1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs global value numbering to eliminate fully redundant 11 // instructions. It also performs simple dead load elimination. 12 // 13 // Note that this pass does the value numbering itself; it does not use the 14 // ValueNumbering analysis passes. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Transforms/Scalar/GVN.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/DepthFirstIterator.h" 21 #include "llvm/ADT/Hashing.h" 22 #include "llvm/ADT/MapVector.h" 23 #include "llvm/ADT/PointerIntPair.h" 24 #include "llvm/ADT/PostOrderIterator.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/Analysis/AliasAnalysis.h" 31 #include "llvm/Analysis/AssumptionCache.h" 32 #include "llvm/Analysis/CFG.h" 33 #include "llvm/Analysis/GlobalsModRef.h" 34 #include "llvm/Analysis/InstructionSimplify.h" 35 #include "llvm/Analysis/LoopInfo.h" 36 #include "llvm/Analysis/MemoryBuiltins.h" 37 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 38 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 39 #include "llvm/Analysis/PHITransAddr.h" 40 #include "llvm/Analysis/TargetLibraryInfo.h" 41 #include "llvm/Analysis/Utils/Local.h" 42 #include "llvm/Analysis/ValueTracking.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/IntrinsicInst.h" 56 #include "llvm/IR/Intrinsics.h" 57 #include "llvm/IR/LLVMContext.h" 58 #include "llvm/IR/Metadata.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/PassManager.h" 62 #include "llvm/IR/PatternMatch.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/Use.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/Pass.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Compiler.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 73 #include "llvm/Transforms/Utils/SSAUpdater.h" 74 #include "llvm/Transforms/Utils/VNCoercion.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstdint> 78 #include <utility> 79 #include <vector> 80 81 using namespace llvm; 82 using namespace llvm::gvn; 83 using namespace llvm::VNCoercion; 84 using namespace PatternMatch; 85 86 #define DEBUG_TYPE "gvn" 87 88 STATISTIC(NumGVNInstr, "Number of instructions deleted"); 89 STATISTIC(NumGVNLoad, "Number of loads deleted"); 90 STATISTIC(NumGVNPRE, "Number of instructions PRE'd"); 91 STATISTIC(NumGVNBlocks, "Number of blocks merged"); 92 STATISTIC(NumGVNSimpl, "Number of instructions simplified"); 93 STATISTIC(NumGVNEqProp, "Number of equalities propagated"); 94 STATISTIC(NumPRELoad, "Number of loads PRE'd"); 95 96 static cl::opt<bool> EnablePRE("enable-pre", 97 cl::init(true), cl::Hidden); 98 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true)); 99 100 // Maximum allowed recursion depth. 101 static cl::opt<uint32_t> 102 MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore, 103 cl::desc("Max recurse depth (default = 1000)")); 104 105 struct llvm::GVN::Expression { 106 uint32_t opcode; 107 Type *type; 108 bool commutative = false; 109 SmallVector<uint32_t, 4> varargs; 110 111 Expression(uint32_t o = ~2U) : opcode(o) {} 112 113 bool operator==(const Expression &other) const { 114 if (opcode != other.opcode) 115 return false; 116 if (opcode == ~0U || opcode == ~1U) 117 return true; 118 if (type != other.type) 119 return false; 120 if (varargs != other.varargs) 121 return false; 122 return true; 123 } 124 125 friend hash_code hash_value(const Expression &Value) { 126 return hash_combine( 127 Value.opcode, Value.type, 128 hash_combine_range(Value.varargs.begin(), Value.varargs.end())); 129 } 130 }; 131 132 namespace llvm { 133 134 template <> struct DenseMapInfo<GVN::Expression> { 135 static inline GVN::Expression getEmptyKey() { return ~0U; } 136 static inline GVN::Expression getTombstoneKey() { return ~1U; } 137 138 static unsigned getHashValue(const GVN::Expression &e) { 139 using llvm::hash_value; 140 141 return static_cast<unsigned>(hash_value(e)); 142 } 143 144 static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) { 145 return LHS == RHS; 146 } 147 }; 148 149 } // end namespace llvm 150 151 /// Represents a particular available value that we know how to materialize. 152 /// Materialization of an AvailableValue never fails. An AvailableValue is 153 /// implicitly associated with a rematerialization point which is the 154 /// location of the instruction from which it was formed. 155 struct llvm::gvn::AvailableValue { 156 enum ValType { 157 SimpleVal, // A simple offsetted value that is accessed. 158 LoadVal, // A value produced by a load. 159 MemIntrin, // A memory intrinsic which is loaded from. 160 UndefVal // A UndefValue representing a value from dead block (which 161 // is not yet physically removed from the CFG). 162 }; 163 164 /// V - The value that is live out of the block. 165 PointerIntPair<Value *, 2, ValType> Val; 166 167 /// Offset - The byte offset in Val that is interesting for the load query. 168 unsigned Offset; 169 170 static AvailableValue get(Value *V, unsigned Offset = 0) { 171 AvailableValue Res; 172 Res.Val.setPointer(V); 173 Res.Val.setInt(SimpleVal); 174 Res.Offset = Offset; 175 return Res; 176 } 177 178 static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) { 179 AvailableValue Res; 180 Res.Val.setPointer(MI); 181 Res.Val.setInt(MemIntrin); 182 Res.Offset = Offset; 183 return Res; 184 } 185 186 static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) { 187 AvailableValue Res; 188 Res.Val.setPointer(LI); 189 Res.Val.setInt(LoadVal); 190 Res.Offset = Offset; 191 return Res; 192 } 193 194 static AvailableValue getUndef() { 195 AvailableValue Res; 196 Res.Val.setPointer(nullptr); 197 Res.Val.setInt(UndefVal); 198 Res.Offset = 0; 199 return Res; 200 } 201 202 bool isSimpleValue() const { return Val.getInt() == SimpleVal; } 203 bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; } 204 bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; } 205 bool isUndefValue() const { return Val.getInt() == UndefVal; } 206 207 Value *getSimpleValue() const { 208 assert(isSimpleValue() && "Wrong accessor"); 209 return Val.getPointer(); 210 } 211 212 LoadInst *getCoercedLoadValue() const { 213 assert(isCoercedLoadValue() && "Wrong accessor"); 214 return cast<LoadInst>(Val.getPointer()); 215 } 216 217 MemIntrinsic *getMemIntrinValue() const { 218 assert(isMemIntrinValue() && "Wrong accessor"); 219 return cast<MemIntrinsic>(Val.getPointer()); 220 } 221 222 /// Emit code at the specified insertion point to adjust the value defined 223 /// here to the specified type. This handles various coercion cases. 224 Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt, 225 GVN &gvn) const; 226 }; 227 228 /// Represents an AvailableValue which can be rematerialized at the end of 229 /// the associated BasicBlock. 230 struct llvm::gvn::AvailableValueInBlock { 231 /// BB - The basic block in question. 232 BasicBlock *BB; 233 234 /// AV - The actual available value 235 AvailableValue AV; 236 237 static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) { 238 AvailableValueInBlock Res; 239 Res.BB = BB; 240 Res.AV = std::move(AV); 241 return Res; 242 } 243 244 static AvailableValueInBlock get(BasicBlock *BB, Value *V, 245 unsigned Offset = 0) { 246 return get(BB, AvailableValue::get(V, Offset)); 247 } 248 249 static AvailableValueInBlock getUndef(BasicBlock *BB) { 250 return get(BB, AvailableValue::getUndef()); 251 } 252 253 /// Emit code at the end of this block to adjust the value defined here to 254 /// the specified type. This handles various coercion cases. 255 Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const { 256 return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn); 257 } 258 }; 259 260 //===----------------------------------------------------------------------===// 261 // ValueTable Internal Functions 262 //===----------------------------------------------------------------------===// 263 264 GVN::Expression GVN::ValueTable::createExpr(Instruction *I) { 265 Expression e; 266 e.type = I->getType(); 267 e.opcode = I->getOpcode(); 268 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 269 OI != OE; ++OI) 270 e.varargs.push_back(lookupOrAdd(*OI)); 271 if (I->isCommutative()) { 272 // Ensure that commutative instructions that only differ by a permutation 273 // of their operands get the same value number by sorting the operand value 274 // numbers. Since all commutative instructions have two operands it is more 275 // efficient to sort by hand rather than using, say, std::sort. 276 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!"); 277 if (e.varargs[0] > e.varargs[1]) 278 std::swap(e.varargs[0], e.varargs[1]); 279 e.commutative = true; 280 } 281 282 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 283 // Sort the operand value numbers so x<y and y>x get the same value number. 284 CmpInst::Predicate Predicate = C->getPredicate(); 285 if (e.varargs[0] > e.varargs[1]) { 286 std::swap(e.varargs[0], e.varargs[1]); 287 Predicate = CmpInst::getSwappedPredicate(Predicate); 288 } 289 e.opcode = (C->getOpcode() << 8) | Predicate; 290 e.commutative = true; 291 } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) { 292 for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end(); 293 II != IE; ++II) 294 e.varargs.push_back(*II); 295 } 296 297 return e; 298 } 299 300 GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode, 301 CmpInst::Predicate Predicate, 302 Value *LHS, Value *RHS) { 303 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 304 "Not a comparison!"); 305 Expression e; 306 e.type = CmpInst::makeCmpResultType(LHS->getType()); 307 e.varargs.push_back(lookupOrAdd(LHS)); 308 e.varargs.push_back(lookupOrAdd(RHS)); 309 310 // Sort the operand value numbers so x<y and y>x get the same value number. 311 if (e.varargs[0] > e.varargs[1]) { 312 std::swap(e.varargs[0], e.varargs[1]); 313 Predicate = CmpInst::getSwappedPredicate(Predicate); 314 } 315 e.opcode = (Opcode << 8) | Predicate; 316 e.commutative = true; 317 return e; 318 } 319 320 GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) { 321 assert(EI && "Not an ExtractValueInst?"); 322 Expression e; 323 e.type = EI->getType(); 324 e.opcode = 0; 325 326 IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand()); 327 if (I != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) { 328 // EI might be an extract from one of our recognised intrinsics. If it 329 // is we'll synthesize a semantically equivalent expression instead on 330 // an extract value expression. 331 switch (I->getIntrinsicID()) { 332 case Intrinsic::sadd_with_overflow: 333 case Intrinsic::uadd_with_overflow: 334 e.opcode = Instruction::Add; 335 break; 336 case Intrinsic::ssub_with_overflow: 337 case Intrinsic::usub_with_overflow: 338 e.opcode = Instruction::Sub; 339 break; 340 case Intrinsic::smul_with_overflow: 341 case Intrinsic::umul_with_overflow: 342 e.opcode = Instruction::Mul; 343 break; 344 default: 345 break; 346 } 347 348 if (e.opcode != 0) { 349 // Intrinsic recognized. Grab its args to finish building the expression. 350 assert(I->getNumArgOperands() == 2 && 351 "Expect two args for recognised intrinsics."); 352 e.varargs.push_back(lookupOrAdd(I->getArgOperand(0))); 353 e.varargs.push_back(lookupOrAdd(I->getArgOperand(1))); 354 return e; 355 } 356 } 357 358 // Not a recognised intrinsic. Fall back to producing an extract value 359 // expression. 360 e.opcode = EI->getOpcode(); 361 for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end(); 362 OI != OE; ++OI) 363 e.varargs.push_back(lookupOrAdd(*OI)); 364 365 for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end(); 366 II != IE; ++II) 367 e.varargs.push_back(*II); 368 369 return e; 370 } 371 372 //===----------------------------------------------------------------------===// 373 // ValueTable External Functions 374 //===----------------------------------------------------------------------===// 375 376 GVN::ValueTable::ValueTable() = default; 377 GVN::ValueTable::ValueTable(const ValueTable &) = default; 378 GVN::ValueTable::ValueTable(ValueTable &&) = default; 379 GVN::ValueTable::~ValueTable() = default; 380 381 /// add - Insert a value into the table with a specified value number. 