1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs global value numbering to eliminate fully redundant 10 // instructions. It also performs simple dead load elimination. 11 // 12 // Note that this pass does the value numbering itself; it does not use the 13 // ValueNumbering analysis passes. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Scalar/GVN.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/MapVector.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/Analysis/AliasAnalysis.h" 29 #include "llvm/Analysis/AssumeBundleQueries.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/CFG.h" 32 #include "llvm/Analysis/DomTreeUpdater.h" 33 #include "llvm/Analysis/GlobalsModRef.h" 34 #include "llvm/Analysis/InstructionPrecedenceTracking.h" 35 #include "llvm/Analysis/InstructionSimplify.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/MemoryBuiltins.h" 38 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 39 #include "llvm/Analysis/MemorySSA.h" 40 #include "llvm/Analysis/MemorySSAUpdater.h" 41 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 42 #include "llvm/Analysis/PHITransAddr.h" 43 #include "llvm/Analysis/TargetLibraryInfo.h" 44 #include "llvm/Analysis/ValueTracking.h" 45 #include "llvm/IR/Attributes.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/IntrinsicInst.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/PassManager.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/InitializePasses.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 72 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 73 #include "llvm/Transforms/Utils/Local.h" 74 #include "llvm/Transforms/Utils/SSAUpdater.h" 75 #include "llvm/Transforms/Utils/VNCoercion.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstdint> 79 #include <utility> 80 81 using namespace llvm; 82 using namespace llvm::gvn; 83 using namespace llvm::VNCoercion; 84 using namespace PatternMatch; 85 86 #define DEBUG_TYPE "gvn" 87 88 STATISTIC(NumGVNInstr, "Number of instructions deleted"); 89 STATISTIC(NumGVNLoad, "Number of loads deleted"); 90 STATISTIC(NumGVNPRE, "Number of instructions PRE'd"); 91 STATISTIC(NumGVNBlocks, "Number of blocks merged"); 92 STATISTIC(NumGVNSimpl, "Number of instructions simplified"); 93 STATISTIC(NumGVNEqProp, "Number of equalities propagated"); 94 STATISTIC(NumPRELoad, "Number of loads PRE'd"); 95 STATISTIC(NumPRELoopLoad, "Number of loop loads PRE'd"); 96 97 STATISTIC(IsValueFullyAvailableInBlockNumSpeculationsMax, 98 "Number of blocks speculated as available in " 99 "IsValueFullyAvailableInBlock(), max"); 100 STATISTIC(MaxBBSpeculationCutoffReachedTimes, 101 "Number of times we we reached gvn-max-block-speculations cut-off " 102 "preventing further exploration"); 103 104 static cl::opt<bool> GVNEnablePRE("enable-pre", cl::init(true), cl::Hidden); 105 static cl::opt<bool> GVNEnableLoadPRE("enable-load-pre", cl::init(true)); 106 static cl::opt<bool> GVNEnableLoadInLoopPRE("enable-load-in-loop-pre", 107 cl::init(true)); 108 static cl::opt<bool> 109 GVNEnableSplitBackedgeInLoadPRE("enable-split-backedge-in-load-pre", 110 cl::init(false)); 111 static cl::opt<bool> GVNEnableMemDep("enable-gvn-memdep", cl::init(true)); 112 113 static cl::opt<uint32_t> MaxNumDeps( 114 "gvn-max-num-deps", cl::Hidden, cl::init(100), 115 cl::desc("Max number of dependences to attempt Load PRE (default = 100)")); 116 117 // This is based on IsValueFullyAvailableInBlockNumSpeculationsMax stat. 118 static cl::opt<uint32_t> MaxBBSpeculations( 119 "gvn-max-block-speculations", cl::Hidden, cl::init(600), 120 cl::desc("Max number of blocks we're willing to speculate on (and recurse " 121 "into) when deducing if a value is fully available or not in GVN " 122 "(default = 600)")); 123 124 struct llvm::GVNPass::Expression { 125 uint32_t opcode; 126 bool commutative = false; 127 // The type is not necessarily the result type of the expression, it may be 128 // any additional type needed to disambiguate the expression. 129 Type *type = nullptr; 130 SmallVector<uint32_t, 4> varargs; 131 132 Expression(uint32_t o = ~2U) : opcode(o) {} 133 134 bool operator==(const Expression &other) const { 135 if (opcode != other.opcode) 136 return false; 137 if (opcode == ~0U || opcode == ~1U) 138 return true; 139 if (type != other.type) 140 return false; 141 if (varargs != other.varargs) 142 return false; 143 return true; 144 } 145 146 friend hash_code hash_value(const Expression &Value) { 147 return hash_combine( 148 Value.opcode, Value.type, 149 hash_combine_range(Value.varargs.begin(), Value.varargs.end())); 150 } 151 }; 152 153 namespace llvm { 154 155 template <> struct DenseMapInfo<GVNPass::Expression> { 156 static inline GVNPass::Expression getEmptyKey() { return ~0U; } 157 static inline GVNPass::Expression getTombstoneKey() { return ~1U; } 158 159 static unsigned getHashValue(const GVNPass::Expression &e) { 160 using llvm::hash_value; 161 162 return static_cast<unsigned>(hash_value(e)); 163 } 164 165 static bool isEqual(const GVNPass::Expression &LHS, 166 const GVNPass::Expression &RHS) { 167 return LHS == RHS; 168 } 169 }; 170 171 } // end namespace llvm 172 173 /// Represents a particular available value that we know how to materialize. 174 /// Materialization of an AvailableValue never fails. An AvailableValue is 175 /// implicitly associated with a rematerialization point which is the 176 /// location of the instruction from which it was formed. 177 struct llvm::gvn::AvailableValue { 178 enum class ValType { 179 SimpleVal, // A simple offsetted value that is accessed. 180 LoadVal, // A value produced by a load. 181 MemIntrin, // A memory intrinsic which is loaded from. 182 UndefVal, // A UndefValue representing a value from dead block (which 183 // is not yet physically removed from the CFG). 184 SelectVal, // A pointer select which is loaded from and for which the load 185 // can be replace by a value select. 186 }; 187 188 /// Val - The value that is live out of the block. 189 Value *Val; 190 /// Kind of the live-out value. 191 ValType Kind; 192 193 /// Offset - The byte offset in Val that is interesting for the load query. 194 unsigned Offset = 0; 195 196 static AvailableValue get(Value *V, unsigned Offset = 0) { 197 AvailableValue Res; 198 Res.Val = V; 199 Res.Kind = ValType::SimpleVal; 200 Res.Offset = Offset; 201 return Res; 202 } 203 204 static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) { 205 AvailableValue Res; 206 Res.Val = MI; 207 Res.Kind = ValType::MemIntrin; 208 Res.Offset = Offset; 209 return Res; 210 } 211 212 static AvailableValue getLoad(LoadInst *Load, unsigned Offset = 0) { 213 AvailableValue Res; 214 Res.Val = Load; 215 Res.Kind = ValType::LoadVal; 216 Res.Offset = Offset; 217 return Res; 218 } 219 220 static AvailableValue getUndef() { 221 AvailableValue Res; 222 Res.Val = nullptr; 223 Res.Kind = ValType::UndefVal; 224 Res.Offset = 0; 225 return Res; 226 } 227 228 static AvailableValue getSelect(SelectInst *Sel) { 229 AvailableValue Res; 230 Res.Val = Sel; 231 Res.Kind = ValType::SelectVal; 232 Res.Offset = 0; 233 return Res; 234 } 235 236 bool isSimpleValue() const { return Kind == ValType::SimpleVal; } 237 bool isCoercedLoadValue() const { return Kind == ValType::LoadVal; } 238 bool isMemIntrinValue() const { return Kind == ValType::MemIntrin; } 239 bool isUndefValue() const { return Kind == ValType::UndefVal; } 240 bool isSelectValue() const { return Kind == ValType::SelectVal; } 241 242 Value *getSimpleValue() const { 243 assert(isSimpleValue() && "Wrong accessor"); 244 return Val; 245 } 246 247 LoadInst *getCoercedLoadValue() const { 248 assert(isCoercedLoadValue() && "Wrong accessor"); 249 return cast<LoadInst>(Val); 250 } 251 252 MemIntrinsic *getMemIntrinValue() const { 253 assert(isMemIntrinValue() && "Wrong accessor"); 254 return cast<MemIntrinsic>(Val); 255 } 256 257 SelectInst *getSelectValue() const { 258 assert(isSelectValue() && "Wrong accessor"); 259 return cast<SelectInst>(Val); 260 } 261 262 /// Emit code at the specified insertion point to adjust the value defined 263 /// here to the specified type. This handles various coercion cases. 264 Value *MaterializeAdjustedValue(LoadInst *Load, Instruction *InsertPt, 265 GVNPass &gvn) const; 266 }; 267 268 /// Represents an AvailableValue which can be rematerialized at the end of 269 /// the associated BasicBlock. 270 struct llvm::gvn::AvailableValueInBlock { 271 /// BB - The basic block in question. 272 BasicBlock *BB = nullptr; 273 274 /// AV - The actual available value 275 AvailableValue AV; 276 277 static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) { 278 AvailableValueInBlock Res; 279 Res.BB = BB; 280 Res.AV = std::move(AV); 281 return Res; 282 } 283 284 static AvailableValueInBlock get(BasicBlock *BB, Value *V, 285 unsigned Offset = 0) { 286 return get(BB, AvailableValue::get(V, Offset)); 287 } 288 289 static AvailableValueInBlock getUndef(BasicBlock *BB) { 290 return get(BB, AvailableValue::getUndef()); 291 } 292 293 static AvailableValueInBlock getSelect(BasicBlock *BB, SelectInst *Sel) { 294 return get(BB, AvailableValue::getSelect(Sel)); 295 } 296 297 /// Emit code at the end of this block to adjust the value defined here to 298 /// the specified type. This handles various coercion cases. 299 Value *MaterializeAdjustedValue(LoadInst *Load, GVNPass &gvn) const { 300 return AV.MaterializeAdjustedValue(Load, BB->getTerminator(), gvn); 301 } 302 }; 303 304 //===----------------------------------------------------------------------===// 305 // ValueTable Internal Functions 306 //===----------------------------------------------------------------------===// 307 308 GVNPass::Expression GVNPass::ValueTable::createExpr(Instruction *I) { 309 Expression e; 310 e.type = I->getType(); 311 e.opcode = I->getOpcode(); 312 if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(I)) { 313 // gc.relocate is 'special' call: its second and third operands are 314 // not real values, but indices into statepoint's argument list. 315 // Use the refered to values for purposes of identity. 316 e.varargs.push_back(lookupOrAdd(GCR->getOperand(0))); 317 e.varargs.push_back(lookupOrAdd(GCR->getBasePtr())); 318 e.varargs.push_back(lookupOrAdd(GCR->getDerivedPtr())); 319 } else { 320 for (Use &Op : I->operands()) 321 e.varargs.push_back(lookupOrAdd(Op)); 322 } 323 if (I->isCommutative()) { 324 // Ensure that commutative instructions that only differ by a permutation 325 // of their operands get the same value number by sorting the operand value 326 // numbers. Since commutative operands are the 1st two operands it is more 327 // efficient to sort by hand rather than using, say, std::sort. 328 assert(I->getNumOperands() >= 2 && "Unsupported commutative instruction!"); 329 if (e.varargs[0] > e.varargs[1]) 330 std::swap(e.varargs[0], e.varargs[1]); 331 e.commutative = true; 332 } 333 334 if (auto *C = dyn_cast<CmpInst>(I)) { 335 // Sort the operand value numbers so x<y and y>x get the same value number. 336 CmpInst::Predicate Predicate = C->getPredicate(); 337 if (e.varargs[0] > e.varargs[1]) { 338 std::swap(e.varargs[0], e.varargs[1]); 339 Predicate = CmpInst::getSwappedPredicate(Predicate); 340 } 341 e.opcode = (C->getOpcode() << 8) | Predicate; 342 e.commutative = true; 343 } else if (auto *E = dyn_cast<InsertValueInst>(I)) { 344 e.varargs.append(E->idx_begin(), E->idx_end()); 345 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 346 ArrayRef<int> ShuffleMask = SVI->getShuffleMask(); 347 e.varargs.append(ShuffleMask.begin(), ShuffleMask.end()); 348 } 349 350 return e; 351 } 352 353 GVNPass::Expression GVNPass::ValueTable::createCmpExpr( 354 unsigned Opcode, CmpInst::Predicate Predicate, Value *LHS, Value *RHS) { 355 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 356 "Not a comparison!"); 357 Expression e; 358 e.type = CmpInst::makeCmpResultType(LHS->getType()); 359 e.varargs.push_back(lookupOrAdd(LHS)); 360 e.varargs.push_back(lookupOrAdd(RHS)); 361 362 // Sort the operand value numbers so x<y and y>x get the same value number. 363 if (e.varargs[0] > e.varargs[1]) { 364 std::swap(e.varargs[0], e.varargs[1]); 365 Predicate = CmpInst::getSwappedPredicate(Predicate); 366 } 367 e.opcode = (Opcode << 8) | Predicate; 368 e.commutative = true; 369 return e; 370 } 371 372 GVNPass::Expression 373 GVNPass::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) { 374 assert(EI && "Not an ExtractValueInst?"); 375 Expression e; 376 e.type = EI->getType(); 377 e.opcode = 0; 378 379 WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand()); 380 if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) { 381 // EI is an extract from one of our with.overflow intrinsics. Synthesize 382 // a semantically equivalent expression instead of an extract value 383 // expression. 384 e.opcode = WO->getBinaryOp(); 385 e.varargs.push_back(lookupOrAdd(WO->getLHS())); 386 e.varargs.push_back(lookupOrAdd(WO->getRHS())); 387 return e; 388 } 389 390 // Not a recognised intrinsic. Fall back to producing an extract value 391 // expression. 392 e.opcode = EI->getOpcode(); 393 for (Use &Op : EI->operands()) 394 e.varargs.push_back(lookupOrAdd(Op)); 395 396 append_range(e.varargs, EI->indices()); 397 398 return e; 399 } 400 401 GVNPass::Expression GVNPass::ValueTable::createGEPExpr(GetElementPtrInst *GEP) { 402 Expression E; 403 Type *PtrTy = GEP->getType()->getScalarType(); 404 const DataLayout &DL = GEP->getModule()->getDataLayout(); 405 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 406 MapVector<Value *, APInt> VariableOffsets; 407 APInt ConstantOffset(BitWidth, 0); 408 if (PtrTy->isOpaquePointerTy() && 409 GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) { 410 // For opaque pointers, convert into offset representation, to recognize 411 // equivalent address calculations that use different type encoding. 412 LLVMContext &Context = GEP->getContext(); 413 E.opcode = GEP->getOpcode(); 414 E.type = nullptr; 415 E.varargs.push_back(lookupOrAdd(GEP->getPointerOperand())); 416 for (const auto &Pair : VariableOffsets) { 417 E.varargs.push_back(lookupOrAdd(Pair.first)); 418 E.varargs.push_back(lookupOrAdd(ConstantInt::get(Context, Pair.second))); 419 } 420 if (!ConstantOffset.isZero()) 421 E.varargs.push_back( 422 lookupOrAdd(ConstantInt::get(Context, ConstantOffset))); 423 } else { 424 // If converting to offset representation fails (for typed pointers and 425 // scalable vectors), fall back to type-based implementation: 426 E.opcode = GEP->getOpcode(); 427 E.type = GEP->getSourceElementType(); 428 for (Use &Op : GEP->operands()) 429 E.varargs.push_back(lookupOrAdd(Op)); 430 } 431 return E; 432 } 433 434 //===----------------------------------------------------------------------===// 435 // ValueTable External Functions 436 //===----------------------------------------------------------------------===// 437 438 GVNPass::ValueTable::ValueTable() = default; 439 GVNPass::ValueTable::ValueTable(const ValueTable &) = default; 440 GVNPass::ValueTable::ValueTable(ValueTable &&) = default; 441 GVNPass::ValueTable::~ValueTable() = default; 442 GVNPass::ValueTable & 443 GVNPass::ValueTable::operator=(const GVNPass::ValueTable &Arg) = default; 444 445 /// add - Insert a value into the table with a specified value number. 