1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs global value numbering to eliminate fully redundant
10 // instructions.  It also performs simple dead load elimination.
11 //
12 // Note that this pass does the value numbering itself; it does not use the
13 // ValueNumbering analysis passes.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Scalar/GVN.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DepthFirstIterator.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/MapVector.h"
22 #include "llvm/ADT/PointerIntPair.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/CFG.h"
32 #include "llvm/Analysis/DomTreeUpdater.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/InstructionSimplify.h"
35 #include "llvm/Analysis/LoopInfo.h"
36 #include "llvm/Analysis/MemoryBuiltins.h"
37 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
38 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
39 #include "llvm/Analysis/PHITransAddr.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/ValueTracking.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/Intrinsics.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Metadata.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/PassManager.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/SSAUpdater.h"
76 #include "llvm/Transforms/Utils/VNCoercion.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cstdint>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 using namespace llvm::gvn;
85 using namespace llvm::VNCoercion;
86 using namespace PatternMatch;
87 
88 #define DEBUG_TYPE "gvn"
89 
90 STATISTIC(NumGVNInstr,  "Number of instructions deleted");
91 STATISTIC(NumGVNLoad,   "Number of loads deleted");
92 STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
93 STATISTIC(NumGVNBlocks, "Number of blocks merged");
94 STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
95 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
96 STATISTIC(NumPRELoad,   "Number of loads PRE'd");
97 
98 static cl::opt<bool> EnablePRE("enable-pre",
99                                cl::init(true), cl::Hidden);
100 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
101 static cl::opt<bool> EnableMemDep("enable-gvn-memdep", cl::init(true));
102 
103 // Maximum allowed recursion depth.
104 static cl::opt<uint32_t>
105 MaxRecurseDepth("gvn-max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
106                 cl::desc("Max recurse depth in GVN (default = 1000)"));
107 
108 static cl::opt<uint32_t> MaxNumDeps(
109     "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore,
110     cl::desc("Max number of dependences to attempt Load PRE (default = 100)"));
111 
112 struct llvm::GVN::Expression {
113   uint32_t opcode;
114   Type *type;
115   bool commutative = false;
116   SmallVector<uint32_t, 4> varargs;
117 
118   Expression(uint32_t o = ~2U) : opcode(o) {}
119 
120   bool operator==(const Expression &other) const {
121     if (opcode != other.opcode)
122       return false;
123     if (opcode == ~0U || opcode == ~1U)
124       return true;
125     if (type != other.type)
126       return false;
127     if (varargs != other.varargs)
128       return false;
129     return true;
130   }
131 
132   friend hash_code hash_value(const Expression &Value) {
133     return hash_combine(
134         Value.opcode, Value.type,
135         hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
136   }
137 };
138 
139 namespace llvm {
140 
141 template <> struct DenseMapInfo<GVN::Expression> {
142   static inline GVN::Expression getEmptyKey() { return ~0U; }
143   static inline GVN::Expression getTombstoneKey() { return ~1U; }
144 
145   static unsigned getHashValue(const GVN::Expression &e) {
146     using llvm::hash_value;
147 
148     return static_cast<unsigned>(hash_value(e));
149   }
150 
151   static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) {
152     return LHS == RHS;
153   }
154 };
155 
156 } // end namespace llvm
157 
158 /// Represents a particular available value that we know how to materialize.
159 /// Materialization of an AvailableValue never fails.  An AvailableValue is
160 /// implicitly associated with a rematerialization point which is the
161 /// location of the instruction from which it was formed.
162 struct llvm::gvn::AvailableValue {
163   enum ValType {
164     SimpleVal, // A simple offsetted value that is accessed.
165     LoadVal,   // A value produced by a load.
166     MemIntrin, // A memory intrinsic which is loaded from.
167     UndefVal   // A UndefValue representing a value from dead block (which
168                // is not yet physically removed from the CFG).
169   };
170 
171   /// V - The value that is live out of the block.
172   PointerIntPair<Value *, 2, ValType> Val;
173 
174   /// Offset - The byte offset in Val that is interesting for the load query.
175   unsigned Offset;
176 
177   static AvailableValue get(Value *V, unsigned Offset = 0) {
178     AvailableValue Res;
179     Res.Val.setPointer(V);
180     Res.Val.setInt(SimpleVal);
181     Res.Offset = Offset;
182     return Res;
183   }
184 
185   static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
186     AvailableValue Res;
187     Res.Val.setPointer(MI);
188     Res.Val.setInt(MemIntrin);
189     Res.Offset = Offset;
190     return Res;
191   }
192 
193   static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) {
194     AvailableValue Res;
195     Res.Val.setPointer(LI);
196     Res.Val.setInt(LoadVal);
197     Res.Offset = Offset;
198     return Res;
199   }
200 
201   static AvailableValue getUndef() {
202     AvailableValue Res;
203     Res.Val.setPointer(nullptr);
204     Res.Val.setInt(UndefVal);
205     Res.Offset = 0;
206     return Res;
207   }
208 
209   bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
210   bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
211   bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
212   bool isUndefValue() const { return Val.getInt() == UndefVal; }
213 
214   Value *getSimpleValue() const {
215     assert(isSimpleValue() && "Wrong accessor");
216     return Val.getPointer();
217   }
218 
219   LoadInst *getCoercedLoadValue() const {
220     assert(isCoercedLoadValue() && "Wrong accessor");
221     return cast<LoadInst>(Val.getPointer());
222   }
223 
224   MemIntrinsic *getMemIntrinValue() const {
225     assert(isMemIntrinValue() && "Wrong accessor");
226     return cast<MemIntrinsic>(Val.getPointer());
227   }
228 
229   /// Emit code at the specified insertion point to adjust the value defined
230   /// here to the specified type. This handles various coercion cases.
231   Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt,
232                                   GVN &gvn) const;
233 };
234 
235 /// Represents an AvailableValue which can be rematerialized at the end of
236 /// the associated BasicBlock.
237 struct llvm::gvn::AvailableValueInBlock {
238   /// BB - The basic block in question.
239   BasicBlock *BB;
240 
241   /// AV - The actual available value
242   AvailableValue AV;
243 
244   static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
245     AvailableValueInBlock Res;
246     Res.BB = BB;
247     Res.AV = std::move(AV);
248     return Res;
249   }
250 
251   static AvailableValueInBlock get(BasicBlock *BB, Value *V,
252                                    unsigned Offset = 0) {
253     return get(BB, AvailableValue::get(V, Offset));
254   }
255 
256   static AvailableValueInBlock getUndef(BasicBlock *BB) {
257     return get(BB, AvailableValue::getUndef());
258   }
259 
260   /// Emit code at the end of this block to adjust the value defined here to
261   /// the specified type. This handles various coercion cases.
262   Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const {
263     return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn);
264   }
265 };
266 
267 //===----------------------------------------------------------------------===//
268 //                     ValueTable Internal Functions
269 //===----------------------------------------------------------------------===//
270 
271 GVN::Expression GVN::ValueTable::createExpr(Instruction *I) {
272   Expression e;
273   e.type = I->getType();
274   e.opcode = I->getOpcode();
275   for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
276        OI != OE; ++OI)
277     e.varargs.push_back(lookupOrAdd(*OI));
278   if (I->isCommutative()) {
279     // Ensure that commutative instructions that only differ by a permutation
280     // of their operands get the same value number by sorting the operand value
281     // numbers.  Since all commutative instructions have two operands it is more
282     // efficient to sort by hand rather than using, say, std::sort.
283     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
284     if (e.varargs[0] > e.varargs[1])
285       std::swap(e.varargs[0], e.varargs[1]);
286     e.commutative = true;
287   }
288 
289   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
290     // Sort the operand value numbers so x<y and y>x get the same value number.
291     CmpInst::Predicate Predicate = C->getPredicate();
292     if (e.varargs[0] > e.varargs[1]) {
293       std::swap(e.varargs[0], e.varargs[1]);
294       Predicate = CmpInst::getSwappedPredicate(Predicate);
295     }
296     e.opcode = (C->getOpcode() << 8) | Predicate;
297     e.commutative = true;
298   } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
299     for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
300          II != IE; ++II)
301       e.varargs.push_back(*II);
302   }
303 
304   return e;
305 }
306 
307 GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode,
308                                                CmpInst::Predicate Predicate,
309                                                Value *LHS, Value *RHS) {
310   assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
311          "Not a comparison!");
312   Expression e;
313   e.type = CmpInst::makeCmpResultType(LHS->getType());
314   e.varargs.push_back(lookupOrAdd(LHS));
315   e.varargs.push_back(lookupOrAdd(RHS));
316 
317   // Sort the operand value numbers so x<y and y>x get the same value number.
318   if (e.varargs[0] > e.varargs[1]) {
319     std::swap(e.varargs[0], e.varargs[1]);
320     Predicate = CmpInst::getSwappedPredicate(Predicate);
321   }
322   e.opcode = (Opcode << 8) | Predicate;
323   e.commutative = true;
324   return e;
325 }
326 
327 GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
328   assert(EI && "Not an ExtractValueInst?");
329   Expression e;
330   e.type = EI->getType();
331   e.opcode = 0;
332 
333   WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
334   if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
335     // EI is an extract from one of our with.overflow intrinsics. Synthesize
336     // a semantically equivalent expression instead of an extract value
337     // expression.
338     e.opcode = WO->getBinaryOp();
339     e.varargs.push_back(lookupOrAdd(WO->getLHS()));
340     e.varargs.push_back(lookupOrAdd(WO->getRHS()));
341     return e;
342   }
343 
344   // Not a recognised intrinsic. Fall back to producing an extract value
345   // expression.
346   e.opcode = EI->getOpcode();
347   for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
348        OI != OE; ++OI)
349     e.varargs.push_back(lookupOrAdd(*OI));
350 
351   for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
352          II != IE; ++II)
353     e.varargs.push_back(*II);
354 
355   return e;
356 }
357 
358 //===----------------------------------------------------------------------===//
359 //                     ValueTable External Functions
360 //===----------------------------------------------------------------------===//
361 
362 GVN::ValueTable::ValueTable() = default;
363 GVN::ValueTable::ValueTable(const ValueTable &) = default;
364 GVN::ValueTable::ValueTable(ValueTable &&) = default;
365 GVN::ValueTable::~ValueTable() = default;
366 
367 /// add - Insert a value into the table with a specified value number.
368 void GVN::ValueTable::add(Value *V, uint32_t num) {
369   valueNumbering.insert(std::make_pair(V, num));
370   if (PHINode *PN = dyn_cast<PHINode>(V))
371     NumberingPhi[num] = PN;
372 }
373 
374 uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) {
375   if (AA->doesNotAccessMemory(C)) {
376     Expression exp = createExpr(C);
377     uint32_t e = assignExpNewValueNum(exp).first;
378     valueNumbering[C] = e;
379     return e;
380   } else if (MD && AA->onlyReadsMemory(C)) {
381     Expression exp = createExpr(C);
382     auto ValNum = assignExpNewValueNum(exp);
383     if (ValNum.second) {
384       valueNumbering[C] = ValNum.first;
385       return ValNum.first;
386     }
387 
388     MemDepResult local_dep = MD->getDependency(C);
389 
390     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
391       valueNumbering[C] =  nextValueNumber;
392       return nextValueNumber++;
393     }
394 
395     if (local_dep.isDef()) {
396       CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
397 
398       if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
399         valueNumbering[C] = nextValueNumber;
400         return nextValueNumber++;
401       }
402 
403       for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
404         uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
405         uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
406         if (c_vn != cd_vn) {
407           valueNumbering[C] = nextValueNumber;
408           return nextValueNumber++;
409         }
410       }
411 
412       uint32_t v = lookupOrAdd(local_cdep);
413       valueNumbering[C] = v;
414       return v;
415     }
416 
417     // Non-local case.