382 void GVN::ValueTable::add(Value *V, uint32_t num) { 383 valueNumbering.insert(std::make_pair(V, num)); 384 if (PHINode *PN = dyn_cast<PHINode>(V)) 385 NumberingPhi[num] = PN; 386 } 387 388 uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) { 389 if (AA->doesNotAccessMemory(C)) { 390 Expression exp = createExpr(C); 391 uint32_t e = assignExpNewValueNum(exp).first; 392 valueNumbering[C] = e; 393 return e; 394 } else if (AA->onlyReadsMemory(C)) { 395 Expression exp = createExpr(C); 396 auto ValNum = assignExpNewValueNum(exp); 397 if (ValNum.second) { 398 valueNumbering[C] = ValNum.first; 399 return ValNum.first; 400 } 401 if (!MD) { 402 uint32_t e = assignExpNewValueNum(exp).first; 403 valueNumbering[C] = e; 404 return e; 405 } 406 407 MemDepResult local_dep = MD->getDependency(C); 408 409 if (!local_dep.isDef() && !local_dep.isNonLocal()) { 410 valueNumbering[C] = nextValueNumber; 411 return nextValueNumber++; 412 } 413 414 if (local_dep.isDef()) { 415 CallInst* local_cdep = cast<CallInst>(local_dep.getInst()); 416 417 if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) { 418 valueNumbering[C] = nextValueNumber; 419 return nextValueNumber++; 420 } 421 422 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { 423 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 424 uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i)); 425 if (c_vn != cd_vn) { 426 valueNumbering[C] = nextValueNumber; 427 return nextValueNumber++; 428 } 429 } 430 431 uint32_t v = lookupOrAdd(local_cdep); 432 valueNumbering[C] = v; 433 return v; 434 } 435 436 // Non-local case. 437 const MemoryDependenceResults::NonLocalDepInfo &deps = 438 MD->getNonLocalCallDependency(CallSite(C)); 439 // FIXME: Move the checking logic to MemDep! 440 CallInst* cdep = nullptr; 441 442 // Check to see if we have a single dominating call instruction that is 443 // identical to C. 444 for (unsigned i = 0, e = deps.size(); i != e; ++i) { 445 const NonLocalDepEntry *I = &deps[i]; 446 if (I->getResult().isNonLocal()) 447 continue; 448 449 // We don't handle non-definitions. If we already have a call, reject 450 // instruction dependencies. 451 if (!I->getResult().isDef() || cdep != nullptr) { 452 cdep = nullptr; 453 break; 454 } 455 456 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst()); 457 // FIXME: All duplicated with non-local case. 458 if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){ 459 cdep = NonLocalDepCall; 460 continue; 461 } 462 463 cdep = nullptr; 464 break; 465 } 466 467 if (!cdep) { 468 valueNumbering[C] = nextValueNumber; 469 return nextValueNumber++; 470 } 471 472 if (cdep->getNumArgOperands() != C->getNumArgOperands()) { 473 valueNumbering[C] = nextValueNumber; 474 return nextValueNumber++; 475 } 476 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { 477 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 478 uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i)); 479 if (c_vn != cd_vn) { 480 valueNumbering[C] = nextValueNumber; 481 return nextValueNumber++; 482 } 483 } 484 485 uint32_t v = lookupOrAdd(cdep); 486 valueNumbering[C] = v; 487 return v; 488 } else { 489 valueNumbering[C] = nextValueNumber; 490 return nextValueNumber++; 491 } 492 } 493 494 /// Returns true if a value number exists for the specified value. 495 bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; } 496 497 /// lookup_or_add - Returns the value number for the specified value, assigning 498 /// it a new number if it did not have one before. 499 uint32_t GVN::ValueTable::lookupOrAdd(Value *V) { 500 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); 501 if (VI != valueNumbering.end()) 502 return VI->second; 503 504 if (!isa<Instruction>(V)) { 505 valueNumbering[V] = nextValueNumber; 506 return nextValueNumber++; 507 } 508 509 Instruction* I = cast<Instruction>(V); 510 Expression exp; 511 switch (I->getOpcode()) { 512 case Instruction::Call: 513 return lookupOrAddCall(cast<CallInst>(I)); 514 case Instruction::Add: 515 case Instruction::FAdd: 516 case Instruction::Sub: 517 case Instruction::FSub: 518 case Instruction::Mul: 519 case Instruction::FMul: 520 case Instruction::UDiv: 521 case Instruction::SDiv: 522 case Instruction::FDiv: 523 case Instruction::URem: 524 case Instruction::SRem: 525 case Instruction::FRem: 526 case Instruction::Shl: 527 case Instruction::LShr: 528 case Instruction::AShr: 529 case Instruction::And: 530 case Instruction::Or: 531 case Instruction::Xor: 532 case Instruction::ICmp: 533 case Instruction::FCmp: 534 case Instruction::Trunc: 535 case Instruction::ZExt: 536 case Instruction::SExt: 537 case Instruction::FPToUI: 538 case Instruction::FPToSI: 539 case Instruction::UIToFP: 540 case Instruction::SIToFP: 541 case Instruction::FPTrunc: 542 case Instruction::FPExt: 543 case Instruction::PtrToInt: 544 case Instruction::IntToPtr: 545 case Instruction::BitCast: 546 case Instruction::Select: 547 case Instruction::ExtractElement: 548 case Instruction::InsertElement: 549 case Instruction::ShuffleVector: 550 case Instruction::InsertValue: 551 case Instruction::GetElementPtr: 552 exp = createExpr(I); 553 break; 554 case Instruction::ExtractValue: 555 exp = createExtractvalueExpr(cast<ExtractValueInst>(I)); 556 break; 557 case Instruction::PHI: 558 valueNumbering[V] = nextValueNumber; 559 NumberingPhi[nextValueNumber] = cast<PHINode>(V); 560 return nextValueNumber++; 561 default: 562 valueNumbering[V] = nextValueNumber; 563 return nextValueNumber++; 564 } 565 566 uint32_t e = assignExpNewValueNum(exp).first; 567 valueNumbering[V] = e; 568 return e; 569 } 570 571 /// Returns the value number of the specified value. Fails if 572 /// the value has not yet been numbered. 573 uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const { 574 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V); 575 if (Verify) { 576 assert(VI != valueNumbering.end() && "Value not numbered?"); 577 return VI->second; 578 } 579 return (VI != valueNumbering.end()) ? VI->second : 0; 580 } 581 582 /// Returns the value number of the given comparison, 583 /// assigning it a new number if it did not have one before. Useful when 584 /// we deduced the result of a comparison, but don't immediately have an 585 /// instruction realizing that comparison to hand. 586 uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode, 587 CmpInst::Predicate Predicate, 588 Value *LHS, Value *RHS) { 589 Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS); 590 return assignExpNewValueNum(exp).first; 591 } 592 593 /// Remove all entries from the ValueTable. 594 void GVN::ValueTable::clear() { 595 valueNumbering.clear(); 596 expressionNumbering.clear(); 597 NumberingPhi.clear(); 598 PhiTranslateTable.clear(); 599 nextValueNumber = 1; 600 Expressions.clear(); 601 ExprIdx.clear(); 602 nextExprNumber = 0; 603 } 604 605 /// Remove a value from the value numbering. 606 void GVN::ValueTable::erase(Value *V) { 607 uint32_t Num = valueNumbering.lookup(V); 608 valueNumbering.erase(V); 609 // If V is PHINode, V <--> value number is an one-to-one mapping. 610 if (isa<PHINode>(V)) 611 NumberingPhi.erase(Num); 612 } 613 614 /// verifyRemoved - Verify that the value is removed from all internal data 615 /// structures. 616 void GVN::ValueTable::verifyRemoved(const Value *V) const { 617 for (DenseMap<Value*, uint32_t>::const_iterator 618 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) { 619 assert(I->first != V && "Inst still occurs in value numbering map!"); 620 } 621 } 622 623 //===----------------------------------------------------------------------===// 624 // GVN Pass 625 //===----------------------------------------------------------------------===// 626 627 PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) { 628 // FIXME: The order of evaluation of these 'getResult' calls is very 629 // significant! Re-ordering these variables will cause GVN when run alone to 630 // be less effective! We should fix memdep and basic-aa to not exhibit this 631 // behavior, but until then don't change the order here. 632 auto &AC = AM.getResult<AssumptionAnalysis>(F); 633 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 634 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 635 auto &AA = AM.getResult<AAManager>(F); 636 auto &MemDep = AM.getResult<MemoryDependenceAnalysis>(F); 637 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 638 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 639 bool Changed = runImpl(F, AC, DT, TLI, AA, &MemDep, LI, &ORE); 640 if (!Changed) 641 return PreservedAnalyses::all(); 642 PreservedAnalyses PA; 643 PA.preserve<DominatorTreeAnalysis>(); 644 PA.preserve<GlobalsAA>(); 645 PA.preserve<TargetLibraryAnalysis>(); 646 return PA; 647 } 648 649 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 650 LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const { 651 errs() << "{\n"; 652 for (DenseMap<uint32_t, Value*>::iterator I = d.begin(), 653 E = d.end(); I != E; ++I) { 654 errs() << I->first << "\n"; 655 I->second->dump(); 656 } 657 errs() << "}\n"; 658 } 659 #endif 660 661 /// Return true if we can prove that the value 662 /// we're analyzing is fully available in the specified block. As we go, keep 663 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This 664 /// map is actually a tri-state map with the following values: 665 /// 0) we know the block *is not* fully available. 666 /// 1) we know the block *is* fully available. 667 /// 2) we do not know whether the block is fully available or not, but we are 668 /// currently speculating that it will be. 669 /// 3) we are speculating for this block and have used that to speculate for 670 /// other blocks. 671 static bool IsValueFullyAvailableInBlock(BasicBlock *BB, 672 DenseMap<BasicBlock*, char> &FullyAvailableBlocks, 673 uint32_t RecurseDepth) { 674 if (RecurseDepth > MaxRecurseDepth) 675 return false; 676 677 // Optimistically assume that the block is fully available and check to see 678 // if we already know about this block in one lookup. 679 std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV = 680 FullyAvailableBlocks.insert(std::make_pair(BB, 2)); 681 682 // If the entry already existed for this block, return the precomputed value. 683 if (!IV.second) { 684 // If this is a speculative "available" value, mark it as being used for 685 // speculation of other blocks. 686 if (IV.first->second == 2) 687 IV.first->second = 3; 688 return IV.first->second != 0; 689 } 690 691 // Otherwise, see if it is fully available in all predecessors. 692 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 693 694 // If this block has no predecessors, it isn't live-in here. 695 if (PI == PE) 696 goto SpeculationFailure; 697 698 for (; PI != PE; ++PI) 699 // If the value isn't fully available in one of our predecessors, then it 700 // isn't fully available in this block either. Undo our previous 701 // optimistic assumption and bail out. 702 if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1)) 703 goto SpeculationFailure; 704 705 return true; 706 707 // If we get here, we found out that this is not, after 708 // all, a fully-available block. We have a problem if we speculated on this and 709 // used the speculation to mark other blocks as available. 710 SpeculationFailure: 711 char &BBVal = FullyAvailableBlocks[BB]; 712 713 // If we didn't speculate on this, just return with it set to false. 714 if (BBVal == 2) { 715 BBVal = 0; 716 return false; 717 } 718 719 // If we did speculate on this value, we could have blocks set to 1 that are 720 // incorrect. Walk the (transitive) successors of this block and mark them as 721 // 0 if set to one. 722 SmallVector<BasicBlock*, 32> BBWorklist; 723 BBWorklist.push_back(BB); 724 725 do { 726 BasicBlock *Entry = BBWorklist.pop_back_val(); 727 // Note that this sets blocks to 0 (unavailable) if they happen to not 728 // already be in FullyAvailableBlocks. This is safe. 729 char &EntryVal = FullyAvailableBlocks[Entry]; 730 if (EntryVal == 0) continue; // Already unavailable. 731 732 // Mark as unavailable. 