1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global value numbering to eliminate fully redundant
11 // instructions.  It also performs simple dead load elimination.
12 //
13 // Note that this pass does the value numbering itself; it does not use the
14 // ValueNumbering analysis passes.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Transforms/Scalar/GVN.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DepthFirstIterator.h"
21 #include "llvm/ADT/Hashing.h"
22 #include "llvm/ADT/MapVector.h"
23 #include "llvm/ADT/PointerIntPair.h"
24 #include "llvm/ADT/PostOrderIterator.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/AssumptionCache.h"
32 #include "llvm/Analysis/CFG.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/InstructionSimplify.h"
35 #include "llvm/Analysis/LoopInfo.h"
36 #include "llvm/Analysis/MemoryBuiltins.h"
37 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
38 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
39 #include "llvm/Analysis/PHITransAddr.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/Utils/Local.h"
42 #include "llvm/Analysis/ValueTracking.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/Intrinsics.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Metadata.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/PassManager.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/SSAUpdater.h"
75 #include "llvm/Transforms/Utils/VNCoercion.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstdint>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 using namespace llvm::gvn;
84 using namespace llvm::VNCoercion;
85 using namespace PatternMatch;
86 
87 #define DEBUG_TYPE "gvn"
88 
89 STATISTIC(NumGVNInstr,  "Number of instructions deleted");
90 STATISTIC(NumGVNLoad,   "Number of loads deleted");
91 STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
92 STATISTIC(NumGVNBlocks, "Number of blocks merged");
93 STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
94 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
95 STATISTIC(NumPRELoad,   "Number of loads PRE'd");
96 
97 static cl::opt<bool> EnablePRE("enable-pre",
98                                cl::init(true), cl::Hidden);
99 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
100 
101 // Maximum allowed recursion depth.
102 static cl::opt<uint32_t>
103 MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
104                 cl::desc("Max recurse depth (default = 1000)"));
105 
106 struct llvm::GVN::Expression {
107   uint32_t opcode;
108   Type *type;
109   bool commutative = false;
110   SmallVector<uint32_t, 4> varargs;
111 
112   Expression(uint32_t o = ~2U) : opcode(o) {}
113 
114   bool operator==(const Expression &other) const {
115     if (opcode != other.opcode)
116       return false;
117     if (opcode == ~0U || opcode == ~1U)
118       return true;
119     if (type != other.type)
120       return false;
121     if (varargs != other.varargs)
122       return false;
123     return true;
124   }
125 
126   friend hash_code hash_value(const Expression &Value) {
127     return hash_combine(
128         Value.opcode, Value.type,
129         hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
130   }
131 };
132 
133 namespace llvm {
134 
135 template <> struct DenseMapInfo<GVN::Expression> {
136   static inline GVN::Expression getEmptyKey() { return ~0U; }
137   static inline GVN::Expression getTombstoneKey() { return ~1U; }
138 
139   static unsigned getHashValue(const GVN::Expression &e) {
140     using llvm::hash_value;
141 
142     return static_cast<unsigned>(hash_value(e));
143   }
144 
145   static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) {
146     return LHS == RHS;
147   }
148 };
149 
150 } // end namespace llvm
151 
152 /// Represents a particular available value that we know how to materialize.
153 /// Materialization of an AvailableValue never fails.  An AvailableValue is
154 /// implicitly associated with a rematerialization point which is the
155 /// location of the instruction from which it was formed.
156 struct llvm::gvn::AvailableValue {
157   enum ValType {
158     SimpleVal, // A simple offsetted value that is accessed.
159     LoadVal,   // A value produced by a load.
160     MemIntrin, // A memory intrinsic which is loaded from.
161     UndefVal   // A UndefValue representing a value from dead block (which
162                // is not yet physically removed from the CFG).
163   };
164 
165   /// V - The value that is live out of the block.
166   PointerIntPair<Value *, 2, ValType> Val;
167 
168   /// Offset - The byte offset in Val that is interesting for the load query.
169   unsigned Offset;
170 
171   static AvailableValue get(Value *V, unsigned Offset = 0) {
172     AvailableValue Res;
173     Res.Val.setPointer(V);
174     Res.Val.setInt(SimpleVal);
175     Res.Offset = Offset;
176     return Res;
177   }
178 
179   static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
180     AvailableValue Res;
181     Res.Val.setPointer(MI);
182     Res.Val.setInt(MemIntrin);
183     Res.Offset = Offset;
184     return Res;
185   }
186 
187   static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) {
188     AvailableValue Res;
189     Res.Val.setPointer(LI);
190     Res.Val.setInt(LoadVal);
191     Res.Offset = Offset;
192     return Res;
193   }
194 
195   static AvailableValue getUndef() {
196     AvailableValue Res;
197     Res.Val.setPointer(nullptr);
198     Res.Val.setInt(UndefVal);
199     Res.Offset = 0;
200     return Res;
201   }
202 
203   bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
204   bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
205   bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
206   bool isUndefValue() const { return Val.getInt() == UndefVal; }
207 
208   Value *getSimpleValue() const {
209     assert(isSimpleValue() && "Wrong accessor");
210     return Val.getPointer();
211   }
212 
213   LoadInst *getCoercedLoadValue() const {
214     assert(isCoercedLoadValue() && "Wrong accessor");
215     return cast<LoadInst>(Val.getPointer());
216   }
217 
218   MemIntrinsic *getMemIntrinValue() const {
219     assert(isMemIntrinValue() && "Wrong accessor");
220     return cast<MemIntrinsic>(Val.getPointer());
221   }
222 
223   /// Emit code at the specified insertion point to adjust the value defined
224   /// here to the specified type. This handles various coercion cases.
225   Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt,
226                                   GVN &gvn) const;
227 };
228 
229 /// Represents an AvailableValue which can be rematerialized at the end of
230 /// the associated BasicBlock.
231 struct llvm::gvn::AvailableValueInBlock {
232   /// BB - The basic block in question.
233   BasicBlock *BB;
234 
235   /// AV - The actual available value
236   AvailableValue AV;
237 
238   static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
239     AvailableValueInBlock Res;
240     Res.BB = BB;
241     Res.AV = std::move(AV);
242     return Res;
243   }
244 
245   static AvailableValueInBlock get(BasicBlock *BB, Value *V,
246                                    unsigned Offset = 0) {
247     return get(BB, AvailableValue::get(V, Offset));
248   }
249 
250   static AvailableValueInBlock getUndef(BasicBlock *BB) {
251     return get(BB, AvailableValue::getUndef());
252   }
253 
254   /// Emit code at the end of this block to adjust the value defined here to
255   /// the specified type. This handles various coercion cases.
256   Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const {
257     return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn);
258   }
259 };
260 
261 //===----------------------------------------------------------------------===//
262 //                     ValueTable Internal Functions
263 //===----------------------------------------------------------------------===//
264 
265 GVN::Expression GVN::ValueTable::createExpr(Instruction *I) {
266   Expression e;
267   e.type = I->getType();
268   e.opcode = I->getOpcode();
269   for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
270        OI != OE; ++OI)
271     e.varargs.push_back(lookupOrAdd(*OI));
272   if (I->isCommutative()) {
273     // Ensure that commutative instructions that only differ by a permutation
274     // of their operands get the same value number by sorting the operand value
275     // numbers.  Since all commutative instructions have two operands it is more
276     // efficient to sort by hand rather than using, say, std::sort.
277     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
278     if (e.varargs[0] > e.varargs[1])
279       std::swap(e.varargs[0], e.varargs[1]);
280     e.commutative = true;
281   }
282 
283   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
284     // Sort the operand value numbers so x<y and y>x get the same value number.
285     CmpInst::Predicate Predicate = C->getPredicate();
286     if (e.varargs[0] > e.varargs[1]) {
287       std::swap(e.varargs[0], e.varargs[1]);
288       Predicate = CmpInst::getSwappedPredicate(Predicate);
289     }
290     e.opcode = (C->getOpcode() << 8) | Predicate;
291     e.commutative = true;
292   } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
293     for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
294          II != IE; ++II)
295       e.varargs.push_back(*II);
296   }
297 
298   return e;
299 }
300 
301 GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode,
302                                                CmpInst::Predicate Predicate,
303                                                Value *LHS, Value *RHS) {
304   assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
305          "Not a comparison!");
306   Expression e;
307   e.type = CmpInst::makeCmpResultType(LHS->getType());
308   e.varargs.push_back(lookupOrAdd(LHS));
309   e.varargs.push_back(lookupOrAdd(RHS));
310 
311   // Sort the operand value numbers so x<y and y>x get the same value number.
312   if (e.varargs[0] > e.varargs[1]) {
313     std::swap(e.varargs[0], e.varargs[1]);
314     Predicate = CmpInst::getSwappedPredicate(Predicate);
315   }
316   e.opcode = (Opcode << 8) | Predicate;
317   e.commutative = true;
318   return e;
319 }
320 
321 GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
322   assert(EI && "Not an ExtractValueInst?");
323   Expression e;
324   e.type = EI->getType();
325   e.opcode = 0;
326 
327   IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
328   if (I != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
329     // EI might be an extract from one of our recognised intrinsics. If it
330     // is we'll synthesize a semantically equivalent expression instead on
331     // an extract value expression.
332     switch (I->getIntrinsicID()) {
333       case Intrinsic::sadd_with_overflow:
334       case Intrinsic::uadd_with_overflow:
335         e.opcode = Instruction::Add;
336         break;
337       case Intrinsic::ssub_with_overflow:
338       case Intrinsic::usub_with_overflow:
339         e.opcode = Instruction::Sub;
340         break;
341       case Intrinsic::smul_with_overflow:
342       case Intrinsic::umul_with_overflow:
343         e.opcode = Instruction::Mul;
344         break;
345       default:
346         break;
347     }
348 
349     if (e.opcode != 0) {
350       // Intrinsic recognized. Grab its args to finish building the expression.
351       assert(I->getNumArgOperands() == 2 &&
352              "Expect two args for recognised intrinsics.");
353       e.varargs.push_back(lookupOrAdd(I->getArgOperand(0)));
354       e.varargs.push_back(lookupOrAdd(I->getArgOperand(1)));
355       return e;
356     }
357   }
358 
359   // Not a recognised intrinsic. Fall back to producing an extract value
360   // expression.
361   e.opcode = EI->getOpcode();
362   for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
363        OI != OE; ++OI)
364     e.varargs.push_back(lookupOrAdd(*OI));
365 
366   for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
367          II != IE; ++II)
368     e.varargs.push_back(*II);
369 
370   return e;
371 }
372 
373 //===----------------------------------------------------------------------===//
374 //                     ValueTable External Functions
375 //===----------------------------------------------------------------------===//
376 
377 GVN::ValueTable::ValueTable() = default;
378 GVN::ValueTable::ValueTable(const ValueTable &) = default;
379 GVN::ValueTable::ValueTable(ValueTable &&) = default;
380 GVN::ValueTable::~ValueTable() = default;
381 
382 /// add - Insert a value into the table with a specified value number.
383 void GVN::ValueTable::add(Value *V, uint32_t num) {
384   valueNumbering.insert(std::make_pair(V, num));
385   if (PHINode *PN = dyn_cast<PHINode>(V))
386     NumberingPhi[num] = PN;
387 }
388 
389 uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) {
390   if (AA->doesNotAccessMemory(C)) {
391     Expression exp = createExpr(C);
392     uint32_t e = assignExpNewValueNum(exp).first;
393     valueNumbering[C] = e;
394     return e;
395   } else if (AA->onlyReadsMemory(C)) {
396     Expression exp = createExpr(C);
397     auto ValNum = assignExpNewValueNum(exp);
398     if (ValNum.second) {
399       valueNumbering[C] = ValNum.first;
400       return ValNum.first;
401     }
402     if (!MD) {
403       uint32_t e = assignExpNewValueNum(exp).first;
404       valueNumbering[C] = e;
405       return e;
406     }
407 
408     MemDepResult local_dep = MD->getDependency(C);
409 
410     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
411       valueNumbering[C] =  nextValueNumber;
412       return nextValueNumber++;
413     }
414 
415     if (local_dep.isDef()) {
416       CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
417 
418       if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
419         valueNumbering[C] = nextValueNumber;
420         return nextValueNumber++;
421       }
422 
423       for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
424         uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
425         uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
426         if (c_vn != cd_vn) {
427           valueNumbering[C] = nextValueNumber;
428           return nextValueNumber++;
429         }
430       }
431 
432       uint32_t v = lookupOrAdd(local_cdep);
433       valueNumbering[C] = v;
434       return v;
435     }
436 
437     // Non-local case.