418     const MemoryDependenceResults::NonLocalDepInfo &deps =
419         MD->getNonLocalCallDependency(C);
420     // FIXME: Move the checking logic to MemDep!
421     CallInst* cdep = nullptr;
422 
423     // Check to see if we have a single dominating call instruction that is
424     // identical to C.
425     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
426       const NonLocalDepEntry *I = &deps[i];
427       if (I->getResult().isNonLocal())
428         continue;
429 
430       // We don't handle non-definitions.  If we already have a call, reject
431       // instruction dependencies.
432       if (!I->getResult().isDef() || cdep != nullptr) {
433         cdep = nullptr;
434         break;
435       }
436 
437       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
438       // FIXME: All duplicated with non-local case.
439       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
440         cdep = NonLocalDepCall;
441         continue;
442       }
443 
444       cdep = nullptr;
445       break;
446     }
447 
448     if (!cdep) {
449       valueNumbering[C] = nextValueNumber;
450       return nextValueNumber++;
451     }
452 
453     if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
454       valueNumbering[C] = nextValueNumber;
455       return nextValueNumber++;
456     }
457     for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
458       uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
459       uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
460       if (c_vn != cd_vn) {
461         valueNumbering[C] = nextValueNumber;
462         return nextValueNumber++;
463       }
464     }
465 
466     uint32_t v = lookupOrAdd(cdep);
467     valueNumbering[C] = v;
468     return v;
469   } else {
470     valueNumbering[C] = nextValueNumber;
471     return nextValueNumber++;
472   }
473 }
474 
475 /// Returns true if a value number exists for the specified value.
476 bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; }
477 
478 /// lookup_or_add - Returns the value number for the specified value, assigning
479 /// it a new number if it did not have one before.
480 uint32_t GVN::ValueTable::lookupOrAdd(Value *V) {
481   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
482   if (VI != valueNumbering.end())
483     return VI->second;
484 
485   if (!isa<Instruction>(V)) {
486     valueNumbering[V] = nextValueNumber;
487     return nextValueNumber++;
488   }
489 
490   Instruction* I = cast<Instruction>(V);
491   Expression exp;
492   switch (I->getOpcode()) {
493     case Instruction::Call:
494       return lookupOrAddCall(cast<CallInst>(I));
495     case Instruction::Add:
496     case Instruction::FAdd:
497     case Instruction::Sub:
498     case Instruction::FSub:
499     case Instruction::Mul:
500     case Instruction::FMul:
501     case Instruction::UDiv:
502     case Instruction::SDiv:
503     case Instruction::FDiv:
504     case Instruction::URem:
505     case Instruction::SRem:
506     case Instruction::FRem:
507     case Instruction::Shl:
508     case Instruction::LShr:
509     case Instruction::AShr:
510     case Instruction::And:
511     case Instruction::Or:
512     case Instruction::Xor:
513     case Instruction::ICmp:
514     case Instruction::FCmp:
515     case Instruction::Trunc:
516     case Instruction::ZExt:
517     case Instruction::SExt:
518     case Instruction::FPToUI:
519     case Instruction::FPToSI:
520     case Instruction::UIToFP:
521     case Instruction::SIToFP:
522     case Instruction::FPTrunc:
523     case Instruction::FPExt:
524     case Instruction::PtrToInt:
525     case Instruction::IntToPtr:
526     case Instruction::AddrSpaceCast:
527     case Instruction::BitCast:
528     case Instruction::Select:
529     case Instruction::ExtractElement:
530     case Instruction::InsertElement:
531     case Instruction::ShuffleVector:
532     case Instruction::InsertValue:
533     case Instruction::GetElementPtr:
534       exp = createExpr(I);
535       break;
536     case Instruction::ExtractValue:
537       exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
538       break;
539     case Instruction::PHI:
540       valueNumbering[V] = nextValueNumber;
541       NumberingPhi[nextValueNumber] = cast<PHINode>(V);
542       return nextValueNumber++;
543     default:
544       valueNumbering[V] = nextValueNumber;
545       return nextValueNumber++;
546   }
547 
548   uint32_t e = assignExpNewValueNum(exp).first;
549   valueNumbering[V] = e;
550   return e;
551 }
552 
553 /// Returns the value number of the specified value. Fails if
554 /// the value has not yet been numbered.
555 uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const {
556   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
557   if (Verify) {
558     assert(VI != valueNumbering.end() && "Value not numbered?");
559     return VI->second;
560   }
561   return (VI != valueNumbering.end()) ? VI->second : 0;
562 }
563 
564 /// Returns the value number of the given comparison,
565 /// assigning it a new number if it did not have one before.  Useful when
566 /// we deduced the result of a comparison, but don't immediately have an
567 /// instruction realizing that comparison to hand.
568 uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode,
569                                          CmpInst::Predicate Predicate,
570                                          Value *LHS, Value *RHS) {
571   Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
572   return assignExpNewValueNum(exp).first;
573 }
574 
575 /// Remove all entries from the ValueTable.
576 void GVN::ValueTable::clear() {
577   valueNumbering.clear();
578   expressionNumbering.clear();
579   NumberingPhi.clear();
580   PhiTranslateTable.clear();
581   nextValueNumber = 1;
582   Expressions.clear();
583   ExprIdx.clear();
584   nextExprNumber = 0;
585 }
586 
587 /// Remove a value from the value numbering.
588 void GVN::ValueTable::erase(Value *V) {
589   uint32_t Num = valueNumbering.lookup(V);
590   valueNumbering.erase(V);
591   // If V is PHINode, V <--> value number is an one-to-one mapping.
592   if (isa<PHINode>(V))
593     NumberingPhi.erase(Num);
594 }
595 
596 /// verifyRemoved - Verify that the value is removed from all internal data
597 /// structures.
598 void GVN::ValueTable::verifyRemoved(const Value *V) const {
599   for (DenseMap<Value*, uint32_t>::const_iterator
600          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
601     assert(I->first != V && "Inst still occurs in value numbering map!");
602   }
603 }
604 
605 //===----------------------------------------------------------------------===//
606 //                                GVN Pass
607 //===----------------------------------------------------------------------===//
608 
609 PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) {
610   // FIXME: The order of evaluation of these 'getResult' calls is very
611   // significant! Re-ordering these variables will cause GVN when run alone to
612   // be less effective! We should fix memdep and basic-aa to not exhibit this
613   // behavior, but until then don't change the order here.
614   auto &AC = AM.getResult<AssumptionAnalysis>(F);
615   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
616   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
617   auto &AA = AM.getResult<AAManager>(F);
618   auto &MemDep = AM.getResult<MemoryDependenceAnalysis>(F);
619   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
620   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
621   bool Changed = runImpl(F, AC, DT, TLI, AA, &MemDep, LI, &ORE);
622   if (!Changed)
623     return PreservedAnalyses::all();
624   PreservedAnalyses PA;
625   PA.preserve<DominatorTreeAnalysis>();
626   PA.preserve<GlobalsAA>();
627   PA.preserve<TargetLibraryAnalysis>();
628   return PA;
629 }
630 
631 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
632 LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const {
633   errs() << "{\n";
634   for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
635        E = d.end(); I != E; ++I) {
636       errs() << I->first << "\n";
637       I->second->dump();
638   }
639   errs() << "}\n";
640 }
641 #endif
642 
643 /// Return true if we can prove that the value
644 /// we're analyzing is fully available in the specified block.  As we go, keep
645 /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
646 /// map is actually a tri-state map with the following values:
647 ///   0) we know the block *is not* fully available.
648 ///   1) we know the block *is* fully available.
649 ///   2) we do not know whether the block is fully available or not, but we are
650 ///      currently speculating that it will be.
651 ///   3) we are speculating for this block and have used that to speculate for
652 ///      other blocks.
653 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
654                             DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
655                             uint32_t RecurseDepth) {
656   if (RecurseDepth > MaxRecurseDepth)
657     return false;
658 
659   // Optimistically assume that the block is fully available and check to see
660   // if we already know about this block in one lookup.
661   std::pair<DenseMap<BasicBlock*, char>::iterator, bool> IV =
662     FullyAvailableBlocks.insert(std::make_pair(BB, 2));
663 
664   // If the entry already existed for this block, return the precomputed value.
665   if (!IV.second) {
666     // If this is a speculative "available" value, mark it as being used for
667     // speculation of other blocks.
668     if (IV.first->second == 2)
669       IV.first->second = 3;
670     return IV.first->second != 0;
671   }
672 
673   // Otherwise, see if it is fully available in all predecessors.
674   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
675 
676   // If this block has no predecessors, it isn't live-in here.
677   if (PI == PE)
678     goto SpeculationFailure;
679 
680   for (; PI != PE; ++PI)
681     // If the value isn't fully available in one of our predecessors, then it
682     // isn't fully available in this block either.  Undo our previous
683     // optimistic assumption and bail out.
684     if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
685       goto SpeculationFailure;
686 
687   return true;
688 
689 // If we get here, we found out that this is not, after
690 // all, a fully-available block.  We have a problem if we speculated on this and
691 // used the speculation to mark other blocks as available.
692 SpeculationFailure:
693   char &BBVal = FullyAvailableBlocks[BB];
694 
695   // If we didn't speculate on this, just return with it set to false.
696   if (BBVal == 2) {
697     BBVal = 0;
698     return false;
699   }
700 
701   // If we did speculate on this value, we could have blocks set to 1 that are
702   // incorrect.  Walk the (transitive) successors of this block and mark them as
703   // 0 if set to one.
704   SmallVector<BasicBlock*, 32> BBWorklist;
705   BBWorklist.push_back(BB);
706 
707   do {
708     BasicBlock *Entry = BBWorklist.pop_back_val();
709     // Note that this sets blocks to 0 (unavailable) if they happen to not
710     // already be in FullyAvailableBlocks.  This is safe.
711     char &EntryVal = FullyAvailableBlocks[Entry];
712     if (EntryVal == 0) continue;  // Already unavailable.
713 
714     // Mark as unavailable.
715     EntryVal = 0;
716 
717     BBWorklist.append(succ_begin(Entry), succ_end(Entry));
718   } while (!BBWorklist.empty());
719 
720   return false;
721 }
722 
723 /// Given a set of loads specified by ValuesPerBlock,
724 /// construct SSA form, allowing us to eliminate LI.  This returns the value
725 /// that should be used at LI's definition site.
726 static Value *ConstructSSAForLoadSet(LoadInst *LI,
727                          SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
728                                      GVN &gvn) {
729   // Check for the fully redundant, dominating load case.  In this case, we can
730   // just use the dominating value directly.
731   if (ValuesPerBlock.size() == 1 &&
732       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
733                                                LI->getParent())) {
734     assert(!ValuesPerBlock[0].AV.isUndefValue() &&
735            "Dead BB dominate this block");
736     return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
737   }
738 
739   // Otherwise, we have to construct SSA form.