446 void GVNPass::ValueTable::add(Value *V, uint32_t num) { 447 valueNumbering.insert(std::make_pair(V, num)); 448 if (PHINode *PN = dyn_cast<PHINode>(V)) 449 NumberingPhi[num] = PN; 450 } 451 452 uint32_t GVNPass::ValueTable::lookupOrAddCall(CallInst *C) { 453 if (AA->doesNotAccessMemory(C)) { 454 Expression exp = createExpr(C); 455 uint32_t e = assignExpNewValueNum(exp).first; 456 valueNumbering[C] = e; 457 return e; 458 } else if (MD && AA->onlyReadsMemory(C)) { 459 Expression exp = createExpr(C); 460 auto ValNum = assignExpNewValueNum(exp); 461 if (ValNum.second) { 462 valueNumbering[C] = ValNum.first; 463 return ValNum.first; 464 } 465 466 MemDepResult local_dep = MD->getDependency(C); 467 468 if (!local_dep.isDef() && !local_dep.isNonLocal()) { 469 valueNumbering[C] = nextValueNumber; 470 return nextValueNumber++; 471 } 472 473 if (local_dep.isDef()) { 474 // For masked load/store intrinsics, the local_dep may actully be 475 // a normal load or store instruction. 476 CallInst *local_cdep = dyn_cast<CallInst>(local_dep.getInst()); 477 478 if (!local_cdep || local_cdep->arg_size() != C->arg_size()) { 479 valueNumbering[C] = nextValueNumber; 480 return nextValueNumber++; 481 } 482 483 for (unsigned i = 0, e = C->arg_size(); i < e; ++i) { 484 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 485 uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i)); 486 if (c_vn != cd_vn) { 487 valueNumbering[C] = nextValueNumber; 488 return nextValueNumber++; 489 } 490 } 491 492 uint32_t v = lookupOrAdd(local_cdep); 493 valueNumbering[C] = v; 494 return v; 495 } 496 497 // Non-local case. 498 const MemoryDependenceResults::NonLocalDepInfo &deps = 499 MD->getNonLocalCallDependency(C); 500 // FIXME: Move the checking logic to MemDep! 501 CallInst* cdep = nullptr; 502 503 // Check to see if we have a single dominating call instruction that is 504 // identical to C. 505 for (unsigned i = 0, e = deps.size(); i != e; ++i) { 506 const NonLocalDepEntry *I = &deps[i]; 507 if (I->getResult().isNonLocal()) 508 continue; 509 510 // We don't handle non-definitions. If we already have a call, reject 511 // instruction dependencies. 512 if (!I->getResult().isDef() || cdep != nullptr) { 513 cdep = nullptr; 514 break; 515 } 516 517 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst()); 518 // FIXME: All duplicated with non-local case. 519 if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){ 520 cdep = NonLocalDepCall; 521 continue; 522 } 523 524 cdep = nullptr; 525 break; 526 } 527 528 if (!cdep) { 529 valueNumbering[C] = nextValueNumber; 530 return nextValueNumber++; 531 } 532 533 if (cdep->arg_size() != C->arg_size()) { 534 valueNumbering[C] = nextValueNumber; 535 return nextValueNumber++; 536 } 537 for (unsigned i = 0, e = C->arg_size(); i < e; ++i) { 538 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 539 uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i)); 540 if (c_vn != cd_vn) { 541 valueNumbering[C] = nextValueNumber; 542 return nextValueNumber++; 543 } 544 } 545 546 uint32_t v = lookupOrAdd(cdep); 547 valueNumbering[C] = v; 548 return v; 549 } else { 550 valueNumbering[C] = nextValueNumber; 551 return nextValueNumber++; 552 } 553 } 554 555 /// Returns true if a value number exists for the specified value. 556 bool GVNPass::ValueTable::exists(Value *V) const { 557 return valueNumbering.count(V) != 0; 558 } 559 560 /// lookup_or_add - Returns the value number for the specified value, assigning 561 /// it a new number if it did not have one before. 562 uint32_t GVNPass::ValueTable::lookupOrAdd(Value *V) { 563 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); 564 if (VI != valueNumbering.end()) 565 return VI->second; 566 567 if (!isa<Instruction>(V)) { 568 valueNumbering[V] = nextValueNumber; 569 return nextValueNumber++; 570 } 571 572 Instruction* I = cast<Instruction>(V); 573 Expression exp; 574 switch (I->getOpcode()) { 575 case Instruction::Call: 576 return lookupOrAddCall(cast<CallInst>(I)); 577 case Instruction::FNeg: 578 case Instruction::Add: 579 case Instruction::FAdd: 580 case Instruction::Sub: 581 case Instruction::FSub: 582 case Instruction::Mul: 583 case Instruction::FMul: 584 case Instruction::UDiv: 585 case Instruction::SDiv: 586 case Instruction::FDiv: 587 case Instruction::URem: 588 case Instruction::SRem: 589 case Instruction::FRem: 590 case Instruction::Shl: 591 case Instruction::LShr: 592 case Instruction::AShr: 593 case Instruction::And: 594 case Instruction::Or: 595 case Instruction::Xor: 596 case Instruction::ICmp: 597 case Instruction::FCmp: 598 case Instruction::Trunc: 599 case Instruction::ZExt: 600 case Instruction::SExt: 601 case Instruction::FPToUI: 602 case Instruction::FPToSI: 603 case Instruction::UIToFP: 604 case Instruction::SIToFP: 605 case Instruction::FPTrunc: 606 case Instruction::FPExt: 607 case Instruction::PtrToInt: 608 case Instruction::IntToPtr: 609 case Instruction::AddrSpaceCast: 610 case Instruction::BitCast: 611 case Instruction::Select: 612 case Instruction::Freeze: 613 case Instruction::ExtractElement: 614 case Instruction::InsertElement: 615 case Instruction::ShuffleVector: 616 case Instruction::InsertValue: 617 exp = createExpr(I); 618 break; 619 case Instruction::GetElementPtr: 620 exp = createGEPExpr(cast<GetElementPtrInst>(I)); 621 break; 622 case Instruction::ExtractValue: 623 exp = createExtractvalueExpr(cast<ExtractValueInst>(I)); 624 break; 625 case Instruction::PHI: 626 valueNumbering[V] = nextValueNumber; 627 NumberingPhi[nextValueNumber] = cast<PHINode>(V); 628 return nextValueNumber++; 629 default: 630 valueNumbering[V] = nextValueNumber; 631 return nextValueNumber++; 632 } 633 634 uint32_t e = assignExpNewValueNum(exp).first; 635 valueNumbering[V] = e; 636 return e; 637 } 638 639 /// Returns the value number of the specified value. Fails if 640 /// the value has not yet been numbered. 641 uint32_t GVNPass::ValueTable::lookup(Value *V, bool Verify) const { 642 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V); 643 if (Verify) { 644 assert(VI != valueNumbering.end() && "Value not numbered?"); 645 return VI->second; 646 } 647 return (VI != valueNumbering.end()) ? VI->second : 0; 648 } 649 650 /// Returns the value number of the given comparison, 651 /// assigning it a new number if it did not have one before. Useful when 652 /// we deduced the result of a comparison, but don't immediately have an 653 /// instruction realizing that comparison to hand. 654 uint32_t GVNPass::ValueTable::lookupOrAddCmp(unsigned Opcode, 655 CmpInst::Predicate Predicate, 656 Value *LHS, Value *RHS) { 657 Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS); 658 return assignExpNewValueNum(exp).first; 659 } 660 661 /// Remove all entries from the ValueTable. 662 void GVNPass::ValueTable::clear() { 663 valueNumbering.clear(); 664 expressionNumbering.clear(); 665 NumberingPhi.clear(); 666 PhiTranslateTable.clear(); 667 nextValueNumber = 1; 668 Expressions.clear(); 669 ExprIdx.clear(); 670 nextExprNumber = 0; 671 } 672 673 /// Remove a value from the value numbering. 674 void GVNPass::ValueTable::erase(Value *V) { 675 uint32_t Num = valueNumbering.lookup(V); 676 valueNumbering.erase(V); 677 // If V is PHINode, V <--> value number is an one-to-one mapping. 678 if (isa<PHINode>(V)) 679 NumberingPhi.erase(Num); 680 } 681 682 /// verifyRemoved - Verify that the value is removed from all internal data 683 /// structures. 684 void GVNPass::ValueTable::verifyRemoved(const Value *V) const { 685 for (DenseMap<Value*, uint32_t>::const_iterator 686 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) { 687 assert(I->first != V && "Inst still occurs in value numbering map!"); 688 } 689 } 690 691 //===----------------------------------------------------------------------===// 692 // GVN Pass 693 //===----------------------------------------------------------------------===// 694 695 bool GVNPass::isPREEnabled() const { 696 return Options.AllowPRE.getValueOr(GVNEnablePRE); 697 } 698 699 bool GVNPass::isLoadPREEnabled() const { 700 return Options.AllowLoadPRE.getValueOr(GVNEnableLoadPRE); 701 } 702 703 bool GVNPass::isLoadInLoopPREEnabled() const { 704 return Options.AllowLoadInLoopPRE.getValueOr(GVNEnableLoadInLoopPRE); 705 } 706 707 bool GVNPass::isLoadPRESplitBackedgeEnabled() const { 708 return Options.AllowLoadPRESplitBackedge.getValueOr( 709 GVNEnableSplitBackedgeInLoadPRE); 710 } 711 712 bool GVNPass::isMemDepEnabled() const { 713 return Options.AllowMemDep.getValueOr(GVNEnableMemDep); 714 } 715 716 PreservedAnalyses GVNPass::run(Function &F, FunctionAnalysisManager &AM) { 717 // FIXME: The order of evaluation of these 'getResult' calls is very 718 // significant! Re-ordering these variables will cause GVN when run alone to 719 // be less effective! We should fix memdep and basic-aa to not exhibit this 720 // behavior, but until then don't change the order here. 721 auto &AC = AM.getResult<AssumptionAnalysis>(F); 722 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 723 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 724 auto &AA = AM.getResult<AAManager>(F); 725 auto *MemDep = 726 isMemDepEnabled() ? &AM.getResult<MemoryDependenceAnalysis>(F) : nullptr; 727 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 728 auto *MSSA = AM.getCachedResult<MemorySSAAnalysis>(F); 729 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 730 bool Changed = runImpl(F, AC, DT, TLI, AA, MemDep, LI, &ORE, 731 MSSA ? &MSSA->getMSSA() : nullptr); 732 if (!Changed) 733 return PreservedAnalyses::all(); 734 PreservedAnalyses PA; 735 PA.preserve<DominatorTreeAnalysis>(); 736 PA.preserve<TargetLibraryAnalysis>(); 737 if (MSSA) 738 PA.preserve<MemorySSAAnalysis>(); 739 if (LI) 740 PA.preserve<LoopAnalysis>(); 741 return PA; 742 } 743 744 void GVNPass::printPipeline( 745 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 746 static_cast<PassInfoMixin<GVNPass> *>(this)->printPipeline( 747 OS, MapClassName2PassName); 748 749 OS << "<"; 750 if (Options.AllowPRE != None) 751 OS << (Options.AllowPRE.getValue() ? "" : "no-") << "pre;"; 752 if (Options.AllowLoadPRE != None) 753 OS << (Options.AllowLoadPRE.getValue() ? "" : "no-") << "load-pre;"; 754 if (Options.AllowLoadPRESplitBackedge != None) 755 OS << (Options.AllowLoadPRESplitBackedge.getValue() ? "" : "no-") 756 << "split-backedge-load-pre;"; 757 if (Options.AllowMemDep != None) 758 OS << (Options.AllowMemDep.getValue() ? "" : "no-") << "memdep"; 759 OS << ">"; 760 } 761 762 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 763 LLVM_DUMP_METHOD void GVNPass::dump(DenseMap<uint32_t, Value *> &d) const { 764 errs() << "{\n"; 765 for (auto &I : d) { 766 errs() << I.first << "\n"; 767 I.second->dump(); 768 } 769 errs() << "}\n"; 770 } 771 #endif 772 773 enum class AvailabilityState : char { 774 /// We know the block *is not* fully available. This is a fixpoint. 775 Unavailable = 0, 776 /// We know the block *is* fully available. This is a fixpoint. 777 Available = 1, 778 /// We do not know whether the block is fully available or not, 779 /// but we are currently speculating that it will be. 780 /// If it would have turned out that the block was, in fact, not fully 781 /// available, this would have been cleaned up into an Unavailable. 782 SpeculativelyAvailable = 2, 783 }; 784 785 /// Return true if we can prove that the value 786 /// we're analyzing is fully available in the specified block. As we go, keep 787 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This 788 /// map is actually a tri-state map with the following values: 789 /// 0) we know the block *is not* fully available. 790 /// 1) we know the block *is* fully available. 791 /// 2) we do not know whether the block is fully available or not, but we are 792 /// currently speculating that it will be. 793 static bool IsValueFullyAvailableInBlock( 794 BasicBlock *BB, 795 DenseMap<BasicBlock *, AvailabilityState> &FullyAvailableBlocks) { 796 SmallVector<BasicBlock *, 32> Worklist; 797 Optional<BasicBlock *> UnavailableBB; 798 799 // The number of times we didn't find an entry for a block in a map and 800 // optimistically inserted an entry marking block as speculatively available. 801 unsigned NumNewNewSpeculativelyAvailableBBs = 0; 802 803 #ifndef NDEBUG 804 SmallSet<BasicBlock *, 32> NewSpeculativelyAvailableBBs; 805 SmallVector<BasicBlock *, 32> AvailableBBs; 806 #endif 807 808 Worklist.emplace_back(BB); 809 while (!Worklist.empty()) { 810 BasicBlock *CurrBB = Worklist.pop_back_val(); // LoadFO - depth-first! 811 // Optimistically assume that the block is Speculatively Available and check 812 // to see if we already know about this block in one lookup. 813 std::pair<DenseMap<BasicBlock *, AvailabilityState>::iterator, bool> IV = 814 FullyAvailableBlocks.try_emplace( 815 CurrBB, AvailabilityState::SpeculativelyAvailable); 816 AvailabilityState &State = IV.first->second; 817 818 // Did the entry already exist for this block? 819 if (!IV.second) { 820 if (State == AvailabilityState::Unavailable) { 821 UnavailableBB = CurrBB; 822 break; // Backpropagate unavailability info. 823 } 824 825 #ifndef NDEBUG 826 AvailableBBs.emplace_back(CurrBB); 827 #endif 828 continue; // Don't recurse further, but continue processing worklist. 829 } 830 831 // No entry found for block. 832 ++NumNewNewSpeculativelyAvailableBBs; 833 bool OutOfBudget = NumNewNewSpeculativelyAvailableBBs > MaxBBSpeculations; 834 835 // If we have exhausted our budget, mark this block as unavailable. 836 // Also, if this block has no predecessors, the value isn't live-in here. 837 if (OutOfBudget || pred_empty(CurrBB)) { 838 MaxBBSpeculationCutoffReachedTimes += (int)OutOfBudget; 839 State = AvailabilityState::Unavailable; 840 UnavailableBB = CurrBB; 841 break; // Backpropagate unavailability info. 842 } 843 844 // Tentatively consider this block as speculatively available. 845 #ifndef NDEBUG 846 NewSpeculativelyAvailableBBs.insert(CurrBB); 847 #endif 848 // And further recurse into block's predecessors, in depth-first order! 849 Worklist.append(pred_begin(CurrBB), pred_end(CurrBB)); 850 } 851 852 #if LLVM_ENABLE_STATS 853 IsValueFullyAvailableInBlockNumSpeculationsMax.updateMax( 854 NumNewNewSpeculativelyAvailableBBs); 855 #endif 856 857 // If the block isn't marked as fixpoint yet 858 // (the Unavailable and Available states are fixpoints) 859 auto MarkAsFixpointAndEnqueueSuccessors = 860 [&](BasicBlock *BB, AvailabilityState FixpointState) { 861 auto It = FullyAvailableBlocks.find(BB); 862 if (It == FullyAvailableBlocks.end()) 863 return; // Never queried this block, leave as-is. 864 switch (AvailabilityState &State = It->second) { 865 case AvailabilityState::Unavailable: 866 case AvailabilityState::Available: 867 return; // Don't backpropagate further, continue processing worklist. 868 case AvailabilityState::SpeculativelyAvailable: // Fix it! 869 State = FixpointState; 870 #ifndef NDEBUG 871 assert(NewSpeculativelyAvailableBBs.erase(BB) && 872 "Found a speculatively available successor leftover?"); 873 #endif 874 // Queue successors for further processing. 