438     const MemoryDependenceResults::NonLocalDepInfo &deps =
439       MD->getNonLocalCallDependency(CallSite(C));
440     // FIXME: Move the checking logic to MemDep!
441     CallInst* cdep = nullptr;
442 
443     // Check to see if we have a single dominating call instruction that is
444     // identical to C.
445     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
446       const NonLocalDepEntry *I = &deps[i];
447       if (I->getResult().isNonLocal())
448         continue;
449 
450       // We don't handle non-definitions.  If we already have a call, reject
451       // instruction dependencies.
452       if (!I->getResult().isDef() || cdep != nullptr) {
453         cdep = nullptr;
454         break;
455       }
456 
457       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
458       // FIXME: All duplicated with non-local case.
459       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
460         cdep = NonLocalDepCall;
461         continue;
462       }
463 
464       cdep = nullptr;
465       break;
466     }
467 
468     if (!cdep) {
469       valueNumbering[C] = nextValueNumber;
470       return nextValueNumber++;
471     }
472 
473     if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
474       valueNumbering[C] = nextValueNumber;
475       return nextValueNumber++;
476     }
477     for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
478       uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
479       uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
480       if (c_vn != cd_vn) {
481         valueNumbering[C] = nextValueNumber;
482         return nextValueNumber++;
483       }
484     }
485 
486     uint32_t v = lookupOrAdd(cdep);
487     valueNumbering[C] = v;
488     return v;
489   } else {
490     valueNumbering[C] = nextValueNumber;
491     return nextValueNumber++;
492   }
493 }
494 
495 /// Returns true if a value number exists for the specified value.
496 bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; }
497 
498 /// lookup_or_add - Returns the value number for the specified value, assigning
499 /// it a new number if it did not have one before.
500 uint32_t GVN::ValueTable::lookupOrAdd(Value *V) {
501   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
502   if (VI != valueNumbering.end())
503     return VI->second;
504 
505   if (!isa<Instruction>(V)) {
506     valueNumbering[V] = nextValueNumber;
507     return nextValueNumber++;
508   }
509 
510   Instruction* I = cast<Instruction>(V);
511   Expression exp;
512   switch (I->getOpcode()) {
513     case Instruction::Call:
514       return lookupOrAddCall(cast<CallInst>(I));
515     case Instruction::Add:
516     case Instruction::FAdd:
517     case Instruction::Sub:
518     case Instruction::FSub:
519     case Instruction::Mul:
520     case Instruction::FMul:
521     case Instruction::UDiv:
522     case Instruction::SDiv:
523     case Instruction::FDiv:
524     case Instruction::URem:
525     case Instruction::SRem:
526     case Instruction::FRem:
527     case Instruction::Shl:
528     case Instruction::LShr:
529     case Instruction::AShr:
530     case Instruction::And:
531     case Instruction::Or:
532     case Instruction::Xor:
533     case Instruction::ICmp:
534     case Instruction::FCmp:
535     case Instruction::Trunc:
536     case Instruction::ZExt:
537     case Instruction::SExt:
538     case Instruction::FPToUI:
539     case Instruction::FPToSI:
540     case Instruction::UIToFP:
541     case Instruction::SIToFP:
542     case Instruction::FPTrunc:
543     case Instruction::FPExt:
544     case Instruction::PtrToInt:
545     case Instruction::IntToPtr:
546     case Instruction::BitCast:
547     case Instruction::Select:
548     case Instruction::ExtractElement:
549     case Instruction::InsertElement:
550     case Instruction::ShuffleVector:
551     case Instruction::InsertValue:
552     case Instruction::GetElementPtr:
553       exp = createExpr(I);
554       break;
555     case Instruction::ExtractValue:
556       exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
557       break;
558     case Instruction::PHI:
559       valueNumbering[V] = nextValueNumber;
560       NumberingPhi[nextValueNumber] = cast<PHINode>(V);
561       return nextValueNumber++;
562     default:
563       valueNumbering[V] = nextValueNumber;
564       return nextValueNumber++;
565   }
566 
567   uint32_t e = assignExpNewValueNum(exp).first;
568   valueNumbering[V] = e;
569   return e;
570 }
571 
572 /// Returns the value number of the specified value. Fails if
573 /// the value has not yet been numbered.
574 uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const {
575   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
576   if (Verify) {
577     assert(VI != valueNumbering.end() && "Value not numbered?");
578     return VI->second;
579   }
580   return (VI != valueNumbering.end()) ? VI->second : 0;
581 }
582 
583 /// Returns the value number of the given comparison,
584 /// assigning it a new number if it did not have one before.  Useful when
585 /// we deduced the result of a comparison, but don't immediately have an
586 /// instruction realizing that comparison to hand.
587 uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode,
588                                          CmpInst::Predicate Predicate,
589                                          Value *LHS, Value *RHS) {
590   Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
591   return assignExpNewValueNum(exp).first;
592 }
593 
594 /// Remove all entries from the ValueTable.
595 void GVN::ValueTable::clear() {
596   valueNumbering.clear();
597   expressionNumbering.clear();
598   NumberingPhi.clear();
599   PhiTranslateTable.clear();
600   nextValueNumber = 1;
601   Expressions.clear();
602   ExprIdx.clear();
603   nextExprNumber = 0;
604 }
605 
606 /// Remove a value from the value numbering.
607 void GVN::ValueTable::erase(Value *V) {
608   uint32_t Num = valueNumbering.lookup(V);
609   valueNumbering.erase(V);
610   // If V is PHINode, V <--> value number is an one-to-one mapping.
611   if (isa<PHINode>(V))
612     NumberingPhi.erase(Num);
613 }
614 
615 /// verifyRemoved - Verify that the value is removed from all internal data
616 /// structures.
617 void GVN::ValueTable::verifyRemoved(const Value *V) const {
618   for (DenseMap<Value*, uint32_t>::const_iterator
619          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
620     assert(I->first != V && "Inst still occurs in value numbering map!");
621   }
622 }
623 
624 //===----------------------------------------------------------------------===//
625 //                                GVN Pass
626 //===----------------------------------------------------------------------===//
627 
628 PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) {
629   // FIXME: The order of evaluation of these 'getResult' calls is very
630   // significant! Re-ordering these variables will cause GVN when run alone to
631   // be less effective! We should fix memdep and basic-aa to not exhibit this
632   // behavior, but until then don't change the order here.
633   auto &AC = AM.getResult<AssumptionAnalysis>(F);
634   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
635   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
636   auto &AA = AM.getResult<AAManager>(F);
637   auto &MemDep = AM.getResult<MemoryDependenceAnalysis>(F);
638   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
639   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
640   bool Changed = runImpl(F, AC, DT, TLI, AA, &MemDep, LI, &ORE);
641   if (!Changed)
642     return PreservedAnalyses::all();
643   PreservedAnalyses PA;
644   PA.preserve<DominatorTreeAnalysis>();
645   PA.preserve<GlobalsAA>();
646   PA.preserve<TargetLibraryAnalysis>();
647   return PA;
648 }
649 
650 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
651 LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const {
652   errs() << "{\n";
653   for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
654        E = d.end(); I != E; ++I) {
655       errs() << I->first << "\n";
656       I->second->dump();
657   }
658   errs() << "}\n";
659 }
660 #endif
661 
662 /// Return true if we can prove that the value
663 /// we're analyzing is fully available in the specified block.  As we go, keep
664 /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
665 /// map is actually a tri-state map with the following values:
666 ///   0) we know the block *is not* fully available.
667 ///   1) we know the block *is* fully available.
668 ///   2) we do not know whether the block is fully available or not, but we are
669 ///      currently speculating that it will be.
670 ///   3) we are speculating for this block and have used that to speculate for
671 ///      other blocks.
672 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
673                             DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
674                             uint32_t RecurseDepth) {
675   if (RecurseDepth > MaxRecurseDepth)
676     return false;
677 
678   // Optimistically assume that the block is fully available and check to see
679   // if we already know about this block in one lookup.
680   std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
681     FullyAvailableBlocks.insert(std::make_pair(BB, 2));
682 
683   // If the entry already existed for this block, return the precomputed value.
684   if (!IV.second) {
685     // If this is a speculative "available" value, mark it as being used for
686     // speculation of other blocks.
687     if (IV.first->second == 2)
688       IV.first->second = 3;
689     return IV.first->second != 0;
690   }
691 
692   // Otherwise, see if it is fully available in all predecessors.
693   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
694 
695   // If this block has no predecessors, it isn't live-in here.
696   if (PI == PE)
697     goto SpeculationFailure;
698 
699   for (; PI != PE; ++PI)
700     // If the value isn't fully available in one of our predecessors, then it
701     // isn't fully available in this block either.  Undo our previous
702     // optimistic assumption and bail out.
703     if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
704       goto SpeculationFailure;
705 
706   return true;
707 
708 // If we get here, we found out that this is not, after
709 // all, a fully-available block.  We have a problem if we speculated on this and
710 // used the speculation to mark other blocks as available.
711 SpeculationFailure:
712   char &BBVal = FullyAvailableBlocks[BB];
713 
714   // If we didn't speculate on this, just return with it set to false.
715   if (BBVal == 2) {
716     BBVal = 0;
717     return false;
718   }
719 
720   // If we did speculate on this value, we could have blocks set to 1 that are
721   // incorrect.  Walk the (transitive) successors of this block and mark them as
722   // 0 if set to one.
723   SmallVector<BasicBlock*, 32> BBWorklist;
724   BBWorklist.push_back(BB);
725 
726   do {
727     BasicBlock *Entry = BBWorklist.pop_back_val();
728     // Note that this sets blocks to 0 (unavailable) if they happen to not
729     // already be in FullyAvailableBlocks.  This is safe.
730     char &EntryVal = FullyAvailableBlocks[Entry];
731     if (EntryVal == 0) continue;  // Already unavailable.
732 
733     // Mark as unavailable.
734     EntryVal = 0;
735 
736     BBWorklist.append(succ_begin(Entry), succ_end(Entry));
737   } while (!BBWorklist.empty());
738 
739   return false;
740 }
741 
742 /// Given a set of loads specified by ValuesPerBlock,
743 /// construct SSA form, allowing us to eliminate LI.  This returns the value
744 /// that should be used at LI's definition site.
745 static Value *ConstructSSAForLoadSet(LoadInst *LI,
746                          SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
747                                      GVN &gvn) {
748   // Check for the fully redundant, dominating load case.  In this case, we can
749   // just use the dominating value directly.
750   if (ValuesPerBlock.size() == 1 &&
751       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
752                                                LI->getParent())) {
753     assert(!ValuesPerBlock[0].AV.isUndefValue() &&
754            "Dead BB dominate this block");
755     return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
756   }
757 
758   // Otherwise, we have to construct SSA form.
759   SmallVector<PHINode*, 8> NewPHIs;
760   SSAUpdater SSAUpdate(&NewPHIs);
761   SSAUpdate.Initialize(LI->getType(), LI->getName());
762 
763   for (const AvailableValueInBlock &AV : ValuesPerBlock) {
764     BasicBlock *BB = AV.BB;
765 
766     if (SSAUpdate.HasValueForBlock(BB))
767       continue;
768 
769     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
770   }
771 
772   // Perform PHI construction.