740   SmallVector<PHINode*, 8> NewPHIs;
741   SSAUpdater SSAUpdate(&NewPHIs);
742   SSAUpdate.Initialize(LI->getType(), LI->getName());
743 
744   for (const AvailableValueInBlock &AV : ValuesPerBlock) {
745     BasicBlock *BB = AV.BB;
746 
747     if (SSAUpdate.HasValueForBlock(BB))
748       continue;
749 
750     // If the value is the load that we will be eliminating, and the block it's
751     // available in is the block that the load is in, then don't add it as
752     // SSAUpdater will resolve the value to the relevant phi which may let it
753     // avoid phi construction entirely if there's actually only one value.
754     if (BB == LI->getParent() &&
755         ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == LI) ||
756          (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == LI)))
757       continue;
758 
759     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
760   }
761 
762   // Perform PHI construction.
763   return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
764 }
765 
766 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI,
767                                                 Instruction *InsertPt,
768                                                 GVN &gvn) const {
769   Value *Res;
770   Type *LoadTy = LI->getType();
771   const DataLayout &DL = LI->getModule()->getDataLayout();
772   if (isSimpleValue()) {
773     Res = getSimpleValue();
774     if (Res->getType() != LoadTy) {
775       Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
776 
777       LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset
778                         << "  " << *getSimpleValue() << '\n'
779                         << *Res << '\n'
780                         << "\n\n\n");
781     }
782   } else if (isCoercedLoadValue()) {
783     LoadInst *Load = getCoercedLoadValue();
784     if (Load->getType() == LoadTy && Offset == 0) {
785       Res = Load;
786     } else {
787       Res = getLoadValueForLoad(Load, Offset, LoadTy, InsertPt, DL);
788       // We would like to use gvn.markInstructionForDeletion here, but we can't
789       // because the load is already memoized into the leader map table that GVN
790       // tracks.  It is potentially possible to remove the load from the table,
791       // but then there all of the operations based on it would need to be
792       // rehashed.  Just leave the dead load around.
793       gvn.getMemDep().removeInstruction(Load);
794       LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset
795                         << "  " << *getCoercedLoadValue() << '\n'
796                         << *Res << '\n'
797                         << "\n\n\n");
798     }
799   } else if (isMemIntrinValue()) {
800     Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
801                                  InsertPt, DL);
802     LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
803                       << "  " << *getMemIntrinValue() << '\n'
804                       << *Res << '\n'
805                       << "\n\n\n");
806   } else {
807     assert(isUndefValue() && "Should be UndefVal");
808     LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
809     return UndefValue::get(LoadTy);
810   }
811   assert(Res && "failed to materialize?");
812   return Res;
813 }
814 
815 static bool isLifetimeStart(const Instruction *Inst) {
816   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
817     return II->getIntrinsicID() == Intrinsic::lifetime_start;
818   return false;
819 }
820 
821 /// Try to locate the three instruction involved in a missed
822 /// load-elimination case that is due to an intervening store.
823 static void reportMayClobberedLoad(LoadInst *LI, MemDepResult DepInfo,
824                                    DominatorTree *DT,
825                                    OptimizationRemarkEmitter *ORE) {
826   using namespace ore;
827 
828   User *OtherAccess = nullptr;
829 
830   OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", LI);
831   R << "load of type " << NV("Type", LI->getType()) << " not eliminated"
832     << setExtraArgs();
833 
834   for (auto *U : LI->getPointerOperand()->users())
835     if (U != LI && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
836         DT->dominates(cast<Instruction>(U), LI)) {
837       // FIXME: for now give up if there are multiple memory accesses that
838       // dominate the load.  We need further analysis to decide which one is
839       // that we're forwarding from.
840       if (OtherAccess)
841         OtherAccess = nullptr;
842       else
843         OtherAccess = U;
844     }
845 
846   if (OtherAccess)
847     R << " in favor of " << NV("OtherAccess", OtherAccess);
848 
849   R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst());
850 
851   ORE->emit(R);
852 }
853 
854 bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo,
855                                   Value *Address, AvailableValue &Res) {
856   assert((DepInfo.isDef() || DepInfo.isClobber()) &&
857          "expected a local dependence");
858   assert(LI->isUnordered() && "rules below are incorrect for ordered access");
859 
860   const DataLayout &DL = LI->getModule()->getDataLayout();
861 
862   if (DepInfo.isClobber()) {
863     // If the dependence is to a store that writes to a superset of the bits
864     // read by the load, we can extract the bits we need for the load from the
865     // stored value.
866     if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
867       // Can't forward from non-atomic to atomic without violating memory model.
868       if (Address && LI->isAtomic() <= DepSI->isAtomic()) {
869         int Offset =
870           analyzeLoadFromClobberingStore(LI->getType(), Address, DepSI, DL);
871         if (Offset != -1) {
872           Res = AvailableValue::get(DepSI->getValueOperand(), Offset);
873           return true;
874         }
875       }
876     }
877 
878     // Check to see if we have something like this:
879     //    load i32* P
880     //    load i8* (P+1)
881     // if we have this, replace the later with an extraction from the former.
882     if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
883       // If this is a clobber and L is the first instruction in its block, then
884       // we have the first instruction in the entry block.
885       // Can't forward from non-atomic to atomic without violating memory model.
886       if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) {
887         int Offset =
888           analyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
889 
890         if (Offset != -1) {
891           Res = AvailableValue::getLoad(DepLI, Offset);
892           return true;
893         }
894       }
895     }
896 
897     // If the clobbering value is a memset/memcpy/memmove, see if we can
898     // forward a value on from it.
899     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
900       if (Address && !LI->isAtomic()) {
901         int Offset = analyzeLoadFromClobberingMemInst(LI->getType(), Address,
902                                                       DepMI, DL);
903         if (Offset != -1) {
904           Res = AvailableValue::getMI(DepMI, Offset);
905           return true;
906         }
907       }
908     }
909     // Nothing known about this clobber, have to be conservative
910     LLVM_DEBUG(
911         // fast print dep, using operator<< on instruction is too slow.
912         dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
913         Instruction *I = DepInfo.getInst();
914         dbgs() << " is clobbered by " << *I << '\n';);
915     if (ORE->allowExtraAnalysis(DEBUG_TYPE))
916       reportMayClobberedLoad(LI, DepInfo, DT, ORE);
917 
918     return false;
919   }
920   assert(DepInfo.isDef() && "follows from above");
921 
922   Instruction *DepInst = DepInfo.getInst();
923 
924   // Loading the allocation -> undef.
925   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
926       // Loading immediately after lifetime begin -> undef.
927       isLifetimeStart(DepInst)) {
928     Res = AvailableValue::get(UndefValue::get(LI->getType()));
929     return true;
930   }
931 
932   // Loading from calloc (which zero initializes memory) -> zero
933   if (isCallocLikeFn(DepInst, TLI)) {
934     Res = AvailableValue::get(Constant::getNullValue(LI->getType()));
935     return true;
936   }
937 
938   if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
939     // Reject loads and stores that are to the same address but are of
940     // different types if we have to. If the stored value is larger or equal to
941     // the loaded value, we can reuse it.
942     if (S->getValueOperand()->getType() != LI->getType() &&
943         !canCoerceMustAliasedValueToLoad(S->getValueOperand(),
944                                          LI->getType(), DL))
945       return false;
946 
947     // Can't forward from non-atomic to atomic without violating memory model.
948     if (S->isAtomic() < LI->isAtomic())
949       return false;
950 
951     Res = AvailableValue::get(S->getValueOperand());
952     return true;
953   }
954 
955   if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
956     // If the types mismatch and we can't handle it, reject reuse of the load.
957     // If the stored value is larger or equal to the loaded value, we can reuse
958     // it.
959     if (LD->getType() != LI->getType() &&
960         !canCoerceMustAliasedValueToLoad(LD, LI->getType(), DL))
961       return false;
962 
963     // Can't forward from non-atomic to atomic without violating memory model.
964     if (LD->isAtomic() < LI->isAtomic())
965       return false;
966 
967     Res = AvailableValue::getLoad(LD);
968     return true;
969   }
970 
971   // Unknown def - must be conservative
972   LLVM_DEBUG(
973       // fast print dep, using operator<< on instruction is too slow.
974       dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
975       dbgs() << " has unknown def " << *DepInst << '\n';);
976   return false;
977 }
978 
979 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
980                                   AvailValInBlkVect &ValuesPerBlock,
981                                   UnavailBlkVect &UnavailableBlocks) {
982   // Filter out useless results (non-locals, etc).  Keep track of the blocks
983   // where we have a value available in repl, also keep track of whether we see
984   // dependencies that produce an unknown value for the load (such as a call
985   // that could potentially clobber the load).
986   unsigned NumDeps = Deps.size();
987   for (unsigned i = 0, e = NumDeps; i != e; ++i) {
988     BasicBlock *DepBB = Deps[i].getBB();
989     MemDepResult DepInfo = Deps[i].getResult();
990 
991     if (DeadBlocks.count(DepBB)) {
992       // Dead dependent mem-op disguise as a load evaluating the same value
993       // as the load in question.
994       ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
995       continue;
996     }
997 
998     if (!DepInfo.isDef() && !DepInfo.isClobber()) {
999       UnavailableBlocks.push_back(DepBB);
1000       continue;
1001     }
1002 
1003     // The address being loaded in this non-local block may not be the same as
1004     // the pointer operand of the load if PHI translation occurs.  Make sure
1005     // to consider the right address.
1006     Value *Address = Deps[i].getAddress();
1007 
1008     AvailableValue AV;
1009     if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) {
1010       // subtlety: because we know this was a non-local dependency, we know
1011       // it's safe to materialize anywhere between the instruction within
1012       // DepInfo and the end of it's block.
1013       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1014                                                           std::move(AV)));
1015     } else {
1016       UnavailableBlocks.push_back(DepBB);
1017     }
1018   }
1019 
1020   assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() &&
1021          "post condition violation");
1022 }
1023 
1024 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
1025                          UnavailBlkVect &UnavailableBlocks) {
1026   // Okay, we have *some* definitions of the value.  This means that the value
1027   // is available in some of our (transitive) predecessors.  Lets think about
1028   // doing PRE of this load.  This will involve inserting a new load into the
1029   // predecessor when it's not available.  We could do this in general, but
1030   // prefer to not increase code size.  As such, we only do this when we know
1031   // that we only have to insert *one* load (which means we're basically moving
1032   // the load, not inserting a new one).
1033 
1034   SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
1035                                         UnavailableBlocks.end());
1036 
1037   // Let's find the first basic block with more than one predecessor.  Walk
1038   // backwards through predecessors if needed.
1039   BasicBlock *LoadBB = LI->getParent();
1040   BasicBlock *TmpBB = LoadBB;
1041   bool IsSafeToSpeculativelyExecute = isSafeToSpeculativelyExecute(LI);
1042 
1043   // Check that there is no implicit control flow instructions above our load in
1044   // its block. If there is an instruction that doesn't always pass the
1045   // execution to the following instruction, then moving through it may become
1046   // invalid. For example:
1047   //
1048   // int arr[LEN];
1049   // int index = ???;
1050   // ...
1051   // guard(0 <= index && index < LEN);
1052   // use(arr[index]);
1053   //
1054   // It is illegal to move the array access to any point above the guard,
1055   // because if the index is out of bounds we should deoptimize rather than
1056   // access the array.
1057   // Check that there is no guard in this block above our instruction.