875 Worklist.append(succ_begin(BB), succ_end(BB)); 876 return; 877 } 878 }; 879 880 if (UnavailableBB) { 881 // Okay, we have encountered an unavailable block. 882 // Mark speculatively available blocks reachable from UnavailableBB as 883 // unavailable as well. Paths are terminated when they reach blocks not in 884 // FullyAvailableBlocks or they are not marked as speculatively available. 885 Worklist.clear(); 886 Worklist.append(succ_begin(*UnavailableBB), succ_end(*UnavailableBB)); 887 while (!Worklist.empty()) 888 MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(), 889 AvailabilityState::Unavailable); 890 } 891 892 #ifndef NDEBUG 893 Worklist.clear(); 894 for (BasicBlock *AvailableBB : AvailableBBs) 895 Worklist.append(succ_begin(AvailableBB), succ_end(AvailableBB)); 896 while (!Worklist.empty()) 897 MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(), 898 AvailabilityState::Available); 899 900 assert(NewSpeculativelyAvailableBBs.empty() && 901 "Must have fixed all the new speculatively available blocks."); 902 #endif 903 904 return !UnavailableBB; 905 } 906 907 /// Given a set of loads specified by ValuesPerBlock, 908 /// construct SSA form, allowing us to eliminate Load. This returns the value 909 /// that should be used at Load's definition site. 910 static Value * 911 ConstructSSAForLoadSet(LoadInst *Load, 912 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, 913 GVNPass &gvn) { 914 // Check for the fully redundant, dominating load case. In this case, we can 915 // just use the dominating value directly. 916 if (ValuesPerBlock.size() == 1 && 917 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB, 918 Load->getParent())) { 919 assert(!ValuesPerBlock[0].AV.isUndefValue() && 920 "Dead BB dominate this block"); 921 return ValuesPerBlock[0].MaterializeAdjustedValue(Load, gvn); 922 } 923 924 // Otherwise, we have to construct SSA form. 925 SmallVector<PHINode*, 8> NewPHIs; 926 SSAUpdater SSAUpdate(&NewPHIs); 927 SSAUpdate.Initialize(Load->getType(), Load->getName()); 928 929 for (const AvailableValueInBlock &AV : ValuesPerBlock) { 930 BasicBlock *BB = AV.BB; 931 932 if (AV.AV.isUndefValue()) 933 continue; 934 935 if (SSAUpdate.HasValueForBlock(BB)) 936 continue; 937 938 // If the value is the load that we will be eliminating, and the block it's 939 // available in is the block that the load is in, then don't add it as 940 // SSAUpdater will resolve the value to the relevant phi which may let it 941 // avoid phi construction entirely if there's actually only one value. 942 if (BB == Load->getParent() && 943 ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == Load) || 944 (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == Load))) 945 continue; 946 947 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(Load, gvn)); 948 } 949 950 // Perform PHI construction. 951 return SSAUpdate.GetValueInMiddleOfBlock(Load->getParent()); 952 } 953 954 static LoadInst *findDominatingLoad(Value *Ptr, Type *LoadTy, SelectInst *Sel, 955 DominatorTree &DT) { 956 for (Value *U : Ptr->users()) { 957 auto *LI = dyn_cast<LoadInst>(U); 958 if (LI && LI->getType() == LoadTy && LI->getParent() == Sel->getParent() && 959 DT.dominates(LI, Sel)) 960 return LI; 961 } 962 return nullptr; 963 } 964 965 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *Load, 966 Instruction *InsertPt, 967 GVNPass &gvn) const { 968 Value *Res; 969 Type *LoadTy = Load->getType(); 970 const DataLayout &DL = Load->getModule()->getDataLayout(); 971 if (isSimpleValue()) { 972 Res = getSimpleValue(); 973 if (Res->getType() != LoadTy) { 974 Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL); 975 976 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset 977 << " " << *getSimpleValue() << '\n' 978 << *Res << '\n' 979 << "\n\n\n"); 980 } 981 } else if (isCoercedLoadValue()) { 982 LoadInst *CoercedLoad = getCoercedLoadValue(); 983 if (CoercedLoad->getType() == LoadTy && Offset == 0) { 984 Res = CoercedLoad; 985 } else { 986 Res = getLoadValueForLoad(CoercedLoad, Offset, LoadTy, InsertPt, DL); 987 // We would like to use gvn.markInstructionForDeletion here, but we can't 988 // because the load is already memoized into the leader map table that GVN 989 // tracks. It is potentially possible to remove the load from the table, 990 // but then there all of the operations based on it would need to be 991 // rehashed. Just leave the dead load around. 992 gvn.getMemDep().removeInstruction(CoercedLoad); 993 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset 994 << " " << *getCoercedLoadValue() << '\n' 995 << *Res << '\n' 996 << "\n\n\n"); 997 } 998 } else if (isMemIntrinValue()) { 999 Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy, 1000 InsertPt, DL); 1001 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset 1002 << " " << *getMemIntrinValue() << '\n' 1003 << *Res << '\n' 1004 << "\n\n\n"); 1005 } else if (isSelectValue()) { 1006 // Introduce a new value select for a load from an eligible pointer select. 1007 SelectInst *Sel = getSelectValue(); 1008 LoadInst *L1 = findDominatingLoad(Sel->getOperand(1), LoadTy, Sel, 1009 gvn.getDominatorTree()); 1010 LoadInst *L2 = findDominatingLoad(Sel->getOperand(2), LoadTy, Sel, 1011 gvn.getDominatorTree()); 1012 assert(L1 && L2 && 1013 "must be able to obtain dominating loads for both value operands of " 1014 "the select"); 1015 Res = SelectInst::Create(Sel->getCondition(), L1, L2, "", Sel); 1016 } else { 1017 llvm_unreachable("Should not materialize value from dead block"); 1018 } 1019 assert(Res && "failed to materialize?"); 1020 return Res; 1021 } 1022 1023 static bool isLifetimeStart(const Instruction *Inst) { 1024 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst)) 1025 return II->getIntrinsicID() == Intrinsic::lifetime_start; 1026 return false; 1027 } 1028 1029 /// Assuming To can be reached from both From and Between, does Between lie on 1030 /// every path from From to To? 1031 static bool liesBetween(const Instruction *From, Instruction *Between, 1032 const Instruction *To, DominatorTree *DT) { 1033 if (From->getParent() == Between->getParent()) 1034 return DT->dominates(From, Between); 1035 SmallSet<BasicBlock *, 1> Exclusion; 1036 Exclusion.insert(Between->getParent()); 1037 return !isPotentiallyReachable(From, To, &Exclusion, DT); 1038 } 1039 1040 /// Try to locate the three instruction involved in a missed 1041 /// load-elimination case that is due to an intervening store. 1042 static void reportMayClobberedLoad(LoadInst *Load, MemDepResult DepInfo, 1043 DominatorTree *DT, 1044 OptimizationRemarkEmitter *ORE) { 1045 using namespace ore; 1046 1047 User *OtherAccess = nullptr; 1048 1049 OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", Load); 1050 R << "load of type " << NV("Type", Load->getType()) << " not eliminated" 1051 << setExtraArgs(); 1052 1053 for (auto *U : Load->getPointerOperand()->users()) { 1054 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U)) && 1055 cast<Instruction>(U)->getFunction() == Load->getFunction() && 1056 DT->dominates(cast<Instruction>(U), Load)) { 1057 // Use the most immediately dominating value 1058 if (OtherAccess) { 1059 if (DT->dominates(cast<Instruction>(OtherAccess), cast<Instruction>(U))) 1060 OtherAccess = U; 1061 else 1062 assert(DT->dominates(cast<Instruction>(U), 1063 cast<Instruction>(OtherAccess))); 1064 } else 1065 OtherAccess = U; 1066 } 1067 } 1068 1069 if (!OtherAccess) { 1070 // There is no dominating use, check if we can find a closest non-dominating 1071 // use that lies between any other potentially available use and Load. 1072 for (auto *U : Load->getPointerOperand()->users()) { 1073 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U)) && 1074 cast<Instruction>(U)->getFunction() == Load->getFunction() && 1075 isPotentiallyReachable(cast<Instruction>(U), Load, nullptr, DT)) { 1076 if (OtherAccess) { 1077 if (liesBetween(cast<Instruction>(OtherAccess), cast<Instruction>(U), 1078 Load, DT)) { 1079 OtherAccess = U; 1080 } else if (!liesBetween(cast<Instruction>(U), 1081 cast<Instruction>(OtherAccess), Load, DT)) { 1082 // These uses are both partially available at Load were it not for 1083 // the clobber, but neither lies strictly after the other. 1084 OtherAccess = nullptr; 1085 break; 1086 } // else: keep current OtherAccess since it lies between U and Load 1087 } else { 1088 OtherAccess = U; 1089 } 1090 } 1091 } 1092 } 1093 1094 if (OtherAccess) 1095 R << " in favor of " << NV("OtherAccess", OtherAccess); 1096 1097 R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst()); 1098 1099 ORE->emit(R); 1100 } 1101 1102 /// Check if a load from pointer-select \p Address in \p DepBB can be converted 1103 /// to a value select. The following conditions need to be satisfied: 1104 /// 1. The pointer select (\p Address) must be defined in \p DepBB. 1105 /// 2. Both value operands of the pointer select must be loaded in the same 1106 /// basic block, before the pointer select. 1107 /// 3. There must be no instructions between the found loads and \p End that may 1108 /// clobber the loads. 1109 static Optional<AvailableValue> 1110 tryToConvertLoadOfPtrSelect(BasicBlock *DepBB, BasicBlock::iterator End, 1111 Value *Address, Type *LoadTy, DominatorTree &DT, 1112 AAResults *AA) { 1113 1114 auto *Sel = dyn_cast_or_null<SelectInst>(Address); 1115 if (!Sel || DepBB != Sel->getParent()) 1116 return None; 1117 1118 LoadInst *L1 = findDominatingLoad(Sel->getOperand(1), LoadTy, Sel, DT); 1119 LoadInst *L2 = findDominatingLoad(Sel->getOperand(2), LoadTy, Sel, DT); 1120 if (!L1 || !L2) 1121 return None; 1122 1123 // Ensure there are no accesses that may modify the locations referenced by 1124 // either L1 or L2 between L1, L2 and the specified End iterator. 1125 Instruction *EarlierLoad = L1->comesBefore(L2) ? L1 : L2; 1126 MemoryLocation L1Loc = MemoryLocation::get(L1); 1127 MemoryLocation L2Loc = MemoryLocation::get(L2); 1128 if (any_of(make_range(EarlierLoad->getIterator(), End), [&](Instruction &I) { 1129 return isModSet(AA->getModRefInfo(&I, L1Loc)) || 1130 isModSet(AA->getModRefInfo(&I, L2Loc)); 1131 })) 1132 return None; 1133 1134 return AvailableValue::getSelect(Sel); 1135 } 1136 1137 bool GVNPass::AnalyzeLoadAvailability(LoadInst *Load, MemDepResult DepInfo, 1138 Value *Address, AvailableValue &Res) { 1139 if (!DepInfo.isDef() && !DepInfo.isClobber()) { 1140 assert(isa<SelectInst>(Address)); 1141 if (auto R = tryToConvertLoadOfPtrSelect( 1142 Load->getParent(), Load->getIterator(), Address, Load->getType(), 1143 getDominatorTree(), getAliasAnalysis())) { 1144 Res = *R; 1145 return true; 1146 } 1147 return false; 1148 } 1149 1150 assert((DepInfo.isDef() || DepInfo.isClobber()) && 1151 "expected a local dependence"); 1152 assert(Load->isUnordered() && "rules below are incorrect for ordered access"); 1153 1154 const DataLayout &DL = Load->getModule()->getDataLayout(); 1155 1156 Instruction *DepInst = DepInfo.getInst(); 1157 if (DepInfo.isClobber()) { 1158 // If the dependence is to a store that writes to a superset of the bits 1159 // read by the load, we can extract the bits we need for the load from the 1160 // stored value. 1161 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) { 1162 // Can't forward from non-atomic to atomic without violating memory model. 1163 if (Address && Load->isAtomic() <= DepSI->isAtomic()) { 1164 int Offset = 1165 analyzeLoadFromClobberingStore(Load->getType(), Address, DepSI, DL); 1166 if (Offset != -1) { 1167 Res = AvailableValue::get(DepSI->getValueOperand(), Offset); 1168 return true; 1169 } 1170 } 1171 } 1172 1173 // Check to see if we have something like this: 1174 // load i32* P 1175 // load i8* (P+1) 1176 // if we have this, replace the later with an extraction from the former. 1177 if (LoadInst *DepLoad = dyn_cast<LoadInst>(DepInst)) { 1178 // If this is a clobber and L is the first instruction in its block, then 1179 // we have the first instruction in the entry block. 1180 // Can't forward from non-atomic to atomic without violating memory model. 1181 if (DepLoad != Load && Address && 1182 Load->isAtomic() <= DepLoad->isAtomic()) { 1183 Type *LoadType = Load->getType(); 1184 int Offset = -1; 1185 1186 // If MD reported clobber, check it was nested. 1187 if (DepInfo.isClobber() && 1188 canCoerceMustAliasedValueToLoad(DepLoad, LoadType, DL)) { 1189 const auto ClobberOff = MD->getClobberOffset(DepLoad); 1190 // GVN has no deal with a negative offset. 1191 Offset = (ClobberOff == None || ClobberOff.getValue() < 0) 1192 ? -1 1193 : ClobberOff.getValue(); 1194 } 1195 if (Offset == -1) 1196 Offset = 1197 analyzeLoadFromClobberingLoad(LoadType, Address, DepLoad, DL); 1198 if (Offset != -1) { 1199 Res = AvailableValue::getLoad(DepLoad, Offset); 1200 return true; 1201 } 1202 } 1203 } 1204 1205 // If the clobbering value is a memset/memcpy/memmove, see if we can 1206 // forward a value on from it. 1207 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) { 1208 if (Address && !Load->isAtomic()) { 1209 int Offset = analyzeLoadFromClobberingMemInst(Load->getType(), Address, 1210 DepMI, DL); 1211 if (Offset != -1) { 1212 Res = AvailableValue::getMI(DepMI, Offset); 1213 return true; 1214 } 1215 } 1216 } 1217 1218 // Nothing known about this clobber, have to be conservative 1219 LLVM_DEBUG( 1220 // fast print dep, using operator<< on instruction is too slow. 1221 dbgs() << "GVN: load "; Load->printAsOperand(dbgs()); 1222 dbgs() << " is clobbered by " << *DepInst << '\n';); 1223 if (ORE->allowExtraAnalysis(DEBUG_TYPE)) 1224 reportMayClobberedLoad(Load, DepInfo, DT, ORE); 1225 1226 return false; 1227 } 1228 assert(DepInfo.isDef() && "follows from above"); 1229 1230 // Loading the alloca -> undef. 1231 // Loading immediately after lifetime begin -> undef. 1232 if (isa<AllocaInst>(DepInst) || isLifetimeStart(DepInst)) { 1233 Res = AvailableValue::get(UndefValue::get(Load->getType())); 1234 return true; 1235 } 1236 1237 if (isAllocationFn(DepInst, TLI)) 1238 if (auto *InitVal = getInitialValueOfAllocation(cast<CallBase>(DepInst), 1239 TLI, Load->getType())) { 1240 Res = AvailableValue::get(InitVal); 1241 return true; 1242 } 1243 1244 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) { 1245 // Reject loads and stores that are to the same address but are of 1246 // different types if we have to. If the stored value is convertable to 1247 // the loaded value, we can reuse it. 1248 if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), Load->getType(), 1249 DL)) 1250 return false; 1251 1252 // Can't forward from non-atomic to atomic without violating memory model. 1253 if (S->isAtomic() < Load->isAtomic()) 1254 return false; 1255 1256 Res = AvailableValue::get(S->getValueOperand()); 1257 return true; 1258 } 1259 1260 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) { 1261 // If the types mismatch and we can't handle it, reject reuse of the load. 1262 // If the stored value is larger or equal to the loaded value, we can reuse 1263 // it. 1264 if (!canCoerceMustAliasedValueToLoad(LD, Load->getType(), DL)) 1265 return false; 1266 1267 // Can't forward from non-atomic to atomic without violating memory model. 