variables that have a positive unit stride of one. This means we don't 1899 // have to handle the case of negative offsets (yet) and just need to zero 1900 // extend IVCount. 1901 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1902 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 1903 1904 // Expand the code for the iteration count. 1905 assert(SE->isLoopInvariant(IVOffset, L) && 1906 "Computed iteration count is not loop invariant!"); 1907 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1908 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1909 1910 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1911 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1912 // We could handle pointer IVs other than i8*, but we need to compensate for 1913 // gep index scaling. See canExpandBackedgeTakenCount comments. 1914 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1915 cast<PointerType>(GEPBase->getType()) 1916 ->getElementType())->isOne() && 1917 "unit stride pointer IV must be i8*"); 1918 1919 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1920 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 1921 } else { 1922 // In any other case, convert both IVInit and IVCount to integers before 1923 // comparing. This may result in SCEV expension of pointers, but in practice 1924 // SCEV will fold the pointer arithmetic away as such: 1925 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1926 // 1927 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1928 // for simple memset-style loops. 1929 // 1930 // IVInit integer and IVCount pointer would only occur if a canonical IV 1931 // were generated on top of case #2, which is not expected. 1932 1933 const SCEV *IVLimit = nullptr; 1934 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1935 // For non-zero Start, compute IVCount here. 1936 if (AR->getStart()->isZero()) 1937 IVLimit = IVCount; 1938 else { 1939 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1940 const SCEV *IVInit = AR->getStart(); 1941 1942 // For integer IVs, truncate the IV before computing IVInit + BECount. 1943 if (SE->getTypeSizeInBits(IVInit->getType()) 1944 > SE->getTypeSizeInBits(IVCount->getType())) 1945 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1946 1947 IVLimit = SE->getAddExpr(IVInit, IVCount); 1948 } 1949 // Expand the code for the iteration count. 1950 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1951 IRBuilder<> Builder(BI); 1952 assert(SE->isLoopInvariant(IVLimit, L) && 1953 "Computed iteration count is not loop invariant!"); 1954 // Ensure that we generate the same type as IndVar, or a smaller integer 1955 // type. In the presence of null pointer values, we have an integer type 1956 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1957 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1958 IndVar->getType() : IVCount->getType(); 1959 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1960 } 1961 } 1962 1963 /// This method rewrites the exit condition of the loop to be a canonical != 1964 /// comparison against the incremented loop induction variable. This pass is 1965 /// able to rewrite the exit tests of any loop where the SCEV analysis can 1966 /// determine a loop-invariant trip count of the loop, which is actually a much 1967 /// broader range than just linear tests. 1968 Value *IndVarSimplify:: 1969 linearFunctionTestReplace(Loop *L, 1970 const SCEV *BackedgeTakenCount, 1971 PHINode *IndVar, 1972 SCEVExpander &Rewriter) { 1973 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 1974 1975 // Initialize CmpIndVar and IVCount to their preincremented values. 1976 Value *CmpIndVar = IndVar; 1977 const SCEV *IVCount = BackedgeTakenCount; 1978 1979 // If the exiting block is the same as the backedge block, we prefer to 1980 // compare against the post-incremented value, otherwise we must compare 1981 // against the preincremented value. 1982 if (L->getExitingBlock() == L->getLoopLatch()) { 1983 // Add one to the "backedge-taken" count to get the trip count. 1984 // This addition may overflow, which is valid as long as the comparison is 1985 // truncated to BackedgeTakenCount->getType(). 1986 IVCount = SE->getAddExpr(BackedgeTakenCount, 1987 SE->getOne(BackedgeTakenCount->getType())); 1988 // The BackedgeTaken expression contains the number of times that the 1989 // backedge branches to the loop header. This is one less than the 1990 // number of times the loop executes, so use the incremented indvar. 1991 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1992 } 1993 1994 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1995 assert(ExitCnt->getType()->isPointerTy() == 1996 IndVar->getType()->isPointerTy() && 1997 "genLoopLimit missed a cast"); 1998 1999 // Insert a new icmp_ne or icmp_eq instruction before the branch. 