1058   if (!IsSafeToSpeculativelyExecute && ICF->isDominatedByICFIFromSameBlock(LI))
1059     return false;
1060   while (TmpBB->getSinglePredecessor()) {
1061     TmpBB = TmpBB->getSinglePredecessor();
1062     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1063       return false;
1064     if (Blockers.count(TmpBB))
1065       return false;
1066 
1067     // If any of these blocks has more than one successor (i.e. if the edge we
1068     // just traversed was critical), then there are other paths through this
1069     // block along which the load may not be anticipated.  Hoisting the load
1070     // above this block would be adding the load to execution paths along
1071     // which it was not previously executed.
1072     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1073       return false;
1074 
1075     // Check that there is no implicit control flow in a block above.
1076     if (!IsSafeToSpeculativelyExecute && ICF->hasICF(TmpBB))
1077       return false;
1078   }
1079 
1080   assert(TmpBB);
1081   LoadBB = TmpBB;
1082 
1083   // Check to see how many predecessors have the loaded value fully
1084   // available.
1085   MapVector<BasicBlock *, Value *> PredLoads;
1086   DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1087   for (const AvailableValueInBlock &AV : ValuesPerBlock)
1088     FullyAvailableBlocks[AV.BB] = true;
1089   for (BasicBlock *UnavailableBB : UnavailableBlocks)
1090     FullyAvailableBlocks[UnavailableBB] = false;
1091 
1092   SmallVector<BasicBlock *, 4> CriticalEdgePred;
1093   for (BasicBlock *Pred : predecessors(LoadBB)) {
1094     // If any predecessor block is an EH pad that does not allow non-PHI
1095     // instructions before the terminator, we can't PRE the load.
1096     if (Pred->getTerminator()->isEHPad()) {
1097       LLVM_DEBUG(
1098           dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
1099                  << Pred->getName() << "': " << *LI << '\n');
1100       return false;
1101     }
1102 
1103     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
1104       continue;
1105     }
1106 
1107     if (Pred->getTerminator()->getNumSuccessors() != 1) {
1108       if (isa<IndirectBrInst>(Pred->getTerminator())) {
1109         LLVM_DEBUG(
1110             dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1111                    << Pred->getName() << "': " << *LI << '\n');
1112         return false;
1113       }
1114 
1115       // FIXME: Can we support the fallthrough edge?
1116       if (isa<CallBrInst>(Pred->getTerminator())) {
1117         LLVM_DEBUG(
1118             dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '"
1119                    << Pred->getName() << "': " << *LI << '\n');
1120         return false;
1121       }
1122 
1123       if (LoadBB->isEHPad()) {
1124         LLVM_DEBUG(
1125             dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
1126                    << Pred->getName() << "': " << *LI << '\n');
1127         return false;
1128       }
1129 
1130       CriticalEdgePred.push_back(Pred);
1131     } else {
1132       // Only add the predecessors that will not be split for now.
1133       PredLoads[Pred] = nullptr;
1134     }
1135   }
1136 
1137   // Decide whether PRE is profitable for this load.
1138   unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
1139   assert(NumUnavailablePreds != 0 &&
1140          "Fully available value should already be eliminated!");
1141 
1142   // If this load is unavailable in multiple predecessors, reject it.
1143   // FIXME: If we could restructure the CFG, we could make a common pred with
1144   // all the preds that don't have an available LI and insert a new load into
1145   // that one block.
1146   if (NumUnavailablePreds != 1)
1147       return false;
1148 
1149   // Split critical edges, and update the unavailable predecessors accordingly.
1150   for (BasicBlock *OrigPred : CriticalEdgePred) {
1151     BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1152     assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
1153     PredLoads[NewPred] = nullptr;
1154     LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1155                       << LoadBB->getName() << '\n');
1156   }
1157 
1158   // Check if the load can safely be moved to all the unavailable predecessors.
1159   bool CanDoPRE = true;
1160   const DataLayout &DL = LI->getModule()->getDataLayout();
1161   SmallVector<Instruction*, 8> NewInsts;
1162   for (auto &PredLoad : PredLoads) {
1163     BasicBlock *UnavailablePred = PredLoad.first;
1164 
1165     // Do PHI translation to get its value in the predecessor if necessary.  The
1166     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1167 
1168     // If all preds have a single successor, then we know it is safe to insert
1169     // the load on the pred (?!?), so we can insert code to materialize the
1170     // pointer if it is not available.
1171     PHITransAddr Address(LI->getPointerOperand(), DL, AC);
1172     Value *LoadPtr = nullptr;
1173     LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1174                                                 *DT, NewInsts);
1175 
1176     // If we couldn't find or insert a computation of this phi translated value,
1177     // we fail PRE.
1178     if (!LoadPtr) {
1179       LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1180                         << *LI->getPointerOperand() << "\n");
1181       CanDoPRE = false;
1182       break;
1183     }
1184 
1185     PredLoad.second = LoadPtr;
1186   }
1187 
1188   if (!CanDoPRE) {
1189     while (!NewInsts.empty()) {
1190       Instruction *I = NewInsts.pop_back_val();
1191       markInstructionForDeletion(I);
1192     }
1193     // HINT: Don't revert the edge-splitting as following transformation may
1194     // also need to split these critical edges.
1195     return !CriticalEdgePred.empty();
1196   }
1197 
1198   // Okay, we can eliminate this load by inserting a reload in the predecessor
1199   // and using PHI construction to get the value in the other predecessors, do
1200   // it.
1201   LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1202   LLVM_DEBUG(if (!NewInsts.empty()) dbgs()
1203              << "INSERTED " << NewInsts.size() << " INSTS: " << *NewInsts.back()
1204              << '\n');
1205 
1206   // Assign value numbers to the new instructions.
1207   for (Instruction *I : NewInsts) {
1208     // Instructions that have been inserted in predecessor(s) to materialize
1209     // the load address do not retain their original debug locations. Doing
1210     // so could lead to confusing (but correct) source attributions.
1211     if (const DebugLoc &DL = I->getDebugLoc())
1212       I->setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
1213 
1214     // FIXME: We really _ought_ to insert these value numbers into their
1215     // parent's availability map.  However, in doing so, we risk getting into
1216     // ordering issues.  If a block hasn't been processed yet, we would be
1217     // marking a value as AVAIL-IN, which isn't what we intend.
1218     VN.lookupOrAdd(I);
1219   }
1220 
1221   for (const auto &PredLoad : PredLoads) {
1222     BasicBlock *UnavailablePred = PredLoad.first;
1223     Value *LoadPtr = PredLoad.second;
1224 
1225     auto *NewLoad =
1226         new LoadInst(LI->getType(), LoadPtr, LI->getName() + ".pre",
1227                      LI->isVolatile(), LI->getAlignment(), LI->getOrdering(),
1228                      LI->getSyncScopeID(), UnavailablePred->getTerminator());
1229     NewLoad->setDebugLoc(LI->getDebugLoc());
1230 
1231     // Transfer the old load's AA tags to the new load.
1232     AAMDNodes Tags;
1233     LI->getAAMetadata(Tags);
1234     if (Tags)
1235       NewLoad->setAAMetadata(Tags);
1236 
1237     if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load))
1238       NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
1239     if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group))
1240       NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
1241     if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range))
1242       NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
1243 
1244     // We do not propagate the old load's debug location, because the new
1245     // load now lives in a different BB, and we want to avoid a jumpy line
1246     // table.
1247     // FIXME: How do we retain source locations without causing poor debugging
1248     // behavior?
1249 
1250     // Add the newly created load.
1251     ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1252                                                         NewLoad));
1253     MD->invalidateCachedPointerInfo(LoadPtr);
1254     LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1255   }
1256 
1257   // Perform PHI construction.
1258   Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1259   LI->replaceAllUsesWith(V);
1260   if (isa<PHINode>(V))
1261     V->takeName(LI);
1262   if (Instruction *I = dyn_cast<Instruction>(V))
1263     I->setDebugLoc(LI->getDebugLoc());
1264   if (V->getType()->isPtrOrPtrVectorTy())
1265     MD->invalidateCachedPointerInfo(V);
1266   markInstructionForDeletion(LI);
1267   ORE->emit([&]() {
1268     return OptimizationRemark(DEBUG_TYPE, "LoadPRE", LI)
1269            << "load eliminated by PRE";
1270   });
1271   ++NumPRELoad;
1272   return true;
1273 }
1274 
1275 static void reportLoadElim(LoadInst *LI, Value *AvailableValue,
1276                            OptimizationRemarkEmitter *ORE) {
1277   using namespace ore;
1278 
1279   ORE->emit([&]() {
1280     return OptimizationRemark(DEBUG_TYPE, "LoadElim", LI)
1281            << "load of type " << NV("Type", LI->getType()) << " eliminated"
1282            << setExtraArgs() << " in favor of "
1283            << NV("InfavorOfValue", AvailableValue);
1284   });
1285 }
1286 
1287 /// Attempt to eliminate a load whose dependencies are
1288 /// non-local by performing PHI construction.
1289 bool GVN::processNonLocalLoad(LoadInst *LI) {
1290   // non-local speculations are not allowed under asan.
1291   if (LI->getParent()->getParent()->hasFnAttribute(
1292           Attribute::SanitizeAddress) ||
1293       LI->getParent()->getParent()->hasFnAttribute(
1294           Attribute::SanitizeHWAddress))
1295     return false;
1296 
1297   // Step 1: Find the non-local dependencies of the load.
1298   LoadDepVect Deps;
1299   MD->getNonLocalPointerDependency(LI, Deps);
1300 
1301   // If we had to process more than one hundred blocks to find the
1302   // dependencies, this load isn't worth worrying about.  Optimizing
1303   // it will be too expensive.
1304   unsigned NumDeps = Deps.size();
1305   if (NumDeps > MaxNumDeps)
1306     return false;
1307 
1308   // If we had a phi translation failure, we'll have a single entry which is a
1309   // clobber in the current block.  Reject this early.
1310   if (NumDeps == 1 &&
1311       !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1312     LLVM_DEBUG(dbgs() << "GVN: non-local load "; LI->printAsOperand(dbgs());
1313                dbgs() << " has unknown dependencies\n";);
1314     return false;
1315   }
1316 
1317   // If this load follows a GEP, see if we can PRE the indices before analyzing.
1318   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
1319     for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
1320                                         OE = GEP->idx_end();
1321          OI != OE; ++OI)
1322       if (Instruction *I = dyn_cast<Instruction>(OI->get()))
1323         performScalarPRE(I);
1324   }
1325 
1326   // Step 2: Analyze the availability of the load
1327   AvailValInBlkVect ValuesPerBlock;
1328   UnavailBlkVect UnavailableBlocks;
1329   AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
1330 
1331   // If we have no predecessors that produce a known value for this load, exit
1332   // early.
1333   if (ValuesPerBlock.empty())
1334     return false;
1335 
1336   // Step 3: Eliminate fully redundancy.
1337   //
1338   // If all of the instructions we depend on produce a known value for this
1339   // load, then it is fully redundant and we can use PHI insertion to compute
1340   // its value.  Insert PHIs and remove the fully redundant value now.
1341   if (UnavailableBlocks.empty()) {
1342     LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1343 
1344     // Perform PHI construction.
1345     Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1346     LI->replaceAllUsesWith(V);
1347 
1348     if (isa<PHINode>(V))
1349       V->takeName(LI);
1350     if (Instruction *I = dyn_cast<Instruction>(V))
1351       // If instruction I has debug info, then we should not update it.
1352       // Also, if I has a null DebugLoc, then it is still potentially incorrect
1353       // to propagate LI's DebugLoc because LI may not post-dominate I.