733 EntryVal = 0; 734 735 BBWorklist.append(succ_begin(Entry), succ_end(Entry)); 736 } while (!BBWorklist.empty()); 737 738 return false; 739 } 740 741 /// Given a set of loads specified by ValuesPerBlock, 742 /// construct SSA form, allowing us to eliminate LI. This returns the value 743 /// that should be used at LI's definition site. 744 static Value *ConstructSSAForLoadSet(LoadInst *LI, 745 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, 746 GVN &gvn) { 747 // Check for the fully redundant, dominating load case. In this case, we can 748 // just use the dominating value directly. 749 if (ValuesPerBlock.size() == 1 && 750 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB, 751 LI->getParent())) { 752 assert(!ValuesPerBlock[0].AV.isUndefValue() && 753 "Dead BB dominate this block"); 754 return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn); 755 } 756 757 // Otherwise, we have to construct SSA form. 758 SmallVector<PHINode*, 8> NewPHIs; 759 SSAUpdater SSAUpdate(&NewPHIs); 760 SSAUpdate.Initialize(LI->getType(), LI->getName()); 761 762 for (const AvailableValueInBlock &AV : ValuesPerBlock) { 763 BasicBlock *BB = AV.BB; 764 765 if (SSAUpdate.HasValueForBlock(BB)) 766 continue; 767 768 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn)); 769 } 770 771 // Perform PHI construction. 772 return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent()); 773 } 774 775 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI, 776 Instruction *InsertPt, 777 GVN &gvn) const { 778 Value *Res; 779 Type *LoadTy = LI->getType(); 780 const DataLayout &DL = LI->getModule()->getDataLayout(); 781 if (isSimpleValue()) { 782 Res = getSimpleValue(); 783 if (Res->getType() != LoadTy) { 784 Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL); 785 786 DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " " 787 << *getSimpleValue() << '\n' 788 << *Res << '\n' << "\n\n\n"); 789 } 790 } else if (isCoercedLoadValue()) { 791 LoadInst *Load = getCoercedLoadValue(); 792 if (Load->getType() == LoadTy && Offset == 0) { 793 Res = Load; 794 } else { 795 Res = getLoadValueForLoad(Load, Offset, LoadTy, InsertPt, DL); 796 // We would like to use gvn.markInstructionForDeletion here, but we can't 797 // because the load is already memoized into the leader map table that GVN 798 // tracks. It is potentially possible to remove the load from the table, 799 // but then there all of the operations based on it would need to be 800 // rehashed. Just leave the dead load around. 801 gvn.getMemDep().removeInstruction(Load); 802 DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << " " 803 << *getCoercedLoadValue() << '\n' 804 << *Res << '\n' 805 << "\n\n\n"); 806 } 807 } else if (isMemIntrinValue()) { 808 Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy, 809 InsertPt, DL); 810 DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset 811 << " " << *getMemIntrinValue() << '\n' 812 << *Res << '\n' << "\n\n\n"); 813 } else { 814 assert(isUndefValue() && "Should be UndefVal"); 815 DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";); 816 return UndefValue::get(LoadTy); 817 } 818 assert(Res && "failed to materialize?"); 819 return Res; 820 } 821 822 static bool isLifetimeStart(const Instruction *Inst) { 823 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst)) 824 return II->getIntrinsicID() == Intrinsic::lifetime_start; 825 return false; 826 } 827 828 /// \brief Try to locate the three instruction involved in a missed 829 /// load-elimination case that is due to an intervening store. 830 static void reportMayClobberedLoad(LoadInst *LI, MemDepResult DepInfo, 831 DominatorTree *DT, 832 OptimizationRemarkEmitter *ORE) { 833 using namespace ore; 834 835 User *OtherAccess = nullptr; 836 837 OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", LI); 838 R << "load of type " << NV("Type", LI->getType()) << " not eliminated" 839 << setExtraArgs(); 840 841 for (auto *U : LI->getPointerOperand()->users()) 842 if (U != LI && (isa<LoadInst>(U) || isa<StoreInst>(U)) && 843 DT->dominates(cast<Instruction>(U), LI)) { 844 // FIXME: for now give up if there are multiple memory accesses that 845 // dominate the load. We need further analysis to decide which one is 846 // that we're forwarding from. 847 if (OtherAccess) 848 OtherAccess = nullptr; 849 else 850 OtherAccess = U; 851 } 852 853 if (OtherAccess) 854 R << " in favor of " << NV("OtherAccess", OtherAccess); 855 856 R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst()); 857 858 ORE->emit(R); 859 } 860 861 bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo, 862 Value *Address, AvailableValue &Res) { 863 assert((DepInfo.isDef() || DepInfo.isClobber()) && 864 "expected a local dependence"); 865 assert(LI->isUnordered() && "rules below are incorrect for ordered access"); 866 867 const DataLayout &DL = LI->getModule()->getDataLayout(); 868 869 if (DepInfo.isClobber()) { 870 // If the dependence is to a store that writes to a superset of the bits 871 // read by the load, we can extract the bits we need for the load from the 872 // stored value. 873 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) { 874 // Can't forward from non-atomic to atomic without violating memory model. 875 if (Address && LI->isAtomic() <= DepSI->isAtomic()) { 876 int Offset = 877 analyzeLoadFromClobberingStore(LI->getType(), Address, DepSI, DL); 878 if (Offset != -1) { 879 Res = AvailableValue::get(DepSI->getValueOperand(), Offset); 880 return true; 881 } 882 } 883 } 884 885 // Check to see if we have something like this: 886 // load i32* P 887 // load i8* (P+1) 888 // if we have this, replace the later with an extraction from the former. 889 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) { 890 // If this is a clobber and L is the first instruction in its block, then 891 // we have the first instruction in the entry block. 892 // Can't forward from non-atomic to atomic without violating memory model. 893 if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) { 894 int Offset = 895 analyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL); 896 897 if (Offset != -1) { 898 Res = AvailableValue::getLoad(DepLI, Offset); 899 return true; 900 } 901 } 902 } 903 904 // If the clobbering value is a memset/memcpy/memmove, see if we can 905 // forward a value on from it. 906 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) { 907 if (Address && !LI->isAtomic()) { 908 int Offset = analyzeLoadFromClobberingMemInst(LI->getType(), Address, 909 DepMI, DL); 910 if (Offset != -1) { 911 Res = AvailableValue::getMI(DepMI, Offset); 912 return true; 913 } 914 } 915 } 916 // Nothing known about this clobber, have to be conservative 917 DEBUG( 918 // fast print dep, using operator<< on instruction is too slow. 919 dbgs() << "GVN: load "; 920 LI->printAsOperand(dbgs()); 921 Instruction *I = DepInfo.getInst(); 922 dbgs() << " is clobbered by " << *I << '\n'; 923 ); 924 if (ORE->allowExtraAnalysis(DEBUG_TYPE)) 925 reportMayClobberedLoad(LI, DepInfo, DT, ORE); 926 927 return false; 928 } 929 assert(DepInfo.isDef() && "follows from above"); 930 931 Instruction *DepInst = DepInfo.getInst(); 932 933 // Loading the allocation -> undef. 934 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) || 935 // Loading immediately after lifetime begin -> undef. 936 isLifetimeStart(DepInst)) { 937 Res = AvailableValue::get(UndefValue::get(LI->getType())); 938 return true; 939 } 940 941 // Loading from calloc (which zero initializes memory) -> zero 942 if (isCallocLikeFn(DepInst, TLI)) { 943 Res = AvailableValue::get(Constant::getNullValue(LI->getType())); 944 return true; 945 } 946 947 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) { 948 // Reject loads and stores that are to the same address but are of 949 // different types if we have to. If the stored value is larger or equal to 950 // the loaded value, we can reuse it. 951 if (S->getValueOperand()->getType() != LI->getType() && 952 !canCoerceMustAliasedValueToLoad(S->getValueOperand(), 953 LI->getType(), DL)) 954 return false; 955 956 // Can't forward from non-atomic to atomic without violating memory model. 957 if (S->isAtomic() < LI->isAtomic()) 958 return false; 959 960 Res = AvailableValue::get(S->getValueOperand()); 961 return true; 962 } 963 964 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) { 965 // If the types mismatch and we can't handle it, reject reuse of the load. 966 // If the stored value is larger or equal to the loaded value, we can reuse 967 // it. 968 if (LD->getType() != LI->getType() && 969 !canCoerceMustAliasedValueToLoad(LD, LI->getType(), DL)) 970 return false; 971 972 // Can't forward from non-atomic to atomic without violating memory model. 973 if (LD->isAtomic() < LI->isAtomic()) 974 return false; 975 976 Res = AvailableValue::getLoad(LD); 977 return true; 978 } 979 980 // Unknown def - must be conservative 981 DEBUG( 982 // fast print dep, using operator<< on instruction is too slow. 983 dbgs() << "GVN: load "; 984 LI->printAsOperand(dbgs()); 985 dbgs() << " has unknown def " << *DepInst << '\n'; 986 ); 987 return false; 988 } 989 990 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps, 991 AvailValInBlkVect &ValuesPerBlock, 992 UnavailBlkVect &UnavailableBlocks) { 993 // Filter out useless results (non-locals, etc). Keep track of the blocks 994 // where we have a value available in repl, also keep track of whether we see 995 // dependencies that produce an unknown value for the load (such as a call 996 // that could potentially clobber the load). 997 unsigned NumDeps = Deps.size(); 998 for (unsigned i = 0, e = NumDeps; i != e; ++i) { 999 BasicBlock *DepBB = Deps[i].getBB(); 1000 MemDepResult DepInfo = Deps[i].getResult(); 1001 1002 if (DeadBlocks.count(DepBB)) { 1003 // Dead dependent mem-op disguise as a load evaluating the same value 1004 // as the load in question. 1005 ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB)); 1006 continue; 1007 } 1008 1009 if (!DepInfo.isDef() && !DepInfo.isClobber()) { 1010 UnavailableBlocks.push_back(DepBB); 1011 continue; 1012 } 1013 1014 // The address being loaded in this non-local block may not be the same as 1015 // the pointer operand of the load if PHI translation occurs. Make sure 1016 // to consider the right address. 1017 Value *Address = Deps[i].getAddress(); 1018 1019 AvailableValue AV; 1020 if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) { 1021 // subtlety: because we know this was a non-local dependency, we know 1022 // it's safe to materialize anywhere between the instruction within 1023 // DepInfo and the end of it's block. 1024 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, 1025 std::move(AV))); 1026 } else { 1027 UnavailableBlocks.push_back(DepBB); 1028 } 1029 } 1030 1031 assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() && 1032 "post condition violation"); 1033 } 1034 1035 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock, 1036 UnavailBlkVect &UnavailableBlocks) { 1037 // Okay, we have *some* definitions of the value. This means that the value 1038 // is available in some of our (transitive) predecessors. Lets think about 1039 // doing PRE of this load. This will involve inserting a new load into the 1040 // predecessor when it's not available. We could do this in general, but 1041 // prefer to not increase code size. As such, we only do this when we know 1042 // that we only have to insert *one* load (which means we're basically moving 1043 // the load, not inserting a new one). 1044 1045 SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(), 1046 UnavailableBlocks.end()); 1047 1048 // Let's find the first basic block with more than one predecessor. Walk 1049 // backwards through predecessors if needed. 1050 BasicBlock *LoadBB = LI->getParent(); 1051 BasicBlock *TmpBB = LoadBB; 1052 bool IsSafeToSpeculativelyExecute = isSafeToSpeculativelyExecute(LI); 1053 1054 // Check that there is no implicit control flow instructions above our load in 1055 // its block. If there is an instruction that doesn't always pass the 1056 // execution to the following instruction, then moving through it may become 1057 // invalid. For example: 1058 // 1059 // int arr[LEN]; 1060 // int index = ???; 1061 // ... 