1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs global value numbering to eliminate fully redundant 11 // instructions. It also performs simple dead load elimination. 12 // 13 // Note that this pass does the value numbering itself; it does not use the 14 // ValueNumbering analysis passes. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Transforms/Scalar/GVN.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/DepthFirstIterator.h" 21 #include "llvm/ADT/Hashing.h" 22 #include "llvm/ADT/MapVector.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/CFG.h" 30 #include "llvm/Analysis/ConstantFolding.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryBuiltins.h" 35 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 36 #include "llvm/Analysis/PHITransAddr.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/GlobalVariable.h" 42 #include "llvm/IR/IRBuilder.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Metadata.h" 46 #include "llvm/IR/PatternMatch.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/Local.h" 52 #include "llvm/Transforms/Utils/SSAUpdater.h" 53 #include <vector> 54 using namespace llvm; 55 using namespace llvm::gvn; 56 using namespace PatternMatch; 57 58 #define DEBUG_TYPE "gvn" 59 60 STATISTIC(NumGVNInstr, "Number of instructions deleted"); 61 STATISTIC(NumGVNLoad, "Number of loads deleted"); 62 STATISTIC(NumGVNPRE, "Number of instructions PRE'd"); 63 STATISTIC(NumGVNBlocks, "Number of blocks merged"); 64 STATISTIC(NumGVNSimpl, "Number of instructions simplified"); 65 STATISTIC(NumGVNEqProp, "Number of equalities propagated"); 66 STATISTIC(NumPRELoad, "Number of loads PRE'd"); 67 68 static cl::opt<bool> EnablePRE("enable-pre", 69 cl::init(true), cl::Hidden); 70 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true)); 71 72 // Maximum allowed recursion depth. 73 static cl::opt<uint32_t> 74 MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore, 75 cl::desc("Max recurse depth (default = 1000)")); 76 77 struct llvm::GVN::Expression { 78 uint32_t opcode; 79 Type *type; 80 SmallVector<uint32_t, 4> varargs; 81 82 Expression(uint32_t o = ~2U) : opcode(o) {} 83 84 bool operator==(const Expression &other) const { 85 if (opcode != other.opcode) 86 return false; 87 if (opcode == ~0U || opcode == ~1U) 88 return true; 89 if (type != other.type) 90 return false; 91 if (varargs != other.varargs) 92 return false; 93 return true; 94 } 95 96 friend hash_code hash_value(const Expression &Value) { 97 return hash_combine( 98 Value.opcode, Value.type, 99 hash_combine_range(Value.varargs.begin(), Value.varargs.end())); 100 } 101 }; 102 103 namespace llvm { 104 template <> struct DenseMapInfo<GVN::Expression> { 105 static inline GVN::Expression getEmptyKey() { return ~0U; } 106 107 static inline GVN::Expression getTombstoneKey() { return ~1U; } 108 109 static unsigned getHashValue(const GVN::Expression &e) { 110 using llvm::hash_value; 111 return static_cast<unsigned>(hash_value(e)); 112 } 113 static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) { 114 return LHS == RHS; 115 } 116 }; 117 } // End llvm namespace. 118 119 /// Represents a particular available value that we know how to materialize. 120 /// Materialization of an AvailableValue never fails. An AvailableValue is 121 /// implicitly associated with a rematerialization point which is the 122 /// location of the instruction from which it was formed. 123 struct llvm::gvn::AvailableValue { 124 enum ValType { 125 SimpleVal, // A simple offsetted value that is accessed. 126 LoadVal, // A value produced by a load. 127 MemIntrin, // A memory intrinsic which is loaded from. 128 UndefVal // A UndefValue representing a value from dead block (which 129 // is not yet physically removed from the CFG). 130 }; 131 132 /// V - The value that is live out of the block. 133 PointerIntPair<Value *, 2, ValType> Val; 134 135 /// Offset - The byte offset in Val that is interesting for the load query. 