773   return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
774 }
775 
776 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI,
777                                                 Instruction *InsertPt,
778                                                 GVN &gvn) const {
779   Value *Res;
780   Type *LoadTy = LI->getType();
781   const DataLayout &DL = LI->getModule()->getDataLayout();
782   if (isSimpleValue()) {
783     Res = getSimpleValue();
784     if (Res->getType() != LoadTy) {
785       Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
786 
787       DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
788                    << *getSimpleValue() << '\n'
789                    << *Res << '\n' << "\n\n\n");
790     }
791   } else if (isCoercedLoadValue()) {
792     LoadInst *Load = getCoercedLoadValue();
793     if (Load->getType() == LoadTy && Offset == 0) {
794       Res = Load;
795     } else {
796       Res = getLoadValueForLoad(Load, Offset, LoadTy, InsertPt, DL);
797       // We would like to use gvn.markInstructionForDeletion here, but we can't
798       // because the load is already memoized into the leader map table that GVN
799       // tracks.  It is potentially possible to remove the load from the table,
800       // but then there all of the operations based on it would need to be
801       // rehashed.  Just leave the dead load around.
802       gvn.getMemDep().removeInstruction(Load);
803       DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
804                    << *getCoercedLoadValue() << '\n'
805                    << *Res << '\n'
806                    << "\n\n\n");
807     }
808   } else if (isMemIntrinValue()) {
809     Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
810                                  InsertPt, DL);
811     DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
812                  << "  " << *getMemIntrinValue() << '\n'
813                  << *Res << '\n' << "\n\n\n");
814   } else {
815     assert(isUndefValue() && "Should be UndefVal");
816     DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
817     return UndefValue::get(LoadTy);
818   }
819   assert(Res && "failed to materialize?");
820   return Res;
821 }
822 
823 static bool isLifetimeStart(const Instruction *Inst) {
824   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
825     return II->getIntrinsicID() == Intrinsic::lifetime_start;
826   return false;
827 }
828 
829 /// Try to locate the three instruction involved in a missed
830 /// load-elimination case that is due to an intervening store.
831 static void reportMayClobberedLoad(LoadInst *LI, MemDepResult DepInfo,
832                                    DominatorTree *DT,
833                                    OptimizationRemarkEmitter *ORE) {
834   using namespace ore;
835 
836   User *OtherAccess = nullptr;
837 
838   OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", LI);
839   R << "load of type " << NV("Type", LI->getType()) << " not eliminated"
840     << setExtraArgs();
841 
842   for (auto *U : LI->getPointerOperand()->users())
843     if (U != LI && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
844         DT->dominates(cast<Instruction>(U), LI)) {
845       // FIXME: for now give up if there are multiple memory accesses that
846       // dominate the load.  We need further analysis to decide which one is
847       // that we're forwarding from.
848       if (OtherAccess)
849         OtherAccess = nullptr;
850       else
851         OtherAccess = U;
852     }
853 
854   if (OtherAccess)
855     R << " in favor of " << NV("OtherAccess", OtherAccess);
856 
857   R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst());
858 
859   ORE->emit(R);
860 }
861 
862 bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo,
863                                   Value *Address, AvailableValue &Res) {
864   assert((DepInfo.isDef() || DepInfo.isClobber()) &&
865          "expected a local dependence");
866   assert(LI->isUnordered() && "rules below are incorrect for ordered access");
867 
868   const DataLayout &DL = LI->getModule()->getDataLayout();
869 
870   if (DepInfo.isClobber()) {
871     // If the dependence is to a store that writes to a superset of the bits
872     // read by the load, we can extract the bits we need for the load from the
873     // stored value.
874     if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
875       // Can't forward from non-atomic to atomic without violating memory model.
876       if (Address && LI->isAtomic() <= DepSI->isAtomic()) {
877         int Offset =
878           analyzeLoadFromClobberingStore(LI->getType(), Address, DepSI, DL);
879         if (Offset != -1) {
880           Res = AvailableValue::get(DepSI->getValueOperand(), Offset);
881           return true;
882         }
883       }
884     }
885 
886     // Check to see if we have something like this:
887     //    load i32* P
888     //    load i8* (P+1)
889     // if we have this, replace the later with an extraction from the former.
890     if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
891       // If this is a clobber and L is the first instruction in its block, then
892       // we have the first instruction in the entry block.
893       // Can't forward from non-atomic to atomic without violating memory model.
894       if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) {
895         int Offset =
896           analyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
897 
898         if (Offset != -1) {
899           Res = AvailableValue::getLoad(DepLI, Offset);
900           return true;
901         }
902       }
903     }
904 
905     // If the clobbering value is a memset/memcpy/memmove, see if we can
906     // forward a value on from it.
907     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
908       if (Address && !LI->isAtomic()) {
909         int Offset = analyzeLoadFromClobberingMemInst(LI->getType(), Address,
910                                                       DepMI, DL);
911         if (Offset != -1) {
912           Res = AvailableValue::getMI(DepMI, Offset);
913           return true;
914         }
915       }
916     }
917     // Nothing known about this clobber, have to be conservative
918     DEBUG(
919       // fast print dep, using operator<< on instruction is too slow.
920       dbgs() << "GVN: load ";
921       LI->printAsOperand(dbgs());
922       Instruction *I = DepInfo.getInst();
923       dbgs() << " is clobbered by " << *I << '\n';
924     );
925     if (ORE->allowExtraAnalysis(DEBUG_TYPE))
926       reportMayClobberedLoad(LI, DepInfo, DT, ORE);
927 
928     return false;
929   }
930   assert(DepInfo.isDef() && "follows from above");
931 
932   Instruction *DepInst = DepInfo.getInst();
933 
934   // Loading the allocation -> undef.
935   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
936       // Loading immediately after lifetime begin -> undef.
937       isLifetimeStart(DepInst)) {
938     Res = AvailableValue::get(UndefValue::get(LI->getType()));
939     return true;
940   }
941 
942   // Loading from calloc (which zero initializes memory) -> zero
943   if (isCallocLikeFn(DepInst, TLI)) {
944     Res = AvailableValue::get(Constant::getNullValue(LI->getType()));
945     return true;
946   }
947 
948   if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
949     // Reject loads and stores that are to the same address but are of
950     // different types if we have to. If the stored value is larger or equal to
951     // the loaded value, we can reuse it.
952     if (S->getValueOperand()->getType() != LI->getType() &&
953         !canCoerceMustAliasedValueToLoad(S->getValueOperand(),
954                                          LI->getType(), DL))
955       return false;
956 
957     // Can't forward from non-atomic to atomic without violating memory model.
958     if (S->isAtomic() < LI->isAtomic())
959       return false;
960 
961     Res = AvailableValue::get(S->getValueOperand());
962     return true;
963   }
964 
965   if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
966     // If the types mismatch and we can't handle it, reject reuse of the load.
967     // If the stored value is larger or equal to the loaded value, we can reuse
968     // it.
969     if (LD->getType() != LI->getType() &&
970         !canCoerceMustAliasedValueToLoad(LD, LI->getType(), DL))
971       return false;
972 
973     // Can't forward from non-atomic to atomic without violating memory model.
974     if (LD->isAtomic() < LI->isAtomic())
975       return false;
976 
977     Res = AvailableValue::getLoad(LD);
978     return true;
979   }
980 
981   // Unknown def - must be conservative
982   DEBUG(
983     // fast print dep, using operator<< on instruction is too slow.
984     dbgs() << "GVN: load ";
985     LI->printAsOperand(dbgs());
986     dbgs() << " has unknown def " << *DepInst << '\n';
987   );
988   return false;
989 }
990 
991 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
992                                   AvailValInBlkVect &ValuesPerBlock,
993                                   UnavailBlkVect &UnavailableBlocks) {
994   // Filter out useless results (non-locals, etc).  Keep track of the blocks
995   // where we have a value available in repl, also keep track of whether we see
996   // dependencies that produce an unknown value for the load (such as a call
997   // that could potentially clobber the load).
998   unsigned NumDeps = Deps.size();
999   for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1000     BasicBlock *DepBB = Deps[i].getBB();
1001     MemDepResult DepInfo = Deps[i].getResult();
1002 
1003     if (DeadBlocks.count(DepBB)) {
1004       // Dead dependent mem-op disguise as a load evaluating the same value
1005       // as the load in question.
1006       ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
1007       continue;
1008     }
1009 
1010     if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1011       UnavailableBlocks.push_back(DepBB);
1012       continue;
1013     }
1014 
1015     // The address being loaded in this non-local block may not be the same as
1016     // the pointer operand of the load if PHI translation occurs.  Make sure
1017     // to consider the right address.
1018     Value *Address = Deps[i].getAddress();
1019 
1020     AvailableValue AV;
1021     if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) {
1022       // subtlety: because we know this was a non-local dependency, we know
1023       // it's safe to materialize anywhere between the instruction within
1024       // DepInfo and the end of it's block.
1025       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1026                                                           std::move(AV)));
1027     } else {
1028       UnavailableBlocks.push_back(DepBB);
1029     }
1030   }
1031 
1032   assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() &&
1033          "post condition violation");
1034 }
1035 
1036 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
1037                          UnavailBlkVect &UnavailableBlocks) {
1038   // Okay, we have *some* definitions of the value.  This means that the value
1039   // is available in some of our (transitive) predecessors.  Lets think about
1040   // doing PRE of this load.  This will involve inserting a new load into the
1041   // predecessor when it's not available.  We could do this in general, but
1042   // prefer to not increase code size.  As such, we only do this when we know
1043   // that we only have to insert *one* load (which means we're basically moving
1044   // the load, not inserting a new one).
1045 
1046   SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
1047                                         UnavailableBlocks.end());
1048 
1049   // Let's find the first basic block with more than one predecessor.  Walk
1050   // backwards through predecessors if needed.
1051   BasicBlock *LoadBB = LI->getParent();
1052   BasicBlock *TmpBB = LoadBB;
1053   bool IsSafeToSpeculativelyExecute = isSafeToSpeculativelyExecute(LI);
1054 
1055   // Check that there is no implicit control flow instructions above our load in
1056   // its block. If there is an instruction that doesn't always pass the
1057   // execution to the following instruction, then moving through it may become
1058   // invalid. For example:
1059   //
1060   // int arr[LEN];
1061   // int index = ???;
1062   // ...
1063   // guard(0 <= index && index < LEN);
1064   // use(arr[index]);
1065   //
1066   // It is illegal to move the array access to any point above the guard,
1067   // because if the index is out of bounds we should deoptimize rather than
1068   // access the array.
1069   // Check that there is no guard in this block above our intruction.
1070   if (!IsSafeToSpeculativelyExecute) {
1071     auto It = FirstImplicitControlFlowInsts.find(TmpBB);
1072     if (It != FirstImplicitControlFlowInsts.end()) {
1073       assert(It->second->getParent() == TmpBB &&
1074              "Implicit control flow map broken?");
1075       if (OI->dominates(It->second, LI))
1076         return false;
1077     }
1078   }
1079   while (TmpBB->getSinglePredecessor()) {
1080     TmpBB = TmpBB->getSinglePredecessor();
1081     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1082       return false;
1083     if (Blockers.count(TmpBB))
1084       return false;
1085 
1086     // If any of these blocks has more than one successor (i.e. if the edge we
1087     // just traversed was critical), then there are other paths through this
1088     // block along which the load may not be anticipated.  Hoisting the load
1089     // above this block would be adding the load to execution paths along
1090     // which it was not previously executed.
1091     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1092       return false;
1093 
1094     // Check that there is no implicit control flow in a block above.