1062 // guard(0 <= index && index < LEN); 1063 // use(arr[index]); 1064 // 1065 // It is illegal to move the array access to any point above the guard, 1066 // because if the index is out of bounds we should deoptimize rather than 1067 // access the array. 1068 // Check that there is no guard in this block above our intruction. 1069 if (!IsSafeToSpeculativelyExecute) { 1070 auto It = FirstImplicitControlFlowInsts.find(TmpBB); 1071 if (It != FirstImplicitControlFlowInsts.end()) { 1072 assert(It->second->getParent() == TmpBB && 1073 "Implicit control flow map broken?"); 1074 if (OI->dominates(It->second, LI)) 1075 return false; 1076 } 1077 } 1078 while (TmpBB->getSinglePredecessor()) { 1079 TmpBB = TmpBB->getSinglePredecessor(); 1080 if (TmpBB == LoadBB) // Infinite (unreachable) loop. 1081 return false; 1082 if (Blockers.count(TmpBB)) 1083 return false; 1084 1085 // If any of these blocks has more than one successor (i.e. if the edge we 1086 // just traversed was critical), then there are other paths through this 1087 // block along which the load may not be anticipated. Hoisting the load 1088 // above this block would be adding the load to execution paths along 1089 // which it was not previously executed. 1090 if (TmpBB->getTerminator()->getNumSuccessors() != 1) 1091 return false; 1092 1093 // Check that there is no implicit control flow in a block above. 1094 if (!IsSafeToSpeculativelyExecute && 1095 FirstImplicitControlFlowInsts.count(TmpBB)) 1096 return false; 1097 } 1098 1099 assert(TmpBB); 1100 LoadBB = TmpBB; 1101 1102 // Check to see how many predecessors have the loaded value fully 1103 // available. 1104 MapVector<BasicBlock *, Value *> PredLoads; 1105 DenseMap<BasicBlock*, char> FullyAvailableBlocks; 1106 for (const AvailableValueInBlock &AV : ValuesPerBlock) 1107 FullyAvailableBlocks[AV.BB] = true; 1108 for (BasicBlock *UnavailableBB : UnavailableBlocks) 1109 FullyAvailableBlocks[UnavailableBB] = false; 1110 1111 SmallVector<BasicBlock *, 4> CriticalEdgePred; 1112 for (BasicBlock *Pred : predecessors(LoadBB)) { 1113 // If any predecessor block is an EH pad that does not allow non-PHI 1114 // instructions before the terminator, we can't PRE the load. 1115 if (Pred->getTerminator()->isEHPad()) { 1116 DEBUG(dbgs() 1117 << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '" 1118 << Pred->getName() << "': " << *LI << '\n'); 1119 return false; 1120 } 1121 1122 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) { 1123 continue; 1124 } 1125 1126 if (Pred->getTerminator()->getNumSuccessors() != 1) { 1127 if (isa<IndirectBrInst>(Pred->getTerminator())) { 1128 DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '" 1129 << Pred->getName() << "': " << *LI << '\n'); 1130 return false; 1131 } 1132 1133 if (LoadBB->isEHPad()) { 1134 DEBUG(dbgs() 1135 << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '" 1136 << Pred->getName() << "': " << *LI << '\n'); 1137 return false; 1138 } 1139 1140 CriticalEdgePred.push_back(Pred); 1141 } else { 1142 // Only add the predecessors that will not be split for now. 1143 PredLoads[Pred] = nullptr; 1144 } 1145 } 1146 1147 // Decide whether PRE is profitable for this load. 1148 unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size(); 1149 assert(NumUnavailablePreds != 0 && 1150 "Fully available value should already be eliminated!"); 1151 1152 // If this load is unavailable in multiple predecessors, reject it. 1153 // FIXME: If we could restructure the CFG, we could make a common pred with 1154 // all the preds that don't have an available LI and insert a new load into 1155 // that one block. 1156 if (NumUnavailablePreds != 1) 1157 return false; 1158 1159 // Split critical edges, and update the unavailable predecessors accordingly. 1160 for (BasicBlock *OrigPred : CriticalEdgePred) { 1161 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB); 1162 assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!"); 1163 PredLoads[NewPred] = nullptr; 1164 DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->" 1165 << LoadBB->getName() << '\n'); 1166 } 1167 1168 // Check if the load can safely be moved to all the unavailable predecessors. 1169 bool CanDoPRE = true; 1170 const DataLayout &DL = LI->getModule()->getDataLayout(); 1171 SmallVector<Instruction*, 8> NewInsts; 1172 for (auto &PredLoad : PredLoads) { 1173 BasicBlock *UnavailablePred = PredLoad.first; 1174 1175 // Do PHI translation to get its value in the predecessor if necessary. The 1176 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred. 1177 1178 // If all preds have a single successor, then we know it is safe to insert 1179 // the load on the pred (?!?), so we can insert code to materialize the 1180 // pointer if it is not available. 1181 PHITransAddr Address(LI->getPointerOperand(), DL, AC); 1182 Value *LoadPtr = nullptr; 1183 LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, 1184 *DT, NewInsts); 1185 1186 // If we couldn't find or insert a computation of this phi translated value, 1187 // we fail PRE. 1188 if (!LoadPtr) { 1189 DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: " 1190 << *LI->getPointerOperand() << "\n"); 1191 CanDoPRE = false; 1192 break; 1193 } 1194 1195 PredLoad.second = LoadPtr; 1196 } 1197 1198 if (!CanDoPRE) { 1199 while (!NewInsts.empty()) { 1200 Instruction *I = NewInsts.pop_back_val(); 1201 markInstructionForDeletion(I); 1202 } 1203 // HINT: Don't revert the edge-splitting as following transformation may 1204 // also need to split these critical edges. 1205 return !CriticalEdgePred.empty(); 1206 } 1207 1208 // Okay, we can eliminate this load by inserting a reload in the predecessor 1209 // and using PHI construction to get the value in the other predecessors, do 1210 // it. 1211 DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n'); 1212 DEBUG(if (!NewInsts.empty()) 1213 dbgs() << "INSERTED " << NewInsts.size() << " INSTS: " 1214 << *NewInsts.back() << '\n'); 1215 1216 // Assign value numbers to the new instructions. 1217 for (Instruction *I : NewInsts) { 1218 // Instructions that have been inserted in predecessor(s) to materialize 1219 // the load address do not retain their original debug locations. Doing 1220 // so could lead to confusing (but correct) source attributions. 1221 // FIXME: How do we retain source locations without causing poor debugging 1222 // behavior? 1223 I->setDebugLoc(DebugLoc()); 1224 1225 // FIXME: We really _ought_ to insert these value numbers into their 1226 // parent's availability map. However, in doing so, we risk getting into 1227 // ordering issues. If a block hasn't been processed yet, we would be 1228 // marking a value as AVAIL-IN, which isn't what we intend. 1229 VN.lookupOrAdd(I); 1230 } 1231 1232 for (const auto &PredLoad : PredLoads) { 1233 BasicBlock *UnavailablePred = PredLoad.first; 1234 Value *LoadPtr = PredLoad.second; 1235 1236 auto *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", 1237 LI->isVolatile(), LI->getAlignment(), 1238 LI->getOrdering(), LI->getSyncScopeID(), 1239 UnavailablePred->getTerminator()); 1240 NewLoad->setDebugLoc(LI->getDebugLoc()); 1241 1242 // Transfer the old load's AA tags to the new load. 1243 AAMDNodes Tags; 1244 LI->getAAMetadata(Tags); 1245 if (Tags) 1246 NewLoad->setAAMetadata(Tags); 1247 1248 if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load)) 1249 NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD); 1250 if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group)) 1251 NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD); 1252 if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) 1253 NewLoad->setMetadata(LLVMContext::MD_range, RangeMD); 1254 1255 // We do not propagate the old load's debug location, because the new 1256 // load now lives in a different BB, and we want to avoid a jumpy line 1257 // table. 1258 // FIXME: How do we retain source locations without causing poor debugging 1259 // behavior? 1260 1261 // Add the newly created load. 1262 ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred, 1263 NewLoad)); 1264 MD->invalidateCachedPointerInfo(LoadPtr); 1265 DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n'); 1266 } 1267 1268 // Perform PHI construction. 1269 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); 1270 LI->replaceAllUsesWith(V); 1271 if (isa<PHINode>(V)) 1272 V->takeName(LI); 1273 if (Instruction *I = dyn_cast<Instruction>(V)) 1274 I->setDebugLoc(LI->getDebugLoc()); 1275 if (V->getType()->isPtrOrPtrVectorTy()) 1276 MD->invalidateCachedPointerInfo(V); 1277 markInstructionForDeletion(LI); 1278 ORE->emit([&]() { 1279 return OptimizationRemark(DEBUG_TYPE, "LoadPRE", LI) 1280 << "load eliminated by PRE"; 1281 }); 1282 ++NumPRELoad; 1283 return true; 1284 } 1285 1286 static void reportLoadElim(LoadInst *LI, Value *AvailableValue, 1287 OptimizationRemarkEmitter *ORE) { 1288 using namespace ore; 1289 1290 ORE->emit([&]() { 1291 return OptimizationRemark(DEBUG_TYPE, "LoadElim", LI) 1292 << "load of type " << NV("Type", LI->getType()) << " eliminated" 1293 << setExtraArgs() << " in favor of " 1294 << NV("InfavorOfValue", AvailableValue); 1295 }); 1296 } 1297 1298 /// Attempt to eliminate a load whose dependencies are 1299 /// non-local by performing PHI construction. 1300 bool GVN::processNonLocalLoad(LoadInst *LI) { 1301 // non-local speculations are not allowed under asan. 1302 if (LI->getParent()->getParent()->hasFnAttribute( 1303 Attribute::SanitizeAddress) || 1304 LI->getParent()->getParent()->hasFnAttribute( 1305 Attribute::SanitizeHWAddress)) 1306 return false; 1307 1308 // Step 1: Find the non-local dependencies of the load. 1309 LoadDepVect Deps; 1310 MD->getNonLocalPointerDependency(LI, Deps); 1311 1312 // If we had to process more than one hundred blocks to find the 1313 // dependencies, this load isn't worth worrying about. Optimizing 1314 // it will be too expensive. 1315 unsigned NumDeps = Deps.size(); 1316 if (NumDeps > 100) 1317 return false; 1318 1319 // If we had a phi translation failure, we'll have a single entry which is a 1320 // clobber in the current block. Reject this early. 1321 if (NumDeps == 1 && 1322 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) { 1323 DEBUG( 1324 dbgs() << "GVN: non-local load "; 1325 LI->printAsOperand(dbgs()); 1326 dbgs() << " has unknown dependencies\n"; 1327 ); 1328 return false; 1329 } 1330 1331 // If this load follows a GEP, see if we can PRE the indices before analyzing. 1332 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) { 1333 for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(), 1334 OE = GEP->idx_end(); 1335 OI != OE; ++OI) 1336 if (Instruction *I = dyn_cast<Instruction>(OI->get())) 1337 performScalarPRE(I); 1338 } 1339 1340 // Step 2: Analyze the availability of the load 1341 AvailValInBlkVect ValuesPerBlock; 1342 UnavailBlkVect UnavailableBlocks; 1343 AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks); 1344 1345 // If we have no predecessors that produce a known value for this load, exit 1346 // early. 1347 if (ValuesPerBlock.empty()) 1348 return false; 1349 1350 // Step 3: Eliminate fully redundancy. 1351 // 1352 // If all of the instructions we depend on produce a known value for this 1353 // load, then it is fully redundant and we can use PHI insertion to compute 1354 // its value. Insert PHIs and remove the fully redundant value now. 1355 if (UnavailableBlocks.empty()) { 1356 DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n'); 1357 1358 // Perform PHI construction. 1359 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); 1360 LI->replaceAllUsesWith(V); 1361 1362 if (isa<PHINode>(V)) 1363 V->takeName(LI); 1364 if (Instruction *I = dyn_cast<Instruction>(V)) 1365 // If instruction I has debug info, then we should not update it. 1366 // Also, if I has a null DebugLoc, then it is still potentially incorrect 1367 // to propagate LI's DebugLoc because LI may not post-dominate I. 1368 if (LI->getDebugLoc() && LI->getParent() == I->getParent()) 1369 I->setDebugLoc(LI->getDebugLoc()); 1370 if (V->getType()->isPtrOrPtrVectorTy()) 1371 MD->invalidateCachedPointerInfo(V); 1372 markInstructionForDeletion(LI); 1373 ++NumGVNLoad; 1374 reportLoadElim(LI, V, ORE); 1375 return true; 1376 } 1377 1378 // Step 4: Eliminate partial redundancy. 