1268 if (LD->isAtomic() < Load->isAtomic()) 1269 return false; 1270 1271 Res = AvailableValue::getLoad(LD); 1272 return true; 1273 } 1274 1275 // Unknown def - must be conservative 1276 LLVM_DEBUG( 1277 // fast print dep, using operator<< on instruction is too slow. 1278 dbgs() << "GVN: load "; Load->printAsOperand(dbgs()); 1279 dbgs() << " has unknown def " << *DepInst << '\n';); 1280 return false; 1281 } 1282 1283 void GVNPass::AnalyzeLoadAvailability(LoadInst *Load, LoadDepVect &Deps, 1284 AvailValInBlkVect &ValuesPerBlock, 1285 UnavailBlkVect &UnavailableBlocks) { 1286 // Filter out useless results (non-locals, etc). Keep track of the blocks 1287 // where we have a value available in repl, also keep track of whether we see 1288 // dependencies that produce an unknown value for the load (such as a call 1289 // that could potentially clobber the load). 1290 unsigned NumDeps = Deps.size(); 1291 for (unsigned i = 0, e = NumDeps; i != e; ++i) { 1292 BasicBlock *DepBB = Deps[i].getBB(); 1293 MemDepResult DepInfo = Deps[i].getResult(); 1294 1295 if (DeadBlocks.count(DepBB)) { 1296 // Dead dependent mem-op disguise as a load evaluating the same value 1297 // as the load in question. 1298 ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB)); 1299 continue; 1300 } 1301 1302 // The address being loaded in this non-local block may not be the same as 1303 // the pointer operand of the load if PHI translation occurs. Make sure 1304 // to consider the right address. 1305 Value *Address = Deps[i].getAddress(); 1306 1307 if (!DepInfo.isDef() && !DepInfo.isClobber()) { 1308 if (auto R = tryToConvertLoadOfPtrSelect( 1309 DepBB, DepBB->end(), Address, Load->getType(), getDominatorTree(), 1310 getAliasAnalysis())) { 1311 ValuesPerBlock.push_back( 1312 AvailableValueInBlock::get(DepBB, std::move(*R))); 1313 continue; 1314 } 1315 UnavailableBlocks.push_back(DepBB); 1316 continue; 1317 } 1318 1319 AvailableValue AV; 1320 if (AnalyzeLoadAvailability(Load, DepInfo, Address, AV)) { 1321 // subtlety: because we know this was a non-local dependency, we know 1322 // it's safe to materialize anywhere between the instruction within 1323 // DepInfo and the end of it's block. 1324 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, 1325 std::move(AV))); 1326 } else { 1327 UnavailableBlocks.push_back(DepBB); 1328 } 1329 } 1330 1331 assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() && 1332 "post condition violation"); 1333 } 1334 1335 void GVNPass::eliminatePartiallyRedundantLoad( 1336 LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, 1337 MapVector<BasicBlock *, Value *> &AvailableLoads) { 1338 for (const auto &AvailableLoad : AvailableLoads) { 1339 BasicBlock *UnavailableBlock = AvailableLoad.first; 1340 Value *LoadPtr = AvailableLoad.second; 1341 1342 auto *NewLoad = 1343 new LoadInst(Load->getType(), LoadPtr, Load->getName() + ".pre", 1344 Load->isVolatile(), Load->getAlign(), Load->getOrdering(), 1345 Load->getSyncScopeID(), UnavailableBlock->getTerminator()); 1346 NewLoad->setDebugLoc(Load->getDebugLoc()); 1347 if (MSSAU) { 1348 auto *MSSA = MSSAU->getMemorySSA(); 1349 // Get the defining access of the original load or use the load if it is a 1350 // MemoryDef (e.g. because it is volatile). The inserted loads are 1351 // guaranteed to load from the same definition. 1352 auto *LoadAcc = MSSA->getMemoryAccess(Load); 1353 auto *DefiningAcc = 1354 isa<MemoryDef>(LoadAcc) ? LoadAcc : LoadAcc->getDefiningAccess(); 1355 auto *NewAccess = MSSAU->createMemoryAccessInBB( 1356 NewLoad, DefiningAcc, NewLoad->getParent(), 1357 MemorySSA::BeforeTerminator); 1358 if (auto *NewDef = dyn_cast<MemoryDef>(NewAccess)) 1359 MSSAU->insertDef(NewDef, /*RenameUses=*/true); 1360 else 1361 MSSAU->insertUse(cast<MemoryUse>(NewAccess), /*RenameUses=*/true); 1362 } 1363 1364 // Transfer the old load's AA tags to the new load. 1365 AAMDNodes Tags = Load->getAAMetadata(); 1366 if (Tags) 1367 NewLoad->setAAMetadata(Tags); 1368 1369 if (auto *MD = Load->getMetadata(LLVMContext::MD_invariant_load)) 1370 NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD); 1371 if (auto *InvGroupMD = Load->getMetadata(LLVMContext::MD_invariant_group)) 1372 NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD); 1373 if (auto *RangeMD = Load->getMetadata(LLVMContext::MD_range)) 1374 NewLoad->setMetadata(LLVMContext::MD_range, RangeMD); 1375 if (auto *AccessMD = Load->getMetadata(LLVMContext::MD_access_group)) 1376 if (LI && 1377 LI->getLoopFor(Load->getParent()) == LI->getLoopFor(UnavailableBlock)) 1378 NewLoad->setMetadata(LLVMContext::MD_access_group, AccessMD); 1379 1380 // We do not propagate the old load's debug location, because the new 1381 // load now lives in a different BB, and we want to avoid a jumpy line 1382 // table. 1383 // FIXME: How do we retain source locations without causing poor debugging 1384 // behavior? 1385 1386 // Add the newly created load. 1387 ValuesPerBlock.push_back( 1388 AvailableValueInBlock::get(UnavailableBlock, NewLoad)); 1389 MD->invalidateCachedPointerInfo(LoadPtr); 1390 LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n'); 1391 } 1392 1393 // Perform PHI construction. 1394 Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this); 1395 Load->replaceAllUsesWith(V); 1396 if (isa<PHINode>(V)) 1397 V->takeName(Load); 1398 if (Instruction *I = dyn_cast<Instruction>(V)) 1399 I->setDebugLoc(Load->getDebugLoc()); 1400 if (V->getType()->isPtrOrPtrVectorTy()) 1401 MD->invalidateCachedPointerInfo(V); 1402 markInstructionForDeletion(Load); 1403 ORE->emit([&]() { 1404 return OptimizationRemark(DEBUG_TYPE, "LoadPRE", Load) 1405 << "load eliminated by PRE"; 1406 }); 1407 } 1408 1409 bool GVNPass::PerformLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, 1410 UnavailBlkVect &UnavailableBlocks) { 1411 // Okay, we have *some* definitions of the value. This means that the value 1412 // is available in some of our (transitive) predecessors. Lets think about 1413 // doing PRE of this load. This will involve inserting a new load into the 1414 // predecessor when it's not available. We could do this in general, but 1415 // prefer to not increase code size. As such, we only do this when we know 1416 // that we only have to insert *one* load (which means we're basically moving 1417 // the load, not inserting a new one). 1418 1419 SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(), 1420 UnavailableBlocks.end()); 1421 1422 // Let's find the first basic block with more than one predecessor. Walk 1423 // backwards through predecessors if needed. 1424 BasicBlock *LoadBB = Load->getParent(); 1425 BasicBlock *TmpBB = LoadBB; 1426 1427 // Check that there is no implicit control flow instructions above our load in 1428 // its block. If there is an instruction that doesn't always pass the 1429 // execution to the following instruction, then moving through it may become 1430 // invalid. For example: 1431 // 1432 // int arr[LEN]; 1433 // int index = ???; 1434 // ... 1435 // guard(0 <= index && index < LEN); 1436 // use(arr[index]); 1437 // 1438 // It is illegal to move the array access to any point above the guard, 1439 // because if the index is out of bounds we should deoptimize rather than 1440 // access the array. 1441 // Check that there is no guard in this block above our instruction. 1442 bool MustEnsureSafetyOfSpeculativeExecution = 1443 ICF->isDominatedByICFIFromSameBlock(Load); 1444 1445 while (TmpBB->getSinglePredecessor()) { 1446 TmpBB = TmpBB->getSinglePredecessor(); 1447 if (TmpBB == LoadBB) // Infinite (unreachable) loop. 1448 return false; 1449 if (Blockers.count(TmpBB)) 1450 return false; 1451 1452 // If any of these blocks has more than one successor (i.e. if the edge we 1453 // just traversed was critical), then there are other paths through this 1454 // block along which the load may not be anticipated. Hoisting the load 1455 // above this block would be adding the load to execution paths along 1456 // which it was not previously executed. 1457 if (TmpBB->getTerminator()->getNumSuccessors() != 1) 1458 return false; 1459 1460 // Check that there is no implicit control flow in a block above. 1461 MustEnsureSafetyOfSpeculativeExecution = 1462 MustEnsureSafetyOfSpeculativeExecution || ICF->hasICF(TmpBB); 1463 } 1464 1465 assert(TmpBB); 1466 LoadBB = TmpBB; 1467 1468 // Check to see how many predecessors have the loaded value fully 1469 // available. 1470 MapVector<BasicBlock *, Value *> PredLoads; 1471 DenseMap<BasicBlock *, AvailabilityState> FullyAvailableBlocks; 1472 for (const AvailableValueInBlock &AV : ValuesPerBlock) 1473 FullyAvailableBlocks[AV.BB] = AvailabilityState::Available; 1474 for (BasicBlock *UnavailableBB : UnavailableBlocks) 1475 FullyAvailableBlocks[UnavailableBB] = AvailabilityState::Unavailable; 1476 1477 SmallVector<BasicBlock *, 4> CriticalEdgePred; 1478 for (BasicBlock *Pred : predecessors(LoadBB)) { 1479 // If any predecessor block is an EH pad that does not allow non-PHI 1480 // instructions before the terminator, we can't PRE the load. 1481 if (Pred->getTerminator()->isEHPad()) { 1482 LLVM_DEBUG( 1483 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '" 1484 << Pred->getName() << "': " << *Load << '\n'); 1485 return false; 1486 } 1487 1488 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) { 1489 continue; 1490 } 1491 1492 if (Pred->getTerminator()->getNumSuccessors() != 1) { 1493 if (isa<IndirectBrInst>(Pred->getTerminator())) { 1494 LLVM_DEBUG( 1495 dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '" 1496 << Pred->getName() << "': " << *Load << '\n'); 1497 return false; 1498 } 1499 1500 // FIXME: Can we support the fallthrough edge? 1501 if (isa<CallBrInst>(Pred->getTerminator())) { 1502 LLVM_DEBUG( 1503 dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '" 1504 << Pred->getName() << "': " << *Load << '\n'); 1505 return false; 1506 } 1507 1508 if (LoadBB->isEHPad()) { 1509 LLVM_DEBUG( 1510 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '" 1511 << Pred->getName() << "': " << *Load << '\n'); 1512 return false; 1513 } 1514 1515 // Do not split backedge as it will break the canonical loop form. 1516 if (!isLoadPRESplitBackedgeEnabled()) 1517 if (DT->dominates(LoadBB, Pred)) { 1518 LLVM_DEBUG( 1519 dbgs() 1520 << "COULD NOT PRE LOAD BECAUSE OF A BACKEDGE CRITICAL EDGE '" 1521 << Pred->getName() << "': " << *Load << '\n'); 1522 return false; 1523 } 1524 1525 CriticalEdgePred.push_back(Pred); 1526 } else { 1527 // Only add the predecessors that will not be split for now. 1528 PredLoads[Pred] = nullptr; 1529 } 1530 } 1531 1532 // Decide whether PRE is profitable for this load. 1533 unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size(); 1534 assert(NumUnavailablePreds != 0 && 1535 "Fully available value should already be eliminated!"); 1536 1537 // If this load is unavailable in multiple predecessors, reject it. 1538 // FIXME: If we could restructure the CFG, we could make a common pred with 1539 // all the preds that don't have an available Load and insert a new load into 1540 // that one block. 1541 if (NumUnavailablePreds != 1) 1542 return false; 1543 1544 // Now we know where we will insert load. We must ensure that it is safe 1545 // to speculatively execute the load at that points. 1546 if (MustEnsureSafetyOfSpeculativeExecution) { 1547 if (CriticalEdgePred.size()) 1548 if (!isSafeToSpeculativelyExecute(Load, LoadBB->getFirstNonPHI(), DT)) 1549 return false; 1550 for (auto &PL : PredLoads) 1551 if (!isSafeToSpeculativelyExecute(Load, PL.first->getTerminator(), DT)) 1552 return false; 1553 } 1554 1555 // Split critical edges, and update the unavailable predecessors accordingly. 1556 for (BasicBlock *OrigPred : CriticalEdgePred) { 1557 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB); 1558 assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!"); 1559 PredLoads[NewPred] = nullptr; 1560 LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->" 1561 << LoadBB->getName() << '\n'); 1562 } 1563 1564 // Check if the load can safely be moved to all the unavailable predecessors. 1565 bool CanDoPRE = true; 1566 const DataLayout &DL = Load->getModule()->getDataLayout(); 1567 SmallVector<Instruction*, 8> NewInsts; 1568 for (auto &PredLoad : PredLoads) { 1569 BasicBlock *UnavailablePred = PredLoad.first; 1570 1571 // Do PHI translation to get its value in the predecessor if necessary. The 1572 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred. 1573 // We do the translation for each edge we skipped by going from Load's block 1574 // to LoadBB, otherwise we might miss pieces needing translation. 1575 1576 // If all preds have a single successor, then we know it is safe to insert 1577 // the load on the pred (?!?), so we can insert code to materialize the 1578 // pointer if it is not available. 1579 Value *LoadPtr = Load->getPointerOperand(); 1580 BasicBlock *Cur = Load->getParent(); 1581 while (Cur != LoadBB) { 1582 PHITransAddr Address(LoadPtr, DL, AC); 1583 LoadPtr = Address.PHITranslateWithInsertion( 1584 Cur, Cur->getSinglePredecessor(), *DT, NewInsts); 1585 if (!LoadPtr) { 1586 CanDoPRE = false; 1587 break; 1588 } 1589 Cur = Cur->getSinglePredecessor(); 1590 } 1591 1592 if (LoadPtr) { 1593 PHITransAddr Address(LoadPtr, DL, AC); 1594 LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT, 1595 NewInsts); 1596 } 1597 // If we couldn't find or insert a computation of this phi translated value, 1598 // we fail PRE. 1599 if (!LoadPtr) { 1600 LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: " 1601 << *Load->getPointerOperand() << "\n"); 1602 CanDoPRE = false; 1603 break; 1604 } 1605 1606 PredLoad.second = LoadPtr; 1607 } 1608 1609 if (!CanDoPRE) { 1610 while (!NewInsts.empty()) { 1611 // Erase instructions generated by the failed PHI translation before 1612 // trying to number them. PHI translation might insert instructions 1613 // in basic blocks other than the current one, and we delete them 1614 // directly, as markInstructionForDeletion only allows removing from the 1615 // current basic block. 1616 NewInsts.pop_back_val()->eraseFromParent(); 1617 } 1618 // HINT: Don't revert the edge-splitting as following transformation may 1619 // also need to split these critical edges. 1620 return !CriticalEdgePred.empty(); 1621 } 1622 1623 // Okay, we can eliminate this load by inserting a reload in the predecessor 1624 // and using PHI construction to get the value in the other predecessors, do 1625 // it. 1626 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *Load << '\n'); 1627 LLVM_DEBUG(if (!NewInsts.empty()) dbgs() << "INSERTED " << NewInsts.size() 1628 << " INSTS: " << *NewInsts.back() 1629 << '\n'); 1630 1631 // Assign value numbers to the new instructions. 1632 for (Instruction *I : NewInsts) { 1633 // Instructions that have been inserted in predecessor(s) to materialize 1634 // the load address do not retain their original debug locations. Doing 1635 // so could lead to confusing (but correct) source attributions. 1636 I->updateLocationAfterHoist(); 1637 1638 // FIXME: We really _ought_ to insert these value numbers into their 1639 // parent's availability map. However, in doing so, we risk getting into 1640 // ordering issues. If a block hasn't been processed yet, we would be 1641 // marking a value as AVAIL-IN, which isn't what we intend. 