1095     if (!IsSafeToSpeculativelyExecute &&
1096         FirstImplicitControlFlowInsts.count(TmpBB))
1097       return false;
1098   }
1099 
1100   assert(TmpBB);
1101   LoadBB = TmpBB;
1102 
1103   // Check to see how many predecessors have the loaded value fully
1104   // available.
1105   MapVector<BasicBlock *, Value *> PredLoads;
1106   DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1107   for (const AvailableValueInBlock &AV : ValuesPerBlock)
1108     FullyAvailableBlocks[AV.BB] = true;
1109   for (BasicBlock *UnavailableBB : UnavailableBlocks)
1110     FullyAvailableBlocks[UnavailableBB] = false;
1111 
1112   SmallVector<BasicBlock *, 4> CriticalEdgePred;
1113   for (BasicBlock *Pred : predecessors(LoadBB)) {
1114     // If any predecessor block is an EH pad that does not allow non-PHI
1115     // instructions before the terminator, we can't PRE the load.
1116     if (Pred->getTerminator()->isEHPad()) {
1117       DEBUG(dbgs()
1118             << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
1119             << Pred->getName() << "': " << *LI << '\n');
1120       return false;
1121     }
1122 
1123     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
1124       continue;
1125     }
1126 
1127     if (Pred->getTerminator()->getNumSuccessors() != 1) {
1128       if (isa<IndirectBrInst>(Pred->getTerminator())) {
1129         DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1130               << Pred->getName() << "': " << *LI << '\n');
1131         return false;
1132       }
1133 
1134       if (LoadBB->isEHPad()) {
1135         DEBUG(dbgs()
1136               << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
1137               << Pred->getName() << "': " << *LI << '\n');
1138         return false;
1139       }
1140 
1141       CriticalEdgePred.push_back(Pred);
1142     } else {
1143       // Only add the predecessors that will not be split for now.
1144       PredLoads[Pred] = nullptr;
1145     }
1146   }
1147 
1148   // Decide whether PRE is profitable for this load.
1149   unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
1150   assert(NumUnavailablePreds != 0 &&
1151          "Fully available value should already be eliminated!");
1152 
1153   // If this load is unavailable in multiple predecessors, reject it.
1154   // FIXME: If we could restructure the CFG, we could make a common pred with
1155   // all the preds that don't have an available LI and insert a new load into
1156   // that one block.
1157   if (NumUnavailablePreds != 1)
1158       return false;
1159 
1160   // Split critical edges, and update the unavailable predecessors accordingly.
1161   for (BasicBlock *OrigPred : CriticalEdgePred) {
1162     BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1163     assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
1164     PredLoads[NewPred] = nullptr;
1165     DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1166                  << LoadBB->getName() << '\n');
1167   }
1168 
1169   // Check if the load can safely be moved to all the unavailable predecessors.
1170   bool CanDoPRE = true;
1171   const DataLayout &DL = LI->getModule()->getDataLayout();
1172   SmallVector<Instruction*, 8> NewInsts;
1173   for (auto &PredLoad : PredLoads) {
1174     BasicBlock *UnavailablePred = PredLoad.first;
1175 
1176     // Do PHI translation to get its value in the predecessor if necessary.  The
1177     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1178 
1179     // If all preds have a single successor, then we know it is safe to insert
1180     // the load on the pred (?!?), so we can insert code to materialize the
1181     // pointer if it is not available.
1182     PHITransAddr Address(LI->getPointerOperand(), DL, AC);
1183     Value *LoadPtr = nullptr;
1184     LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1185                                                 *DT, NewInsts);
1186 
1187     // If we couldn't find or insert a computation of this phi translated value,
1188     // we fail PRE.
1189     if (!LoadPtr) {
1190       DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1191             << *LI->getPointerOperand() << "\n");
1192       CanDoPRE = false;
1193       break;
1194     }
1195 
1196     PredLoad.second = LoadPtr;
1197   }
1198 
1199   if (!CanDoPRE) {
1200     while (!NewInsts.empty()) {
1201       Instruction *I = NewInsts.pop_back_val();
1202       markInstructionForDeletion(I);
1203     }
1204     // HINT: Don't revert the edge-splitting as following transformation may
1205     // also need to split these critical edges.
1206     return !CriticalEdgePred.empty();
1207   }
1208 
1209   // Okay, we can eliminate this load by inserting a reload in the predecessor
1210   // and using PHI construction to get the value in the other predecessors, do
1211   // it.
1212   DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1213   DEBUG(if (!NewInsts.empty())
1214           dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1215                  << *NewInsts.back() << '\n');
1216 
1217   // Assign value numbers to the new instructions.
1218   for (Instruction *I : NewInsts) {
1219     // Instructions that have been inserted in predecessor(s) to materialize
1220     // the load address do not retain their original debug locations. Doing
1221     // so could lead to confusing (but correct) source attributions.
1222     // FIXME: How do we retain source locations without causing poor debugging
1223     // behavior?
1224     I->setDebugLoc(DebugLoc());
1225 
1226     // FIXME: We really _ought_ to insert these value numbers into their
1227     // parent's availability map.  However, in doing so, we risk getting into
1228     // ordering issues.  If a block hasn't been processed yet, we would be
1229     // marking a value as AVAIL-IN, which isn't what we intend.
1230     VN.lookupOrAdd(I);
1231   }
1232 
1233   for (const auto &PredLoad : PredLoads) {
1234     BasicBlock *UnavailablePred = PredLoad.first;
1235     Value *LoadPtr = PredLoad.second;
1236 
1237     auto *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre",
1238                                  LI->isVolatile(), LI->getAlignment(),
1239                                  LI->getOrdering(), LI->getSyncScopeID(),
1240                                  UnavailablePred->getTerminator());
1241     NewLoad->setDebugLoc(LI->getDebugLoc());
1242 
1243     // Transfer the old load's AA tags to the new load.
1244     AAMDNodes Tags;
1245     LI->getAAMetadata(Tags);
1246     if (Tags)
1247       NewLoad->setAAMetadata(Tags);
1248 
1249     if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load))
1250       NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
1251     if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group))
1252       NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
1253     if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range))
1254       NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
1255 
1256     // We do not propagate the old load's debug location, because the new
1257     // load now lives in a different BB, and we want to avoid a jumpy line
1258     // table.
1259     // FIXME: How do we retain source locations without causing poor debugging
1260     // behavior?
1261 
1262     // Add the newly created load.
1263     ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1264                                                         NewLoad));
1265     MD->invalidateCachedPointerInfo(LoadPtr);
1266     DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1267   }
1268 
1269   // Perform PHI construction.
1270   Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1271   LI->replaceAllUsesWith(V);
1272   if (isa<PHINode>(V))
1273     V->takeName(LI);
1274   if (Instruction *I = dyn_cast<Instruction>(V))
1275     I->setDebugLoc(LI->getDebugLoc());
1276   if (V->getType()->isPtrOrPtrVectorTy())
1277     MD->invalidateCachedPointerInfo(V);
1278   markInstructionForDeletion(LI);
1279   ORE->emit([&]() {
1280     return OptimizationRemark(DEBUG_TYPE, "LoadPRE", LI)
1281            << "load eliminated by PRE";
1282   });
1283   ++NumPRELoad;
1284   return true;
1285 }
1286 
1287 static void reportLoadElim(LoadInst *LI, Value *AvailableValue,
1288                            OptimizationRemarkEmitter *ORE) {
1289   using namespace ore;
1290 
1291   ORE->emit([&]() {
1292     return OptimizationRemark(DEBUG_TYPE, "LoadElim", LI)
1293            << "load of type " << NV("Type", LI->getType()) << " eliminated"
1294            << setExtraArgs() << " in favor of "
1295            << NV("InfavorOfValue", AvailableValue);
1296   });
1297 }
1298 
1299 /// Attempt to eliminate a load whose dependencies are
1300 /// non-local by performing PHI construction.
1301 bool GVN::processNonLocalLoad(LoadInst *LI) {
1302   // non-local speculations are not allowed under asan.
1303   if (LI->getParent()->getParent()->hasFnAttribute(
1304           Attribute::SanitizeAddress) ||
1305       LI->getParent()->getParent()->hasFnAttribute(
1306           Attribute::SanitizeHWAddress))
1307     return false;
1308 
1309   // Step 1: Find the non-local dependencies of the load.
1310   LoadDepVect Deps;
1311   MD->getNonLocalPointerDependency(LI, Deps);
1312 
1313   // If we had to process more than one hundred blocks to find the
1314   // dependencies, this load isn't worth worrying about.  Optimizing
1315   // it will be too expensive.
1316   unsigned NumDeps = Deps.size();
1317   if (NumDeps > 100)
1318     return false;
1319 
1320   // If we had a phi translation failure, we'll have a single entry which is a
1321   // clobber in the current block.  Reject this early.
1322   if (NumDeps == 1 &&
1323       !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1324     DEBUG(
1325       dbgs() << "GVN: non-local load ";
1326       LI->printAsOperand(dbgs());
1327       dbgs() << " has unknown dependencies\n";
1328     );
1329     return false;
1330   }
1331 
1332   // If this load follows a GEP, see if we can PRE the indices before analyzing.
1333   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
1334     for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
1335                                         OE = GEP->idx_end();
1336          OI != OE; ++OI)
1337       if (Instruction *I = dyn_cast<Instruction>(OI->get()))
1338         performScalarPRE(I);
1339   }
1340 
1341   // Step 2: Analyze the availability of the load
1342   AvailValInBlkVect ValuesPerBlock;
1343   UnavailBlkVect UnavailableBlocks;
1344   AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
1345 
1346   // If we have no predecessors that produce a known value for this load, exit
1347   // early.
1348   if (ValuesPerBlock.empty())
1349     return false;
1350 
1351   // Step 3: Eliminate fully redundancy.
1352   //
1353   // If all of the instructions we depend on produce a known value for this
1354   // load, then it is fully redundant and we can use PHI insertion to compute
1355   // its value.  Insert PHIs and remove the fully redundant value now.
1356   if (UnavailableBlocks.empty()) {
1357     DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1358 
1359     // Perform PHI construction.
1360     Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1361     LI->replaceAllUsesWith(V);
1362 
1363     if (isa<PHINode>(V))
1364       V->takeName(LI);
1365     if (Instruction *I = dyn_cast<Instruction>(V))
1366       // If instruction I has debug info, then we should not update it.
1367       // Also, if I has a null DebugLoc, then it is still potentially incorrect
1368       // to propagate LI's DebugLoc because LI may not post-dominate I.
1369       if (LI->getDebugLoc() && LI->getParent() == I->getParent())
1370         I->setDebugLoc(LI->getDebugLoc());
1371     if (V->getType()->isPtrOrPtrVectorTy())
1372       MD->invalidateCachedPointerInfo(V);
1373     markInstructionForDeletion(LI);
1374     ++NumGVNLoad;
1375     reportLoadElim(LI, V, ORE);
1376     return true;
1377   }
1378 
1379   // Step 4: Eliminate partial redundancy.
1380   if (!EnablePRE || !EnableLoadPRE)
1381     return false;
1382 
1383   return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
1384 }
1385 
1386 bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) {
1387   assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume &&
1388          "This function can only be called with llvm.assume intrinsic");
1389   Value *V = IntrinsicI->getArgOperand(0);
1390 
1391   if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
1392     if (Cond->isZero()) {
1393       Type *Int8Ty = Type::getInt8Ty(V->getContext());
1394       // Insert a new store to null instruction before the load to indicate that
1395       // this code is not reachable.  FIXME: We could insert unreachable
1396       // instruction directly because we can modify the CFG.
1397       new StoreInst(UndefValue::get(Int8Ty),
1398                     Constant::getNullValue(Int8Ty->getPointerTo()),
1399                     IntrinsicI);
1400     }
1401     markInstructionForDeletion(IntrinsicI);
1402     return false;
1403   } else if (isa<Constant>(V)) {
1404     // If it's not false, and constant, it must evaluate to true. This means our
1405     // assume is assume(true), and thus, pointless, and we don't want to do
1406     // anything more here.