2000 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2001 ICmpInst::Predicate P; 2002 if (L->contains(BI->getSuccessor(0))) 2003 P = ICmpInst::ICMP_NE; 2004 else 2005 P = ICmpInst::ICMP_EQ; 2006 2007 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 2008 << " LHS:" << *CmpIndVar << '\n' 2009 << " op:\t" 2010 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 2011 << " RHS:\t" << *ExitCnt << "\n" 2012 << " IVCount:\t" << *IVCount << "\n"); 2013 2014 IRBuilder<> Builder(BI); 2015 2016 // LFTR can ignore IV overflow and truncate to the width of 2017 // BECount. This avoids materializing the add(zext(add)) expression. 2018 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 2019 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 2020 if (CmpIndVarSize > ExitCntSize) { 2021 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2022 const SCEV *ARStart = AR->getStart(); 2023 const SCEV *ARStep = AR->getStepRecurrence(*SE); 2024 // For constant IVCount, avoid truncation. 2025 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 2026 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 2027 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 2028 // Note that the post-inc value of BackedgeTakenCount may have overflowed 2029 // above such that IVCount is now zero. 2030 if (IVCount != BackedgeTakenCount && Count == 0) { 2031 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 2032 ++Count; 2033 } 2034 else 2035 Count = Count.zext(CmpIndVarSize); 2036 APInt NewLimit; 2037 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 2038 NewLimit = Start - Count; 2039 else 2040 NewLimit = Start + Count; 2041 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 2042 2043 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 2044 } else { 2045 // We try to extend trip count first. If that doesn't work we truncate IV. 2046 // Zext(trunc(IV)) == IV implies equivalence of the following two: 2047 // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If 2048 // one of the two holds, extend the trip count, otherwise we truncate IV. 2049 bool Extended = false; 2050 const SCEV *IV = SE->getSCEV(CmpIndVar); 2051 const SCEV *ZExtTrunc = 2052 SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2053 ExitCnt->getType()), 2054 CmpIndVar->getType()); 2055 2056 if (ZExtTrunc == IV) { 2057 Extended = true; 2058 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 2059 "wide.trip.count"); 2060 } else { 2061 const SCEV *SExtTrunc = 2062 SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2063 ExitCnt->getType()), 2064 CmpIndVar->getType()); 2065 if (SExtTrunc == IV) { 2066 Extended = true; 2067 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 2068 "wide.trip.count"); 2069 } 2070 } 2071 2072 if (!Extended) 2073 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 2074 "lftr.wideiv"); 2075 } 2076 } 2077 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 2078 Value *OrigCond = BI->getCondition(); 2079 // It's tempting to use replaceAllUsesWith here to fully replace the old 2080 // comparison, but that's not immediately safe, since users of the old 2081 // comparison may not be dominated by the new comparison. Instead, just 2082 // update the branch to use the new comparison; in the common case this 2083 // will make old comparison dead. 2084 BI->setCondition(Cond); 2085 DeadInsts.push_back(OrigCond); 2086 2087 ++NumLFTR; 2088 Changed = true; 2089 return Cond; 2090 } 2091 2092 //===----------------------------------------------------------------------===// 2093 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2094 //===----------------------------------------------------------------------===// 2095 2096 /// If there's a single exit block, sink any loop-invariant values that 2097 /// were defined in the preheader but not used inside the loop into the 2098 /// exit block to reduce register pressure in the loop. 2099 void IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2100 BasicBlock *ExitBlock = L->getExitBlock(); 2101 if (!ExitBlock) return; 2102 2103 BasicBlock *Preheader = L->getLoopPreheader(); 2104 if (!Preheader) return; 2105 2106 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 2107 BasicBlock::iterator I(Preheader->getTerminator()); 2108 while (I != Preheader->begin()) { 2109 --I; 2110 // New instructions were inserted at the end of the preheader. 2111 if (isa<PHINode>(I)) 2112 break; 2113 2114 // Don't move instructions which might have side effects, since the side 2115 // effects need to complete before instructions inside the loop. Also don't 2116 // move instructions which might read memory, since the loop may modify 2117 // memory. Note that it's okay if the instruction might have undefined 2118 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2119 // block. 