1354       if (LI->getDebugLoc() && LI->getParent() == I->getParent())
1355         I->setDebugLoc(LI->getDebugLoc());
1356     if (V->getType()->isPtrOrPtrVectorTy())
1357       MD->invalidateCachedPointerInfo(V);
1358     markInstructionForDeletion(LI);
1359     ++NumGVNLoad;
1360     reportLoadElim(LI, V, ORE);
1361     return true;
1362   }
1363 
1364   // Step 4: Eliminate partial redundancy.
1365   if (!EnablePRE || !EnableLoadPRE)
1366     return false;
1367 
1368   return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
1369 }
1370 
1371 bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) {
1372   assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume &&
1373          "This function can only be called with llvm.assume intrinsic");
1374   Value *V = IntrinsicI->getArgOperand(0);
1375 
1376   if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
1377     if (Cond->isZero()) {
1378       Type *Int8Ty = Type::getInt8Ty(V->getContext());
1379       // Insert a new store to null instruction before the load to indicate that
1380       // this code is not reachable.  FIXME: We could insert unreachable
1381       // instruction directly because we can modify the CFG.
1382       new StoreInst(UndefValue::get(Int8Ty),
1383                     Constant::getNullValue(Int8Ty->getPointerTo()),
1384                     IntrinsicI);
1385     }
1386     markInstructionForDeletion(IntrinsicI);
1387     return false;
1388   } else if (isa<Constant>(V)) {
1389     // If it's not false, and constant, it must evaluate to true. This means our
1390     // assume is assume(true), and thus, pointless, and we don't want to do
1391     // anything more here.
1392     return false;
1393   }
1394 
1395   Constant *True = ConstantInt::getTrue(V->getContext());
1396   bool Changed = false;
1397 
1398   for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
1399     BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
1400 
1401     // This property is only true in dominated successors, propagateEquality
1402     // will check dominance for us.
1403     Changed |= propagateEquality(V, True, Edge, false);
1404   }
1405 
1406   // We can replace assume value with true, which covers cases like this:
1407   // call void @llvm.assume(i1 %cmp)
1408   // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
1409   ReplaceWithConstMap[V] = True;
1410 
1411   // If one of *cmp *eq operand is const, adding it to map will cover this:
1412   // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
1413   // call void @llvm.assume(i1 %cmp)
1414   // ret float %0 ; will change it to ret float 3.000000e+00
1415   if (auto *CmpI = dyn_cast<CmpInst>(V)) {
1416     if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ ||
1417         CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
1418         (CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
1419          CmpI->getFastMathFlags().noNaNs())) {
1420       Value *CmpLHS = CmpI->getOperand(0);
1421       Value *CmpRHS = CmpI->getOperand(1);
1422       if (isa<Constant>(CmpLHS))
1423         std::swap(CmpLHS, CmpRHS);
1424       auto *RHSConst = dyn_cast<Constant>(CmpRHS);
1425 
1426       // If only one operand is constant.
1427       if (RHSConst != nullptr && !isa<Constant>(CmpLHS))
1428         ReplaceWithConstMap[CmpLHS] = RHSConst;
1429     }
1430   }
1431   return Changed;
1432 }
1433 
1434 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1435   patchReplacementInstruction(I, Repl);
1436   I->replaceAllUsesWith(Repl);
1437 }
1438 
1439 /// Attempt to eliminate a load, first by eliminating it
1440 /// locally, and then attempting non-local elimination if that fails.
1441 bool GVN::processLoad(LoadInst *L) {
1442   if (!MD)
1443     return false;
1444 
1445   // This code hasn't been audited for ordered or volatile memory access
1446   if (!L->isUnordered())
1447     return false;
1448 
1449   if (L->use_empty()) {
1450     markInstructionForDeletion(L);
1451     return true;
1452   }
1453 
1454   // ... to a pointer that has been loaded from before...
1455   MemDepResult Dep = MD->getDependency(L);
1456 
1457   // If it is defined in another block, try harder.
1458   if (Dep.isNonLocal())
1459     return processNonLocalLoad(L);
1460 
1461   // Only handle the local case below
1462   if (!Dep.isDef() && !Dep.isClobber()) {
1463     // This might be a NonFuncLocal or an Unknown
1464     LLVM_DEBUG(
1465         // fast print dep, using operator<< on instruction is too slow.
1466         dbgs() << "GVN: load "; L->printAsOperand(dbgs());
1467         dbgs() << " has unknown dependence\n";);
1468     return false;
1469   }
1470 
1471   AvailableValue AV;
1472   if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) {
1473     Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this);
1474 
1475     // Replace the load!
1476     patchAndReplaceAllUsesWith(L, AvailableValue);
1477     markInstructionForDeletion(L);
1478     ++NumGVNLoad;
1479     reportLoadElim(L, AvailableValue, ORE);
1480     // Tell MDA to rexamine the reused pointer since we might have more
1481     // information after forwarding it.
1482     if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy())
1483       MD->invalidateCachedPointerInfo(AvailableValue);
1484     return true;
1485   }
1486 
1487   return false;
1488 }
1489 
1490 /// Return a pair the first field showing the value number of \p Exp and the
1491 /// second field showing whether it is a value number newly created.
1492 std::pair<uint32_t, bool>
1493 GVN::ValueTable::assignExpNewValueNum(Expression &Exp) {
1494   uint32_t &e = expressionNumbering[Exp];
1495   bool CreateNewValNum = !e;
1496   if (CreateNewValNum) {
1497     Expressions.push_back(Exp);
1498     if (ExprIdx.size() < nextValueNumber + 1)
1499       ExprIdx.resize(nextValueNumber * 2);
1500     e = nextValueNumber;
1501     ExprIdx[nextValueNumber++] = nextExprNumber++;
1502   }
1503   return {e, CreateNewValNum};
1504 }
1505 
1506 /// Return whether all the values related with the same \p num are
1507 /// defined in \p BB.
1508 bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB,
1509                                      GVN &Gvn) {
1510   LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
1511   while (Vals && Vals->BB == BB)
1512     Vals = Vals->Next;
1513   return !Vals;
1514 }
1515 
1516 /// Wrap phiTranslateImpl to provide caching functionality.
1517 uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred,
1518                                        const BasicBlock *PhiBlock, uint32_t Num,
1519                                        GVN &Gvn) {
1520   auto FindRes = PhiTranslateTable.find({Num, Pred});
1521   if (FindRes != PhiTranslateTable.end())
1522     return FindRes->second;
1523   uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
1524   PhiTranslateTable.insert({{Num, Pred}, NewNum});
1525   return NewNum;
1526 }
1527 
1528 /// Translate value number \p Num using phis, so that it has the values of
1529 /// the phis in BB.
1530 uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred,
1531                                            const BasicBlock *PhiBlock,
1532                                            uint32_t Num, GVN &Gvn) {
1533   if (PHINode *PN = NumberingPhi[Num]) {
1534     for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
1535       if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
1536         if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false))
1537           return TransVal;
1538     }
1539     return Num;
1540   }
1541 
1542   // If there is any value related with Num is defined in a BB other than
1543   // PhiBlock, it cannot depend on a phi in PhiBlock without going through
1544   // a backedge. We can do an early exit in that case to save compile time.
1545   if (!areAllValsInBB(Num, PhiBlock, Gvn))
1546     return Num;
1547 
1548   if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
1549     return Num;
1550   Expression Exp = Expressions[ExprIdx[Num]];
1551 
1552   for (unsigned i = 0; i < Exp.varargs.size(); i++) {
1553     // For InsertValue and ExtractValue, some varargs are index numbers
1554     // instead of value numbers. Those index numbers should not be
1555     // translated.
1556     if ((i > 1 && Exp.opcode == Instruction::InsertValue) ||
1557         (i > 0 && Exp.opcode == Instruction::ExtractValue))
1558       continue;
1559     Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn);
1560   }
1561 
1562   if (Exp.commutative) {
1563     assert(Exp.varargs.size() == 2 && "Unsupported commutative expression!");
1564     if (Exp.varargs[0] > Exp.varargs[1]) {
1565       std::swap(Exp.varargs[0], Exp.varargs[1]);
1566       uint32_t Opcode = Exp.opcode >> 8;
1567       if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
1568         Exp.opcode = (Opcode << 8) |
1569                      CmpInst::getSwappedPredicate(
1570                          static_cast<CmpInst::Predicate>(Exp.opcode & 255));
1571     }
1572   }
1573 
1574   if (uint32_t NewNum = expressionNumbering[Exp])
1575     return NewNum;
1576   return Num;
1577 }
1578 
1579 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed
1580 /// again.
1581 void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num,
1582                                                const BasicBlock &CurrBlock) {
1583   for (const BasicBlock *Pred : predecessors(&CurrBlock)) {
1584     auto FindRes = PhiTranslateTable.find({Num, Pred});
1585     if (FindRes != PhiTranslateTable.end())
1586       PhiTranslateTable.erase(FindRes);
1587   }
1588 }
1589 
1590 // In order to find a leader for a given value number at a
1591 // specific basic block, we first obtain the list of all Values for that number,
1592 // and then scan the list to find one whose block dominates the block in
1593 // question.  This is fast because dominator tree queries consist of only
1594 // a few comparisons of DFS numbers.
1595 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
1596   LeaderTableEntry Vals = LeaderTable[num];
1597   if (!Vals.Val) return nullptr;
1598 
1599   Value *Val = nullptr;
1600   if (DT->dominates(Vals.BB, BB)) {
1601     Val = Vals.Val;
1602     if (isa<Constant>(Val)) return Val;
1603   }
1604 
1605   LeaderTableEntry* Next = Vals.Next;
1606   while (Next) {
1607     if (DT->dominates(Next->BB, BB)) {
1608       if (isa<Constant>(Next->Val)) return Next->Val;
1609       if (!Val) Val = Next->Val;
1610     }
1611 
1612     Next = Next->Next;
1613   }
1614 
1615   return Val;
1616 }
1617 
1618 /// There is an edge from 'Src' to 'Dst'.  Return
1619 /// true if every path from the entry block to 'Dst' passes via this edge.  In
1620 /// particular 'Dst' must not be reachable via another edge from 'Src'.
1621 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
1622                                        DominatorTree *DT) {
1623   // While in theory it is interesting to consider the case in which Dst has
1624   // more than one predecessor, because Dst might be part of a loop which is
1625   // only reachable from Src, in practice it is pointless since at the time
1626   // GVN runs all such loops have preheaders, which means that Dst will have
1627   // been changed to have only one predecessor, namely Src.
1628   const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
1629   assert((!Pred || Pred == E.getStart()) &&
1630          "No edge between these basic blocks!");
1631   return Pred != nullptr;
1632 }
1633 
1634 void GVN::assignBlockRPONumber(Function &F) {
1635   BlockRPONumber.clear();
1636   uint32_t NextBlockNumber = 1;
1637   ReversePostOrderTraversal<Function *> RPOT(&F);
1638   for (BasicBlock *BB : RPOT)
1639     BlockRPONumber[BB] = NextBlockNumber++;
1640   InvalidBlockRPONumbers = false;
1641 }
1642 
1643 // Tries to replace instruction with const, using information from
1644 // ReplaceWithConstMap.