136 unsigned Offset; 137 138 static AvailableValue get(Value *V, unsigned Offset = 0) { 139 AvailableValue Res; 140 Res.Val.setPointer(V); 141 Res.Val.setInt(SimpleVal); 142 Res.Offset = Offset; 143 return Res; 144 } 145 146 static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) { 147 AvailableValue Res; 148 Res.Val.setPointer(MI); 149 Res.Val.setInt(MemIntrin); 150 Res.Offset = Offset; 151 return Res; 152 } 153 154 static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) { 155 AvailableValue Res; 156 Res.Val.setPointer(LI); 157 Res.Val.setInt(LoadVal); 158 Res.Offset = Offset; 159 return Res; 160 } 161 162 static AvailableValue getUndef() { 163 AvailableValue Res; 164 Res.Val.setPointer(nullptr); 165 Res.Val.setInt(UndefVal); 166 Res.Offset = 0; 167 return Res; 168 } 169 170 bool isSimpleValue() const { return Val.getInt() == SimpleVal; } 171 bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; } 172 bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; } 173 bool isUndefValue() const { return Val.getInt() == UndefVal; } 174 175 Value *getSimpleValue() const { 176 assert(isSimpleValue() && "Wrong accessor"); 177 return Val.getPointer(); 178 } 179 180 LoadInst *getCoercedLoadValue() const { 181 assert(isCoercedLoadValue() && "Wrong accessor"); 182 return cast<LoadInst>(Val.getPointer()); 183 } 184 185 MemIntrinsic *getMemIntrinValue() const { 186 assert(isMemIntrinValue() && "Wrong accessor"); 187 return cast<MemIntrinsic>(Val.getPointer()); 188 } 189 190 /// Emit code at the specified insertion point to adjust the value defined 191 /// here to the specified type. This handles various coercion cases. 192 Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt, 193 GVN &gvn) const; 194 }; 195 196 /// Represents an AvailableValue which can be rematerialized at the end of 197 /// the associated BasicBlock. 198 struct llvm::gvn::AvailableValueInBlock { 199 /// BB - The basic block in question. 200 BasicBlock *BB; 201 202 /// AV - The actual available value 203 AvailableValue AV; 204 205 static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) { 206 AvailableValueInBlock Res; 207 Res.BB = BB; 208 Res.AV = std::move(AV); 209 return Res; 210 } 211 212 static AvailableValueInBlock get(BasicBlock *BB, Value *V, 213 unsigned Offset = 0) { 214 return get(BB, AvailableValue::get(V, Offset)); 215 } 216 static AvailableValueInBlock getUndef(BasicBlock *BB) { 217 return get(BB, AvailableValue::getUndef()); 218 } 219 220 /// Emit code at the end of this block to adjust the value defined here to 221 /// the specified type. This handles various coercion cases. 222 Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const { 223 return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn); 224 } 225 }; 226 227 //===----------------------------------------------------------------------===// 228 // ValueTable Internal Functions 229 //===----------------------------------------------------------------------===// 230 231 GVN::Expression GVN::ValueTable::createExpr(Instruction *I) { 232 Expression e; 233 e.type = I->getType(); 234 e.opcode = I->getOpcode(); 235 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 236 OI != OE; ++OI) 237 e.varargs.push_back(lookupOrAdd(*OI)); 238 if (I->isCommutative()) { 239 // Ensure that commutative instructions that only differ by a permutation 240 // of their operands get the same value number by sorting the operand value 241 // numbers. Since all commutative instructions have two operands it is more 242 // efficient to sort by hand rather than using, say, std::sort. 243 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!"); 244 if (e.varargs[0] > e.varargs[1]) 245 std::swap(e.varargs[0], e.varargs[1]); 246 } 247 248 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 249 // Sort the operand value numbers so x<y and y>x get the same value number. 