2120 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2121 continue; 2122 2123 // Skip debug info intrinsics. 2124 if (isa<DbgInfoIntrinsic>(I)) 2125 continue; 2126 2127 // Skip eh pad instructions. 2128 if (I->isEHPad()) 2129 continue; 2130 2131 // Don't sink alloca: we never want to sink static alloca's out of the 2132 // entry block, and correctly sinking dynamic alloca's requires 2133 // checks for stacksave/stackrestore intrinsics. 2134 // FIXME: Refactor this check somehow? 2135 if (isa<AllocaInst>(I)) 2136 continue; 2137 2138 // Determine if there is a use in or before the loop (direct or 2139 // otherwise). 2140 bool UsedInLoop = false; 2141 for (Use &U : I->uses()) { 2142 Instruction *User = cast<Instruction>(U.getUser()); 2143 BasicBlock *UseBB = User->getParent(); 2144 if (PHINode *P = dyn_cast<PHINode>(User)) { 2145 unsigned i = 2146 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2147 UseBB = P->getIncomingBlock(i); 2148 } 2149 if (UseBB == Preheader || L->contains(UseBB)) { 2150 UsedInLoop = true; 2151 break; 2152 } 2153 } 2154 2155 // If there is, the def must remain in the preheader. 2156 if (UsedInLoop) 2157 continue; 2158 2159 // Otherwise, sink it to the exit block. 2160 Instruction *ToMove = &*I; 2161 bool Done = false; 2162 2163 if (I != Preheader->begin()) { 2164 // Skip debug info intrinsics. 2165 do { 2166 --I; 2167 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2168 2169 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2170 Done = true; 2171 } else { 2172 Done = true; 2173 } 2174 2175 ToMove->moveBefore(*ExitBlock, InsertPt); 2176 if (Done) break; 2177 InsertPt = ToMove->getIterator(); 2178 } 2179 } 2180 2181 //===----------------------------------------------------------------------===// 2182 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2183 //===----------------------------------------------------------------------===// 2184 2185 bool IndVarSimplify::run(Loop *L) { 2186 // We need (and expect!) the incoming loop to be in LCSSA. 2187 assert(L->isRecursivelyLCSSAForm(*DT) && "LCSSA required to run indvars!"); 2188 2189 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2190 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2191 // canonicalization can be a pessimization without LSR to "clean up" 2192 // afterwards. 2193 // - We depend on having a preheader; in particular, 2194 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2195 // and we're in trouble if we can't find the induction variable even when 2196 // we've manually inserted one. 2197 if (!L->isLoopSimplifyForm()) 2198 return false; 2199 2200 // If there are any floating-point recurrences, attempt to 2201 // transform them to use integer recurrences. 2202 rewriteNonIntegerIVs(L); 2203 2204 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2205 2206 // Create a rewriter object which we'll use to transform the code with. 2207 SCEVExpander Rewriter(*SE, DL, "indvars"); 2208 #ifndef NDEBUG 2209 Rewriter.setDebugType(DEBUG_TYPE); 2210 #endif 2211 2212 // Eliminate redundant IV users. 2213 // 2214 // Simplification works best when run before other consumers of SCEV. We 2215 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2216 // other expressions involving loop IVs have been evaluated. This helps SCEV 2217 // set no-wrap flags before normalizing sign/zero extension. 2218 Rewriter.disableCanonicalMode(); 2219 simplifyAndExtend(L, Rewriter, LI); 2220 2221 // Check to see if this loop has a computable loop-invariant execution count. 2222 // If so, this means that we can compute the final value of any expressions 2223 // that are recurrent in the loop, and substitute the exit values from the 2224 // loop into any instructions outside of the loop that use the final values of 2225 // the current expressions. 2226 // 2227 if (ReplaceExitValue != NeverRepl && 2228 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2229 rewriteLoopExitValues(L, Rewriter); 2230 2231 // Eliminate redundant IV cycles. 2232 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2233 2234 // If we have a trip count expression, rewrite the loop's exit condition 2235 // using it. We can currently only handle loops with a single exit. 2236 if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) { 2237 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2238 if (IndVar) { 2239 // Check preconditions for proper SCEVExpander operation. SCEV does not 2240 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2241 // pass that uses the SCEVExpander must do it. This does not work well for 2242 // loop passes because SCEVExpander makes assumptions about all loops, 2243 // while LoopPassManager only forces the current loop to be simplified. 