1645 bool GVN::replaceOperandsWithConsts(Instruction *Instr) const {
1646   bool Changed = false;
1647   for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
1648     Value *Operand = Instr->getOperand(OpNum);
1649     auto it = ReplaceWithConstMap.find(Operand);
1650     if (it != ReplaceWithConstMap.end()) {
1651       assert(!isa<Constant>(Operand) &&
1652              "Replacing constants with constants is invalid");
1653       LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with "
1654                         << *it->second << " in instruction " << *Instr << '\n');
1655       Instr->setOperand(OpNum, it->second);
1656       Changed = true;
1657     }
1658   }
1659   return Changed;
1660 }
1661 
1662 /// The given values are known to be equal in every block
1663 /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
1664 /// 'RHS' everywhere in the scope.  Returns whether a change was made.
1665 /// If DominatesByEdge is false, then it means that we will propagate the RHS
1666 /// value starting from the end of Root.Start.
1667 bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
1668                             bool DominatesByEdge) {
1669   SmallVector<std::pair<Value*, Value*>, 4> Worklist;
1670   Worklist.push_back(std::make_pair(LHS, RHS));
1671   bool Changed = false;
1672   // For speed, compute a conservative fast approximation to
1673   // DT->dominates(Root, Root.getEnd());
1674   const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
1675 
1676   while (!Worklist.empty()) {
1677     std::pair<Value*, Value*> Item = Worklist.pop_back_val();
1678     LHS = Item.first; RHS = Item.second;
1679 
1680     if (LHS == RHS)
1681       continue;
1682     assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
1683 
1684     // Don't try to propagate equalities between constants.
1685     if (isa<Constant>(LHS) && isa<Constant>(RHS))
1686       continue;
1687 
1688     // Prefer a constant on the right-hand side, or an Argument if no constants.
1689     if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
1690       std::swap(LHS, RHS);
1691     assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
1692 
1693     // If there is no obvious reason to prefer the left-hand side over the
1694     // right-hand side, ensure the longest lived term is on the right-hand side,
1695     // so the shortest lived term will be replaced by the longest lived.
1696     // This tends to expose more simplifications.
1697     uint32_t LVN = VN.lookupOrAdd(LHS);
1698     if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
1699         (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
1700       // Move the 'oldest' value to the right-hand side, using the value number
1701       // as a proxy for age.
1702       uint32_t RVN = VN.lookupOrAdd(RHS);
1703       if (LVN < RVN) {
1704         std::swap(LHS, RHS);
1705         LVN = RVN;
1706       }
1707     }
1708 
1709     // If value numbering later sees that an instruction in the scope is equal
1710     // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
1711     // the invariant that instructions only occur in the leader table for their
1712     // own value number (this is used by removeFromLeaderTable), do not do this
1713     // if RHS is an instruction (if an instruction in the scope is morphed into
1714     // LHS then it will be turned into RHS by the next GVN iteration anyway, so
1715     // using the leader table is about compiling faster, not optimizing better).
1716     // The leader table only tracks basic blocks, not edges. Only add to if we
1717     // have the simple case where the edge dominates the end.
1718     if (RootDominatesEnd && !isa<Instruction>(RHS))
1719       addToLeaderTable(LVN, RHS, Root.getEnd());
1720 
1721     // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
1722     // LHS always has at least one use that is not dominated by Root, this will
1723     // never do anything if LHS has only one use.
1724     if (!LHS->hasOneUse()) {
1725       unsigned NumReplacements =
1726           DominatesByEdge
1727               ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
1728               : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());
1729 
1730       Changed |= NumReplacements > 0;
1731       NumGVNEqProp += NumReplacements;
1732       // Cached information for anything that uses LHS will be invalid.
1733       if (MD)
1734         MD->invalidateCachedPointerInfo(LHS);
1735     }
1736 
1737     // Now try to deduce additional equalities from this one. For example, if
1738     // the known equality was "(A != B)" == "false" then it follows that A and B
1739     // are equal in the scope. Only boolean equalities with an explicit true or
1740     // false RHS are currently supported.
1741     if (!RHS->getType()->isIntegerTy(1))
1742       // Not a boolean equality - bail out.
1743       continue;
1744     ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
1745     if (!CI)
1746       // RHS neither 'true' nor 'false' - bail out.
1747       continue;
1748     // Whether RHS equals 'true'.  Otherwise it equals 'false'.
1749     bool isKnownTrue = CI->isMinusOne();
1750     bool isKnownFalse = !isKnownTrue;
1751 
1752     // If "A && B" is known true then both A and B are known true.  If "A || B"
1753     // is known false then both A and B are known false.
1754     Value *A, *B;
1755     if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
1756         (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
1757       Worklist.push_back(std::make_pair(A, RHS));
1758       Worklist.push_back(std::make_pair(B, RHS));
1759       continue;
1760     }
1761 
1762     // If we are propagating an equality like "(A == B)" == "true" then also
1763     // propagate the equality A == B.  When propagating a comparison such as
1764     // "(A >= B)" == "true", replace all instances of "A < B" with "false".
1765     if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
1766       Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
1767 
1768       // If "A == B" is known true, or "A != B" is known false, then replace
1769       // A with B everywhere in the scope.
1770       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
1771           (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
1772         Worklist.push_back(std::make_pair(Op0, Op1));
1773 
1774       // Handle the floating point versions of equality comparisons too.
1775       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) ||
1776           (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) {
1777 
1778         // Floating point -0.0 and 0.0 compare equal, so we can only
1779         // propagate values if we know that we have a constant and that
1780         // its value is non-zero.
1781 
1782         // FIXME: We should do this optimization if 'no signed zeros' is
1783         // applicable via an instruction-level fast-math-flag or some other
1784         // indicator that relaxed FP semantics are being used.
1785 
1786         if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero())
1787           Worklist.push_back(std::make_pair(Op0, Op1));
1788       }
1789 
1790       // If "A >= B" is known true, replace "A < B" with false everywhere.
1791       CmpInst::Predicate NotPred = Cmp->getInversePredicate();
1792       Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
1793       // Since we don't have the instruction "A < B" immediately to hand, work
1794       // out the value number that it would have and use that to find an
1795       // appropriate instruction (if any).
1796       uint32_t NextNum = VN.getNextUnusedValueNumber();
1797       uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
1798       // If the number we were assigned was brand new then there is no point in
1799       // looking for an instruction realizing it: there cannot be one!
1800       if (Num < NextNum) {
1801         Value *NotCmp = findLeader(Root.getEnd(), Num);
1802         if (NotCmp && isa<Instruction>(NotCmp)) {
1803           unsigned NumReplacements =
1804               DominatesByEdge
1805                   ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
1806                   : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
1807                                              Root.getStart());
1808           Changed |= NumReplacements > 0;
1809           NumGVNEqProp += NumReplacements;
1810           // Cached information for anything that uses NotCmp will be invalid.
1811           if (MD)
1812             MD->invalidateCachedPointerInfo(NotCmp);
1813         }
1814       }
1815       // Ensure that any instruction in scope that gets the "A < B" value number
1816       // is replaced with false.
1817       // The leader table only tracks basic blocks, not edges. Only add to if we
1818       // have the simple case where the edge dominates the end.
1819       if (RootDominatesEnd)
1820         addToLeaderTable(Num, NotVal, Root.getEnd());
1821 
1822       continue;
1823     }
1824   }
1825 
1826   return Changed;
1827 }
1828 
1829 /// When calculating availability, handle an instruction
1830 /// by inserting it into the appropriate sets
1831 bool GVN::processInstruction(Instruction *I) {
1832   // Ignore dbg info intrinsics.
1833   if (isa<DbgInfoIntrinsic>(I))
1834     return false;
1835 
1836   // If the instruction can be easily simplified then do so now in preference
1837   // to value numbering it.  Value numbering often exposes redundancies, for
1838   // example if it determines that %y is equal to %x then the instruction
1839   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
1840   const DataLayout &DL = I->getModule()->getDataLayout();
1841   if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) {
1842     bool Changed = false;
1843     if (!I->use_empty()) {
1844       I->replaceAllUsesWith(V);
1845       Changed = true;
1846     }
1847     if (isInstructionTriviallyDead(I, TLI)) {
1848       markInstructionForDeletion(I);
1849       Changed = true;
1850     }
1851     if (Changed) {
1852       if (MD && V->getType()->isPtrOrPtrVectorTy())
1853         MD->invalidateCachedPointerInfo(V);
1854       ++NumGVNSimpl;
1855       return true;
1856     }
1857   }
1858 
1859   if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I))
1860     if (IntrinsicI->getIntrinsicID() == Intrinsic::assume)
1861       return processAssumeIntrinsic(IntrinsicI);
1862 
1863   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1864     if (processLoad(LI))
1865       return true;
1866 
1867     unsigned Num = VN.lookupOrAdd(LI);
1868     addToLeaderTable(Num, LI, LI->getParent());
1869     return false;
1870   }
1871 
1872   // For conditional branches, we can perform simple conditional propagation on
1873   // the condition value itself.
1874   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1875     if (!BI->isConditional())
1876       return false;
1877 
1878     if (isa<Constant>(BI->getCondition()))
1879       return processFoldableCondBr(BI);
1880 
1881     Value *BranchCond = BI->getCondition();
1882     BasicBlock *TrueSucc = BI->getSuccessor(0);
1883     BasicBlock *FalseSucc = BI->getSuccessor(1);
1884     // Avoid multiple edges early.
1885     if (TrueSucc == FalseSucc)
1886       return false;
1887 
1888     BasicBlock *Parent = BI->getParent();
1889     bool Changed = false;
1890 
1891     Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
1892     BasicBlockEdge TrueE(Parent, TrueSucc);
1893     Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
1894 
1895     Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
1896     BasicBlockEdge FalseE(Parent, FalseSucc);
1897     Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
1898 
1899     return Changed;
1900   }
1901 
1902   // For switches, propagate the case values into the case destinations.
1903   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1904     Value *SwitchCond = SI->getCondition();
1905     BasicBlock *Parent = SI->getParent();
1906     bool Changed = false;
1907 
1908     // Remember how many outgoing edges there are to every successor.
1909     SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
1910     for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
1911       ++SwitchEdges[SI->getSuccessor(i)];
1912 
1913     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
1914          i != e; ++i) {
1915       BasicBlock *Dst = i->getCaseSuccessor();
1916       // If there is only a single edge, propagate the case value into it.
1917       if (SwitchEdges.lookup(Dst) == 1) {
1918         BasicBlockEdge E(Parent, Dst);
1919         Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true);
1920       }
1921     }
1922     return Changed;
1923   }
1924 
1925   // Instructions with void type don't return a value, so there's
1926   // no point in trying to find redundancies in them.
1927   if (I->getType()->isVoidTy())
1928     return false;
1929 
1930   uint32_t NextNum = VN.getNextUnusedValueNumber();
1931   unsigned Num = VN.lookupOrAdd(I);
1932 
1933   // Allocations are always uniquely numbered, so we can save time and memory
1934   // by fast failing them.
1935   if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) {
1936     addToLeaderTable(Num, I, I->getParent());
1937     return false;
1938   }
1939 
1940   // If the number we were assigned was a brand new VN, then we don't
1941   // need to do a lookup to see if the number already exists
1942   // somewhere in the domtree: it can't!
1943   if (Num >= NextNum) {
1944     addToLeaderTable(Num, I, I->getParent());
1945     return false;
1946   }
1947 
1948   // Perform fast-path value-number based elimination of values inherited from
1949   // dominators.
1950   Value *Repl = findLeader(I->getParent(), Num);
1951   if (!Repl) {
1952     // Failure, just remember this instance for future use.