1642 VN.lookupOrAdd(I); 1643 } 1644 1645 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, PredLoads); 1646 ++NumPRELoad; 1647 return true; 1648 } 1649 1650 bool GVNPass::performLoopLoadPRE(LoadInst *Load, 1651 AvailValInBlkVect &ValuesPerBlock, 1652 UnavailBlkVect &UnavailableBlocks) { 1653 if (!LI) 1654 return false; 1655 1656 const Loop *L = LI->getLoopFor(Load->getParent()); 1657 // TODO: Generalize to other loop blocks that dominate the latch. 1658 if (!L || L->getHeader() != Load->getParent()) 1659 return false; 1660 1661 BasicBlock *Preheader = L->getLoopPreheader(); 1662 BasicBlock *Latch = L->getLoopLatch(); 1663 if (!Preheader || !Latch) 1664 return false; 1665 1666 Value *LoadPtr = Load->getPointerOperand(); 1667 // Must be available in preheader. 1668 if (!L->isLoopInvariant(LoadPtr)) 1669 return false; 1670 1671 // We plan to hoist the load to preheader without introducing a new fault. 1672 // In order to do it, we need to prove that we cannot side-exit the loop 1673 // once loop header is first entered before execution of the load. 1674 if (ICF->isDominatedByICFIFromSameBlock(Load)) 1675 return false; 1676 1677 BasicBlock *LoopBlock = nullptr; 1678 for (auto *Blocker : UnavailableBlocks) { 1679 // Blockers from outside the loop are handled in preheader. 1680 if (!L->contains(Blocker)) 1681 continue; 1682 1683 // Only allow one loop block. Loop header is not less frequently executed 1684 // than each loop block, and likely it is much more frequently executed. But 1685 // in case of multiple loop blocks, we need extra information (such as block 1686 // frequency info) to understand whether it is profitable to PRE into 1687 // multiple loop blocks. 1688 if (LoopBlock) 1689 return false; 1690 1691 // Do not sink into inner loops. This may be non-profitable. 1692 if (L != LI->getLoopFor(Blocker)) 1693 return false; 1694 1695 // Blocks that dominate the latch execute on every single iteration, maybe 1696 // except the last one. So PREing into these blocks doesn't make much sense 1697 // in most cases. But the blocks that do not necessarily execute on each 1698 // iteration are sometimes much colder than the header, and this is when 1699 // PRE is potentially profitable. 1700 if (DT->dominates(Blocker, Latch)) 1701 return false; 1702 1703 // Make sure that the terminator itself doesn't clobber. 1704 if (Blocker->getTerminator()->mayWriteToMemory()) 1705 return false; 1706 1707 LoopBlock = Blocker; 1708 } 1709 1710 if (!LoopBlock) 1711 return false; 1712 1713 // Make sure the memory at this pointer cannot be freed, therefore we can 1714 // safely reload from it after clobber. 1715 if (LoadPtr->canBeFreed()) 1716 return false; 1717 1718 // TODO: Support critical edge splitting if blocker has more than 1 successor. 1719 MapVector<BasicBlock *, Value *> AvailableLoads; 1720 AvailableLoads[LoopBlock] = LoadPtr; 1721 AvailableLoads[Preheader] = LoadPtr; 1722 1723 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOOP LOAD: " << *Load << '\n'); 1724 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, AvailableLoads); 1725 ++NumPRELoopLoad; 1726 return true; 1727 } 1728 1729 static void reportLoadElim(LoadInst *Load, Value *AvailableValue, 1730 OptimizationRemarkEmitter *ORE) { 1731 using namespace ore; 1732 1733 ORE->emit([&]() { 1734 return OptimizationRemark(DEBUG_TYPE, "LoadElim", Load) 1735 << "load of type " << NV("Type", Load->getType()) << " eliminated" 1736 << setExtraArgs() << " in favor of " 1737 << NV("InfavorOfValue", AvailableValue); 1738 }); 1739 } 1740 1741 /// Attempt to eliminate a load whose dependencies are 1742 /// non-local by performing PHI construction. 1743 bool GVNPass::processNonLocalLoad(LoadInst *Load) { 1744 // non-local speculations are not allowed under asan. 1745 if (Load->getParent()->getParent()->hasFnAttribute( 1746 Attribute::SanitizeAddress) || 1747 Load->getParent()->getParent()->hasFnAttribute( 1748 Attribute::SanitizeHWAddress)) 1749 return false; 1750 1751 // Step 1: Find the non-local dependencies of the load. 1752 LoadDepVect Deps; 1753 MD->getNonLocalPointerDependency(Load, Deps); 1754 1755 // If we had to process more than one hundred blocks to find the 1756 // dependencies, this load isn't worth worrying about. Optimizing 1757 // it will be too expensive. 1758 unsigned NumDeps = Deps.size(); 1759 if (NumDeps > MaxNumDeps) 1760 return false; 1761 1762 // If we had a phi translation failure, we'll have a single entry which is a 1763 // clobber in the current block. Reject this early. 1764 if (NumDeps == 1 && 1765 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) { 1766 LLVM_DEBUG(dbgs() << "GVN: non-local load "; Load->printAsOperand(dbgs()); 1767 dbgs() << " has unknown dependencies\n";); 1768 return false; 1769 } 1770 1771 bool Changed = false; 1772 // If this load follows a GEP, see if we can PRE the indices before analyzing. 1773 if (GetElementPtrInst *GEP = 1774 dyn_cast<GetElementPtrInst>(Load->getOperand(0))) { 1775 for (Use &U : GEP->indices()) 1776 if (Instruction *I = dyn_cast<Instruction>(U.get())) 1777 Changed |= performScalarPRE(I); 1778 } 1779 1780 // Step 2: Analyze the availability of the load 1781 AvailValInBlkVect ValuesPerBlock; 1782 UnavailBlkVect UnavailableBlocks; 1783 AnalyzeLoadAvailability(Load, Deps, ValuesPerBlock, UnavailableBlocks); 1784 1785 // If we have no predecessors that produce a known value for this load, exit 1786 // early. 1787 if (ValuesPerBlock.empty()) 1788 return Changed; 1789 1790 // Step 3: Eliminate fully redundancy. 1791 // 1792 // If all of the instructions we depend on produce a known value for this 1793 // load, then it is fully redundant and we can use PHI insertion to compute 1794 // its value. Insert PHIs and remove the fully redundant value now. 1795 if (UnavailableBlocks.empty()) { 1796 LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *Load << '\n'); 1797 1798 // Perform PHI construction. 1799 Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this); 1800 Load->replaceAllUsesWith(V); 1801 1802 if (isa<PHINode>(V)) 1803 V->takeName(Load); 1804 if (Instruction *I = dyn_cast<Instruction>(V)) 1805 // If instruction I has debug info, then we should not update it. 1806 // Also, if I has a null DebugLoc, then it is still potentially incorrect 1807 // to propagate Load's DebugLoc because Load may not post-dominate I. 1808 if (Load->getDebugLoc() && Load->getParent() == I->getParent()) 1809 I->setDebugLoc(Load->getDebugLoc()); 1810 if (V->getType()->isPtrOrPtrVectorTy()) 1811 MD->invalidateCachedPointerInfo(V); 1812 markInstructionForDeletion(Load); 1813 ++NumGVNLoad; 1814 reportLoadElim(Load, V, ORE); 1815 return true; 1816 } 1817 1818 // Step 4: Eliminate partial redundancy. 1819 if (!isPREEnabled() || !isLoadPREEnabled()) 1820 return Changed; 1821 if (!isLoadInLoopPREEnabled() && LI && LI->getLoopFor(Load->getParent())) 1822 return Changed; 1823 1824 if (performLoopLoadPRE(Load, ValuesPerBlock, UnavailableBlocks) || 1825 PerformLoadPRE(Load, ValuesPerBlock, UnavailableBlocks)) 1826 return true; 1827 1828 return Changed; 1829 } 1830 1831 static bool impliesEquivalanceIfTrue(CmpInst* Cmp) { 1832 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_EQ) 1833 return true; 1834 1835 // Floating point comparisons can be equal, but not equivalent. Cases: 1836 // NaNs for unordered operators 1837 // +0.0 vs 0.0 for all operators 1838 if (Cmp->getPredicate() == CmpInst::Predicate::FCMP_OEQ || 1839 (Cmp->getPredicate() == CmpInst::Predicate::FCMP_UEQ && 1840 Cmp->getFastMathFlags().noNaNs())) { 1841 Value *LHS = Cmp->getOperand(0); 1842 Value *RHS = Cmp->getOperand(1); 1843 // If we can prove either side non-zero, then equality must imply 1844 // equivalence. 1845 // FIXME: We should do this optimization if 'no signed zeros' is 1846 // applicable via an instruction-level fast-math-flag or some other 1847 // indicator that relaxed FP semantics are being used. 1848 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero()) 1849 return true; 1850 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero()) 1851 return true;; 1852 // TODO: Handle vector floating point constants 1853 } 1854 return false; 1855 } 1856 1857 static bool impliesEquivalanceIfFalse(CmpInst* Cmp) { 1858 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_NE) 1859 return true; 1860 1861 // Floating point comparisons can be equal, but not equivelent. Cases: 1862 // NaNs for unordered operators 1863 // +0.0 vs 0.0 for all operators 1864 if ((Cmp->getPredicate() == CmpInst::Predicate::FCMP_ONE && 1865 Cmp->getFastMathFlags().noNaNs()) || 1866 Cmp->getPredicate() == CmpInst::Predicate::FCMP_UNE) { 1867 Value *LHS = Cmp->getOperand(0); 1868 Value *RHS = Cmp->getOperand(1); 1869 // If we can prove either side non-zero, then equality must imply 1870 // equivalence. 1871 // FIXME: We should do this optimization if 'no signed zeros' is 1872 // applicable via an instruction-level fast-math-flag or some other 1873 // indicator that relaxed FP semantics are being used. 1874 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero()) 1875 return true; 1876 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero()) 1877 return true;; 1878 // TODO: Handle vector floating point constants 1879 } 1880 return false; 1881 } 1882 1883 1884 static bool hasUsersIn(Value *V, BasicBlock *BB) { 1885 for (User *U : V->users()) 1886 if (isa<Instruction>(U) && 1887 cast<Instruction>(U)->getParent() == BB) 1888 return true; 1889 return false; 1890 } 1891 1892 bool GVNPass::processAssumeIntrinsic(AssumeInst *IntrinsicI) { 1893 Value *V = IntrinsicI->getArgOperand(0); 1894 1895 if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) { 1896 if (Cond->isZero()) { 1897 Type *Int8Ty = Type::getInt8Ty(V->getContext()); 1898 // Insert a new store to null instruction before the load to indicate that 1899 // this code is not reachable. FIXME: We could insert unreachable 1900 // instruction directly because we can modify the CFG. 1901 auto *NewS = new StoreInst(PoisonValue::get(Int8Ty), 1902 Constant::getNullValue(Int8Ty->getPointerTo()), 1903 IntrinsicI); 1904 if (MSSAU) { 1905 const MemoryUseOrDef *FirstNonDom = nullptr; 1906 const auto *AL = 1907 MSSAU->getMemorySSA()->getBlockAccesses(IntrinsicI->getParent()); 1908 1909 // If there are accesses in the current basic block, find the first one 1910 // that does not come before NewS. The new memory access is inserted 1911 // after the found access or before the terminator if no such access is 1912 // found. 1913 if (AL) { 1914 for (auto &Acc : *AL) { 1915 if (auto *Current = dyn_cast<MemoryUseOrDef>(&Acc)) 1916 if (!Current->getMemoryInst()->comesBefore(NewS)) { 1917 FirstNonDom = Current; 1918 break; 1919 } 1920 } 1921 } 1922 1923 // This added store is to null, so it will never executed and we can 1924 // just use the LiveOnEntry def as defining access. 1925 auto *NewDef = 1926 FirstNonDom ? MSSAU->createMemoryAccessBefore( 1927 NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(), 1928 const_cast<MemoryUseOrDef *>(FirstNonDom)) 1929 : MSSAU->createMemoryAccessInBB( 1930 NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(), 1931 NewS->getParent(), MemorySSA::BeforeTerminator); 1932 1933 MSSAU->insertDef(cast<MemoryDef>(NewDef), /*RenameUses=*/false); 1934 } 1935 } 1936 if (isAssumeWithEmptyBundle(*IntrinsicI)) 1937 markInstructionForDeletion(IntrinsicI); 1938 return false; 1939 } else if (isa<Constant>(V)) { 1940 // If it's not false, and constant, it must evaluate to true. This means our 1941 // assume is assume(true), and thus, pointless, and we don't want to do 1942 // anything more here. 1943 return false; 1944 } 1945 1946 Constant *True = ConstantInt::getTrue(V->getContext()); 1947 bool Changed = false; 1948 1949 for (BasicBlock *Successor : successors(IntrinsicI->getParent())) { 1950 BasicBlockEdge Edge(IntrinsicI->getParent(), Successor); 1951 1952 // This property is only true in dominated successors, propagateEquality 1953 // will check dominance for us. 1954 Changed |= propagateEquality(V, True, Edge, false); 1955 } 1956 1957 // We can replace assume value with true, which covers cases like this: 1958 // call void @llvm.assume(i1 %cmp) 1959 // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true 1960 ReplaceOperandsWithMap[V] = True; 1961 1962 // Similarly, after assume(!NotV) we know that NotV == false. 1963 Value *NotV; 1964 if (match(V, m_Not(m_Value(NotV)))) 1965 ReplaceOperandsWithMap[NotV] = ConstantInt::getFalse(V->getContext()); 1966 1967 // If we find an equality fact, canonicalize all dominated uses in this block 1968 // to one of the two values. We heuristically choice the "oldest" of the 1969 // two where age is determined by value number. (Note that propagateEquality 1970 // above handles the cross block case.) 1971 // 1972 // Key case to cover are: 1973 // 1) 1974 // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen 1975 // call void @llvm.assume(i1 %cmp) 1976 // ret float %0 ; will change it to ret float 3.000000e+00 1977 // 2) 1978 // %load = load float, float* %addr 1979 // %cmp = fcmp oeq float %load, %0 1980 // call void @llvm.assume(i1 %cmp) 1981 // ret float %load ; will change it to ret float %0 1982 if (auto *CmpI = dyn_cast<CmpInst>(V)) { 1983 if (impliesEquivalanceIfTrue(CmpI)) { 1984 Value *CmpLHS = CmpI->getOperand(0); 1985 Value *CmpRHS = CmpI->getOperand(1); 1986 // Heuristically pick the better replacement -- the choice of heuristic 1987 // isn't terribly important here, but the fact we canonicalize on some 1988 // replacement is for exposing other simplifications. 1989 // TODO: pull this out as a helper function and reuse w/existing 1990 // (slightly different) logic. 1991 if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS)) 1992 std::swap(CmpLHS, CmpRHS); 1993 if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS)) 1994 std::swap(CmpLHS, CmpRHS); 1995 if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) || 1996 (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) { 1997 // Move the 'oldest' value to the right-hand side, using the value 1998 // number as a proxy for age. 1999 uint32_t LVN = VN.lookupOrAdd(CmpLHS); 2000 uint32_t RVN = VN.lookupOrAdd(CmpRHS); 2001 if (LVN < RVN) 2002 std::swap(CmpLHS, CmpRHS); 2003 } 2004 2005 // Handle degenerate case where we either haven't pruned a dead path or a 2006 // removed a trivial assume yet. 2007 if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS)) 2008 return Changed; 2009 2010 LLVM_DEBUG(dbgs() << "Replacing dominated uses of " 2011 << *CmpLHS << " with " 2012 << *CmpRHS << " in block " 2013 << IntrinsicI->getParent()->getName() << "\n"); 2014 2015 2016 // Setup the replacement map - this handles uses within the same block 2017 if (hasUsersIn(CmpLHS, IntrinsicI->getParent())) 2018 ReplaceOperandsWithMap[CmpLHS] = CmpRHS; 2019 2020 // NOTE: The non-block local cases are handled by the call to 2021 // propagateEquality above; this block is just about handling the block 2022 // local cases. TODO: There's a bunch of logic in propagateEqualiy which 2023 // isn't duplicated for the block local case, can we share it somehow? 