2244 // 2245 // FIXME: SCEV expansion has no way to bail out, so the caller must 2246 // explicitly check any assumptions made by SCEV. Brittle. 2247 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2248 if (!AR || AR->getLoop()->getLoopPreheader()) 2249 (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2250 Rewriter); 2251 } 2252 } 2253 // Clear the rewriter cache, because values that are in the rewriter's cache 2254 // can be deleted in the loop below, causing the AssertingVH in the cache to 2255 // trigger. 2256 Rewriter.clear(); 2257 2258 // Now that we're done iterating through lists, clean up any instructions 2259 // which are now dead. 2260 while (!DeadInsts.empty()) 2261 if (Instruction *Inst = 2262 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2263 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2264 2265 // The Rewriter may not be used from this point on. 2266 2267 // Loop-invariant instructions in the preheader that aren't used in the 2268 // loop may be sunk below the loop to reduce register pressure. 2269 sinkUnusedInvariants(L); 2270 2271 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2272 // trip count and therefore can further simplify exit values in addition to 2273 // rewriteLoopExitValues. 2274 rewriteFirstIterationLoopExitValues(L); 2275 2276 // Clean up dead instructions. 2277 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2278 2279 // Check a post-condition. 2280 assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!"); 2281 2282 // Verify that LFTR, and any other change have not interfered with SCEV's 2283 // ability to compute trip count. 2284 #ifndef NDEBUG 2285 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2286 SE->forgetLoop(L); 2287 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2288 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2289 SE->getTypeSizeInBits(NewBECount->getType())) 2290 NewBECount = SE->getTruncateOrNoop(NewBECount, 2291 BackedgeTakenCount->getType()); 2292 else 2293 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2294 NewBECount->getType()); 2295 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2296 } 2297 #endif 2298 2299 return Changed; 2300 } 2301 2302 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM) { 2303 auto &FAM = AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 2304 Function *F = L.getHeader()->getParent(); 2305 const DataLayout &DL = F->getParent()->getDataLayout(); 2306 2307 auto *LI = FAM.getCachedResult<LoopAnalysis>(*F); 2308 auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F); 2309 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F); 2310 2311 assert((LI && SE && DT) && 2312 "Analyses required for indvarsimplify not available!"); 2313 2314 // Optional analyses. 2315 auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F); 2316 auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(*F); 2317 2318 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2319 if (!IVS.run(&L)) 2320 return PreservedAnalyses::all(); 2321 2322 // FIXME: This should also 'preserve the CFG'. 2323 return getLoopPassPreservedAnalyses(); 2324 } 2325 2326 namespace { 2327 struct IndVarSimplifyLegacyPass : public LoopPass { 2328 static char ID; // Pass identification, replacement for typeid 2329 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2330 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2331 } 2332 2333 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2334 if (skipLoop(L)) 2335 return false; 2336 2337 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2338 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2339 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2340 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2341 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2342 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2343 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2344 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2345 2346 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2347 return IVS.run(L); 2348 } 2349 2350 void getAnalysisUsage(AnalysisUsage &AU) const override { 2351 AU.setPreservesCFG(); 2352 getLoopAnalysisUsage(AU); 2353 } 2354 }; 2355 } 2356 2357 char IndVarSimplifyLegacyPass::ID = 0; 2358 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2359 "Induction Variable Simplification", false, false) 2360 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2361 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2362 "Induction Variable Simplification", false, false) 2363 2364 Pass *llvm::createIndVarSimplifyPass() { 2365 return new IndVarSimplifyLegacyPass(); 2366 } 2367