1953     addToLeaderTable(Num, I, I->getParent());
1954     return false;
1955   } else if (Repl == I) {
1956     // If I was the result of a shortcut PRE, it might already be in the table
1957     // and the best replacement for itself. Nothing to do.
1958     return false;
1959   }
1960 
1961   // Remove it!
1962   patchAndReplaceAllUsesWith(I, Repl);
1963   if (MD && Repl->getType()->isPtrOrPtrVectorTy())
1964     MD->invalidateCachedPointerInfo(Repl);
1965   markInstructionForDeletion(I);
1966   return true;
1967 }
1968 
1969 /// runOnFunction - This is the main transformation entry point for a function.
1970 bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
1971                   const TargetLibraryInfo &RunTLI, AAResults &RunAA,
1972                   MemoryDependenceResults *RunMD, LoopInfo *LI,
1973                   OptimizationRemarkEmitter *RunORE) {
1974   AC = &RunAC;
1975   DT = &RunDT;
1976   VN.setDomTree(DT);
1977   TLI = &RunTLI;
1978   VN.setAliasAnalysis(&RunAA);
1979   MD = RunMD;
1980   ImplicitControlFlowTracking ImplicitCFT(DT);
1981   ICF = &ImplicitCFT;
1982   VN.setMemDep(MD);
1983   ORE = RunORE;
1984   InvalidBlockRPONumbers = true;
1985 
1986   bool Changed = false;
1987   bool ShouldContinue = true;
1988 
1989   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
1990   // Merge unconditional branches, allowing PRE to catch more
1991   // optimization opportunities.
1992   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1993     BasicBlock *BB = &*FI++;
1994 
1995     bool removedBlock = MergeBlockIntoPredecessor(BB, &DTU, LI, nullptr, MD);
1996     if (removedBlock)
1997       ++NumGVNBlocks;
1998 
1999     Changed |= removedBlock;
2000   }
2001 
2002   unsigned Iteration = 0;
2003   while (ShouldContinue) {
2004     LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2005     ShouldContinue = iterateOnFunction(F);
2006     Changed |= ShouldContinue;
2007     ++Iteration;
2008   }
2009 
2010   if (EnablePRE) {
2011     // Fabricate val-num for dead-code in order to suppress assertion in
2012     // performPRE().
2013     assignValNumForDeadCode();
2014     bool PREChanged = true;
2015     while (PREChanged) {
2016       PREChanged = performPRE(F);
2017       Changed |= PREChanged;
2018     }
2019   }
2020 
2021   // FIXME: Should perform GVN again after PRE does something.  PRE can move
2022   // computations into blocks where they become fully redundant.  Note that
2023   // we can't do this until PRE's critical edge splitting updates memdep.
2024   // Actually, when this happens, we should just fully integrate PRE into GVN.
2025 
2026   cleanupGlobalSets();
2027   // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2028   // iteration.
2029   DeadBlocks.clear();
2030 
2031   return Changed;
2032 }
2033 
2034 bool GVN::processBlock(BasicBlock *BB) {
2035   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2036   // (and incrementing BI before processing an instruction).
2037   assert(InstrsToErase.empty() &&
2038          "We expect InstrsToErase to be empty across iterations");
2039   if (DeadBlocks.count(BB))
2040     return false;
2041 
2042   // Clearing map before every BB because it can be used only for single BB.
2043   ReplaceWithConstMap.clear();
2044   bool ChangedFunction = false;
2045 
2046   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2047        BI != BE;) {
2048     if (!ReplaceWithConstMap.empty())
2049       ChangedFunction |= replaceOperandsWithConsts(&*BI);
2050     ChangedFunction |= processInstruction(&*BI);
2051 
2052     if (InstrsToErase.empty()) {
2053       ++BI;
2054       continue;
2055     }
2056 
2057     // If we need some instructions deleted, do it now.
2058     NumGVNInstr += InstrsToErase.size();
2059 
2060     // Avoid iterator invalidation.
2061     bool AtStart = BI == BB->begin();
2062     if (!AtStart)
2063       --BI;
2064 
2065     for (auto *I : InstrsToErase) {
2066       assert(I->getParent() == BB && "Removing instruction from wrong block?");
2067       LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n');
2068       salvageDebugInfo(*I);
2069       if (MD) MD->removeInstruction(I);
2070       LLVM_DEBUG(verifyRemoved(I));
2071       ICF->removeInstruction(I);
2072       I->eraseFromParent();
2073     }
2074     InstrsToErase.clear();
2075 
2076     if (AtStart)
2077       BI = BB->begin();
2078     else
2079       ++BI;
2080   }
2081 
2082   return ChangedFunction;
2083 }
2084 
2085 // Instantiate an expression in a predecessor that lacked it.
2086 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
2087                                     BasicBlock *Curr, unsigned int ValNo) {
2088   // Because we are going top-down through the block, all value numbers
2089   // will be available in the predecessor by the time we need them.  Any
2090   // that weren't originally present will have been instantiated earlier
2091   // in this loop.
2092   bool success = true;
2093   for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
2094     Value *Op = Instr->getOperand(i);
2095     if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2096       continue;
2097     // This could be a newly inserted instruction, in which case, we won't
2098     // find a value number, and should give up before we hurt ourselves.
2099     // FIXME: Rewrite the infrastructure to let it easier to value number
2100     // and process newly inserted instructions.
2101     if (!VN.exists(Op)) {
2102       success = false;
2103       break;
2104     }
2105     uint32_t TValNo =
2106         VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this);
2107     if (Value *V = findLeader(Pred, TValNo)) {
2108       Instr->setOperand(i, V);
2109     } else {
2110       success = false;
2111       break;
2112     }
2113   }
2114 
2115   // Fail out if we encounter an operand that is not available in
2116   // the PRE predecessor.  This is typically because of loads which
2117   // are not value numbered precisely.
2118   if (!success)
2119     return false;
2120 
2121   Instr->insertBefore(Pred->getTerminator());
2122   Instr->setName(Instr->getName() + ".pre");
2123   Instr->setDebugLoc(Instr->getDebugLoc());
2124 
2125   unsigned Num = VN.lookupOrAdd(Instr);
2126   VN.add(Instr, Num);
2127 
2128   // Update the availability map to include the new instruction.
2129   addToLeaderTable(Num, Instr, Pred);
2130   return true;
2131 }
2132 
2133 bool GVN::performScalarPRE(Instruction *CurInst) {
2134   if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() ||
2135       isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
2136       CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2137       isa<DbgInfoIntrinsic>(CurInst))
2138     return false;
2139 
2140   // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2141   // sinking the compare again, and it would force the code generator to
2142   // move the i1 from processor flags or predicate registers into a general
2143   // purpose register.
2144   if (isa<CmpInst>(CurInst))
2145     return false;
2146 
2147   // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from
2148   // sinking the addressing mode computation back to its uses. Extending the
2149   // GEP's live range increases the register pressure, and therefore it can
2150   // introduce unnecessary spills.
2151   //
2152   // This doesn't prevent Load PRE. PHI translation will make the GEP available
2153   // to the load by moving it to the predecessor block if necessary.
2154   if (isa<GetElementPtrInst>(CurInst))
2155     return false;
2156 
2157   // We don't currently value number ANY inline asm calls.
2158   if (auto *CallB = dyn_cast<CallBase>(CurInst))
2159     if (CallB->isInlineAsm())
2160       return false;
2161 
2162   uint32_t ValNo = VN.lookup(CurInst);
2163 
2164   // Look for the predecessors for PRE opportunities.  We're
2165   // only trying to solve the basic diamond case, where
2166   // a value is computed in the successor and one predecessor,
2167   // but not the other.  We also explicitly disallow cases
2168   // where the successor is its own predecessor, because they're
2169   // more complicated to get right.
2170   unsigned NumWith = 0;
2171   unsigned NumWithout = 0;
2172   BasicBlock *PREPred = nullptr;
2173   BasicBlock *CurrentBlock = CurInst->getParent();
2174 
2175   // Update the RPO numbers for this function.
2176   if (InvalidBlockRPONumbers)
2177     assignBlockRPONumber(*CurrentBlock->getParent());
2178 
2179   SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
2180   for (BasicBlock *P : predecessors(CurrentBlock)) {
2181     // We're not interested in PRE where blocks with predecessors that are
2182     // not reachable.
2183     if (!DT->isReachableFromEntry(P)) {
2184       NumWithout = 2;
2185       break;
2186     }
2187     // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and
2188     // when CurInst has operand defined in CurrentBlock (so it may be defined
2189     // by phi in the loop header).
2190     assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) &&
2191            "Invalid BlockRPONumber map.");
2192     if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] &&
2193         llvm::any_of(CurInst->operands(), [&](const Use &U) {
2194           if (auto *Inst = dyn_cast<Instruction>(U.get()))
2195             return Inst->getParent() == CurrentBlock;
2196           return false;
2197         })) {
2198       NumWithout = 2;
2199       break;
2200     }
2201 
2202     uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this);
2203     Value *predV = findLeader(P, TValNo);
2204     if (!predV) {
2205       predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
2206       PREPred = P;
2207       ++NumWithout;
2208     } else if (predV == CurInst) {
2209       /* CurInst dominates this predecessor. */
2210       NumWithout = 2;
2211       break;
2212     } else {
2213       predMap.push_back(std::make_pair(predV, P));
2214       ++NumWith;
2215     }
2216   }
2217 
2218   // Don't do PRE when it might increase code size, i.e. when
2219   // we would need to insert instructions in more than one pred.
2220   if (NumWithout > 1 || NumWith == 0)
2221     return false;
2222 
2223   // We may have a case where all predecessors have the instruction,
2224   // and we just need to insert a phi node. Otherwise, perform
2225   // insertion.
2226   Instruction *PREInstr = nullptr;
2227 
2228   if (NumWithout != 0) {
2229     if (!isSafeToSpeculativelyExecute(CurInst)) {
2230       // It is only valid to insert a new instruction if the current instruction
2231       // is always executed. An instruction with implicit control flow could
2232       // prevent us from doing it. If we cannot speculate the execution, then
2233       // PRE should be prohibited.
2234       if (ICF->isDominatedByICFIFromSameBlock(CurInst))
2235         return false;
2236     }
2237 
2238     // Don't do PRE across indirect branch.
2239     if (isa<IndirectBrInst>(PREPred->getTerminator()))
2240       return false;
2241 
2242     // Don't do PRE across callbr.
2243     // FIXME: Can we do this across the fallthrough edge?
2244     if (isa<CallBrInst>(PREPred->getTerminator()))
2245       return false;
2246 
2247     // We can't do PRE safely on a critical edge, so instead we schedule
2248     // the edge to be split and perform the PRE the next time we iterate
2249     // on the function.
2250     unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2251     if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2252       toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2253       return false;
2254     }
2255     // We need to insert somewhere, so let's give it a shot
2256     PREInstr = CurInst->clone();
2257     if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
2258       // If we failed insertion, make sure we remove the instruction.
2259       LLVM_DEBUG(verifyRemoved(PREInstr));
2260       PREInstr->deleteValue();
2261       return false;
2262     }
2263   }
2264 
2265   // Either we should have filled in the PRE instruction, or we should
2266   // not have needed insertions.
2267   assert(PREInstr != nullptr || NumWithout == 0);
2268 
2269   ++NumGVNPRE;
2270 
2271   // Create a PHI to make the value available in this block.