1407     return false;
1408   }
1409 
1410   Constant *True = ConstantInt::getTrue(V->getContext());
1411   bool Changed = false;
1412 
1413   for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
1414     BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
1415 
1416     // This property is only true in dominated successors, propagateEquality
1417     // will check dominance for us.
1418     Changed |= propagateEquality(V, True, Edge, false);
1419   }
1420 
1421   // We can replace assume value with true, which covers cases like this:
1422   // call void @llvm.assume(i1 %cmp)
1423   // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
1424   ReplaceWithConstMap[V] = True;
1425 
1426   // If one of *cmp *eq operand is const, adding it to map will cover this:
1427   // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
1428   // call void @llvm.assume(i1 %cmp)
1429   // ret float %0 ; will change it to ret float 3.000000e+00
1430   if (auto *CmpI = dyn_cast<CmpInst>(V)) {
1431     if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ ||
1432         CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
1433         (CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
1434          CmpI->getFastMathFlags().noNaNs())) {
1435       Value *CmpLHS = CmpI->getOperand(0);
1436       Value *CmpRHS = CmpI->getOperand(1);
1437       if (isa<Constant>(CmpLHS))
1438         std::swap(CmpLHS, CmpRHS);
1439       auto *RHSConst = dyn_cast<Constant>(CmpRHS);
1440 
1441       // If only one operand is constant.
1442       if (RHSConst != nullptr && !isa<Constant>(CmpLHS))
1443         ReplaceWithConstMap[CmpLHS] = RHSConst;
1444     }
1445   }
1446   return Changed;
1447 }
1448 
1449 static void patchReplacementInstruction(Instruction *I, Value *Repl) {
1450   auto *ReplInst = dyn_cast<Instruction>(Repl);
1451   if (!ReplInst)
1452     return;
1453 
1454   // Patch the replacement so that it is not more restrictive than the value
1455   // being replaced.
1456   // Note that if 'I' is a load being replaced by some operation,
1457   // for example, by an arithmetic operation, then andIRFlags()
1458   // would just erase all math flags from the original arithmetic
1459   // operation, which is clearly not wanted and not needed.
1460   if (!isa<LoadInst>(I))
1461     ReplInst->andIRFlags(I);
1462 
1463   // FIXME: If both the original and replacement value are part of the
1464   // same control-flow region (meaning that the execution of one
1465   // guarantees the execution of the other), then we can combine the
1466   // noalias scopes here and do better than the general conservative
1467   // answer used in combineMetadata().
1468 
1469   // In general, GVN unifies expressions over different control-flow
1470   // regions, and so we need a conservative combination of the noalias
1471   // scopes.
1472   static const unsigned KnownIDs[] = {
1473       LLVMContext::MD_tbaa,           LLVMContext::MD_alias_scope,
1474       LLVMContext::MD_noalias,        LLVMContext::MD_range,
1475       LLVMContext::MD_fpmath,         LLVMContext::MD_invariant_load,
1476       LLVMContext::MD_invariant_group};
1477   combineMetadata(ReplInst, I, KnownIDs);
1478 }
1479 
1480 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1481   patchReplacementInstruction(I, Repl);
1482   I->replaceAllUsesWith(Repl);
1483 }
1484 
1485 /// Attempt to eliminate a load, first by eliminating it
1486 /// locally, and then attempting non-local elimination if that fails.
1487 bool GVN::processLoad(LoadInst *L) {
1488   if (!MD)
1489     return false;
1490 
1491   // This code hasn't been audited for ordered or volatile memory access
1492   if (!L->isUnordered())
1493     return false;
1494 
1495   if (L->use_empty()) {
1496     markInstructionForDeletion(L);
1497     return true;
1498   }
1499 
1500   // ... to a pointer that has been loaded from before...
1501   MemDepResult Dep = MD->getDependency(L);
1502 
1503   // If it is defined in another block, try harder.
1504   if (Dep.isNonLocal())
1505     return processNonLocalLoad(L);
1506 
1507   // Only handle the local case below
1508   if (!Dep.isDef() && !Dep.isClobber()) {
1509     // This might be a NonFuncLocal or an Unknown
1510     DEBUG(
1511       // fast print dep, using operator<< on instruction is too slow.
1512       dbgs() << "GVN: load ";
1513       L->printAsOperand(dbgs());
1514       dbgs() << " has unknown dependence\n";
1515     );
1516     return false;
1517   }
1518 
1519   AvailableValue AV;
1520   if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) {
1521     Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this);
1522 
1523     // Replace the load!
1524     patchAndReplaceAllUsesWith(L, AvailableValue);
1525     markInstructionForDeletion(L);
1526     ++NumGVNLoad;
1527     reportLoadElim(L, AvailableValue, ORE);
1528     // Tell MDA to rexamine the reused pointer since we might have more
1529     // information after forwarding it.
1530     if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy())
1531       MD->invalidateCachedPointerInfo(AvailableValue);
1532     return true;
1533   }
1534 
1535   return false;
1536 }
1537 
1538 /// Return a pair the first field showing the value number of \p Exp and the
1539 /// second field showing whether it is a value number newly created.
1540 std::pair<uint32_t, bool>
1541 GVN::ValueTable::assignExpNewValueNum(Expression &Exp) {
1542   uint32_t &e = expressionNumbering[Exp];
1543   bool CreateNewValNum = !e;
1544   if (CreateNewValNum) {
1545     Expressions.push_back(Exp);
1546     if (ExprIdx.size() < nextValueNumber + 1)
1547       ExprIdx.resize(nextValueNumber * 2);
1548     e = nextValueNumber;
1549     ExprIdx[nextValueNumber++] = nextExprNumber++;
1550   }
1551   return {e, CreateNewValNum};
1552 }
1553 
1554 /// Return whether all the values related with the same \p num are
1555 /// defined in \p BB.
1556 bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB,
1557                                      GVN &Gvn) {
1558   LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
1559   while (Vals && Vals->BB == BB)
1560     Vals = Vals->Next;
1561   return !Vals;
1562 }
1563 
1564 /// Wrap phiTranslateImpl to provide caching functionality.
1565 uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred,
1566                                        const BasicBlock *PhiBlock, uint32_t Num,
1567                                        GVN &Gvn) {
1568   auto FindRes = PhiTranslateTable.find({Num, Pred});
1569   if (FindRes != PhiTranslateTable.end())
1570     return FindRes->second;
1571   uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
1572   PhiTranslateTable.insert({{Num, Pred}, NewNum});
1573   return NewNum;
1574 }
1575 
1576 /// Translate value number \p Num using phis, so that it has the values of
1577 /// the phis in BB.
1578 uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred,
1579                                            const BasicBlock *PhiBlock,
1580                                            uint32_t Num, GVN &Gvn) {
1581   if (PHINode *PN = NumberingPhi[Num]) {
1582     for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
1583       if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
1584         if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false))
1585           return TransVal;
1586     }
1587     return Num;
1588   }
1589 
1590   // If there is any value related with Num is defined in a BB other than
1591   // PhiBlock, it cannot depend on a phi in PhiBlock without going through
1592   // a backedge. We can do an early exit in that case to save compile time.
1593   if (!areAllValsInBB(Num, PhiBlock, Gvn))
1594     return Num;
1595 
1596   if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
1597     return Num;
1598   Expression Exp = Expressions[ExprIdx[Num]];
1599 
1600   for (unsigned i = 0; i < Exp.varargs.size(); i++) {
1601     // For InsertValue and ExtractValue, some varargs are index numbers
1602     // instead of value numbers. Those index numbers should not be
1603     // translated.
1604     if ((i > 1 && Exp.opcode == Instruction::InsertValue) ||
1605         (i > 0 && Exp.opcode == Instruction::ExtractValue))
1606       continue;
1607     Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn);
1608   }
1609 
1610   if (Exp.commutative) {
1611     assert(Exp.varargs.size() == 2 && "Unsupported commutative expression!");
1612     if (Exp.varargs[0] > Exp.varargs[1]) {
1613       std::swap(Exp.varargs[0], Exp.varargs[1]);
1614       uint32_t Opcode = Exp.opcode >> 8;
1615       if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
1616         Exp.opcode = (Opcode << 8) |
1617                      CmpInst::getSwappedPredicate(
1618                          static_cast<CmpInst::Predicate>(Exp.opcode & 255));
1619     }
1620   }
1621 
1622   if (uint32_t NewNum = expressionNumbering[Exp])
1623     return NewNum;
1624   return Num;
1625 }
1626 
1627 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed
1628 /// again.
1629 void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num,
1630                                                const BasicBlock &CurrBlock) {
1631   for (const BasicBlock *Pred : predecessors(&CurrBlock)) {
1632     auto FindRes = PhiTranslateTable.find({Num, Pred});
1633     if (FindRes != PhiTranslateTable.end())
1634       PhiTranslateTable.erase(FindRes);
1635   }
1636 }
1637 
1638 // In order to find a leader for a given value number at a
1639 // specific basic block, we first obtain the list of all Values for that number,
1640 // and then scan the list to find one whose block dominates the block in
1641 // question.  This is fast because dominator tree queries consist of only
1642 // a few comparisons of DFS numbers.
1643 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
1644   LeaderTableEntry Vals = LeaderTable[num];
1645   if (!Vals.Val) return nullptr;
1646 
1647   Value *Val = nullptr;
1648   if (DT->dominates(Vals.BB, BB)) {
1649     Val = Vals.Val;
1650     if (isa<Constant>(Val)) return Val;
1651   }
1652 
1653   LeaderTableEntry* Next = Vals.Next;
1654   while (Next) {
1655     if (DT->dominates(Next->BB, BB)) {
1656       if (isa<Constant>(Next->Val)) return Next->Val;
1657       if (!Val) Val = Next->Val;
1658     }
1659 
1660     Next = Next->Next;
1661   }
1662 
1663   return Val;
1664 }
1665 
1666 /// There is an edge from 'Src' to 'Dst'.  Return
1667 /// true if every path from the entry block to 'Dst' passes via this edge.  In
1668 /// particular 'Dst' must not be reachable via another edge from 'Src'.
1669 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
1670                                        DominatorTree *DT) {
1671   // While in theory it is interesting to consider the case in which Dst has
1672   // more than one predecessor, because Dst might be part of a loop which is
1673   // only reachable from Src, in practice it is pointless since at the time
1674   // GVN runs all such loops have preheaders, which means that Dst will have
1675   // been changed to have only one predecessor, namely Src.
1676   const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
1677   assert((!Pred || Pred == E.getStart()) &&
1678          "No edge between these basic blocks!");
1679   return Pred != nullptr;
1680 }
1681 
1682 void GVN::assignBlockRPONumber(Function &F) {
1683   uint32_t NextBlockNumber = 1;
1684   ReversePostOrderTraversal<Function *> RPOT(&F);
1685   for (BasicBlock *BB : RPOT)
1686     BlockRPONumber[BB] = NextBlockNumber++;
1687 }
1688 
1689 // Tries to replace instruction with const, using information from
1690 // ReplaceWithConstMap.
1691 bool GVN::replaceOperandsWithConsts(Instruction *Instr) const {
1692   bool Changed = false;
1693   for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
1694     Value *Operand = Instr->getOperand(OpNum);
1695     auto it = ReplaceWithConstMap.find(Operand);
1696     if (it != ReplaceWithConstMap.end()) {
1697       assert(!isa<Constant>(Operand) &&
1698              "Replacing constants with constants is invalid");
1699       DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " << *it->second
1700                    << " in instruction " << *Instr << '\n');
1701       Instr->setOperand(OpNum, it->second);
1702       Changed = true;
1703     }
1704   }
1705   return Changed;
1706 }
1707 
1708 /// The given values are known to be equal in every block
1709 /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
1710 /// 'RHS' everywhere in the scope.  Returns whether a change was made.