2024 } 2025 } 2026 return Changed; 2027 } 2028 2029 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { 2030 patchReplacementInstruction(I, Repl); 2031 I->replaceAllUsesWith(Repl); 2032 } 2033 2034 /// Attempt to eliminate a load, first by eliminating it 2035 /// locally, and then attempting non-local elimination if that fails. 2036 bool GVNPass::processLoad(LoadInst *L) { 2037 if (!MD) 2038 return false; 2039 2040 // This code hasn't been audited for ordered or volatile memory access 2041 if (!L->isUnordered()) 2042 return false; 2043 2044 if (L->use_empty()) { 2045 markInstructionForDeletion(L); 2046 return true; 2047 } 2048 2049 // ... to a pointer that has been loaded from before... 2050 MemDepResult Dep = MD->getDependency(L); 2051 2052 // If it is defined in another block, try harder. 2053 if (Dep.isNonLocal()) 2054 return processNonLocalLoad(L); 2055 2056 Value *Address = L->getPointerOperand(); 2057 // Only handle the local case below 2058 if (!Dep.isDef() && !Dep.isClobber() && !isa<SelectInst>(Address)) { 2059 // This might be a NonFuncLocal or an Unknown 2060 LLVM_DEBUG( 2061 // fast print dep, using operator<< on instruction is too slow. 2062 dbgs() << "GVN: load "; L->printAsOperand(dbgs()); 2063 dbgs() << " has unknown dependence\n";); 2064 return false; 2065 } 2066 2067 AvailableValue AV; 2068 if (AnalyzeLoadAvailability(L, Dep, Address, AV)) { 2069 Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this); 2070 2071 // Replace the load! 2072 patchAndReplaceAllUsesWith(L, AvailableValue); 2073 markInstructionForDeletion(L); 2074 if (MSSAU) 2075 MSSAU->removeMemoryAccess(L); 2076 ++NumGVNLoad; 2077 reportLoadElim(L, AvailableValue, ORE); 2078 // Tell MDA to reexamine the reused pointer since we might have more 2079 // information after forwarding it. 2080 if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy()) 2081 MD->invalidateCachedPointerInfo(AvailableValue); 2082 return true; 2083 } 2084 2085 return false; 2086 } 2087 2088 /// Return a pair the first field showing the value number of \p Exp and the 2089 /// second field showing whether it is a value number newly created. 2090 std::pair<uint32_t, bool> 2091 GVNPass::ValueTable::assignExpNewValueNum(Expression &Exp) { 2092 uint32_t &e = expressionNumbering[Exp]; 2093 bool CreateNewValNum = !e; 2094 if (CreateNewValNum) { 2095 Expressions.push_back(Exp); 2096 if (ExprIdx.size() < nextValueNumber + 1) 2097 ExprIdx.resize(nextValueNumber * 2); 2098 e = nextValueNumber; 2099 ExprIdx[nextValueNumber++] = nextExprNumber++; 2100 } 2101 return {e, CreateNewValNum}; 2102 } 2103 2104 /// Return whether all the values related with the same \p num are 2105 /// defined in \p BB. 2106 bool GVNPass::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB, 2107 GVNPass &Gvn) { 2108 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; 2109 while (Vals && Vals->BB == BB) 2110 Vals = Vals->Next; 2111 return !Vals; 2112 } 2113 2114 /// Wrap phiTranslateImpl to provide caching functionality. 2115 uint32_t GVNPass::ValueTable::phiTranslate(const BasicBlock *Pred, 2116 const BasicBlock *PhiBlock, 2117 uint32_t Num, GVNPass &Gvn) { 2118 auto FindRes = PhiTranslateTable.find({Num, Pred}); 2119 if (FindRes != PhiTranslateTable.end()) 2120 return FindRes->second; 2121 uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn); 2122 PhiTranslateTable.insert({{Num, Pred}, NewNum}); 2123 return NewNum; 2124 } 2125 2126 // Return true if the value number \p Num and NewNum have equal value. 2127 // Return false if the result is unknown. 2128 bool GVNPass::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum, 2129 const BasicBlock *Pred, 2130 const BasicBlock *PhiBlock, 2131 GVNPass &Gvn) { 2132 CallInst *Call = nullptr; 2133 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; 2134 while (Vals) { 2135 Call = dyn_cast<CallInst>(Vals->Val); 2136 if (Call && Call->getParent() == PhiBlock) 2137 break; 2138 Vals = Vals->Next; 2139 } 2140 2141 if (AA->doesNotAccessMemory(Call)) 2142 return true; 2143 2144 if (!MD || !AA->onlyReadsMemory(Call)) 2145 return false; 2146 2147 MemDepResult local_dep = MD->getDependency(Call); 2148 if (!local_dep.isNonLocal()) 2149 return false; 2150 2151 const MemoryDependenceResults::NonLocalDepInfo &deps = 2152 MD->getNonLocalCallDependency(Call); 2153 2154 // Check to see if the Call has no function local clobber. 2155 for (const NonLocalDepEntry &D : deps) { 2156 if (D.getResult().isNonFuncLocal()) 2157 return true; 2158 } 2159 return false; 2160 } 2161 2162 /// Translate value number \p Num using phis, so that it has the values of 2163 /// the phis in BB. 2164 uint32_t GVNPass::ValueTable::phiTranslateImpl(const BasicBlock *Pred, 2165 const BasicBlock *PhiBlock, 2166 uint32_t Num, GVNPass &Gvn) { 2167 if (PHINode *PN = NumberingPhi[Num]) { 2168 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 2169 if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred) 2170 if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false)) 2171 return TransVal; 2172 } 2173 return Num; 2174 } 2175 2176 // If there is any value related with Num is defined in a BB other than 2177 // PhiBlock, it cannot depend on a phi in PhiBlock without going through 2178 // a backedge. We can do an early exit in that case to save compile time. 2179 if (!areAllValsInBB(Num, PhiBlock, Gvn)) 2180 return Num; 2181 2182 if (Num >= ExprIdx.size() || ExprIdx[Num] == 0) 2183 return Num; 2184 Expression Exp = Expressions[ExprIdx[Num]]; 2185 2186 for (unsigned i = 0; i < Exp.varargs.size(); i++) { 2187 // For InsertValue and ExtractValue, some varargs are index numbers 2188 // instead of value numbers. Those index numbers should not be 2189 // translated. 2190 if ((i > 1 && Exp.opcode == Instruction::InsertValue) || 2191 (i > 0 && Exp.opcode == Instruction::ExtractValue) || 2192 (i > 1 && Exp.opcode == Instruction::ShuffleVector)) 2193 continue; 2194 Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn); 2195 } 2196 2197 if (Exp.commutative) { 2198 assert(Exp.varargs.size() >= 2 && "Unsupported commutative instruction!"); 2199 if (Exp.varargs[0] > Exp.varargs[1]) { 2200 std::swap(Exp.varargs[0], Exp.varargs[1]); 2201 uint32_t Opcode = Exp.opcode >> 8; 2202 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) 2203 Exp.opcode = (Opcode << 8) | 2204 CmpInst::getSwappedPredicate( 2205 static_cast<CmpInst::Predicate>(Exp.opcode & 255)); 2206 } 2207 } 2208 2209 if (uint32_t NewNum = expressionNumbering[Exp]) { 2210 if (Exp.opcode == Instruction::Call && NewNum != Num) 2211 return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num; 2212 return NewNum; 2213 } 2214 return Num; 2215 } 2216 2217 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed 2218 /// again. 2219 void GVNPass::ValueTable::eraseTranslateCacheEntry( 2220 uint32_t Num, const BasicBlock &CurrBlock) { 2221 for (const BasicBlock *Pred : predecessors(&CurrBlock)) 2222 PhiTranslateTable.erase({Num, Pred}); 2223 } 2224 2225 // In order to find a leader for a given value number at a 2226 // specific basic block, we first obtain the list of all Values for that number, 2227 // and then scan the list to find one whose block dominates the block in 2228 // question. This is fast because dominator tree queries consist of only 2229 // a few comparisons of DFS numbers. 2230 Value *GVNPass::findLeader(const BasicBlock *BB, uint32_t num) { 2231 LeaderTableEntry Vals = LeaderTable[num]; 2232 if (!Vals.Val) return nullptr; 2233 2234 Value *Val = nullptr; 2235 if (DT->dominates(Vals.BB, BB)) { 2236 Val = Vals.Val; 2237 if (isa<Constant>(Val)) return Val; 2238 } 2239 2240 LeaderTableEntry* Next = Vals.Next; 2241 while (Next) { 2242 if (DT->dominates(Next->BB, BB)) { 2243 if (isa<Constant>(Next->Val)) return Next->Val; 2244 if (!Val) Val = Next->Val; 2245 } 2246 2247 Next = Next->Next; 2248 } 2249 2250 return Val; 2251 } 2252 2253 /// There is an edge from 'Src' to 'Dst'. Return 2254 /// true if every path from the entry block to 'Dst' passes via this edge. In 2255 /// particular 'Dst' must not be reachable via another edge from 'Src'. 2256 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, 2257 DominatorTree *DT) { 2258 // While in theory it is interesting to consider the case in which Dst has 2259 // more than one predecessor, because Dst might be part of a loop which is 2260 // only reachable from Src, in practice it is pointless since at the time 2261 // GVN runs all such loops have preheaders, which means that Dst will have 2262 // been changed to have only one predecessor, namely Src. 2263 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); 2264 assert((!Pred || Pred == E.getStart()) && 2265 "No edge between these basic blocks!"); 2266 return Pred != nullptr; 2267 } 2268 2269 void GVNPass::assignBlockRPONumber(Function &F) { 2270 BlockRPONumber.clear(); 2271 uint32_t NextBlockNumber = 1; 2272 ReversePostOrderTraversal<Function *> RPOT(&F); 2273 for (BasicBlock *BB : RPOT) 2274 BlockRPONumber[BB] = NextBlockNumber++; 2275 InvalidBlockRPONumbers = false; 2276 } 2277 2278 bool GVNPass::replaceOperandsForInBlockEquality(Instruction *Instr) const { 2279 bool Changed = false; 2280 for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) { 2281 Value *Operand = Instr->getOperand(OpNum); 2282 auto it = ReplaceOperandsWithMap.find(Operand); 2283 if (it != ReplaceOperandsWithMap.end()) { 2284 LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " 2285 << *it->second << " in instruction " << *Instr << '\n'); 2286 Instr->setOperand(OpNum, it->second); 2287 Changed = true; 2288 } 2289 } 2290 return Changed; 2291 } 2292 2293 /// The given values are known to be equal in every block 2294 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with 2295 /// 'RHS' everywhere in the scope. Returns whether a change was made. 2296 /// If DominatesByEdge is false, then it means that we will propagate the RHS 2297 /// value starting from the end of Root.Start. 2298 bool GVNPass::propagateEquality(Value *LHS, Value *RHS, 2299 const BasicBlockEdge &Root, 2300 bool DominatesByEdge) { 2301 SmallVector<std::pair<Value*, Value*>, 4> Worklist; 2302 Worklist.push_back(std::make_pair(LHS, RHS)); 2303 bool Changed = false; 2304 // For speed, compute a conservative fast approximation to 2305 // DT->dominates(Root, Root.getEnd()); 2306 const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT); 2307 2308 while (!Worklist.empty()) { 2309 std::pair<Value*, Value*> Item = Worklist.pop_back_val(); 2310 LHS = Item.first; RHS = Item.second; 2311 2312 if (LHS == RHS) 2313 continue; 2314 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!"); 2315 2316 // Don't try to propagate equalities between constants. 2317 if (isa<Constant>(LHS) && isa<Constant>(RHS)) 2318 continue; 2319 2320 // Prefer a constant on the right-hand side, or an Argument if no constants. 2321 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS))) 2322 std::swap(LHS, RHS); 2323 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!"); 2324 2325 // If there is no obvious reason to prefer the left-hand side over the 2326 // right-hand side, ensure the longest lived term is on the right-hand side, 2327 // so the shortest lived term will be replaced by the longest lived. 2328 // This tends to expose more simplifications. 2329 uint32_t LVN = VN.lookupOrAdd(LHS); 2330 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) || 2331 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) { 2332 // Move the 'oldest' value to the right-hand side, using the value number 2333 // as a proxy for age. 2334 uint32_t RVN = VN.lookupOrAdd(RHS); 2335 if (LVN < RVN) { 2336 std::swap(LHS, RHS); 2337 LVN = RVN; 2338 } 2339 } 2340 2341 // If value numbering later sees that an instruction in the scope is equal 2342 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve 2343 // the invariant that instructions only occur in the leader table for their 2344 // own value number (this is used by removeFromLeaderTable), do not do this 2345 // if RHS is an instruction (if an instruction in the scope is morphed into 2346 // LHS then it will be turned into RHS by the next GVN iteration anyway, so 2347 // using the leader table is about compiling faster, not optimizing better). 2348 // The leader table only tracks basic blocks, not edges. Only add to if we 2349 // have the simple case where the edge dominates the end. 2350 if (RootDominatesEnd && !isa<Instruction>(RHS)) 2351 addToLeaderTable(LVN, RHS, Root.getEnd()); 2352 2353 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As 2354 // LHS always has at least one use that is not dominated by Root, this will 2355 // never do anything if LHS has only one use. 2356 if (!LHS->hasOneUse()) { 2357 unsigned NumReplacements = 2358 DominatesByEdge 2359 ? replaceDominatedUsesWith(LHS, RHS, *DT, Root) 2360 : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart()); 2361 2362 Changed |= NumReplacements > 0; 2363 NumGVNEqProp += NumReplacements; 2364 // Cached information for anything that uses LHS will be invalid. 2365 if (MD) 2366 MD->invalidateCachedPointerInfo(LHS); 2367 } 2368 2369 // Now try to deduce additional equalities from this one. For example, if 2370 // the known equality was "(A != B)" == "false" then it follows that A and B 2371 // are equal in the scope. Only boolean equalities with an explicit true or 2372 // false RHS are currently supported. 2373 if (!RHS->getType()->isIntegerTy(1)) 2374 // Not a boolean equality - bail out. 2375 continue; 2376 ConstantInt *CI = dyn_cast<ConstantInt>(RHS); 2377 if (!CI) 2378 // RHS neither 'true' nor 'false' - bail out. 2379 continue; 2380 // Whether RHS equals 'true'. Otherwise it equals 'false'. 2381 bool isKnownTrue = CI->isMinusOne(); 2382 bool isKnownFalse = !isKnownTrue; 2383 2384 // If "A && B" is known true then both A and B are known true. If "A || B" 2385 // is known false then both A and B are known false. 2386 Value *A, *B; 2387 if ((isKnownTrue && match(LHS, m_LogicalAnd(m_Value(A), m_Value(B)))) || 2388 (isKnownFalse && match(LHS, m_LogicalOr(m_Value(A), m_Value(B))))) { 2389 Worklist.push_back(std::make_pair(A, RHS)); 2390 Worklist.push_back(std::make_pair(B, RHS)); 2391 continue; 2392 } 2393 2394 // If we are propagating an equality like "(A == B)" == "true" then also 2395 // propagate the equality A == B. When propagating a comparison such as 2396 // "(A >= B)" == "true", replace all instances of "A < B" with "false". 2397 if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) { 2398 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); 2399 2400 // If "A == B" is known true, or "A != B" is known false, then replace 2401 // A with B everywhere in the scope. For floating point operations, we 2402 // have to be careful since equality does not always imply equivalance. 2403 if ((isKnownTrue && impliesEquivalanceIfTrue(Cmp)) || 2404 (isKnownFalse && impliesEquivalanceIfFalse(Cmp))) 2405 Worklist.push_back(std::make_pair(Op0, Op1)); 2406 2407 // If "A >= B" is known true, replace "A < B" with false everywhere. 