250 CmpInst::Predicate Predicate = C->getPredicate(); 251 if (e.varargs[0] > e.varargs[1]) { 252 std::swap(e.varargs[0], e.varargs[1]); 253 Predicate = CmpInst::getSwappedPredicate(Predicate); 254 } 255 e.opcode = (C->getOpcode() << 8) | Predicate; 256 } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) { 257 for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end(); 258 II != IE; ++II) 259 e.varargs.push_back(*II); 260 } 261 262 return e; 263 } 264 265 GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode, 266 CmpInst::Predicate Predicate, 267 Value *LHS, Value *RHS) { 268 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 269 "Not a comparison!"); 270 Expression e; 271 e.type = CmpInst::makeCmpResultType(LHS->getType()); 272 e.varargs.push_back(lookupOrAdd(LHS)); 273 e.varargs.push_back(lookupOrAdd(RHS)); 274 275 // Sort the operand value numbers so x<y and y>x get the same value number. 276 if (e.varargs[0] > e.varargs[1]) { 277 std::swap(e.varargs[0], e.varargs[1]); 278 Predicate = CmpInst::getSwappedPredicate(Predicate); 279 } 280 e.opcode = (Opcode << 8) | Predicate; 281 return e; 282 } 283 284 GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) { 285 assert(EI && "Not an ExtractValueInst?"); 286 Expression e; 287 e.type = EI->getType(); 288 e.opcode = 0; 289 290 IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand()); 291 if (I != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) { 292 // EI might be an extract from one of our recognised intrinsics. If it 293 // is we'll synthesize a semantically equivalent expression instead on 294 // an extract value expression. 295 switch (I->getIntrinsicID()) { 296 case Intrinsic::sadd_with_overflow: 297 case Intrinsic::uadd_with_overflow: 298 e.opcode = Instruction::Add; 299 break; 300 case Intrinsic::ssub_with_overflow: 301 case Intrinsic::usub_with_overflow: 302 e.opcode = Instruction::Sub; 303 break; 304 case Intrinsic::smul_with_overflow: 305 case Intrinsic::umul_with_overflow: 306 e.opcode = Instruction::Mul; 307 break; 308 default: 309 break; 310 } 311 312 if (e.opcode != 0) { 313 // Intrinsic recognized. Grab its args to finish building the expression. 314 assert(I->getNumArgOperands() == 2 && 315 "Expect two args for recognised intrinsics."); 316 e.varargs.push_back(lookupOrAdd(I->getArgOperand(0))); 317 e.varargs.push_back(lookupOrAdd(I->getArgOperand(1))); 318 return e; 319 } 320 } 321 322 // Not a recognised intrinsic. Fall back to producing an extract value 323 // expression. 324 e.opcode = EI->getOpcode(); 325 for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end(); 326 OI != OE; ++OI) 327 e.varargs.push_back(lookupOrAdd(*OI)); 328 329 for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end(); 330 II != IE; ++II) 331 e.varargs.push_back(*II); 332 333 return e; 334 } 335 336 //===----------------------------------------------------------------------===// 337 // ValueTable External Functions 338 //===----------------------------------------------------------------------===// 339 340 GVN::ValueTable::ValueTable() : nextValueNumber(1) {} 341 GVN::ValueTable::ValueTable(const ValueTable &Arg) 342 : valueNumbering(Arg.valueNumbering), 343 expressionNumbering(Arg.expressionNumbering), AA(Arg.AA), MD(Arg.MD), 344 DT(Arg.DT), nextValueNumber(Arg.nextValueNumber) {} 345 GVN::ValueTable::ValueTable(ValueTable &&Arg) 346 : valueNumbering(std::move(Arg.valueNumbering)), 347 expressionNumbering(std::move(Arg.expressionNumbering)), 348 AA(std::move(Arg.AA)), MD(std::move(Arg.MD)), DT(std::move(Arg.DT)), 349 nextValueNumber(std::move(Arg.nextValueNumber)) {} 350 GVN::ValueTable::~ValueTable() {} 351 352 /// add - Insert a value into the table with a specified value number. 353 void GVN::ValueTable::add(Value *V, uint32_t num) { 354 valueNumbering.insert(std::make_pair(V, num)); 355 } 356 357 uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) { 358 if (AA->doesNotAccessMemory(C)) { 359 Expression exp = createExpr(C); 360 uint32_t &e = expressionNumbering[exp]; 361 if (!e) e = nextValueNumber++; 362 valueNumbering[C] = e; 363 return e; 364 } else if (AA->onlyReadsMemory(C)) { 365 Expression exp = createExpr(C); 366 uint32_t &e = expressionNumbering[exp]; 367 if (!e) { 368 e = nextValueNumber++; 369 valueNumbering[C] = e; 370 return e; 371 } 372 if (!MD) { 373 e = nextValueNumber++; 374 valueNumbering[C] = e; 375 return e; 376 } 377 378 MemDepResult local_dep = MD->getDependency(C); 379 380 if (!local_dep.isDef() && !local_dep.isNonLocal()) { 381 valueNumbering[C] = nextValueNumber; 382 return nextValueNumber++; 383 } 384 385 if (local_dep.isDef()) { 386 CallInst* local_cdep = cast<CallInst>(local_dep.getInst()); 387 388 if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) { 389 valueNumbering[C] = nextValueNumber; 390 return nextValueNumber++; 391 } 392 393 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { 394 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 395 uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i)); 396 if (c_vn != cd_vn) { 397 valueNumbering[C] = nextValueNumber; 398 return nextValueNumber++; 399 } 400 } 401 402 uint32_t v = lookupOrAdd(local_cdep); 403 valueNumbering[C] = v; 404 return v; 405 } 406 407 // Non-local case. 408 const MemoryDependenceResults::NonLocalDepInfo &deps = 409 MD->getNonLocalCallDependency(CallSite(C)); 410 // FIXME: Move the checking logic to MemDep! 411 CallInst* cdep = nullptr; 412 413 // Check to see if we have a single dominating call instruction that is 414 // identical to C. 415 for (unsigned i = 0, e = deps.size(); i != e; ++i) { 416 const NonLocalDepEntry *I = &deps[i]; 417 if (I->getResult().isNonLocal()) 418 continue; 419 420 // We don't handle non-definitions. If we already have a call, reject 421 // instruction dependencies. 422 if (!I->getResult().isDef() || cdep != nullptr) { 423 cdep = nullptr; 424 break; 425 } 426 427 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst()); 428 // FIXME: All duplicated with non-local case. 429 if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){ 430 cdep = NonLocalDepCall; 431 continue; 432 } 433 434 cdep = nullptr; 435 break; 436 } 437 438 if (!cdep) { 439 valueNumbering[C] = nextValueNumber; 440 return nextValueNumber++; 441 } 442 443 if (cdep->getNumArgOperands() != C->getNumArgOperands()) { 444 valueNumbering[C] = nextValueNumber; 445 return nextValueNumber++; 446 } 447 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { 448 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 449 uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i)); 450 if (c_vn != cd_vn) { 451 valueNumbering[C] = nextValueNumber; 452 return nextValueNumber++; 453 } 454 } 455 456 uint32_t v = lookupOrAdd(cdep); 457 valueNumbering[C] = v; 458 return v; 459 460 } else { 461 valueNumbering[C] = nextValueNumber; 462 return nextValueNumber++; 463 } 464 } 465 466 /// Returns true if a value number exists for the specified value. 467 bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; } 468 469 /// lookup_or_add - Returns the value number for the specified value, assigning 470 /// it a new number if it did not have one before. 471 uint32_t GVN::ValueTable::lookupOrAdd(Value *V) { 472 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); 473 if (VI != valueNumbering.end()) 474 return VI->second; 475 476 if (!isa<Instruction>(V)) { 477 valueNumbering[V] = nextValueNumber; 478 return nextValueNumber++; 479 } 480 481 Instruction* I = cast<Instruction>(V); 482 Expression exp; 483 switch (I->getOpcode()) { 484 case Instruction::Call: 485 return lookupOrAddCall(cast<CallInst>(I)); 486 case Instruction::Add: 487 case Instruction::FAdd: 488 case Instruction::Sub: 489 case Instruction::FSub: 490 case Instruction::Mul: 491 case Instruction::FMul: 492 case Instruction::UDiv: 493 case Instruction::SDiv: 494 case Instruction::FDiv: 495 case Instruction::URem: 496 case Instruction::SRem: 497 case Instruction::FRem: 498 case Instruction::Shl: 499 case Instruction::LShr: 500 case Instruction::AShr: 501 case Instruction::And: 502 case Instruction::Or: 503 case Instruction::Xor: 504 case Instruction::ICmp: 505 case Instruction::FCmp: 506 case Instruction::Trunc: 507 case Instruction::ZExt: 508 case Instruction::SExt: 509 case Instruction::FPToUI: 510 case Instruction::FPToSI: 511 case Instruction::UIToFP: 512 case Instruction::SIToFP: 513 case