1711 /// If DominatesByEdge is false, then it means that we will propagate the RHS
1712 /// value starting from the end of Root.Start.
1713 bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
1714                             bool DominatesByEdge) {
1715   SmallVector<std::pair<Value*, Value*>, 4> Worklist;
1716   Worklist.push_back(std::make_pair(LHS, RHS));
1717   bool Changed = false;
1718   // For speed, compute a conservative fast approximation to
1719   // DT->dominates(Root, Root.getEnd());
1720   const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
1721 
1722   while (!Worklist.empty()) {
1723     std::pair<Value*, Value*> Item = Worklist.pop_back_val();
1724     LHS = Item.first; RHS = Item.second;
1725 
1726     if (LHS == RHS)
1727       continue;
1728     assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
1729 
1730     // Don't try to propagate equalities between constants.
1731     if (isa<Constant>(LHS) && isa<Constant>(RHS))
1732       continue;
1733 
1734     // Prefer a constant on the right-hand side, or an Argument if no constants.
1735     if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
1736       std::swap(LHS, RHS);
1737     assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
1738 
1739     // If there is no obvious reason to prefer the left-hand side over the
1740     // right-hand side, ensure the longest lived term is on the right-hand side,
1741     // so the shortest lived term will be replaced by the longest lived.
1742     // This tends to expose more simplifications.
1743     uint32_t LVN = VN.lookupOrAdd(LHS);
1744     if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
1745         (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
1746       // Move the 'oldest' value to the right-hand side, using the value number
1747       // as a proxy for age.
1748       uint32_t RVN = VN.lookupOrAdd(RHS);
1749       if (LVN < RVN) {
1750         std::swap(LHS, RHS);
1751         LVN = RVN;
1752       }
1753     }
1754 
1755     // If value numbering later sees that an instruction in the scope is equal
1756     // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
1757     // the invariant that instructions only occur in the leader table for their
1758     // own value number (this is used by removeFromLeaderTable), do not do this
1759     // if RHS is an instruction (if an instruction in the scope is morphed into
1760     // LHS then it will be turned into RHS by the next GVN iteration anyway, so
1761     // using the leader table is about compiling faster, not optimizing better).
1762     // The leader table only tracks basic blocks, not edges. Only add to if we
1763     // have the simple case where the edge dominates the end.
1764     if (RootDominatesEnd && !isa<Instruction>(RHS))
1765       addToLeaderTable(LVN, RHS, Root.getEnd());
1766 
1767     // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
1768     // LHS always has at least one use that is not dominated by Root, this will
1769     // never do anything if LHS has only one use.
1770     if (!LHS->hasOneUse()) {
1771       unsigned NumReplacements =
1772           DominatesByEdge
1773               ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
1774               : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());
1775 
1776       Changed |= NumReplacements > 0;
1777       NumGVNEqProp += NumReplacements;
1778     }
1779 
1780     // Now try to deduce additional equalities from this one. For example, if
1781     // the known equality was "(A != B)" == "false" then it follows that A and B
1782     // are equal in the scope. Only boolean equalities with an explicit true or
1783     // false RHS are currently supported.
1784     if (!RHS->getType()->isIntegerTy(1))
1785       // Not a boolean equality - bail out.
1786       continue;
1787     ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
1788     if (!CI)
1789       // RHS neither 'true' nor 'false' - bail out.
1790       continue;
1791     // Whether RHS equals 'true'.  Otherwise it equals 'false'.
1792     bool isKnownTrue = CI->isMinusOne();
1793     bool isKnownFalse = !isKnownTrue;
1794 
1795     // If "A && B" is known true then both A and B are known true.  If "A || B"
1796     // is known false then both A and B are known false.
1797     Value *A, *B;
1798     if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
1799         (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
1800       Worklist.push_back(std::make_pair(A, RHS));
1801       Worklist.push_back(std::make_pair(B, RHS));
1802       continue;
1803     }
1804 
1805     // If we are propagating an equality like "(A == B)" == "true" then also
1806     // propagate the equality A == B.  When propagating a comparison such as
1807     // "(A >= B)" == "true", replace all instances of "A < B" with "false".
1808     if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
1809       Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
1810 
1811       // If "A == B" is known true, or "A != B" is known false, then replace
1812       // A with B everywhere in the scope.
1813       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
1814           (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
1815         Worklist.push_back(std::make_pair(Op0, Op1));
1816 
1817       // Handle the floating point versions of equality comparisons too.
1818       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) ||
1819           (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) {
1820 
1821         // Floating point -0.0 and 0.0 compare equal, so we can only
1822         // propagate values if we know that we have a constant and that
1823         // its value is non-zero.
1824 
1825         // FIXME: We should do this optimization if 'no signed zeros' is
1826         // applicable via an instruction-level fast-math-flag or some other
1827         // indicator that relaxed FP semantics are being used.
1828 
1829         if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero())
1830           Worklist.push_back(std::make_pair(Op0, Op1));
1831       }
1832 
1833       // If "A >= B" is known true, replace "A < B" with false everywhere.
1834       CmpInst::Predicate NotPred = Cmp->getInversePredicate();
1835       Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
1836       // Since we don't have the instruction "A < B" immediately to hand, work
1837       // out the value number that it would have and use that to find an
1838       // appropriate instruction (if any).
1839       uint32_t NextNum = VN.getNextUnusedValueNumber();
1840       uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
1841       // If the number we were assigned was brand new then there is no point in
1842       // looking for an instruction realizing it: there cannot be one!
1843       if (Num < NextNum) {
1844         Value *NotCmp = findLeader(Root.getEnd(), Num);
1845         if (NotCmp && isa<Instruction>(NotCmp)) {
1846           unsigned NumReplacements =
1847               DominatesByEdge
1848                   ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
1849                   : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
1850                                              Root.getStart());
1851           Changed |= NumReplacements > 0;
1852           NumGVNEqProp += NumReplacements;
1853         }
1854       }
1855       // Ensure that any instruction in scope that gets the "A < B" value number
1856       // is replaced with false.
1857       // The leader table only tracks basic blocks, not edges. Only add to if we
1858       // have the simple case where the edge dominates the end.
1859       if (RootDominatesEnd)
1860         addToLeaderTable(Num, NotVal, Root.getEnd());
1861 
1862       continue;
1863     }
1864   }
1865 
1866   return Changed;
1867 }
1868 
1869 /// When calculating availability, handle an instruction
1870 /// by inserting it into the appropriate sets
1871 bool GVN::processInstruction(Instruction *I) {
1872   // Ignore dbg info intrinsics.
1873   if (isa<DbgInfoIntrinsic>(I))
1874     return false;
1875 
1876   // If the instruction can be easily simplified then do so now in preference
1877   // to value numbering it.  Value numbering often exposes redundancies, for
1878   // example if it determines that %y is equal to %x then the instruction
1879   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
1880   const DataLayout &DL = I->getModule()->getDataLayout();
1881   if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) {
1882     bool Changed = false;
1883     if (!I->use_empty()) {
1884       I->replaceAllUsesWith(V);
1885       Changed = true;
1886     }
1887     if (isInstructionTriviallyDead(I, TLI)) {
1888       markInstructionForDeletion(I);
1889       Changed = true;
1890     }
1891     if (Changed) {
1892       if (MD && V->getType()->isPtrOrPtrVectorTy())
1893         MD->invalidateCachedPointerInfo(V);
1894       ++NumGVNSimpl;
1895       return true;
1896     }
1897   }
1898 
1899   if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I))
1900     if (IntrinsicI->getIntrinsicID() == Intrinsic::assume)
1901       return processAssumeIntrinsic(IntrinsicI);
1902 
1903   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1904     if (processLoad(LI))
1905       return true;
1906 
1907     unsigned Num = VN.lookupOrAdd(LI);
1908     addToLeaderTable(Num, LI, LI->getParent());
1909     return false;
1910   }
1911 
1912   // For conditional branches, we can perform simple conditional propagation on
1913   // the condition value itself.
1914   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1915     if (!BI->isConditional())
1916       return false;
1917 
1918     if (isa<Constant>(BI->getCondition()))
1919       return processFoldableCondBr(BI);
1920 
1921     Value *BranchCond = BI->getCondition();
1922     BasicBlock *TrueSucc = BI->getSuccessor(0);
1923     BasicBlock *FalseSucc = BI->getSuccessor(1);
1924     // Avoid multiple edges early.
1925     if (TrueSucc == FalseSucc)
1926       return false;
1927 
1928     BasicBlock *Parent = BI->getParent();
1929     bool Changed = false;
1930 
1931     Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
1932     BasicBlockEdge TrueE(Parent, TrueSucc);
1933     Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
1934 
1935     Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
1936     BasicBlockEdge FalseE(Parent, FalseSucc);
1937     Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
1938 
1939     return Changed;
1940   }
1941 
1942   // For switches, propagate the case values into the case destinations.
1943   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1944     Value *SwitchCond = SI->getCondition();
1945     BasicBlock *Parent = SI->getParent();
1946     bool Changed = false;
1947 
1948     // Remember how many outgoing edges there are to every successor.
1949     SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
1950     for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
1951       ++SwitchEdges[SI->getSuccessor(i)];
1952 
1953     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
1954          i != e; ++i) {
1955       BasicBlock *Dst = i->getCaseSuccessor();
1956       // If there is only a single edge, propagate the case value into it.
1957       if (SwitchEdges.lookup(Dst) == 1) {
1958         BasicBlockEdge E(Parent, Dst);
1959         Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true);
1960       }
1961     }
1962     return Changed;
1963   }
1964 
1965   // Instructions with void type don't return a value, so there's
1966   // no point in trying to find redundancies in them.
1967   if (I->getType()->isVoidTy())
1968     return false;
1969 
1970   uint32_t NextNum = VN.getNextUnusedValueNumber();
1971   unsigned Num = VN.lookupOrAdd(I);
1972 
1973   // Allocations are always uniquely numbered, so we can save time and memory
1974   // by fast failing them.
1975   if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
1976     addToLeaderTable(Num, I, I->getParent());
1977     return false;
1978   }
1979 
1980   // If the number we were assigned was a brand new VN, then we don't
1981   // need to do a lookup to see if the number already exists
1982   // somewhere in the domtree: it can't!
1983   if (Num >= NextNum) {
1984     addToLeaderTable(Num, I, I->getParent());
1985     return false;
1986   }
1987 
1988   // Perform fast-path value-number based elimination of values inherited from
1989   // dominators.
1990   Value *Repl = findLeader(I->getParent(), Num);
1991   if (!Repl) {
1992     // Failure, just remember this instance for future use.
1993     addToLeaderTable(Num, I, I->getParent());
1994     return false;
1995   } else if (Repl == I) {
1996     // If I was the result of a shortcut PRE, it might already be in the table
1997     // and the best replacement for itself. Nothing to do.
1998     return false;
1999   }
2000 
2001   // Remove it!
2002   patchAndReplaceAllUsesWith(I, Repl);
2003   if (MD && Repl->getType()->isPtrOrPtrVectorTy())
2004     MD->invalidateCachedPointerInfo(Repl);
2005   markInstructionForDeletion(I);
2006   return true;
2007 }
2008 
2009 /// runOnFunction - This is the main transformation entry point for a function.
2010 bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
2011                   const TargetLibraryInfo &RunTLI, AAResults &RunAA,
2012                   MemoryDependenceResults *RunMD, LoopInfo *LI,
2013                   OptimizationRemarkEmitter *RunORE) {
2014   AC = &RunAC;
2015   DT = &RunDT;
2016   VN.setDomTree(DT);
2017   TLI = &RunTLI;
2018   VN.setAliasAnalysis(&RunAA);
2019   MD = RunMD;
2020   OrderedInstructions OrderedInstrs(DT);
2021   OI = &OrderedInstrs;
2022   VN.setMemDep(MD);
2023   ORE = RunORE;
2024 
2025   bool Changed = false;
2026   bool ShouldContinue = true;
2027 
2028   // Merge unconditional branches, allowing PRE to catch more
2029   // optimization opportunities.