1379 if (!EnablePRE || !EnableLoadPRE) 1380 return false; 1381 1382 return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks); 1383 } 1384 1385 bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) { 1386 assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume && 1387 "This function can only be called with llvm.assume intrinsic"); 1388 Value *V = IntrinsicI->getArgOperand(0); 1389 1390 if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) { 1391 if (Cond->isZero()) { 1392 Type *Int8Ty = Type::getInt8Ty(V->getContext()); 1393 // Insert a new store to null instruction before the load to indicate that 1394 // this code is not reachable. FIXME: We could insert unreachable 1395 // instruction directly because we can modify the CFG. 1396 new StoreInst(UndefValue::get(Int8Ty), 1397 Constant::getNullValue(Int8Ty->getPointerTo()), 1398 IntrinsicI); 1399 } 1400 markInstructionForDeletion(IntrinsicI); 1401 return false; 1402 } else if (isa<Constant>(V)) { 1403 // If it's not false, and constant, it must evaluate to true. This means our 1404 // assume is assume(true), and thus, pointless, and we don't want to do 1405 // anything more here. 1406 return false; 1407 } 1408 1409 Constant *True = ConstantInt::getTrue(V->getContext()); 1410 bool Changed = false; 1411 1412 for (BasicBlock *Successor : successors(IntrinsicI->getParent())) { 1413 BasicBlockEdge Edge(IntrinsicI->getParent(), Successor); 1414 1415 // This property is only true in dominated successors, propagateEquality 1416 // will check dominance for us. 1417 Changed |= propagateEquality(V, True, Edge, false); 1418 } 1419 1420 // We can replace assume value with true, which covers cases like this: 1421 // call void @llvm.assume(i1 %cmp) 1422 // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true 1423 ReplaceWithConstMap[V] = True; 1424 1425 // If one of *cmp *eq operand is const, adding it to map will cover this: 1426 // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen 1427 // call void @llvm.assume(i1 %cmp) 1428 // ret float %0 ; will change it to ret float 3.000000e+00 1429 if (auto *CmpI = dyn_cast<CmpInst>(V)) { 1430 if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ || 1431 CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ || 1432 (CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ && 1433 CmpI->getFastMathFlags().noNaNs())) { 1434 Value *CmpLHS = CmpI->getOperand(0); 1435 Value *CmpRHS = CmpI->getOperand(1); 1436 if (isa<Constant>(CmpLHS)) 1437 std::swap(CmpLHS, CmpRHS); 1438 auto *RHSConst = dyn_cast<Constant>(CmpRHS); 1439 1440 // If only one operand is constant. 1441 if (RHSConst != nullptr && !isa<Constant>(CmpLHS)) 1442 ReplaceWithConstMap[CmpLHS] = RHSConst; 1443 } 1444 } 1445 return Changed; 1446 } 1447 1448 static void patchReplacementInstruction(Instruction *I, Value *Repl) { 1449 auto *ReplInst = dyn_cast<Instruction>(Repl); 1450 if (!ReplInst) 1451 return; 1452 1453 // Patch the replacement so that it is not more restrictive than the value 1454 // being replaced. 1455 // Note that if 'I' is a load being replaced by some operation, 1456 // for example, by an arithmetic operation, then andIRFlags() 1457 // would just erase all math flags from the original arithmetic 1458 // operation, which is clearly not wanted and not needed. 1459 if (!isa<LoadInst>(I)) 1460 ReplInst->andIRFlags(I); 1461 1462 // FIXME: If both the original and replacement value are part of the 1463 // same control-flow region (meaning that the execution of one 1464 // guarantees the execution of the other), then we can combine the 1465 // noalias scopes here and do better than the general conservative 1466 // answer used in combineMetadata(). 1467 1468 // In general, GVN unifies expressions over different control-flow 1469 // regions, and so we need a conservative combination of the noalias 1470 // scopes. 1471 static const unsigned KnownIDs[] = { 1472 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1473 LLVMContext::MD_noalias, LLVMContext::MD_range, 1474 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 1475 LLVMContext::MD_invariant_group}; 1476 combineMetadata(ReplInst, I, KnownIDs); 1477 } 1478 1479 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { 1480 patchReplacementInstruction(I, Repl); 1481 I->replaceAllUsesWith(Repl); 1482 } 1483 1484 /// Attempt to eliminate a load, first by eliminating it 1485 /// locally, and then attempting non-local elimination if that fails. 1486 bool GVN::processLoad(LoadInst *L) { 1487 if (!MD) 1488 return false; 1489 1490 // This code hasn't been audited for ordered or volatile memory access 1491 if (!L->isUnordered()) 1492 return false; 1493 1494 if (L->use_empty()) { 1495 markInstructionForDeletion(L); 1496 return true; 1497 } 1498 1499 // ... to a pointer that has been loaded from before... 1500 MemDepResult Dep = MD->getDependency(L); 1501 1502 // If it is defined in another block, try harder. 1503 if (Dep.isNonLocal()) 1504 return processNonLocalLoad(L); 1505 1506 // Only handle the local case below 1507 if (!Dep.isDef() && !Dep.isClobber()) { 1508 // This might be a NonFuncLocal or an Unknown 1509 DEBUG( 1510 // fast print dep, using operator<< on instruction is too slow. 1511 dbgs() << "GVN: load "; 1512 L->printAsOperand(dbgs()); 1513 dbgs() << " has unknown dependence\n"; 1514 ); 1515 return false; 1516 } 1517 1518 AvailableValue AV; 1519 if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) { 1520 Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this); 1521 1522 // Replace the load! 1523 patchAndReplaceAllUsesWith(L, AvailableValue); 1524 markInstructionForDeletion(L); 1525 ++NumGVNLoad; 1526 reportLoadElim(L, AvailableValue, ORE); 1527 // Tell MDA to rexamine the reused pointer since we might have more 1528 // information after forwarding it. 1529 if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy()) 1530 MD->invalidateCachedPointerInfo(AvailableValue); 1531 return true; 1532 } 1533 1534 return false; 1535 } 1536 1537 /// Return a pair the first field showing the value number of \p Exp and the 1538 /// second field showing whether it is a value number newly created. 1539 std::pair<uint32_t, bool> 1540 GVN::ValueTable::assignExpNewValueNum(Expression &Exp) { 1541 uint32_t &e = expressionNumbering[Exp]; 1542 bool CreateNewValNum = !e; 1543 if (CreateNewValNum) { 1544 Expressions.push_back(Exp); 1545 if (ExprIdx.size() < nextValueNumber + 1) 1546 ExprIdx.resize(nextValueNumber * 2); 1547 e = nextValueNumber; 1548 ExprIdx[nextValueNumber++] = nextExprNumber++; 1549 } 1550 return {e, CreateNewValNum}; 1551 } 1552 1553 /// Return whether all the values related with the same \p num are 1554 /// defined in \p BB. 1555 bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB, 1556 GVN &Gvn) { 1557 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; 1558 while (Vals && Vals->BB == BB) 1559 Vals = Vals->Next; 1560 return !Vals; 1561 } 1562 1563 /// Wrap phiTranslateImpl to provide caching functionality. 1564 uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred, 1565 const BasicBlock *PhiBlock, uint32_t Num, 1566 GVN &Gvn) { 1567 auto FindRes = PhiTranslateTable.find({Num, Pred}); 1568 if (FindRes != PhiTranslateTable.end()) 1569 return FindRes->second; 1570 uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn); 1571 PhiTranslateTable.insert({{Num, Pred}, NewNum}); 1572 return NewNum; 1573 } 1574 1575 /// Translate value number \p Num using phis, so that it has the values of 1576 /// the phis in BB. 1577 uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred, 1578 const BasicBlock *PhiBlock, 1579 uint32_t Num, GVN &Gvn) { 1580 if (PHINode *PN = NumberingPhi[Num]) { 1581 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 1582 if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred) 1583 if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false)) 1584 return TransVal; 1585 } 1586 return Num; 1587 } 1588 1589 // If there is any value related with Num is defined in a BB other than 1590 // PhiBlock, it cannot depend on a phi in PhiBlock without going through 1591 // a backedge. We can do an early exit in that case to save compile time. 1592 if (!areAllValsInBB(Num, PhiBlock, Gvn)) 1593 return Num; 1594 1595 if (Num >= ExprIdx.size() || ExprIdx[Num] == 0) 1596 return Num; 1597 Expression Exp = Expressions[ExprIdx[Num]]; 1598 1599 for (unsigned i = 0; i < Exp.varargs.size(); i++) { 1600 // For InsertValue and ExtractValue, some varargs are index numbers 1601 // instead of value numbers. Those index numbers should not be 1602 // translated. 1603 if ((i > 1 && Exp.opcode == Instruction::InsertValue) || 1604 (i > 0 && Exp.opcode == Instruction::ExtractValue)) 1605 continue; 1606 Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn); 1607 } 1608 1609 if (Exp.commutative) { 1610 assert(Exp.varargs.size() == 2 && "Unsupported commutative expression!"); 1611 if (Exp.varargs[0] > Exp.varargs[1]) { 1612 std::swap(Exp.varargs[0], Exp.varargs[1]); 1613 uint32_t Opcode = Exp.opcode >> 8; 1614 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) 1615 Exp.opcode = (Opcode << 8) | 1616 CmpInst::getSwappedPredicate( 1617 static_cast<CmpInst::Predicate>(Exp.opcode & 255)); 1618 } 1619 } 1620 1621 if (uint32_t NewNum = expressionNumbering[Exp]) 1622 return NewNum; 1623 return Num; 1624 } 1625 1626 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed 1627 /// again. 1628 void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num, 1629 const BasicBlock &CurrBlock) { 1630 for (const BasicBlock *Pred : predecessors(&CurrBlock)) { 1631 auto FindRes = PhiTranslateTable.find({Num, Pred}); 1632 if (FindRes != PhiTranslateTable.end()) 1633 PhiTranslateTable.erase(FindRes); 1634 } 1635 } 1636 1637 // In order to find a leader for a given value number at a 1638 // specific basic block, we first obtain the list of all Values for that number, 1639 // and then scan the list to find one whose block dominates the block in 1640 // question. This is fast because dominator tree queries consist of only 1641 // a few comparisons of DFS numbers. 1642 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) { 1643 LeaderTableEntry Vals = LeaderTable[num]; 1644 if (!Vals.Val) return nullptr; 1645 1646 Value *Val = nullptr; 1647 if (DT->dominates(Vals.BB, BB)) { 1648 Val = Vals.Val; 1649 if (isa<Constant>(Val)) return Val; 1650 } 1651 1652 LeaderTableEntry* Next = Vals.Next; 1653 while (Next) { 1654 if (DT->dominates(Next->BB, BB)) { 1655 if (isa<Constant>(Next->Val)) return Next->Val; 1656 if (!Val) Val = Next->Val; 1657 } 1658 1659 Next = Next->Next; 1660 } 1661 1662 return Val; 1663 } 1664 1665 /// There is an edge from 'Src' to 'Dst'. Return 1666 /// true if every path from the entry block to 'Dst' passes via this edge. In 1667 /// particular 'Dst' must not be reachable via another edge from 'Src'. 1668 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, 1669 DominatorTree *DT) { 1670 // While in theory it is interesting to consider the case in which Dst has 1671 // more than one predecessor, because Dst might be part of a loop which is 1672 // only reachable from Src, in practice it is pointless since at the time 1673 // GVN runs all such loops have preheaders, which means that Dst will have 1674 // been changed to have only one predecessor, namely Src. 1675 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); 1676 assert((!Pred || Pred == E.getStart()) && 1677 "No edge between these basic blocks!"); 1678 return Pred != nullptr; 1679 } 1680 1681 void GVN::assignBlockRPONumber(Function &F) { 1682 uint32_t NextBlockNumber = 1; 1683 ReversePostOrderTraversal<Function *> RPOT(&F); 1684 for (BasicBlock *BB : RPOT) 1685 BlockRPONumber[BB] = NextBlockNumber++; 1686 } 1687 1688 // Tries to replace instruction with const, using information from 1689 // ReplaceWithConstMap. 