Instruction::FPTrunc: 514 case Instruction::FPExt: 515 case Instruction::PtrToInt: 516 case Instruction::IntToPtr: 517 case Instruction::BitCast: 518 case Instruction::Select: 519 case Instruction::ExtractElement: 520 case Instruction::InsertElement: 521 case Instruction::ShuffleVector: 522 case Instruction::InsertValue: 523 case Instruction::GetElementPtr: 524 exp = createExpr(I); 525 break; 526 case Instruction::ExtractValue: 527 exp = createExtractvalueExpr(cast<ExtractValueInst>(I)); 528 break; 529 default: 530 valueNumbering[V] = nextValueNumber; 531 return nextValueNumber++; 532 } 533 534 uint32_t& e = expressionNumbering[exp]; 535 if (!e) e = nextValueNumber++; 536 valueNumbering[V] = e; 537 return e; 538 } 539 540 /// Returns the value number of the specified value. Fails if 541 /// the value has not yet been numbered. 542 uint32_t GVN::ValueTable::lookup(Value *V) const { 543 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V); 544 assert(VI != valueNumbering.end() && "Value not numbered?"); 545 return VI->second; 546 } 547 548 /// Returns the value number of the given comparison, 549 /// assigning it a new number if it did not have one before. Useful when 550 /// we deduced the result of a comparison, but don't immediately have an 551 /// instruction realizing that comparison to hand. 552 uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode, 553 CmpInst::Predicate Predicate, 554 Value *LHS, Value *RHS) { 555 Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS); 556 uint32_t& e = expressionNumbering[exp]; 557 if (!e) e = nextValueNumber++; 558 return e; 559 } 560 561 /// Remove all entries from the ValueTable. 562 void GVN::ValueTable::clear() { 563 valueNumbering.clear(); 564 expressionNumbering.clear(); 565 nextValueNumber = 1; 566 } 567 568 /// Remove a value from the value numbering. 569 void GVN::ValueTable::erase(Value *V) { 570 valueNumbering.erase(V); 571 } 572 573 /// verifyRemoved - Verify that the value is removed from all internal data 574 /// structures. 575 void GVN::ValueTable::verifyRemoved(const Value *V) const { 576 for (DenseMap<Value*, uint32_t>::const_iterator 577 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) { 578 assert(I->first != V && "Inst still occurs in value numbering map!"); 579 } 580 } 581 582 //===----------------------------------------------------------------------===// 583 // GVN Pass 584 //===----------------------------------------------------------------------===// 585 586 PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) { 587 // FIXME: The order of evaluation of these 'getResult' calls is very 588 // significant! Re-ordering these variables will cause GVN when run alone to 589 // be less effective! We should fix memdep and basic-aa to not exhibit this 590 // behavior, but until then don't change the order here. 591 auto &AC = AM.getResult<AssumptionAnalysis>(F); 592 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 593 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 594 auto &AA = AM.getResult<AAManager>(F); 595 auto &MemDep = AM.getResult<MemoryDependenceAnalysis>(F); 596 bool Changed = runImpl(F, AC, DT, TLI, AA, &MemDep); 597 if (!Changed) 598 return PreservedAnalyses::all(); 599 PreservedAnalyses PA; 600 PA.preserve<DominatorTreeAnalysis>(); 601 PA.preserve<GlobalsAA>(); 602 return PA; 603 } 604 605 LLVM_DUMP_METHOD 606 void GVN::dump(DenseMap<uint32_t, Value*>& d) { 607 errs() << "{\n"; 608 for (DenseMap<uint32_t, Value*>::iterator I = d.begin(), 609 E = d.end(); I != E; ++I) { 610 errs() << I->first << "\n"; 611 I->second->dump(); 612 } 613 errs() << "}\n"; 614 } 615 616 /// Return true if we can prove that the value 617 /// we're analyzing is fully available in the specified block. As we go, keep 618 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This 619 /// map is actually a tri-state map with the following values: 620 /// 0) we know the block *is not* fully available. 621 /// 1) we know the block *is* fully available. 