2030   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2031     BasicBlock *BB = &*FI++;
2032 
2033     bool removedBlock = MergeBlockIntoPredecessor(BB, DT, LI, MD);
2034     if (removedBlock)
2035       ++NumGVNBlocks;
2036 
2037     Changed |= removedBlock;
2038   }
2039 
2040   unsigned Iteration = 0;
2041   while (ShouldContinue) {
2042     DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2043     ShouldContinue = iterateOnFunction(F);
2044     Changed |= ShouldContinue;
2045     ++Iteration;
2046   }
2047 
2048   if (EnablePRE) {
2049     // Fabricate val-num for dead-code in order to suppress assertion in
2050     // performPRE().
2051     assignValNumForDeadCode();
2052     assignBlockRPONumber(F);
2053     bool PREChanged = true;
2054     while (PREChanged) {
2055       PREChanged = performPRE(F);
2056       Changed |= PREChanged;
2057     }
2058   }
2059 
2060   // FIXME: Should perform GVN again after PRE does something.  PRE can move
2061   // computations into blocks where they become fully redundant.  Note that
2062   // we can't do this until PRE's critical edge splitting updates memdep.
2063   // Actually, when this happens, we should just fully integrate PRE into GVN.
2064 
2065   cleanupGlobalSets();
2066   // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2067   // iteration.
2068   DeadBlocks.clear();
2069 
2070   return Changed;
2071 }
2072 
2073 bool GVN::processBlock(BasicBlock *BB) {
2074   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2075   // (and incrementing BI before processing an instruction).
2076   assert(InstrsToErase.empty() &&
2077          "We expect InstrsToErase to be empty across iterations");
2078   if (DeadBlocks.count(BB))
2079     return false;
2080 
2081   // Clearing map before every BB because it can be used only for single BB.
2082   ReplaceWithConstMap.clear();
2083   bool ChangedFunction = false;
2084 
2085   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2086        BI != BE;) {
2087     if (!ReplaceWithConstMap.empty())
2088       ChangedFunction |= replaceOperandsWithConsts(&*BI);
2089     ChangedFunction |= processInstruction(&*BI);
2090 
2091     if (InstrsToErase.empty()) {
2092       ++BI;
2093       continue;
2094     }
2095 
2096     // If we need some instructions deleted, do it now.
2097     NumGVNInstr += InstrsToErase.size();
2098 
2099     // Avoid iterator invalidation.
2100     bool AtStart = BI == BB->begin();
2101     if (!AtStart)
2102       --BI;
2103 
2104     bool InvalidateImplicitCF = false;
2105     const Instruction *MaybeFirstICF = FirstImplicitControlFlowInsts.lookup(BB);
2106     for (auto *I : InstrsToErase) {
2107       assert(I->getParent() == BB && "Removing instruction from wrong block?");
2108       DEBUG(dbgs() << "GVN removed: " << *I << '\n');
2109       salvageDebugInfo(*I);
2110       if (MD) MD->removeInstruction(I);
2111       DEBUG(verifyRemoved(I));
2112       if (MaybeFirstICF == I) {
2113         // We have erased the first ICF in block. The map needs to be updated.
2114         InvalidateImplicitCF = true;
2115         // Do not keep dangling pointer on the erased instruction.
2116         MaybeFirstICF = nullptr;
2117       }
2118       I->eraseFromParent();
2119     }
2120 
2121     OI->invalidateBlock(BB);
2122     InstrsToErase.clear();
2123     if (InvalidateImplicitCF)
2124       fillImplicitControlFlowInfo(BB);
2125 
2126     if (AtStart)
2127       BI = BB->begin();
2128     else
2129       ++BI;
2130   }
2131 
2132   return ChangedFunction;
2133 }
2134 
2135 // Instantiate an expression in a predecessor that lacked it.
2136 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
2137                                     BasicBlock *Curr, unsigned int ValNo) {
2138   // Because we are going top-down through the block, all value numbers
2139   // will be available in the predecessor by the time we need them.  Any
2140   // that weren't originally present will have been instantiated earlier
2141   // in this loop.
2142   bool success = true;
2143   for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
2144     Value *Op = Instr->getOperand(i);
2145     if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2146       continue;
2147     // This could be a newly inserted instruction, in which case, we won't
2148     // find a value number, and should give up before we hurt ourselves.
2149     // FIXME: Rewrite the infrastructure to let it easier to value number
2150     // and process newly inserted instructions.
2151     if (!VN.exists(Op)) {
2152       success = false;
2153       break;
2154     }
2155     uint32_t TValNo =
2156         VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this);
2157     if (Value *V = findLeader(Pred, TValNo)) {
2158       Instr->setOperand(i, V);
2159     } else {
2160       success = false;
2161       break;
2162     }
2163   }
2164 
2165   // Fail out if we encounter an operand that is not available in
2166   // the PRE predecessor.  This is typically because of loads which
2167   // are not value numbered precisely.
2168   if (!success)
2169     return false;
2170 
2171   Instr->insertBefore(Pred->getTerminator());
2172   Instr->setName(Instr->getName() + ".pre");
2173   Instr->setDebugLoc(Instr->getDebugLoc());
2174 
2175   unsigned Num = VN.lookupOrAdd(Instr);
2176   VN.add(Instr, Num);
2177 
2178   // Update the availability map to include the new instruction.
2179   addToLeaderTable(Num, Instr, Pred);
2180   return true;
2181 }
2182 
2183 bool GVN::performScalarPRE(Instruction *CurInst) {
2184   if (isa<AllocaInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
2185       isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
2186       CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2187       isa<DbgInfoIntrinsic>(CurInst))
2188     return false;
2189 
2190   // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2191   // sinking the compare again, and it would force the code generator to
2192   // move the i1 from processor flags or predicate registers into a general
2193   // purpose register.
2194   if (isa<CmpInst>(CurInst))
2195     return false;
2196 
2197   // We don't currently value number ANY inline asm calls.
2198   if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2199     if (CallI->isInlineAsm())
2200       return false;
2201 
2202   uint32_t ValNo = VN.lookup(CurInst);
2203 
2204   // Look for the predecessors for PRE opportunities.  We're
2205   // only trying to solve the basic diamond case, where
2206   // a value is computed in the successor and one predecessor,
2207   // but not the other.  We also explicitly disallow cases
2208   // where the successor is its own predecessor, because they're
2209   // more complicated to get right.
2210   unsigned NumWith = 0;
2211   unsigned NumWithout = 0;
2212   BasicBlock *PREPred = nullptr;
2213   BasicBlock *CurrentBlock = CurInst->getParent();
2214 
2215   SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
2216   for (BasicBlock *P : predecessors(CurrentBlock)) {
2217     // We're not interested in PRE where blocks with predecessors that are
2218     // not reachable.
2219     if (!DT->isReachableFromEntry(P)) {
2220       NumWithout = 2;
2221       break;
2222     }
2223     // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and
2224     // when CurInst has operand defined in CurrentBlock (so it may be defined
2225     // by phi in the loop header).
2226     if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] &&
2227         llvm::any_of(CurInst->operands(), [&](const Use &U) {
2228           if (auto *Inst = dyn_cast<Instruction>(U.get()))
2229             return Inst->getParent() == CurrentBlock;
2230           return false;
2231         })) {
2232       NumWithout = 2;
2233       break;
2234     }
2235 
2236     uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this);
2237     Value *predV = findLeader(P, TValNo);
2238     if (!predV) {
2239       predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
2240       PREPred = P;
2241       ++NumWithout;
2242     } else if (predV == CurInst) {
2243       /* CurInst dominates this predecessor. */
2244       NumWithout = 2;
2245       break;
2246     } else {
2247       predMap.push_back(std::make_pair(predV, P));
2248       ++NumWith;
2249     }
2250   }
2251 
2252   // Don't do PRE when it might increase code size, i.e. when
2253   // we would need to insert instructions in more than one pred.
2254   if (NumWithout > 1 || NumWith == 0)
2255     return false;
2256 
2257   // We may have a case where all predecessors have the instruction,
2258   // and we just need to insert a phi node. Otherwise, perform
2259   // insertion.
2260   Instruction *PREInstr = nullptr;
2261 
2262   if (NumWithout != 0) {
2263     if (!isSafeToSpeculativelyExecute(CurInst)) {
2264       // It is only valid to insert a new instruction if the current instruction
2265       // is always executed. An instruction with implicit control flow could
2266       // prevent us from doing it. If we cannot speculate the execution, then
2267       // PRE should be prohibited.
2268       auto It = FirstImplicitControlFlowInsts.find(CurrentBlock);
2269       if (It != FirstImplicitControlFlowInsts.end()) {
2270         assert(It->second->getParent() == CurrentBlock &&
2271                "Implicit control flow map broken?");
2272         if (OI->dominates(It->second, CurInst))
2273           return false;
2274       }
2275     }
2276 
2277     // Don't do PRE across indirect branch.
2278     if (isa<IndirectBrInst>(PREPred->getTerminator()))
2279       return false;
2280 
2281     // We can't do PRE safely on a critical edge, so instead we schedule
2282     // the edge to be split and perform the PRE the next time we iterate
2283     // on the function.
2284     unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2285     if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2286       toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2287       return false;
2288     }
2289     // We need to insert somewhere, so let's give it a shot
2290     PREInstr = CurInst->clone();
2291     if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
2292       // If we failed insertion, make sure we remove the instruction.
2293       DEBUG(verifyRemoved(PREInstr));
2294       PREInstr->deleteValue();
2295       return false;
2296     }
2297   }
2298 
2299   // Either we should have filled in the PRE instruction, or we should
2300   // not have needed insertions.
2301   assert(PREInstr != nullptr || NumWithout == 0);
2302 
2303   ++NumGVNPRE;
2304 
2305   // Create a PHI to make the value available in this block.
2306   PHINode *Phi =
2307       PHINode::Create(CurInst->getType(), predMap.size(),
2308                       CurInst->getName() + ".pre-phi", &CurrentBlock->front());
2309   for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2310     if (Value *V = predMap[i].first) {
2311       // If we use an existing value in this phi, we have to patch the original
2312       // value because the phi will be used to replace a later value.
2313       patchReplacementInstruction(CurInst, V);
2314       Phi->addIncoming(V, predMap[i].second);
2315     } else
2316       Phi->addIncoming(PREInstr, PREPred);
2317   }
2318 
2319   VN.add(Phi, ValNo);
2320   // After creating a new PHI for ValNo, the phi translate result for ValNo will
2321   // be changed, so erase the related stale entries in phi translate cache.
2322   VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock);
2323   addToLeaderTable(ValNo, Phi, CurrentBlock);
2324   Phi->setDebugLoc(CurInst->getDebugLoc());
2325   CurInst->replaceAllUsesWith(Phi);
2326   if (MD && Phi->getType()->isPtrOrPtrVectorTy())
2327     MD->invalidateCachedPointerInfo(Phi);
2328   VN.erase(CurInst);
2329   removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2330 
2331   DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2332   if (MD)
2333     MD->removeInstruction(CurInst);
2334   DEBUG(verifyRemoved(CurInst));
2335   bool InvalidateImplicitCF =
2336       FirstImplicitControlFlowInsts.lookup(CurInst->getParent()) == CurInst;
2337   // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes
2338   // some assertion failures.
2339   OI->invalidateBlock(CurrentBlock);
2340   CurInst->eraseFromParent();
2341   if (InvalidateImplicitCF)
2342     fillImplicitControlFlowInfo(CurrentBlock);
2343   ++NumGVNInstr;
2344 
2345   return true;
2346 }
2347 
2348 /// Perform a purely local form of PRE that looks for diamond
2349 /// control flow patterns and attempts to perform simple PRE at the join point.