1690 bool GVN::replaceOperandsWithConsts(Instruction *Instr) const { 1691 bool Changed = false; 1692 for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) { 1693 Value *Operand = Instr->getOperand(OpNum); 1694 auto it = ReplaceWithConstMap.find(Operand); 1695 if (it != ReplaceWithConstMap.end()) { 1696 assert(!isa<Constant>(Operand) && 1697 "Replacing constants with constants is invalid"); 1698 DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " << *it->second 1699 << " in instruction " << *Instr << '\n'); 1700 Instr->setOperand(OpNum, it->second); 1701 Changed = true; 1702 } 1703 } 1704 return Changed; 1705 } 1706 1707 /// The given values are known to be equal in every block 1708 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with 1709 /// 'RHS' everywhere in the scope. Returns whether a change was made. 1710 /// If DominatesByEdge is false, then it means that we will propagate the RHS 1711 /// value starting from the end of Root.Start. 1712 bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root, 1713 bool DominatesByEdge) { 1714 SmallVector<std::pair<Value*, Value*>, 4> Worklist; 1715 Worklist.push_back(std::make_pair(LHS, RHS)); 1716 bool Changed = false; 1717 // For speed, compute a conservative fast approximation to 1718 // DT->dominates(Root, Root.getEnd()); 1719 const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT); 1720 1721 while (!Worklist.empty()) { 1722 std::pair<Value*, Value*> Item = Worklist.pop_back_val(); 1723 LHS = Item.first; RHS = Item.second; 1724 1725 if (LHS == RHS) 1726 continue; 1727 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!"); 1728 1729 // Don't try to propagate equalities between constants. 1730 if (isa<Constant>(LHS) && isa<Constant>(RHS)) 1731 continue; 1732 1733 // Prefer a constant on the right-hand side, or an Argument if no constants. 1734 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS))) 1735 std::swap(LHS, RHS); 1736 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!"); 1737 1738 // If there is no obvious reason to prefer the left-hand side over the 1739 // right-hand side, ensure the longest lived term is on the right-hand side, 1740 // so the shortest lived term will be replaced by the longest lived. 1741 // This tends to expose more simplifications. 1742 uint32_t LVN = VN.lookupOrAdd(LHS); 1743 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) || 1744 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) { 1745 // Move the 'oldest' value to the right-hand side, using the value number 1746 // as a proxy for age. 1747 uint32_t RVN = VN.lookupOrAdd(RHS); 1748 if (LVN < RVN) { 1749 std::swap(LHS, RHS); 1750 LVN = RVN; 1751 } 1752 } 1753 1754 // If value numbering later sees that an instruction in the scope is equal 1755 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve 1756 // the invariant that instructions only occur in the leader table for their 1757 // own value number (this is used by removeFromLeaderTable), do not do this 1758 // if RHS is an instruction (if an instruction in the scope is morphed into 1759 // LHS then it will be turned into RHS by the next GVN iteration anyway, so 1760 // using the leader table is about compiling faster, not optimizing better). 1761 // The leader table only tracks basic blocks, not edges. Only add to if we 1762 // have the simple case where the edge dominates the end. 1763 if (RootDominatesEnd && !isa<Instruction>(RHS)) 1764 addToLeaderTable(LVN, RHS, Root.getEnd()); 1765 1766 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As 1767 // LHS always has at least one use that is not dominated by Root, this will 1768 // never do anything if LHS has only one use. 1769 if (!LHS->hasOneUse()) { 1770 unsigned NumReplacements = 1771 DominatesByEdge 1772 ? replaceDominatedUsesWith(LHS, RHS, *DT, Root) 1773 : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart()); 1774 1775 Changed |= NumReplacements > 0; 1776 NumGVNEqProp += NumReplacements; 1777 } 1778 1779 // Now try to deduce additional equalities from this one. For example, if 1780 // the known equality was "(A != B)" == "false" then it follows that A and B 1781 // are equal in the scope. Only boolean equalities with an explicit true or 1782 // false RHS are currently supported. 1783 if (!RHS->getType()->isIntegerTy(1)) 1784 // Not a boolean equality - bail out. 1785 continue; 1786 ConstantInt *CI = dyn_cast<ConstantInt>(RHS); 1787 if (!CI) 1788 // RHS neither 'true' nor 'false' - bail out. 1789 continue; 1790 // Whether RHS equals 'true'. Otherwise it equals 'false'. 1791 bool isKnownTrue = CI->isMinusOne(); 1792 bool isKnownFalse = !isKnownTrue; 1793 1794 // If "A && B" is known true then both A and B are known true. If "A || B" 1795 // is known false then both A and B are known false. 1796 Value *A, *B; 1797 if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) || 1798 (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) { 1799 Worklist.push_back(std::make_pair(A, RHS)); 1800 Worklist.push_back(std::make_pair(B, RHS)); 1801 continue; 1802 } 1803 1804 // If we are propagating an equality like "(A == B)" == "true" then also 1805 // propagate the equality A == B. When propagating a comparison such as 1806 // "(A >= B)" == "true", replace all instances of "A < B" with "false". 1807 if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) { 1808 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); 1809 1810 // If "A == B" is known true, or "A != B" is known false, then replace 1811 // A with B everywhere in the scope. 1812 if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) || 1813 (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE)) 1814 Worklist.push_back(std::make_pair(Op0, Op1)); 1815 1816 // Handle the floating point versions of equality comparisons too. 1817 if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) || 1818 (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) { 1819 1820 // Floating point -0.0 and 0.0 compare equal, so we can only 1821 // propagate values if we know that we have a constant and that 1822 // its value is non-zero. 1823 1824 // FIXME: We should do this optimization if 'no signed zeros' is 1825 // applicable via an instruction-level fast-math-flag or some other 1826 // indicator that relaxed FP semantics are being used. 1827 1828 if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero()) 1829 Worklist.push_back(std::make_pair(Op0, Op1)); 1830 } 1831 1832 // If "A >= B" is known true, replace "A < B" with false everywhere. 1833 CmpInst::Predicate NotPred = Cmp->getInversePredicate(); 1834 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse); 1835 // Since we don't have the instruction "A < B" immediately to hand, work 1836 // out the value number that it would have and use that to find an 1837 // appropriate instruction (if any). 1838 uint32_t NextNum = VN.getNextUnusedValueNumber(); 1839 uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1); 1840 // If the number we were assigned was brand new then there is no point in 1841 // looking for an instruction realizing it: there cannot be one! 1842 if (Num < NextNum) { 1843 Value *NotCmp = findLeader(Root.getEnd(), Num); 1844 if (NotCmp && isa<Instruction>(NotCmp)) { 1845 unsigned NumReplacements = 1846 DominatesByEdge 1847 ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root) 1848 : replaceDominatedUsesWith(NotCmp, NotVal, *DT, 1849 Root.getStart()); 1850 Changed |= NumReplacements > 0; 1851 NumGVNEqProp += NumReplacements; 1852 } 1853 } 1854 // Ensure that any instruction in scope that gets the "A < B" value number 1855 // is replaced with false. 1856 // The leader table only tracks basic blocks, not edges. Only add to if we 1857 // have the simple case where the edge dominates the end. 1858 if (RootDominatesEnd) 1859 addToLeaderTable(Num, NotVal, Root.getEnd()); 1860 1861 continue; 1862 } 1863 } 1864 1865 return Changed; 1866 } 1867 1868 /// When calculating availability, handle an instruction 1869 /// by inserting it into the appropriate sets 1870 bool GVN::processInstruction(Instruction *I) { 1871 // Ignore dbg info intrinsics. 1872 if (isa<DbgInfoIntrinsic>(I)) 1873 return false; 1874 1875 // If the instruction can be easily simplified then do so now in preference 1876 // to value numbering it. Value numbering often exposes redundancies, for 1877 // example if it determines that %y is equal to %x then the instruction 1878 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. 1879 const DataLayout &DL = I->getModule()->getDataLayout(); 1880 if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) { 1881 bool Changed = false; 1882 if (!I->use_empty()) { 1883 I->replaceAllUsesWith(V); 1884 Changed = true; 1885 } 1886 if (isInstructionTriviallyDead(I, TLI)) { 1887 markInstructionForDeletion(I); 1888 Changed = true; 1889 } 1890 if (Changed) { 1891 if (MD && V->getType()->isPtrOrPtrVectorTy()) 1892 MD->invalidateCachedPointerInfo(V); 1893 ++NumGVNSimpl; 1894 return true; 1895 } 1896 } 1897 1898 if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I)) 1899 if (IntrinsicI->getIntrinsicID() == Intrinsic::assume) 1900 return processAssumeIntrinsic(IntrinsicI); 1901 1902 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1903 if (processLoad(LI)) 1904 return true; 1905 1906 unsigned Num = VN.lookupOrAdd(LI); 1907 addToLeaderTable(Num, LI, LI->getParent()); 1908 return false; 1909 } 1910 1911 // For conditional branches, we can perform simple conditional propagation on 1912 // the condition value itself. 1913 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1914 if (!BI->isConditional()) 1915 return false; 1916 1917 if (isa<Constant>(BI->getCondition())) 1918 return processFoldableCondBr(BI); 1919 1920 Value *BranchCond = BI->getCondition(); 1921 BasicBlock *TrueSucc = BI->getSuccessor(0); 1922 BasicBlock *FalseSucc = BI->getSuccessor(1); 1923 // Avoid multiple edges early. 1924 if (TrueSucc == FalseSucc) 1925 return false; 1926 1927 BasicBlock *Parent = BI->getParent(); 1928 bool Changed = false; 1929 1930 Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext()); 1931 BasicBlockEdge TrueE(Parent, TrueSucc); 1932 Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true); 1933 1934 Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext()); 1935 BasicBlockEdge FalseE(Parent, FalseSucc); 1936 Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true); 1937 1938 return Changed; 1939 } 1940 1941 // For switches, propagate the case values into the case destinations. 1942 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1943 Value *SwitchCond = SI->getCondition(); 1944 BasicBlock *Parent = SI->getParent(); 1945 bool Changed = false; 1946 1947 // Remember how many outgoing edges there are to every successor. 1948 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 1949 for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i) 1950 ++SwitchEdges[SI->getSuccessor(i)]; 1951 1952 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 1953 i != e; ++i) { 1954 BasicBlock *Dst = i->getCaseSuccessor(); 1955 // If there is only a single edge, propagate the case value into it. 1956 if (SwitchEdges.lookup(Dst) == 1) { 1957 BasicBlockEdge E(Parent, Dst); 1958 Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true); 1959 } 1960 } 1961 return Changed; 1962 } 1963 1964 // Instructions with void type don't return a value, so there's 1965 // no point in trying to find redundancies in them. 1966 if (I->getType()->isVoidTy()) 1967 return false; 1968 1969 uint32_t NextNum = VN.getNextUnusedValueNumber(); 1970 unsigned Num = VN.lookupOrAdd(I); 1971 1972 // Allocations are always uniquely numbered, so we can save time and memory 1973 // by fast failing them. 1974 if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) { 1975 addToLeaderTable(Num, I, I->getParent()); 1976 return false; 1977 } 1978 1979 // If the number we were assigned was a brand new VN, then we don't 1980 // need to do a lookup to see if the number already exists 1981 // somewhere in the domtree: it can't! 1982 if (Num >= NextNum) { 1983 addToLeaderTable(Num, I, I->getParent()); 1984 return false; 1985 } 1986 1987 // Perform fast-path value-number based elimination of values inherited from 1988 // dominators. 