622 /// 2) we do not know whether the block is fully available or not, but we are 623 /// currently speculating that it will be. 624 /// 3) we are speculating for this block and have used that to speculate for 625 /// other blocks. 626 static bool IsValueFullyAvailableInBlock(BasicBlock *BB, 627 DenseMap<BasicBlock*, char> &FullyAvailableBlocks, 628 uint32_t RecurseDepth) { 629 if (RecurseDepth > MaxRecurseDepth) 630 return false; 631 632 // Optimistically assume that the block is fully available and check to see 633 // if we already know about this block in one lookup. 634 std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV = 635 FullyAvailableBlocks.insert(std::make_pair(BB, 2)); 636 637 // If the entry already existed for this block, return the precomputed value. 638 if (!IV.second) { 639 // If this is a speculative "available" value, mark it as being used for 640 // speculation of other blocks. 641 if (IV.first->second == 2) 642 IV.first->second = 3; 643 return IV.first->second != 0; 644 } 645 646 // Otherwise, see if it is fully available in all predecessors. 647 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 648 649 // If this block has no predecessors, it isn't live-in here. 650 if (PI == PE) 651 goto SpeculationFailure; 652 653 for (; PI != PE; ++PI) 654 // If the value isn't fully available in one of our predecessors, then it 655 // isn't fully available in this block either. Undo our previous 656 // optimistic assumption and bail out. 657 if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1)) 658 goto SpeculationFailure; 659 660 return true; 661 662 // If we get here, we found out that this is not, after 663 // all, a fully-available block. We have a problem if we speculated on this and 664 // used the speculation to mark other blocks as available. 665 SpeculationFailure: 666 char &BBVal = FullyAvailableBlocks[BB]; 667 668 // If we didn't speculate on this, just return with it set to false. 669 if (BBVal == 2) { 670 BBVal = 0; 671 return false; 672 } 673 674 // If we did speculate on this value, we could have blocks set to 1 that are 675 // incorrect. Walk the (transitive) successors of this block and mark them as 676 // 0 if set to one. 677 SmallVector<BasicBlock*, 32> BBWorklist; 678 BBWorklist.push_back(BB); 679 680 do { 681 BasicBlock *Entry = BBWorklist.pop_back_val(); 682 // Note that this sets blocks to 0 (unavailable) if they happen to not 683 // already be in FullyAvailableBlocks. This is safe. 684 char &EntryVal = FullyAvailableBlocks[Entry]; 685 if (EntryVal == 0) continue; // Already unavailable. 686 687 // Mark as unavailable. 688 EntryVal = 0; 689 690 BBWorklist.append(succ_begin(Entry), succ_end(Entry)); 691 } while (!BBWorklist.empty()); 692 693 return false; 694 } 695 696 697 /// Return true if CoerceAvailableValueToLoadType will succeed. 698 static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal, 699 Type *LoadTy, 700 const DataLayout &DL) { 701 // If the loaded or stored value is an first class array or struct, don't try 702 // to transform them. We need to be able to bitcast to integer. 703 if (LoadTy->isStructTy() || LoadTy->isArrayTy() || 704 StoredVal->getType()->isStructTy() || 705 StoredVal->getType()->isArrayTy()) 706 return false; 707 708 // The store has to be at least as big as the load. 709 if (DL.getTypeSizeInBits(StoredVal->getType()) < 710 DL.getTypeSizeInBits(LoadTy)) 711 return false; 712 713 return true; 714 } 715 716 /// If we saw a store of a value to memory, and 717 /// then a load from a must-aliased pointer of a different type, try to coerce 718 /// the stored value. LoadedTy is the type of the load we want to replace. 719 /// IRB is IRBuilder used to insert new instructions. 