2272   PHINode *Phi =
2273       PHINode::Create(CurInst->getType(), predMap.size(),
2274                       CurInst->getName() + ".pre-phi", &CurrentBlock->front());
2275   for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2276     if (Value *V = predMap[i].first) {
2277       // If we use an existing value in this phi, we have to patch the original
2278       // value because the phi will be used to replace a later value.
2279       patchReplacementInstruction(CurInst, V);
2280       Phi->addIncoming(V, predMap[i].second);
2281     } else
2282       Phi->addIncoming(PREInstr, PREPred);
2283   }
2284 
2285   VN.add(Phi, ValNo);
2286   // After creating a new PHI for ValNo, the phi translate result for ValNo will
2287   // be changed, so erase the related stale entries in phi translate cache.
2288   VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock);
2289   addToLeaderTable(ValNo, Phi, CurrentBlock);
2290   Phi->setDebugLoc(CurInst->getDebugLoc());
2291   CurInst->replaceAllUsesWith(Phi);
2292   if (MD && Phi->getType()->isPtrOrPtrVectorTy())
2293     MD->invalidateCachedPointerInfo(Phi);
2294   VN.erase(CurInst);
2295   removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2296 
2297   LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2298   if (MD)
2299     MD->removeInstruction(CurInst);
2300   LLVM_DEBUG(verifyRemoved(CurInst));
2301   // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes
2302   // some assertion failures.
2303   ICF->removeInstruction(CurInst);
2304   CurInst->eraseFromParent();
2305   ++NumGVNInstr;
2306 
2307   return true;
2308 }
2309 
2310 /// Perform a purely local form of PRE that looks for diamond
2311 /// control flow patterns and attempts to perform simple PRE at the join point.
2312 bool GVN::performPRE(Function &F) {
2313   bool Changed = false;
2314   for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
2315     // Nothing to PRE in the entry block.
2316     if (CurrentBlock == &F.getEntryBlock())
2317       continue;
2318 
2319     // Don't perform PRE on an EH pad.
2320     if (CurrentBlock->isEHPad())
2321       continue;
2322 
2323     for (BasicBlock::iterator BI = CurrentBlock->begin(),
2324                               BE = CurrentBlock->end();
2325          BI != BE;) {
2326       Instruction *CurInst = &*BI++;
2327       Changed |= performScalarPRE(CurInst);
2328     }
2329   }
2330 
2331   if (splitCriticalEdges())
2332     Changed = true;
2333 
2334   return Changed;
2335 }
2336 
2337 /// Split the critical edge connecting the given two blocks, and return
2338 /// the block inserted to the critical edge.
2339 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
2340   BasicBlock *BB =
2341       SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT));
2342   if (MD)
2343     MD->invalidateCachedPredecessors();
2344   InvalidBlockRPONumbers = true;
2345   return BB;
2346 }
2347 
2348 /// Split critical edges found during the previous
2349 /// iteration that may enable further optimization.
2350 bool GVN::splitCriticalEdges() {
2351   if (toSplit.empty())
2352     return false;
2353   do {
2354     std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val();
2355     SplitCriticalEdge(Edge.first, Edge.second,
2356                       CriticalEdgeSplittingOptions(DT));
2357   } while (!toSplit.empty());
2358   if (MD) MD->invalidateCachedPredecessors();
2359   InvalidBlockRPONumbers = true;
2360   return true;
2361 }
2362 
2363 /// Executes one iteration of GVN
2364 bool GVN::iterateOnFunction(Function &F) {
2365   cleanupGlobalSets();
2366 
2367   // Top-down walk of the dominator tree
2368   bool Changed = false;
2369   // Needed for value numbering with phi construction to work.
2370   // RPOT walks the graph in its constructor and will not be invalidated during
2371   // processBlock.
2372   ReversePostOrderTraversal<Function *> RPOT(&F);
2373 
2374   for (BasicBlock *BB : RPOT)
2375     Changed |= processBlock(BB);
2376 
2377   return Changed;
2378 }
2379 
2380 void GVN::cleanupGlobalSets() {
2381   VN.clear();
2382   LeaderTable.clear();
2383   BlockRPONumber.clear();
2384   TableAllocator.Reset();
2385   ICF->clear();
2386   InvalidBlockRPONumbers = true;
2387 }
2388 
2389 /// Verify that the specified instruction does not occur in our
2390 /// internal data structures.
2391 void GVN::verifyRemoved(const Instruction *Inst) const {
2392   VN.verifyRemoved(Inst);
2393 
2394   // Walk through the value number scope to make sure the instruction isn't
2395   // ferreted away in it.
2396   for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2397        I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2398     const LeaderTableEntry *Node = &I->second;
2399     assert(Node->Val != Inst && "Inst still in value numbering scope!");
2400 
2401     while (Node->Next) {
2402       Node = Node->Next;
2403       assert(Node->Val != Inst && "Inst still in value numbering scope!");
2404     }
2405   }
2406 }
2407 
2408 /// BB is declared dead, which implied other blocks become dead as well. This
2409 /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
2410 /// live successors, update their phi nodes by replacing the operands
2411 /// corresponding to dead blocks with UndefVal.
2412 void GVN::addDeadBlock(BasicBlock *BB) {
2413   SmallVector<BasicBlock *, 4> NewDead;
2414   SmallSetVector<BasicBlock *, 4> DF;
2415 
2416   NewDead.push_back(BB);
2417   while (!NewDead.empty()) {
2418     BasicBlock *D = NewDead.pop_back_val();
2419     if (DeadBlocks.count(D))
2420       continue;
2421 
2422     // All blocks dominated by D are dead.
2423     SmallVector<BasicBlock *, 8> Dom;
2424     DT->getDescendants(D, Dom);
2425     DeadBlocks.insert(Dom.begin(), Dom.end());
2426 
2427     // Figure out the dominance-frontier(D).
2428     for (BasicBlock *B : Dom) {
2429       for (BasicBlock *S : successors(B)) {
2430         if (DeadBlocks.count(S))
2431           continue;
2432 
2433         bool AllPredDead = true;
2434         for (BasicBlock *P : predecessors(S))
2435           if (!DeadBlocks.count(P)) {
2436             AllPredDead = false;
2437             break;
2438           }
2439 
2440         if (!AllPredDead) {
2441           // S could be proved dead later on. That is why we don't update phi
2442           // operands at this moment.
2443           DF.insert(S);
2444         } else {
2445           // While S is not dominated by D, it is dead by now. This could take
2446           // place if S already have a dead predecessor before D is declared
2447           // dead.
2448           NewDead.push_back(S);
2449         }
2450       }
2451     }
2452   }
2453 
2454   // For the dead blocks' live successors, update their phi nodes by replacing
2455   // the operands corresponding to dead blocks with UndefVal.
2456   for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
2457         I != E; I++) {
2458     BasicBlock *B = *I;
2459     if (DeadBlocks.count(B))
2460       continue;
2461 
2462     SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
2463     for (BasicBlock *P : Preds) {
2464       if (!DeadBlocks.count(P))
2465         continue;
2466 
2467       if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) {
2468         if (BasicBlock *S = splitCriticalEdges(P, B))
2469           DeadBlocks.insert(P = S);
2470       }
2471 
2472       for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) {
2473         PHINode &Phi = cast<PHINode>(*II);
2474         Phi.setIncomingValue(Phi.getBasicBlockIndex(P),
2475                              UndefValue::get(Phi.getType()));
2476         if (MD)
2477           MD->invalidateCachedPointerInfo(&Phi);
2478       }
2479     }
2480   }
2481 }
2482 
2483 // If the given branch is recognized as a foldable branch (i.e. conditional
2484 // branch with constant condition), it will perform following analyses and
2485 // transformation.
2486 //  1) If the dead out-coming edge is a critical-edge, split it. Let
2487 //     R be the target of the dead out-coming edge.
2488 //  1) Identify the set of dead blocks implied by the branch's dead outcoming
2489 //     edge. The result of this step will be {X| X is dominated by R}
2490 //  2) Identify those blocks which haves at least one dead predecessor. The
2491 //     result of this step will be dominance-frontier(R).
2492 //  3) Update the PHIs in DF(R) by replacing the operands corresponding to
2493 //     dead blocks with "UndefVal" in an hope these PHIs will optimized away.
2494 //
2495 // Return true iff *NEW* dead code are found.
2496 bool GVN::processFoldableCondBr(BranchInst *BI) {
2497   if (!BI || BI->isUnconditional())
2498     return false;
2499 
2500   // If a branch has two identical successors, we cannot declare either dead.
2501   if (BI->getSuccessor(0) == BI->getSuccessor(1))
2502     return false;
2503 
2504   ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
2505   if (!Cond)
2506     return false;
2507 
2508   BasicBlock *DeadRoot =
2509       Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
2510   if (DeadBlocks.count(DeadRoot))
2511     return false;
2512 
2513   if (!DeadRoot->getSinglePredecessor())
2514     DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
2515 
2516   addDeadBlock(DeadRoot);
2517   return true;
2518 }
2519 
2520 // performPRE() will trigger assert if it comes across an instruction without
2521 // associated val-num. As it normally has far more live instructions than dead
2522 // instructions, it makes more sense just to "fabricate" a val-number for the
2523 // dead code than checking if instruction involved is dead or not.
2524 void GVN::assignValNumForDeadCode() {
2525   for (BasicBlock *BB : DeadBlocks) {
2526     for (Instruction &Inst : *BB) {
2527       unsigned ValNum = VN.lookupOrAdd(&Inst);
2528       addToLeaderTable(ValNum, &Inst, BB);
2529     }
2530   }
2531 }
2532 
2533 class llvm::gvn::GVNLegacyPass : public FunctionPass {
2534 public:
2535   static char ID; // Pass identification, replacement for typeid
2536 
2537   explicit GVNLegacyPass(bool NoMemDepAnalysis = !EnableMemDep)
2538       : FunctionPass(ID), NoMemDepAnalysis(NoMemDepAnalysis) {
2539     initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
2540   }
2541 
2542   bool runOnFunction(Function &F) override {
2543     if (skipFunction(F))
2544       return false;
2545 
2546     auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
2547 
2548     return Impl.runImpl(
2549         F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
2550         getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
2551         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
2552         getAnalysis<AAResultsWrapperPass>().getAAResults(),
2553         NoMemDepAnalysis ? nullptr
2554                 : &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(),
2555         LIWP ? &LIWP->getLoopInfo() : nullptr,
2556         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE());
2557   }
2558 
2559   void getAnalysisUsage(AnalysisUsage &AU) const override {
2560     AU.addRequired<AssumptionCacheTracker>();
2561     AU.addRequired<DominatorTreeWrapperPass>();
2562     AU.addRequired<TargetLibraryInfoWrapperPass>();
2563     if (!NoMemDepAnalysis)
2564       AU.addRequired<MemoryDependenceWrapperPass>();
2565     AU.addRequired<AAResultsWrapperPass>();
2566 
2567     AU.addPreserved<DominatorTreeWrapperPass>();
2568     AU.addPreserved<GlobalsAAWrapperPass>();
2569     AU.addPreserved<TargetLibraryInfoWrapperPass>();
2570     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2571   }
2572 
2573 private:
2574   bool NoMemDepAnalysis;
2575   GVN Impl;
2576 };
2577 
2578 char GVNLegacyPass::ID = 0;
2579 
2580 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
2581 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2582 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
2583 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2584 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2585 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2586 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
2587 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
2588 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
2589 
2590 // The public interface to this file...
2591 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) {
2592   return new GVNLegacyPass(NoMemDepAnalysis);
2593 }
2594