1989 Value *Repl = findLeader(I->getParent(), Num); 1990 if (!Repl) { 1991 // Failure, just remember this instance for future use. 1992 addToLeaderTable(Num, I, I->getParent()); 1993 return false; 1994 } else if (Repl == I) { 1995 // If I was the result of a shortcut PRE, it might already be in the table 1996 // and the best replacement for itself. Nothing to do. 1997 return false; 1998 } 1999 2000 // Remove it! 2001 patchAndReplaceAllUsesWith(I, Repl); 2002 if (MD && Repl->getType()->isPtrOrPtrVectorTy()) 2003 MD->invalidateCachedPointerInfo(Repl); 2004 markInstructionForDeletion(I); 2005 return true; 2006 } 2007 2008 /// runOnFunction - This is the main transformation entry point for a function. 2009 bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT, 2010 const TargetLibraryInfo &RunTLI, AAResults &RunAA, 2011 MemoryDependenceResults *RunMD, LoopInfo *LI, 2012 OptimizationRemarkEmitter *RunORE) { 2013 AC = &RunAC; 2014 DT = &RunDT; 2015 VN.setDomTree(DT); 2016 TLI = &RunTLI; 2017 VN.setAliasAnalysis(&RunAA); 2018 MD = RunMD; 2019 OrderedInstructions OrderedInstrs(DT); 2020 OI = &OrderedInstrs; 2021 VN.setMemDep(MD); 2022 ORE = RunORE; 2023 2024 bool Changed = false; 2025 bool ShouldContinue = true; 2026 2027 // Merge unconditional branches, allowing PRE to catch more 2028 // optimization opportunities. 2029 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) { 2030 BasicBlock *BB = &*FI++; 2031 2032 bool removedBlock = MergeBlockIntoPredecessor(BB, DT, LI, MD); 2033 if (removedBlock) 2034 ++NumGVNBlocks; 2035 2036 Changed |= removedBlock; 2037 } 2038 2039 unsigned Iteration = 0; 2040 while (ShouldContinue) { 2041 DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n"); 2042 ShouldContinue = iterateOnFunction(F); 2043 Changed |= ShouldContinue; 2044 ++Iteration; 2045 } 2046 2047 if (EnablePRE) { 2048 // Fabricate val-num for dead-code in order to suppress assertion in 2049 // performPRE(). 2050 assignValNumForDeadCode(); 2051 assignBlockRPONumber(F); 2052 bool PREChanged = true; 2053 while (PREChanged) { 2054 PREChanged = performPRE(F); 2055 Changed |= PREChanged; 2056 } 2057 } 2058 2059 // FIXME: Should perform GVN again after PRE does something. PRE can move 2060 // computations into blocks where they become fully redundant. Note that 2061 // we can't do this until PRE's critical edge splitting updates memdep. 2062 // Actually, when this happens, we should just fully integrate PRE into GVN. 2063 2064 cleanupGlobalSets(); 2065 // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each 2066 // iteration. 2067 DeadBlocks.clear(); 2068 2069 return Changed; 2070 } 2071 2072 bool GVN::processBlock(BasicBlock *BB) { 2073 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function 2074 // (and incrementing BI before processing an instruction). 2075 assert(InstrsToErase.empty() && 2076 "We expect InstrsToErase to be empty across iterations"); 2077 if (DeadBlocks.count(BB)) 2078 return false; 2079 2080 // Clearing map before every BB because it can be used only for single BB. 2081 ReplaceWithConstMap.clear(); 2082 bool ChangedFunction = false; 2083 2084 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); 2085 BI != BE;) { 2086 if (!ReplaceWithConstMap.empty()) 2087 ChangedFunction |= replaceOperandsWithConsts(&*BI); 2088 ChangedFunction |= processInstruction(&*BI); 2089 2090 if (InstrsToErase.empty()) { 2091 ++BI; 2092 continue; 2093 } 2094 2095 // If we need some instructions deleted, do it now. 2096 NumGVNInstr += InstrsToErase.size(); 2097 2098 // Avoid iterator invalidation. 2099 bool AtStart = BI == BB->begin(); 2100 if (!AtStart) 2101 --BI; 2102 2103 bool InvalidateImplicitCF = false; 2104 const Instruction *MaybeFirstICF = FirstImplicitControlFlowInsts.lookup(BB); 2105 for (auto *I : InstrsToErase) { 2106 assert(I->getParent() == BB && "Removing instruction from wrong block?"); 2107 DEBUG(dbgs() << "GVN removed: " << *I << '\n'); 2108 salvageDebugInfo(*I); 2109 if (MD) MD->removeInstruction(I); 2110 DEBUG(verifyRemoved(I)); 2111 if (MaybeFirstICF == I) { 2112 // We have erased the first ICF in block. The map needs to be updated. 2113 InvalidateImplicitCF = true; 2114 // Do not keep dangling pointer on the erased instruction. 2115 MaybeFirstICF = nullptr; 2116 } 2117 I->eraseFromParent(); 2118 } 2119 2120 OI->invalidateBlock(BB); 2121 InstrsToErase.clear(); 2122 if (InvalidateImplicitCF) 2123 fillImplicitControlFlowInfo(BB); 2124 2125 if (AtStart) 2126 BI = BB->begin(); 2127 else 2128 ++BI; 2129 } 2130 2131 return ChangedFunction; 2132 } 2133 2134 // Instantiate an expression in a predecessor that lacked it. 2135 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred, 2136 BasicBlock *Curr, unsigned int ValNo) { 2137 // Because we are going top-down through the block, all value numbers 2138 // will be available in the predecessor by the time we need them. Any 2139 // that weren't originally present will have been instantiated earlier 2140 // in this loop. 2141 bool success = true; 2142 for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) { 2143 Value *Op = Instr->getOperand(i); 2144 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op)) 2145 continue; 2146 // This could be a newly inserted instruction, in which case, we won't 2147 // find a value number, and should give up before we hurt ourselves. 2148 // FIXME: Rewrite the infrastructure to let it easier to value number 2149 // and process newly inserted instructions. 2150 if (!VN.exists(Op)) { 2151 success = false; 2152 break; 2153 } 2154 uint32_t TValNo = 2155 VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this); 2156 if (Value *V = findLeader(Pred, TValNo)) { 2157 Instr->setOperand(i, V); 2158 } else { 2159 success = false; 2160 break; 2161 } 2162 } 2163 2164 // Fail out if we encounter an operand that is not available in 2165 // the PRE predecessor. This is typically because of loads which 2166 // are not value numbered precisely. 2167 if (!success) 2168 return false; 2169 2170 Instr->insertBefore(Pred->getTerminator()); 2171 Instr->setName(Instr->getName() + ".pre"); 2172 Instr->setDebugLoc(Instr->getDebugLoc()); 2173 2174 unsigned Num = VN.lookupOrAdd(Instr); 2175 VN.add(Instr, Num); 2176 2177 // Update the availability map to include the new instruction. 2178 addToLeaderTable(Num, Instr, Pred); 2179 return true; 2180 } 2181 2182 bool GVN::performScalarPRE(Instruction *CurInst) { 2183 if (isa<AllocaInst>(CurInst) || isa<TerminatorInst>(CurInst) || 2184 isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() || 2185 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || 2186 isa<DbgInfoIntrinsic>(CurInst)) 2187 return false; 2188 2189 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from 2190 // sinking the compare again, and it would force the code generator to 2191 // move the i1 from processor flags or predicate registers into a general 2192 // purpose register. 2193 if (isa<CmpInst>(CurInst)) 2194 return false; 2195 2196 // We don't currently value number ANY inline asm calls. 2197 if (CallInst *CallI = dyn_cast<CallInst>(CurInst)) 2198 if (CallI->isInlineAsm()) 2199 return false; 2200 2201 uint32_t ValNo = VN.lookup(CurInst); 2202 2203 // Look for the predecessors for PRE opportunities. We're 2204 // only trying to solve the basic diamond case, where 2205 // a value is computed in the successor and one predecessor, 2206 // but not the other. We also explicitly disallow cases 2207 // where the successor is its own predecessor, because they're 2208 // more complicated to get right. 2209 unsigned NumWith = 0; 2210 unsigned NumWithout = 0; 2211 BasicBlock *PREPred = nullptr; 2212 BasicBlock *CurrentBlock = CurInst->getParent(); 2213 2214 SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap; 2215 for (BasicBlock *P : predecessors(CurrentBlock)) { 2216 // We're not interested in PRE where blocks with predecessors that are 2217 // not reachable. 2218 if (!DT->isReachableFromEntry(P)) { 2219 NumWithout = 2; 2220 break; 2221 } 2222 // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and 2223 // when CurInst has operand defined in CurrentBlock (so it may be defined 2224 // by phi in the loop header). 2225 if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] && 2226 llvm::any_of(CurInst->operands(), [&](const Use &U) { 2227 if (auto *Inst = dyn_cast<Instruction>(U.get())) 2228 return Inst->getParent() == CurrentBlock; 2229 return false; 2230 })) { 2231 NumWithout = 2; 2232 break; 2233 } 2234 2235 uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this); 2236 Value *predV = findLeader(P, TValNo); 2237 if (!predV) { 2238 predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P)); 2239 PREPred = P; 2240 ++NumWithout; 2241 } else if (predV == CurInst) { 2242 /* CurInst dominates this predecessor. */ 2243 NumWithout = 2; 2244 break; 2245 } else { 2246 predMap.push_back(std::make_pair(predV, P)); 2247 ++NumWith; 2248 } 2249 } 2250 2251 // Don't do PRE when it might increase code size, i.e. when 2252 // we would need to insert instructions in more than one pred. 2253 if (NumWithout > 1 || NumWith == 0) 2254 return false; 2255 2256 // We may have a case where all predecessors have the instruction, 2257 // and we just need to insert a phi node. Otherwise, perform 2258 // insertion. 2259 Instruction *PREInstr = nullptr; 2260 2261 if (NumWithout != 0) { 2262 if (!isSafeToSpeculativelyExecute(CurInst)) { 2263 // It is only valid to insert a new instruction if the current instruction 2264 // is always executed. An instruction with implicit control flow could 2265 // prevent us from doing it. If we cannot speculate the execution, then 2266 // PRE should be prohibited. 2267 auto It = FirstImplicitControlFlowInsts.find(CurrentBlock); 2268 if (It != FirstImplicitControlFlowInsts.end()) { 2269 assert(It->second->getParent() == CurrentBlock && 2270 "Implicit control flow map broken?"); 2271 if (OI->dominates(It->second, CurInst)) 2272 return false; 2273 } 2274 } 2275 2276 // Don't do PRE across indirect branch. 2277 if (isa<IndirectBrInst>(PREPred->getTerminator())) 2278 return false; 2279 2280 // We can't do PRE safely on a critical edge, so instead we schedule 2281 // the edge to be split and perform the PRE the next time we iterate 2282 // on the function. 2283 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock); 2284 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { 2285 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); 2286 return false; 2287 } 2288 // We need to insert somewhere, so let's give it a shot 2289 PREInstr = CurInst->clone(); 2290 if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) { 2291 // If we failed insertion, make sure we remove the instruction. 2292 DEBUG(verifyRemoved(PREInstr)); 2293 PREInstr->deleteValue(); 2294 return false; 2295 } 2296 } 2297 2298 // Either we should have filled in the PRE instruction, or we should 2299 // not have needed insertions. 2300 assert(PREInstr != nullptr || NumWithout == 0); 2301 2302 ++NumGVNPRE; 2303 2304 // Create a PHI to make the value available in this block. 2305 PHINode *Phi = 2306 PHINode::Create(CurInst->getType(), predMap.size(), 2307 CurInst->getName() + ".pre-phi", &CurrentBlock->front()); 2308 for (unsigned i = 0, e = predMap.size(); i != e; ++i) { 2309 if (Value *V = predMap[i].first) { 2310 // If we use an existing value in this phi, we have to patch the original 2311 // value because the phi will be used to replace a later value. 2312 patchReplacementInstruction(CurInst, V); 2313 Phi->addIncoming(V, predMap[i].second); 2314 } else 2315 Phi->addIncoming(PREInstr, PREPred); 2316 } 2317 2318 VN.add(Phi, ValNo); 2319 // After creating a new PHI for ValNo, the phi translate result for ValNo will 2320 // be changed, so erase the related stale entries in phi translate cache. 2321 VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock); 2322 addToLeaderTable(ValNo, Phi, CurrentBlock); 2323 Phi->setDebugLoc(CurInst->getDebugLoc()); 2324 CurInst->replaceAllUsesWith(Phi); 2325 if (MD && Phi->getType()->isPtrOrPtrVectorTy()) 2326 MD->invalidateCachedPointerInfo(Phi); 2327 VN.erase(CurInst); 2328 removeFromLeaderTable(ValNo, CurInst, CurrentBlock); 2329 2330 DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n'); 2331 if (MD) 2332 MD->removeInstruction(CurInst); 2333 DEBUG(verifyRemoved(CurInst)); 2334 bool InvalidateImplicitCF = 2335 FirstImplicitControlFlowInsts.lookup(CurInst->getParent()) == CurInst; 2336 // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes 2337 // some assertion failures. 