2350 bool GVN::performPRE(Function &F) {
2351   bool Changed = false;
2352   for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
2353     // Nothing to PRE in the entry block.
2354     if (CurrentBlock == &F.getEntryBlock())
2355       continue;
2356 
2357     // Don't perform PRE on an EH pad.
2358     if (CurrentBlock->isEHPad())
2359       continue;
2360 
2361     for (BasicBlock::iterator BI = CurrentBlock->begin(),
2362                               BE = CurrentBlock->end();
2363          BI != BE;) {
2364       Instruction *CurInst = &*BI++;
2365       Changed |= performScalarPRE(CurInst);
2366     }
2367   }
2368 
2369   if (splitCriticalEdges())
2370     Changed = true;
2371 
2372   return Changed;
2373 }
2374 
2375 /// Split the critical edge connecting the given two blocks, and return
2376 /// the block inserted to the critical edge.
2377 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
2378   BasicBlock *BB =
2379       SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT));
2380   if (MD)
2381     MD->invalidateCachedPredecessors();
2382   return BB;
2383 }
2384 
2385 /// Split critical edges found during the previous
2386 /// iteration that may enable further optimization.
2387 bool GVN::splitCriticalEdges() {
2388   if (toSplit.empty())
2389     return false;
2390   do {
2391     std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2392     SplitCriticalEdge(Edge.first, Edge.second,
2393                       CriticalEdgeSplittingOptions(DT));
2394   } while (!toSplit.empty());
2395   if (MD) MD->invalidateCachedPredecessors();
2396   return true;
2397 }
2398 
2399 /// Executes one iteration of GVN
2400 bool GVN::iterateOnFunction(Function &F) {
2401   cleanupGlobalSets();
2402 
2403   // Top-down walk of the dominator tree
2404   bool Changed = false;
2405   // Needed for value numbering with phi construction to work.
2406   // RPOT walks the graph in its constructor and will not be invalidated during
2407   // processBlock.
2408   ReversePostOrderTraversal<Function *> RPOT(&F);
2409 
2410   for (BasicBlock *BB : RPOT)
2411     fillImplicitControlFlowInfo(BB);
2412   for (BasicBlock *BB : RPOT)
2413     Changed |= processBlock(BB);
2414 
2415   return Changed;
2416 }
2417 
2418 void GVN::cleanupGlobalSets() {
2419   VN.clear();
2420   LeaderTable.clear();
2421   BlockRPONumber.clear();
2422   TableAllocator.Reset();
2423   FirstImplicitControlFlowInsts.clear();
2424 }
2425 
2426 void
2427 GVN::fillImplicitControlFlowInfo(BasicBlock *BB) {
2428   // Make sure that all marked instructions are actually deleted by this point,
2429   // so that we don't need to care about omitting them.
2430   assert(InstrsToErase.empty() && "Filling before removed all marked insns?");
2431   auto MayNotTransferExecutionToSuccessor = [&](const Instruction *I) {
2432     // If a block's instruction doesn't always pass the control to its successor
2433     // instruction, mark the block as having implicit control flow. We use them
2434     // to avoid wrong assumptions of sort "if A is executed and B post-dominates
2435     // A, then B is also executed". This is not true is there is an implicit
2436     // control flow instruction (e.g. a guard) between them.
2437     //
2438     // TODO: Currently, isGuaranteedToTransferExecutionToSuccessor returns false
2439     // for volatile stores and loads because they can trap. The discussion on
2440     // whether or not it is correct is still ongoing. We might want to get rid
2441     // of this logic in the future. Anyways, trapping instructions shouldn't
2442     // introduce implicit control flow, so we explicitly allow them here. This
2443     // must be removed once isGuaranteedToTransferExecutionToSuccessor is fixed.
2444     if (isGuaranteedToTransferExecutionToSuccessor(I))
2445       return false;
2446     if (isa<LoadInst>(I)) {
2447       assert(cast<LoadInst>(I)->isVolatile() &&
2448              "Non-volatile load should transfer execution to successor!");
2449       return false;
2450     }
2451     if (isa<StoreInst>(I)) {
2452       assert(cast<StoreInst>(I)->isVolatile() &&
2453              "Non-volatile store should transfer execution to successor!");
2454       return false;
2455     }
2456     return true;
2457   };
2458   FirstImplicitControlFlowInsts.erase(BB);
2459 
2460   for (auto &I : *BB)
2461     if (MayNotTransferExecutionToSuccessor(&I)) {
2462       FirstImplicitControlFlowInsts[BB] = &I;
2463       break;
2464     }
2465 }
2466 
2467 /// Verify that the specified instruction does not occur in our
2468 /// internal data structures.
2469 void GVN::verifyRemoved(const Instruction *Inst) const {
2470   VN.verifyRemoved(Inst);
2471 
2472   // Walk through the value number scope to make sure the instruction isn't
2473   // ferreted away in it.
2474   for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2475        I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2476     const LeaderTableEntry *Node = &I->second;
2477     assert(Node->Val != Inst && "Inst still in value numbering scope!");
2478 
2479     while (Node->Next) {
2480       Node = Node->Next;
2481       assert(Node->Val != Inst && "Inst still in value numbering scope!");
2482     }
2483   }
2484 }
2485 
2486 /// BB is declared dead, which implied other blocks become dead as well. This
2487 /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
2488 /// live successors, update their phi nodes by replacing the operands
2489 /// corresponding to dead blocks with UndefVal.
2490 void GVN::addDeadBlock(BasicBlock *BB) {
2491   SmallVector<BasicBlock *, 4> NewDead;
2492   SmallSetVector<BasicBlock *, 4> DF;
2493 
2494   NewDead.push_back(BB);
2495   while (!NewDead.empty()) {
2496     BasicBlock *D = NewDead.pop_back_val();
2497     if (DeadBlocks.count(D))
2498       continue;
2499 
2500     // All blocks dominated by D are dead.
2501     SmallVector<BasicBlock *, 8> Dom;
2502     DT->getDescendants(D, Dom);
2503     DeadBlocks.insert(Dom.begin(), Dom.end());
2504 
2505     // Figure out the dominance-frontier(D).
2506     for (BasicBlock *B : Dom) {
2507       for (BasicBlock *S : successors(B)) {
2508         if (DeadBlocks.count(S))
2509           continue;
2510 
2511         bool AllPredDead = true;
2512         for (BasicBlock *P : predecessors(S))
2513           if (!DeadBlocks.count(P)) {
2514             AllPredDead = false;
2515             break;
2516           }
2517 
2518         if (!AllPredDead) {
2519           // S could be proved dead later on. That is why we don't update phi
2520           // operands at this moment.
2521           DF.insert(S);
2522         } else {
2523           // While S is not dominated by D, it is dead by now. This could take
2524           // place if S already have a dead predecessor before D is declared
2525           // dead.
2526           NewDead.push_back(S);
2527         }
2528       }
2529     }
2530   }
2531 
2532   // For the dead blocks' live successors, update their phi nodes by replacing
2533   // the operands corresponding to dead blocks with UndefVal.
2534   for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
2535         I != E; I++) {
2536     BasicBlock *B = *I;
2537     if (DeadBlocks.count(B))
2538       continue;
2539 
2540     SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
2541     for (BasicBlock *P : Preds) {
2542       if (!DeadBlocks.count(P))
2543         continue;
2544 
2545       if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) {
2546         if (BasicBlock *S = splitCriticalEdges(P, B))
2547           DeadBlocks.insert(P = S);
2548       }
2549 
2550       for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) {
2551         PHINode &Phi = cast<PHINode>(*II);
2552         Phi.setIncomingValue(Phi.getBasicBlockIndex(P),
2553                              UndefValue::get(Phi.getType()));
2554       }
2555     }
2556   }
2557 }
2558 
2559 // If the given branch is recognized as a foldable branch (i.e. conditional
2560 // branch with constant condition), it will perform following analyses and
2561 // transformation.
2562 //  1) If the dead out-coming edge is a critical-edge, split it. Let
2563 //     R be the target of the dead out-coming edge.
2564 //  1) Identify the set of dead blocks implied by the branch's dead outcoming
2565 //     edge. The result of this step will be {X| X is dominated by R}
2566 //  2) Identify those blocks which haves at least one dead predecessor. The
2567 //     result of this step will be dominance-frontier(R).
2568 //  3) Update the PHIs in DF(R) by replacing the operands corresponding to
2569 //     dead blocks with "UndefVal" in an hope these PHIs will optimized away.
2570 //
2571 // Return true iff *NEW* dead code are found.
2572 bool GVN::processFoldableCondBr(BranchInst *BI) {
2573   if (!BI || BI->isUnconditional())
2574     return false;
2575 
2576   // If a branch has two identical successors, we cannot declare either dead.
2577   if (BI->getSuccessor(0) == BI->getSuccessor(1))
2578     return false;
2579 
2580   ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
2581   if (!Cond)
2582     return false;
2583 
2584   BasicBlock *DeadRoot =
2585       Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
2586   if (DeadBlocks.count(DeadRoot))
2587     return false;
2588 
2589   if (!DeadRoot->getSinglePredecessor())
2590     DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
2591 
2592   addDeadBlock(DeadRoot);
2593   return true;
2594 }
2595 
2596 // performPRE() will trigger assert if it comes across an instruction without
2597 // associated val-num. As it normally has far more live instructions than dead
2598 // instructions, it makes more sense just to "fabricate" a val-number for the
2599 // dead code than checking if instruction involved is dead or not.
2600 void GVN::assignValNumForDeadCode() {
2601   for (BasicBlock *BB : DeadBlocks) {
2602     for (Instruction &Inst : *BB) {
2603       unsigned ValNum = VN.lookupOrAdd(&Inst);
2604       addToLeaderTable(ValNum, &Inst, BB);
2605     }
2606   }
2607 }
2608 
2609 class llvm::gvn::GVNLegacyPass : public FunctionPass {
2610 public:
2611   static char ID; // Pass identification, replacement for typeid
2612 
2613   explicit GVNLegacyPass(bool NoLoads = false)
2614       : FunctionPass(ID), NoLoads(NoLoads) {
2615     initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
2616   }
2617 
2618   bool runOnFunction(Function &F) override {
2619     if (skipFunction(F))
2620       return false;
2621 
2622     auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
2623 
2624     return Impl.runImpl(
2625         F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
2626         getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
2627         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
2628         getAnalysis<AAResultsWrapperPass>().getAAResults(),
2629         NoLoads ? nullptr
2630                 : &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(),
2631         LIWP ? &LIWP->getLoopInfo() : nullptr,
2632         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE());
2633   }
2634 
2635   void getAnalysisUsage(AnalysisUsage &AU) const override {
2636     AU.addRequired<AssumptionCacheTracker>();
2637     AU.addRequired<DominatorTreeWrapperPass>();
2638     AU.addRequired<TargetLibraryInfoWrapperPass>();
2639     if (!NoLoads)
2640       AU.addRequired<MemoryDependenceWrapperPass>();
2641     AU.addRequired<AAResultsWrapperPass>();
2642 
2643     AU.addPreserved<DominatorTreeWrapperPass>();
2644     AU.addPreserved<GlobalsAAWrapperPass>();
2645     AU.addPreserved<TargetLibraryInfoWrapperPass>();
2646     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2647   }
2648 
2649 private:
2650   bool NoLoads;
2651   GVN Impl;
2652 };
2653 
2654 char GVNLegacyPass::ID = 0;
2655 
2656 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
2657 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2658 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
2659 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2660 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2661 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2662 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
2663 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
2664 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
2665 
2666 // The public interface to this file...
2667 FunctionPass *llvm::createGVNPass(bool NoLoads) {
2668   return new GVNLegacyPass(NoLoads);
2669 }
2670