720 /// 721 /// If we can't do it, return null. 722 static Value *CoerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy, 723 IRBuilder<> &IRB, 724 const DataLayout &DL) { 725 assert(CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) && 726 "precondition violation - materialization can't fail"); 727 728 if (auto *C = dyn_cast<Constant>(StoredVal)) 729 if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL)) 730 StoredVal = FoldedStoredVal; 731 732 // If this is already the right type, just return it. 733 Type *StoredValTy = StoredVal->getType(); 734 735 uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy); 736 uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy); 737 738 // If the store and reload are the same size, we can always reuse it. 739 if (StoredValSize == LoadedValSize) { 740 // Pointer to Pointer -> use bitcast. 741 if (StoredValTy->getScalarType()->isPointerTy() && 742 LoadedTy->getScalarType()->isPointerTy()) { 743 StoredVal = IRB.CreateBitCast(StoredVal, LoadedTy); 744 } else { 745 // Convert source pointers to integers, which can be bitcast. 746 if (StoredValTy->getScalarType()->isPointerTy()) { 747 StoredValTy = DL.getIntPtrType(StoredValTy); 748 StoredVal = IRB.CreatePtrToInt(StoredVal, StoredValTy); 749 } 750 751 Type *TypeToCastTo = LoadedTy; 752 if (TypeToCastTo->getScalarType()->isPointerTy()) 753 TypeToCastTo = DL.getIntPtrType(TypeToCastTo); 754 755 if (StoredValTy != TypeToCastTo) 756 StoredVal = IRB.CreateBitCast(StoredVal, TypeToCastTo); 757 758 // Cast to pointer if the load needs a pointer type. 759 if (LoadedTy->getScalarType()->isPointerTy()) 760 StoredVal = IRB.CreateIntToPtr(StoredVal, LoadedTy); 761 } 762 763 if (auto *C = dyn_cast<ConstantExpr>(StoredVal)) 764 if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL)) 765 StoredVal = FoldedStoredVal; 766 767 return StoredVal; 768 } 769 770 // If the loaded value is smaller than the available value, then we can 771 // extract out a piece from it. If the available value is too small, then we 772 // can't do anything. 773 assert(StoredValSize >= LoadedValSize && 774 "CanCoerceMustAliasedValueToLoad fail"); 775 776 // Convert source pointers to integers, which can be manipulated. 777 if (StoredValTy->getScalarType()->isPointerTy()) { 778 StoredValTy = DL.getIntPtrType(StoredValTy); 779 StoredVal = IRB.CreatePtrToInt(StoredVal, StoredValTy); 780 } 781 782 // Convert vectors and fp to integer, which can be manipulated. 783 if (!StoredValTy->isIntegerTy()) { 784 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize); 785 StoredVal = IRB.CreateBitCast(StoredVal, StoredValTy); 786 } 787 788 // If this is a big-endian system, we need to shift the value down to the low 789 // bits so that a truncate will work. 790 if (DL.isBigEndian()) { 791 uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy) - 792 DL.getTypeStoreSizeInBits(LoadedTy); 793 StoredVal = IRB.CreateLShr(StoredVal, ShiftAmt, "tmp"); 794 } 795 796 // Truncate the integer to the right size now. 797 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize); 798 StoredVal = IRB.CreateTrunc(StoredVal, NewIntTy, "trunc"); 799 800 if (LoadedTy != NewIntTy) { 801 // If the result is a pointer, inttoptr. 802 if (LoadedTy->getScalarType()->isPointerTy()) 803 StoredVal = IRB.CreateIntToPtr(StoredVal, LoadedTy, "inttoptr"); 804 else 805 // Otherwise, bitcast. 806 StoredVal = IRB.CreateBitCast(StoredVal, LoadedTy, "bitcast"); 807 } 808 809 if (auto *C = dyn_cast<Constant>(StoredVal)) 810 if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL)) 811 StoredVal = FoldedStoredVal; 812 813 return StoredVal; 814 } 815 816 /// This function is called when we have a 817 /// memdep query of a load that ends up being a clobbering memory write (store, 818 /// memset, memcpy, memmove). This means that the write *may* provide bits used 819 /// by the load but we can't be sure because the pointers don't mustalias. 820 /// 821 /// Check this case to see if there is anything more we can do before we give 822 /// up. This returns -1 if we have to give up, or a byte number in the stored 823 /// value of the piece that feeds the load. 824 static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr, 825 Value *WritePtr, 826 uint64_t WriteSizeInBits, 827 const DataLayout &DL) { 828 // If the loaded or stored value is a first class array or struct, don't try 829 // to transform them. We need to be able to bitcast to integer. 