2408 CmpInst::Predicate NotPred = Cmp->getInversePredicate(); 2409 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse); 2410 // Since we don't have the instruction "A < B" immediately to hand, work 2411 // out the value number that it would have and use that to find an 2412 // appropriate instruction (if any). 2413 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2414 uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1); 2415 // If the number we were assigned was brand new then there is no point in 2416 // looking for an instruction realizing it: there cannot be one! 2417 if (Num < NextNum) { 2418 Value *NotCmp = findLeader(Root.getEnd(), Num); 2419 if (NotCmp && isa<Instruction>(NotCmp)) { 2420 unsigned NumReplacements = 2421 DominatesByEdge 2422 ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root) 2423 : replaceDominatedUsesWith(NotCmp, NotVal, *DT, 2424 Root.getStart()); 2425 Changed |= NumReplacements > 0; 2426 NumGVNEqProp += NumReplacements; 2427 // Cached information for anything that uses NotCmp will be invalid. 2428 if (MD) 2429 MD->invalidateCachedPointerInfo(NotCmp); 2430 } 2431 } 2432 // Ensure that any instruction in scope that gets the "A < B" value number 2433 // is replaced with false. 2434 // The leader table only tracks basic blocks, not edges. Only add to if we 2435 // have the simple case where the edge dominates the end. 2436 if (RootDominatesEnd) 2437 addToLeaderTable(Num, NotVal, Root.getEnd()); 2438 2439 continue; 2440 } 2441 } 2442 2443 return Changed; 2444 } 2445 2446 /// When calculating availability, handle an instruction 2447 /// by inserting it into the appropriate sets 2448 bool GVNPass::processInstruction(Instruction *I) { 2449 // Ignore dbg info intrinsics. 2450 if (isa<DbgInfoIntrinsic>(I)) 2451 return false; 2452 2453 // If the instruction can be easily simplified then do so now in preference 2454 // to value numbering it. Value numbering often exposes redundancies, for 2455 // example if it determines that %y is equal to %x then the instruction 2456 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. 2457 const DataLayout &DL = I->getModule()->getDataLayout(); 2458 if (Value *V = simplifyInstruction(I, {DL, TLI, DT, AC})) { 2459 bool Changed = false; 2460 if (!I->use_empty()) { 2461 // Simplification can cause a special instruction to become not special. 2462 // For example, devirtualization to a willreturn function. 2463 ICF->removeUsersOf(I); 2464 I->replaceAllUsesWith(V); 2465 Changed = true; 2466 } 2467 if (isInstructionTriviallyDead(I, TLI)) { 2468 markInstructionForDeletion(I); 2469 Changed = true; 2470 } 2471 if (Changed) { 2472 if (MD && V->getType()->isPtrOrPtrVectorTy()) 2473 MD->invalidateCachedPointerInfo(V); 2474 ++NumGVNSimpl; 2475 return true; 2476 } 2477 } 2478 2479 if (auto *Assume = dyn_cast<AssumeInst>(I)) 2480 return processAssumeIntrinsic(Assume); 2481 2482 if (LoadInst *Load = dyn_cast<LoadInst>(I)) { 2483 if (processLoad(Load)) 2484 return true; 2485 2486 unsigned Num = VN.lookupOrAdd(Load); 2487 addToLeaderTable(Num, Load, Load->getParent()); 2488 return false; 2489 } 2490 2491 // For conditional branches, we can perform simple conditional propagation on 2492 // the condition value itself. 2493 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 2494 if (!BI->isConditional()) 2495 return false; 2496 2497 if (isa<Constant>(BI->getCondition())) 2498 return processFoldableCondBr(BI); 2499 2500 Value *BranchCond = BI->getCondition(); 2501 BasicBlock *TrueSucc = BI->getSuccessor(0); 2502 BasicBlock *FalseSucc = BI->getSuccessor(1); 2503 // Avoid multiple edges early. 2504 if (TrueSucc == FalseSucc) 2505 return false; 2506 2507 BasicBlock *Parent = BI->getParent(); 2508 bool Changed = false; 2509 2510 Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext()); 2511 BasicBlockEdge TrueE(Parent, TrueSucc); 2512 Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true); 2513 2514 Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext()); 2515 BasicBlockEdge FalseE(Parent, FalseSucc); 2516 Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true); 2517 2518 return Changed; 2519 } 2520 2521 // For switches, propagate the case values into the case destinations. 2522 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 2523 Value *SwitchCond = SI->getCondition(); 2524 BasicBlock *Parent = SI->getParent(); 2525 bool Changed = false; 2526 2527 // Remember how many outgoing edges there are to every successor. 2528 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 2529 for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i) 2530 ++SwitchEdges[SI->getSuccessor(i)]; 2531 2532 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2533 i != e; ++i) { 2534 BasicBlock *Dst = i->getCaseSuccessor(); 2535 // If there is only a single edge, propagate the case value into it. 2536 if (SwitchEdges.lookup(Dst) == 1) { 2537 BasicBlockEdge E(Parent, Dst); 2538 Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true); 2539 } 2540 } 2541 return Changed; 2542 } 2543 2544 // Instructions with void type don't return a value, so there's 2545 // no point in trying to find redundancies in them. 2546 if (I->getType()->isVoidTy()) 2547 return false; 2548 2549 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2550 unsigned Num = VN.lookupOrAdd(I); 2551 2552 // Allocations are always uniquely numbered, so we can save time and memory 2553 // by fast failing them. 2554 if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) { 2555 addToLeaderTable(Num, I, I->getParent()); 2556 return false; 2557 } 2558 2559 // If the number we were assigned was a brand new VN, then we don't 2560 // need to do a lookup to see if the number already exists 2561 // somewhere in the domtree: it can't! 2562 if (Num >= NextNum) { 2563 addToLeaderTable(Num, I, I->getParent()); 2564 return false; 2565 } 2566 2567 // Perform fast-path value-number based elimination of values inherited from 2568 // dominators. 2569 Value *Repl = findLeader(I->getParent(), Num); 2570 if (!Repl) { 2571 // Failure, just remember this instance for future use. 2572 addToLeaderTable(Num, I, I->getParent()); 2573 return false; 2574 } else if (Repl == I) { 2575 // If I was the result of a shortcut PRE, it might already be in the table 2576 // and the best replacement for itself. Nothing to do. 2577 return false; 2578 } 2579 2580 // Remove it! 2581 patchAndReplaceAllUsesWith(I, Repl); 2582 if (MD && Repl->getType()->isPtrOrPtrVectorTy()) 2583 MD->invalidateCachedPointerInfo(Repl); 2584 markInstructionForDeletion(I); 2585 return true; 2586 } 2587 2588 /// runOnFunction - This is the main transformation entry point for a function. 2589 bool GVNPass::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT, 2590 const TargetLibraryInfo &RunTLI, AAResults &RunAA, 2591 MemoryDependenceResults *RunMD, LoopInfo *LI, 2592 OptimizationRemarkEmitter *RunORE, MemorySSA *MSSA) { 2593 AC = &RunAC; 2594 DT = &RunDT; 2595 VN.setDomTree(DT); 2596 TLI = &RunTLI; 2597 VN.setAliasAnalysis(&RunAA); 2598 MD = RunMD; 2599 ImplicitControlFlowTracking ImplicitCFT; 2600 ICF = &ImplicitCFT; 2601 this->LI = LI; 2602 VN.setMemDep(MD); 2603 ORE = RunORE; 2604 InvalidBlockRPONumbers = true; 2605 MemorySSAUpdater Updater(MSSA); 2606 MSSAU = MSSA ? &Updater : nullptr; 2607 2608 bool Changed = false; 2609 bool ShouldContinue = true; 2610 2611 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 2612 // Merge unconditional branches, allowing PRE to catch more 2613 // optimization opportunities. 2614 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 2615 bool removedBlock = MergeBlockIntoPredecessor(&BB, &DTU, LI, MSSAU, MD); 2616 if (removedBlock) 2617 ++NumGVNBlocks; 2618 2619 Changed |= removedBlock; 2620 } 2621 2622 unsigned Iteration = 0; 2623 while (ShouldContinue) { 2624 LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n"); 2625 (void) Iteration; 2626 ShouldContinue = iterateOnFunction(F); 2627 Changed |= ShouldContinue; 2628 ++Iteration; 2629 } 2630 2631 if (isPREEnabled()) { 2632 // Fabricate val-num for dead-code in order to suppress assertion in 2633 // performPRE(). 2634 assignValNumForDeadCode(); 2635 bool PREChanged = true; 2636 while (PREChanged) { 2637 PREChanged = performPRE(F); 2638 Changed |= PREChanged; 2639 } 2640 } 2641 2642 // FIXME: Should perform GVN again after PRE does something. PRE can move 2643 // computations into blocks where they become fully redundant. Note that 2644 // we can't do this until PRE's critical edge splitting updates memdep. 2645 // Actually, when this happens, we should just fully integrate PRE into GVN. 2646 2647 cleanupGlobalSets(); 2648 // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each 2649 // iteration. 2650 DeadBlocks.clear(); 2651 2652 if (MSSA && VerifyMemorySSA) 2653 MSSA->verifyMemorySSA(); 2654 2655 return Changed; 2656 } 2657 2658 bool GVNPass::processBlock(BasicBlock *BB) { 2659 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function 2660 // (and incrementing BI before processing an instruction). 2661 assert(InstrsToErase.empty() && 2662 "We expect InstrsToErase to be empty across iterations"); 2663 if (DeadBlocks.count(BB)) 2664 return false; 2665 2666 // Clearing map before every BB because it can be used only for single BB. 2667 ReplaceOperandsWithMap.clear(); 2668 bool ChangedFunction = false; 2669 2670 // Since we may not have visited the input blocks of the phis, we can't 2671 // use our normal hash approach for phis. Instead, simply look for 2672 // obvious duplicates. The first pass of GVN will tend to create 2673 // identical phis, and the second or later passes can eliminate them. 2674 ChangedFunction |= EliminateDuplicatePHINodes(BB); 2675 2676 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); 2677 BI != BE;) { 2678 if (!ReplaceOperandsWithMap.empty()) 2679 ChangedFunction |= replaceOperandsForInBlockEquality(&*BI); 2680 ChangedFunction |= processInstruction(&*BI); 2681 2682 if (InstrsToErase.empty()) { 2683 ++BI; 2684 continue; 2685 } 2686 2687 // If we need some instructions deleted, do it now. 2688 NumGVNInstr += InstrsToErase.size(); 2689 2690 // Avoid iterator invalidation. 2691 bool AtStart = BI == BB->begin(); 2692 if (!AtStart) 2693 --BI; 2694 2695 for (auto *I : InstrsToErase) { 2696 assert(I->getParent() == BB && "Removing instruction from wrong block?"); 2697 LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n'); 2698 salvageKnowledge(I, AC); 2699 salvageDebugInfo(*I); 2700 if (MD) MD->removeInstruction(I); 2701 if (MSSAU) 2702 MSSAU->removeMemoryAccess(I); 2703 LLVM_DEBUG(verifyRemoved(I)); 2704 ICF->removeInstruction(I); 2705 I->eraseFromParent(); 2706 } 2707 InstrsToErase.clear(); 2708 2709 if (AtStart) 2710 BI = BB->begin(); 2711 else 2712 ++BI; 2713 } 2714 2715 return ChangedFunction; 2716 } 2717 2718 // Instantiate an expression in a predecessor that lacked it. 2719 bool GVNPass::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred, 2720 BasicBlock *Curr, unsigned int ValNo) { 2721 // Because we are going top-down through the block, all value numbers 2722 // will be available in the predecessor by the time we need them. Any 2723 // that weren't originally present will have been instantiated earlier 2724 // in this loop. 2725 bool success = true; 2726 for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) { 2727 Value *Op = Instr->getOperand(i); 2728 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op)) 2729 continue; 2730 // This could be a newly inserted instruction, in which case, we won't 2731 // find a value number, and should give up before we hurt ourselves. 2732 // FIXME: Rewrite the infrastructure to let it easier to value number 2733 // and process newly inserted instructions. 2734 if (!VN.exists(Op)) { 2735 success = false; 2736 break; 2737 } 2738 uint32_t TValNo = 2739 VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this); 2740 if (Value *V = findLeader(Pred, TValNo)) { 2741 Instr->setOperand(i, V); 2742 } else { 2743 success = false; 2744 break; 2745 } 2746 } 2747 2748 // Fail out if we encounter an operand that is not available in 2749 // the PRE predecessor. This is typically because of loads which 2750 // are not value numbered precisely. 2751 if (!success) 2752 return false; 2753 2754 Instr->insertBefore(Pred->getTerminator()); 2755 Instr->setName(Instr->getName() + ".pre"); 2756 Instr->setDebugLoc(Instr->getDebugLoc()); 2757 2758 ICF->insertInstructionTo(Instr, Pred); 2759 2760 unsigned Num = VN.lookupOrAdd(Instr); 2761 VN.add(Instr, Num); 2762 2763 // Update the availability map to include the new instruction. 2764 addToLeaderTable(Num, Instr, Pred); 2765 return true; 2766 } 2767 2768 bool GVNPass::performScalarPRE(Instruction *CurInst) { 2769 if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() || 2770 isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() || 2771 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || 2772 isa<DbgInfoIntrinsic>(CurInst)) 2773 return false; 2774 2775 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from 2776 // sinking the compare again, and it would force the code generator to 2777 // move the i1 from processor flags or predicate registers into a general 2778 // purpose register. 2779 if (isa<CmpInst>(CurInst)) 2780 return false; 2781 2782 // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from 2783 // sinking the addressing mode computation back to its uses. Extending the 2784 // GEP's live range increases the register pressure, and therefore it can 2785 // introduce unnecessary spills. 2786 // 2787 // This doesn't prevent Load PRE. PHI translation will make the GEP available 2788 // to the load by moving it to the predecessor block if necessary. 2789 if (isa<GetElementPtrInst>(CurInst)) 2790 return false; 2791 2792 if (auto *CallB = dyn_cast<CallBase>(CurInst)) { 2793 // We don't currently value number ANY inline asm calls. 2794 if (CallB->isInlineAsm()) 2795 return false; 2796 // Don't do PRE on convergent calls. 2797 if (CallB->isConvergent()) 2798 return false; 2799 } 2800 2801 uint32_t ValNo = VN.lookup(CurInst); 2802 2803 // Look for the predecessors for PRE opportunities. We're 2804 // only trying to solve the basic diamond case, where 2805 // a value is computed in the successor and one predecessor, 2806 // but not the other. We also explicitly disallow cases 2807 // where the successor is its own predecessor, because they're 2808 // more complicated to get right. 2809 unsigned NumWith = 0; 2810 unsigned NumWithout = 0; 2811 BasicBlock *PREPred = nullptr; 2812 BasicBlock *CurrentBlock = CurInst->getParent(); 2813 2814 // Update the RPO numbers for this function. 2815 if (InvalidBlockRPONumbers) 2816 assignBlockRPONumber(*CurrentBlock->getParent()); 2817 2818 SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap; 2819 for (BasicBlock *P : predecessors(CurrentBlock)) { 2820 // We're not interested in PRE where blocks with predecessors that are 2821 // not reachable. 2822 if (!DT->isReachableFromEntry(P)) { 2823 NumWithout = 2; 2824 break; 2825 } 2826 // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and 2827 // when CurInst has operand defined in CurrentBlock (so it may be defined 2828 // by phi in the loop header). 