2338 OI->invalidateBlock(CurrentBlock); 2339 CurInst->eraseFromParent(); 2340 if (InvalidateImplicitCF) 2341 fillImplicitControlFlowInfo(CurrentBlock); 2342 ++NumGVNInstr; 2343 2344 return true; 2345 } 2346 2347 /// Perform a purely local form of PRE that looks for diamond 2348 /// control flow patterns and attempts to perform simple PRE at the join point. 2349 bool GVN::performPRE(Function &F) { 2350 bool Changed = false; 2351 for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) { 2352 // Nothing to PRE in the entry block. 2353 if (CurrentBlock == &F.getEntryBlock()) 2354 continue; 2355 2356 // Don't perform PRE on an EH pad. 2357 if (CurrentBlock->isEHPad()) 2358 continue; 2359 2360 for (BasicBlock::iterator BI = CurrentBlock->begin(), 2361 BE = CurrentBlock->end(); 2362 BI != BE;) { 2363 Instruction *CurInst = &*BI++; 2364 Changed |= performScalarPRE(CurInst); 2365 } 2366 } 2367 2368 if (splitCriticalEdges()) 2369 Changed = true; 2370 2371 return Changed; 2372 } 2373 2374 /// Split the critical edge connecting the given two blocks, and return 2375 /// the block inserted to the critical edge. 2376 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) { 2377 BasicBlock *BB = 2378 SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT)); 2379 if (MD) 2380 MD->invalidateCachedPredecessors(); 2381 return BB; 2382 } 2383 2384 /// Split critical edges found during the previous 2385 /// iteration that may enable further optimization. 2386 bool GVN::splitCriticalEdges() { 2387 if (toSplit.empty()) 2388 return false; 2389 do { 2390 std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val(); 2391 SplitCriticalEdge(Edge.first, Edge.second, 2392 CriticalEdgeSplittingOptions(DT)); 2393 } while (!toSplit.empty()); 2394 if (MD) MD->invalidateCachedPredecessors(); 2395 return true; 2396 } 2397 2398 /// Executes one iteration of GVN 2399 bool GVN::iterateOnFunction(Function &F) { 2400 cleanupGlobalSets(); 2401 2402 // Top-down walk of the dominator tree 2403 bool Changed = false; 2404 // Needed for value numbering with phi construction to work. 2405 // RPOT walks the graph in its constructor and will not be invalidated during 2406 // processBlock. 2407 ReversePostOrderTraversal<Function *> RPOT(&F); 2408 2409 for (BasicBlock *BB : RPOT) 2410 fillImplicitControlFlowInfo(BB); 2411 for (BasicBlock *BB : RPOT) 2412 Changed |= processBlock(BB); 2413 2414 return Changed; 2415 } 2416 2417 void GVN::cleanupGlobalSets() { 2418 VN.clear(); 2419 LeaderTable.clear(); 2420 BlockRPONumber.clear(); 2421 TableAllocator.Reset(); 2422 FirstImplicitControlFlowInsts.clear(); 2423 } 2424 2425 void 2426 GVN::fillImplicitControlFlowInfo(BasicBlock *BB) { 2427 // Make sure that all marked instructions are actually deleted by this point, 2428 // so that we don't need to care about omitting them. 2429 assert(InstrsToErase.empty() && "Filling before removed all marked insns?"); 2430 auto MayNotTransferExecutionToSuccessor = [&](const Instruction *I) { 2431 // If a block's instruction doesn't always pass the control to its successor 2432 // instruction, mark the block as having implicit control flow. We use them 2433 // to avoid wrong assumptions of sort "if A is executed and B post-dominates 2434 // A, then B is also executed". This is not true is there is an implicit 2435 // control flow instruction (e.g. a guard) between them. 2436 // 2437 // TODO: Currently, isGuaranteedToTransferExecutionToSuccessor returns false 2438 // for volatile stores and loads because they can trap. The discussion on 2439 // whether or not it is correct is still ongoing. We might want to get rid 2440 // of this logic in the future. Anyways, trapping instructions shouldn't 2441 // introduce implicit control flow, so we explicitly allow them here. This 2442 // must be removed once isGuaranteedToTransferExecutionToSuccessor is fixed. 2443 if (isGuaranteedToTransferExecutionToSuccessor(I)) 2444 return false; 2445 if (isa<LoadInst>(I)) { 2446 assert(cast<LoadInst>(I)->isVolatile() && 2447 "Non-volatile load should transfer execution to successor!"); 2448 return false; 2449 } 2450 if (isa<StoreInst>(I)) { 2451 assert(cast<StoreInst>(I)->isVolatile() && 2452 "Non-volatile store should transfer execution to successor!"); 2453 return false; 2454 } 2455 return true; 2456 }; 2457 FirstImplicitControlFlowInsts.erase(BB); 2458 2459 for (auto &I : *BB) 2460 if (MayNotTransferExecutionToSuccessor(&I)) { 2461 FirstImplicitControlFlowInsts[BB] = &I; 2462 break; 2463 } 2464 } 2465 2466 /// Verify that the specified instruction does not occur in our 2467 /// internal data structures. 2468 void GVN::verifyRemoved(const Instruction *Inst) const { 2469 VN.verifyRemoved(Inst); 2470 2471 // Walk through the value number scope to make sure the instruction isn't 2472 // ferreted away in it. 2473 for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator 2474 I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) { 2475 const LeaderTableEntry *Node = &I->second; 2476 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 2477 2478 while (Node->Next) { 2479 Node = Node->Next; 2480 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 2481 } 2482 } 2483 } 2484 2485 /// BB is declared dead, which implied other blocks become dead as well. This 2486 /// function is to add all these blocks to "DeadBlocks". For the dead blocks' 2487 /// live successors, update their phi nodes by replacing the operands 2488 /// corresponding to dead blocks with UndefVal. 2489 void GVN::addDeadBlock(BasicBlock *BB) { 2490 SmallVector<BasicBlock *, 4> NewDead; 2491 SmallSetVector<BasicBlock *, 4> DF; 2492 2493 NewDead.push_back(BB); 2494 while (!NewDead.empty()) { 2495 BasicBlock *D = NewDead.pop_back_val(); 2496 if (DeadBlocks.count(D)) 2497 continue; 2498 2499 // All blocks dominated by D are dead. 2500 SmallVector<BasicBlock *, 8> Dom; 2501 DT->getDescendants(D, Dom); 2502 DeadBlocks.insert(Dom.begin(), Dom.end()); 2503 2504 // Figure out the dominance-frontier(D). 2505 for (BasicBlock *B : Dom) { 2506 for (BasicBlock *S : successors(B)) { 2507 if (DeadBlocks.count(S)) 2508 continue; 2509 2510 bool AllPredDead = true; 2511 for (BasicBlock *P : predecessors(S)) 2512 if (!DeadBlocks.count(P)) { 2513 AllPredDead = false; 2514 break; 2515 } 2516 2517 if (!AllPredDead) { 2518 // S could be proved dead later on. That is why we don't update phi 2519 // operands at this moment. 2520 DF.insert(S); 2521 } else { 2522 // While S is not dominated by D, it is dead by now. This could take 2523 // place if S already have a dead predecessor before D is declared 2524 // dead. 2525 NewDead.push_back(S); 2526 } 2527 } 2528 } 2529 } 2530 2531 // For the dead blocks' live successors, update their phi nodes by replacing 2532 // the operands corresponding to dead blocks with UndefVal. 2533 for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end(); 2534 I != E; I++) { 2535 BasicBlock *B = *I; 2536 if (DeadBlocks.count(B)) 2537 continue; 2538 2539 SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B)); 2540 for (BasicBlock *P : Preds) { 2541 if (!DeadBlocks.count(P)) 2542 continue; 2543 2544 if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) { 2545 if (BasicBlock *S = splitCriticalEdges(P, B)) 2546 DeadBlocks.insert(P = S); 2547 } 2548 2549 for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) { 2550 PHINode &Phi = cast<PHINode>(*II); 2551 Phi.setIncomingValue(Phi.getBasicBlockIndex(P), 2552 UndefValue::get(Phi.getType())); 2553 } 2554 } 2555 } 2556 } 2557 2558 // If the given branch is recognized as a foldable branch (i.e. conditional 2559 // branch with constant condition), it will perform following analyses and 2560 // transformation. 2561 // 1) If the dead out-coming edge is a critical-edge, split it. Let 2562 // R be the target of the dead out-coming edge. 2563 // 1) Identify the set of dead blocks implied by the branch's dead outcoming 2564 // edge. The result of this step will be {X| X is dominated by R} 2565 // 2) Identify those blocks which haves at least one dead predecessor. The 2566 // result of this step will be dominance-frontier(R). 2567 // 3) Update the PHIs in DF(R) by replacing the operands corresponding to 2568 // dead blocks with "UndefVal" in an hope these PHIs will optimized away. 2569 // 2570 // Return true iff *NEW* dead code are found. 2571 bool GVN::processFoldableCondBr(BranchInst *BI) { 2572 if (!BI || BI->isUnconditional()) 2573 return false; 2574 2575 // If a branch has two identical successors, we cannot declare either dead. 2576 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 2577 return false; 2578 2579 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 2580 if (!Cond) 2581 return false; 2582 2583 BasicBlock *DeadRoot = 2584 Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0); 2585 if (DeadBlocks.count(DeadRoot)) 2586 return false; 2587 2588 if (!DeadRoot->getSinglePredecessor()) 2589 DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot); 2590 2591 addDeadBlock(DeadRoot); 2592 return true; 2593 } 2594 2595 // performPRE() will trigger assert if it comes across an instruction without 2596 // associated val-num. As it normally has far more live instructions than dead 2597 // instructions, it makes more sense just to "fabricate" a val-number for the 2598 // dead code than checking if instruction involved is dead or not. 2599 void GVN::assignValNumForDeadCode() { 2600 for (BasicBlock *BB : DeadBlocks) { 2601 for (Instruction &Inst : *BB) { 2602 unsigned ValNum = VN.lookupOrAdd(&Inst); 2603 addToLeaderTable(ValNum, &Inst, BB); 2604 } 2605 } 2606 } 2607 2608 class llvm::gvn::GVNLegacyPass : public FunctionPass { 2609 public: 2610 static char ID; // Pass identification, replacement for typeid 2611 2612 explicit GVNLegacyPass(bool NoLoads = false) 2613 : FunctionPass(ID), NoLoads(NoLoads) { 2614 initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry()); 2615 } 2616 2617 bool runOnFunction(Function &F) override { 2618 if (skipFunction(F)) 2619 return false; 2620 2621 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 2622 2623 return Impl.runImpl( 2624 F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 2625 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 2626 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 2627 getAnalysis<AAResultsWrapperPass>().getAAResults(), 2628 NoLoads ? nullptr 2629 : &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(), 2630 LIWP ? &LIWP->getLoopInfo() : nullptr, 2631 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE()); 2632 } 2633 2634 void getAnalysisUsage(AnalysisUsage &AU) const override { 2635 AU.addRequired<AssumptionCacheTracker>(); 2636 AU.addRequired<DominatorTreeWrapperPass>(); 2637 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2638 if (!NoLoads) 2639 AU.addRequired<MemoryDependenceWrapperPass>(); 2640 AU.addRequired<AAResultsWrapperPass>(); 2641 2642 AU.addPreserved<DominatorTreeWrapperPass>(); 2643 AU.addPreserved<GlobalsAAWrapperPass>(); 2644 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 2645 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2646 } 2647 2648 private: 2649 bool NoLoads; 2650 GVN Impl; 2651 }; 2652 2653 char GVNLegacyPass::ID = 0; 2654 2655 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 2656 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2657 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 2658 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2659 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2660 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2661 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 2662 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 2663 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 2664 2665 // The public interface to this file... 2666 FunctionPass *llvm::createGVNPass(bool NoLoads) { 2667 return new GVNLegacyPass(NoLoads); 2668 } 2669