2829 assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) && 2830 "Invalid BlockRPONumber map."); 2831 if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] && 2832 llvm::any_of(CurInst->operands(), [&](const Use &U) { 2833 if (auto *Inst = dyn_cast<Instruction>(U.get())) 2834 return Inst->getParent() == CurrentBlock; 2835 return false; 2836 })) { 2837 NumWithout = 2; 2838 break; 2839 } 2840 2841 uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this); 2842 Value *predV = findLeader(P, TValNo); 2843 if (!predV) { 2844 predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P)); 2845 PREPred = P; 2846 ++NumWithout; 2847 } else if (predV == CurInst) { 2848 /* CurInst dominates this predecessor. */ 2849 NumWithout = 2; 2850 break; 2851 } else { 2852 predMap.push_back(std::make_pair(predV, P)); 2853 ++NumWith; 2854 } 2855 } 2856 2857 // Don't do PRE when it might increase code size, i.e. when 2858 // we would need to insert instructions in more than one pred. 2859 if (NumWithout > 1 || NumWith == 0) 2860 return false; 2861 2862 // We may have a case where all predecessors have the instruction, 2863 // and we just need to insert a phi node. Otherwise, perform 2864 // insertion. 2865 Instruction *PREInstr = nullptr; 2866 2867 if (NumWithout != 0) { 2868 if (!isSafeToSpeculativelyExecute(CurInst)) { 2869 // It is only valid to insert a new instruction if the current instruction 2870 // is always executed. An instruction with implicit control flow could 2871 // prevent us from doing it. If we cannot speculate the execution, then 2872 // PRE should be prohibited. 2873 if (ICF->isDominatedByICFIFromSameBlock(CurInst)) 2874 return false; 2875 } 2876 2877 // Don't do PRE across indirect branch. 2878 if (isa<IndirectBrInst>(PREPred->getTerminator())) 2879 return false; 2880 2881 // Don't do PRE across callbr. 2882 // FIXME: Can we do this across the fallthrough edge? 2883 if (isa<CallBrInst>(PREPred->getTerminator())) 2884 return false; 2885 2886 // We can't do PRE safely on a critical edge, so instead we schedule 2887 // the edge to be split and perform the PRE the next time we iterate 2888 // on the function. 2889 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock); 2890 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { 2891 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); 2892 return false; 2893 } 2894 // We need to insert somewhere, so let's give it a shot 2895 PREInstr = CurInst->clone(); 2896 if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) { 2897 // If we failed insertion, make sure we remove the instruction. 2898 LLVM_DEBUG(verifyRemoved(PREInstr)); 2899 PREInstr->deleteValue(); 2900 return false; 2901 } 2902 } 2903 2904 // Either we should have filled in the PRE instruction, or we should 2905 // not have needed insertions. 2906 assert(PREInstr != nullptr || NumWithout == 0); 2907 2908 ++NumGVNPRE; 2909 2910 // Create a PHI to make the value available in this block. 2911 PHINode *Phi = 2912 PHINode::Create(CurInst->getType(), predMap.size(), 2913 CurInst->getName() + ".pre-phi", &CurrentBlock->front()); 2914 for (unsigned i = 0, e = predMap.size(); i != e; ++i) { 2915 if (Value *V = predMap[i].first) { 2916 // If we use an existing value in this phi, we have to patch the original 2917 // value because the phi will be used to replace a later value. 2918 patchReplacementInstruction(CurInst, V); 2919 Phi->addIncoming(V, predMap[i].second); 2920 } else 2921 Phi->addIncoming(PREInstr, PREPred); 2922 } 2923 2924 VN.add(Phi, ValNo); 2925 // After creating a new PHI for ValNo, the phi translate result for ValNo will 2926 // be changed, so erase the related stale entries in phi translate cache. 2927 VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock); 2928 addToLeaderTable(ValNo, Phi, CurrentBlock); 2929 Phi->setDebugLoc(CurInst->getDebugLoc()); 2930 CurInst->replaceAllUsesWith(Phi); 2931 if (MD && Phi->getType()->isPtrOrPtrVectorTy()) 2932 MD->invalidateCachedPointerInfo(Phi); 2933 VN.erase(CurInst); 2934 removeFromLeaderTable(ValNo, CurInst, CurrentBlock); 2935 2936 LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n'); 2937 if (MD) 2938 MD->removeInstruction(CurInst); 2939 if (MSSAU) 2940 MSSAU->removeMemoryAccess(CurInst); 2941 LLVM_DEBUG(verifyRemoved(CurInst)); 2942 // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes 2943 // some assertion failures. 2944 ICF->removeInstruction(CurInst); 2945 CurInst->eraseFromParent(); 2946 ++NumGVNInstr; 2947 2948 return true; 2949 } 2950 2951 /// Perform a purely local form of PRE that looks for diamond 2952 /// control flow patterns and attempts to perform simple PRE at the join point. 2953 bool GVNPass::performPRE(Function &F) { 2954 bool Changed = false; 2955 for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) { 2956 // Nothing to PRE in the entry block. 2957 if (CurrentBlock == &F.getEntryBlock()) 2958 continue; 2959 2960 // Don't perform PRE on an EH pad. 2961 if (CurrentBlock->isEHPad()) 2962 continue; 2963 2964 for (BasicBlock::iterator BI = CurrentBlock->begin(), 2965 BE = CurrentBlock->end(); 2966 BI != BE;) { 2967 Instruction *CurInst = &*BI++; 2968 Changed |= performScalarPRE(CurInst); 2969 } 2970 } 2971 2972 if (splitCriticalEdges()) 2973 Changed = true; 2974 2975 return Changed; 2976 } 2977 2978 /// Split the critical edge connecting the given two blocks, and return 2979 /// the block inserted to the critical edge. 2980 BasicBlock *GVNPass::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) { 2981 // GVN does not require loop-simplify, do not try to preserve it if it is not 2982 // possible. 2983 BasicBlock *BB = SplitCriticalEdge( 2984 Pred, Succ, 2985 CriticalEdgeSplittingOptions(DT, LI, MSSAU).unsetPreserveLoopSimplify()); 2986 if (BB) { 2987 if (MD) 2988 MD->invalidateCachedPredecessors(); 2989 InvalidBlockRPONumbers = true; 2990 } 2991 return BB; 2992 } 2993 2994 /// Split critical edges found during the previous 2995 /// iteration that may enable further optimization. 2996 bool GVNPass::splitCriticalEdges() { 2997 if (toSplit.empty()) 2998 return false; 2999 3000 bool Changed = false; 3001 do { 3002 std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val(); 3003 Changed |= SplitCriticalEdge(Edge.first, Edge.second, 3004 CriticalEdgeSplittingOptions(DT, LI, MSSAU)) != 3005 nullptr; 3006 } while (!toSplit.empty()); 3007 if (Changed) { 3008 if (MD) 3009 MD->invalidateCachedPredecessors(); 3010 InvalidBlockRPONumbers = true; 3011 } 3012 return Changed; 3013 } 3014 3015 /// Executes one iteration of GVN 3016 bool GVNPass::iterateOnFunction(Function &F) { 3017 cleanupGlobalSets(); 3018 3019 // Top-down walk of the dominator tree 3020 bool Changed = false; 3021 // Needed for value numbering with phi construction to work. 3022 // RPOT walks the graph in its constructor and will not be invalidated during 3023 // processBlock. 3024 ReversePostOrderTraversal<Function *> RPOT(&F); 3025 3026 for (BasicBlock *BB : RPOT) 3027 Changed |= processBlock(BB); 3028 3029 return Changed; 3030 } 3031 3032 void GVNPass::cleanupGlobalSets() { 3033 VN.clear(); 3034 LeaderTable.clear(); 3035 BlockRPONumber.clear(); 3036 TableAllocator.Reset(); 3037 ICF->clear(); 3038 InvalidBlockRPONumbers = true; 3039 } 3040 3041 /// Verify that the specified instruction does not occur in our 3042 /// internal data structures. 3043 void GVNPass::verifyRemoved(const Instruction *Inst) const { 3044 VN.verifyRemoved(Inst); 3045 3046 // Walk through the value number scope to make sure the instruction isn't 3047 // ferreted away in it. 3048 for (const auto &I : LeaderTable) { 3049 const LeaderTableEntry *Node = &I.second; 3050 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 3051 3052 while (Node->Next) { 3053 Node = Node->Next; 3054 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 3055 } 3056 } 3057 } 3058 3059 /// BB is declared dead, which implied other blocks become dead as well. This 3060 /// function is to add all these blocks to "DeadBlocks". For the dead blocks' 3061 /// live successors, update their phi nodes by replacing the operands 3062 /// corresponding to dead blocks with UndefVal. 3063 void GVNPass::addDeadBlock(BasicBlock *BB) { 3064 SmallVector<BasicBlock *, 4> NewDead; 3065 SmallSetVector<BasicBlock *, 4> DF; 3066 3067 NewDead.push_back(BB); 3068 while (!NewDead.empty()) { 3069 BasicBlock *D = NewDead.pop_back_val(); 3070 if (DeadBlocks.count(D)) 3071 continue; 3072 3073 // All blocks dominated by D are dead. 3074 SmallVector<BasicBlock *, 8> Dom; 3075 DT->getDescendants(D, Dom); 3076 DeadBlocks.insert(Dom.begin(), Dom.end()); 3077 3078 // Figure out the dominance-frontier(D). 3079 for (BasicBlock *B : Dom) { 3080 for (BasicBlock *S : successors(B)) { 3081 if (DeadBlocks.count(S)) 3082 continue; 3083 3084 bool AllPredDead = true; 3085 for (BasicBlock *P : predecessors(S)) 3086 if (!DeadBlocks.count(P)) { 3087 AllPredDead = false; 3088 break; 3089 } 3090 3091 if (!AllPredDead) { 3092 // S could be proved dead later on. That is why we don't update phi 3093 // operands at this moment. 3094 DF.insert(S); 3095 } else { 3096 // While S is not dominated by D, it is dead by now. This could take 3097 // place if S already have a dead predecessor before D is declared 3098 // dead. 3099 NewDead.push_back(S); 3100 } 3101 } 3102 } 3103 } 3104 3105 // For the dead blocks' live successors, update their phi nodes by replacing 3106 // the operands corresponding to dead blocks with UndefVal. 3107 for (BasicBlock *B : DF) { 3108 if (DeadBlocks.count(B)) 3109 continue; 3110 3111 // First, split the critical edges. This might also create additional blocks 3112 // to preserve LoopSimplify form and adjust edges accordingly. 3113 SmallVector<BasicBlock *, 4> Preds(predecessors(B)); 3114 for (BasicBlock *P : Preds) { 3115 if (!DeadBlocks.count(P)) 3116 continue; 3117 3118 if (llvm::is_contained(successors(P), B) && 3119 isCriticalEdge(P->getTerminator(), B)) { 3120 if (BasicBlock *S = splitCriticalEdges(P, B)) 3121 DeadBlocks.insert(P = S); 3122 } 3123 } 3124 3125 // Now poison the incoming values from the dead predecessors. 3126 for (BasicBlock *P : predecessors(B)) { 3127 if (!DeadBlocks.count(P)) 3128 continue; 3129 for (PHINode &Phi : B->phis()) { 3130 Phi.setIncomingValueForBlock(P, PoisonValue::get(Phi.getType())); 3131 if (MD) 3132 MD->invalidateCachedPointerInfo(&Phi); 3133 } 3134 } 3135 } 3136 } 3137 3138 // If the given branch is recognized as a foldable branch (i.e. conditional 3139 // branch with constant condition), it will perform following analyses and 3140 // transformation. 3141 // 1) If the dead out-coming edge is a critical-edge, split it. Let 3142 // R be the target of the dead out-coming edge. 3143 // 1) Identify the set of dead blocks implied by the branch's dead outcoming 3144 // edge. The result of this step will be {X| X is dominated by R} 3145 // 2) Identify those blocks which haves at least one dead predecessor. The 3146 // result of this step will be dominance-frontier(R). 3147 // 3) Update the PHIs in DF(R) by replacing the operands corresponding to 3148 // dead blocks with "UndefVal" in an hope these PHIs will optimized away. 3149 // 3150 // Return true iff *NEW* dead code are found. 3151 bool GVNPass::processFoldableCondBr(BranchInst *BI) { 3152 if (!BI || BI->isUnconditional()) 3153 return false; 3154 3155 // If a branch has two identical successors, we cannot declare either dead. 3156 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 3157 return false; 3158 3159 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 3160 if (!Cond) 3161 return false; 3162 3163 BasicBlock *DeadRoot = 3164 Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0); 3165 if (DeadBlocks.count(DeadRoot)) 3166 return false; 3167 3168 if (!DeadRoot->getSinglePredecessor()) 3169 DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot); 3170 3171 addDeadBlock(DeadRoot); 3172 return true; 3173 } 3174 3175 // performPRE() will trigger assert if it comes across an instruction without 3176 // associated val-num. As it normally has far more live instructions than dead 3177 // instructions, it makes more sense just to "fabricate" a val-number for the 3178 // dead code than checking if instruction involved is dead or not. 3179 void GVNPass::assignValNumForDeadCode() { 3180 for (BasicBlock *BB : DeadBlocks) { 3181 for (Instruction &Inst : *BB) { 3182 unsigned ValNum = VN.lookupOrAdd(&Inst); 3183 addToLeaderTable(ValNum, &Inst, BB); 3184 } 3185 } 3186 } 3187 3188 class llvm::gvn::GVNLegacyPass : public FunctionPass { 3189 public: 3190 static char ID; // Pass identification, replacement for typeid 3191 3192 explicit GVNLegacyPass(bool NoMemDepAnalysis = !GVNEnableMemDep) 3193 : FunctionPass(ID), Impl(GVNOptions().setMemDep(!NoMemDepAnalysis)) { 3194 initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry()); 3195 } 3196 3197 bool runOnFunction(Function &F) override { 3198 if (skipFunction(F)) 3199 return false; 3200 3201 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3202 3203 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 3204 return Impl.runImpl( 3205 F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 3206 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 3207 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 3208 getAnalysis<AAResultsWrapperPass>().getAAResults(), 3209 Impl.isMemDepEnabled() 3210 ? &getAnalysis<MemoryDependenceWrapperPass>().getMemDep() 3211 : nullptr, 3212 LIWP ? &LIWP->getLoopInfo() : nullptr, 3213 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), 3214 MSSAWP ? &MSSAWP->getMSSA() : nullptr); 3215 } 3216 3217 void getAnalysisUsage(AnalysisUsage &AU) const override { 3218 AU.addRequired<AssumptionCacheTracker>(); 3219 AU.addRequired<DominatorTreeWrapperPass>(); 3220 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3221 AU.addRequired<LoopInfoWrapperPass>(); 3222 if (Impl.isMemDepEnabled()) 3223 AU.addRequired<MemoryDependenceWrapperPass>(); 3224 AU.addRequired<AAResultsWrapperPass>(); 3225 AU.addPreserved<DominatorTreeWrapperPass>(); 3226 AU.addPreserved<GlobalsAAWrapperPass>(); 3227 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 3228 AU.addPreserved<LoopInfoWrapperPass>(); 3229 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3230 AU.addPreserved<MemorySSAWrapperPass>(); 3231 } 3232 3233 private: 3234 GVNPass Impl; 3235 }; 3236 3237 char GVNLegacyPass::ID = 0; 3238 3239 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 3240 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3241 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 3242 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3243 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3244 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3245 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3246 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3247 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 3248 3249 // The public interface to this file... 3250 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) { 3251 return new GVNLegacyPass(NoMemDepAnalysis); 3252 } 3253