830 if (LoadTy->isStructTy() || LoadTy->isArrayTy()) 831 return -1; 832 833 int64_t StoreOffset = 0, LoadOffset = 0; 834 Value *StoreBase = 835 GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL); 836 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL); 837 if (StoreBase != LoadBase) 838 return -1; 839 840 // If the load and store are to the exact same address, they should have been 841 // a must alias. AA must have gotten confused. 842 // FIXME: Study to see if/when this happens. One case is forwarding a memset 843 // to a load from the base of the memset. 844 #if 0 845 if (LoadOffset == StoreOffset) { 846 dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n" 847 << "Base = " << *StoreBase << "\n" 848 << "Store Ptr = " << *WritePtr << "\n" 849 << "Store Offs = " << StoreOffset << "\n" 850 << "Load Ptr = " << *LoadPtr << "\n"; 851 abort(); 852 } 853 #endif 854 855 // If the load and store don't overlap at all, the store doesn't provide 856 // anything to the load. In this case, they really don't alias at all, AA 857 // must have gotten confused. 858 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy); 859 860 if ((WriteSizeInBits & 7) | (LoadSize & 7)) 861 return -1; 862 uint64_t StoreSize = WriteSizeInBits >> 3; // Convert to bytes. 863 LoadSize >>= 3; 864 865 866 bool isAAFailure = false; 867 if (StoreOffset < LoadOffset) 868 isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset; 869 else 870 isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset; 871 872 if (isAAFailure) { 873 #if 0 874 dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n" 875 << "Base = " << *StoreBase << "\n" 876 << "Store Ptr = " << *WritePtr << "\n" 877 << "Store Offs = " << StoreOffset << "\n" 878 << "Load Ptr = " << *LoadPtr << "\n"; 879 abort(); 880 #endif 881 return -1; 882 } 883 884 // If the Load isn't completely contained within the stored bits, we don't 885 // have all the bits to feed it. We could do something crazy in the future 886 // (issue a smaller load then merge the bits in) but this seems unlikely to be 887 // valuable. 888 if (StoreOffset > LoadOffset || 889 StoreOffset+StoreSize < LoadOffset+LoadSize) 890 return -1; 891 892 // Okay, we can do this transformation. Return the number of bytes into the 893 // store that the load is. 894 return LoadOffset-StoreOffset; 895 } 896 897 /// This function is called when we have a 898 /// memdep query of a load that ends up being a clobbering store. 899 static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr, 900 StoreInst *DepSI) { 901 // Cannot handle reading from store of first-class aggregate yet. 902 if (DepSI->getValueOperand()->getType()->isStructTy() || 903 DepSI->getValueOperand()->getType()->isArrayTy()) 904 return -1; 905 906 const DataLayout &DL = DepSI->getModule()->getDataLayout(); 907 Value *StorePtr = DepSI->getPointerOperand(); 908 uint64_t StoreSize =DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()); 909 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, 910 StorePtr, StoreSize, DL); 911 } 912 913 /// This function is called when we have a 914 /// memdep query of a load that ends up being clobbered by another load. See if 915 /// the other load can feed into the second load. 916 static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, 917 LoadInst *DepLI, const DataLayout &DL){ 918 // Cannot handle reading from store of first-class aggregate yet. 919 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy()) 920 return -1; 921 922 Value *DepPtr = DepLI->getPointerOperand(); 923 uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()); 924 int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL); 925 if (R != -1) return R; 926 927 // If we have a load/load clobber an DepLI can be widened to cover this load, 928 // then we should widen it! 929 int64_t LoadOffs = 0; 930 const Value *LoadBase = 931 GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL); 932 unsigned LoadSize = DL.getTypeStoreSize(LoadTy); 933 934 unsigned Size = MemoryDependenceResults::getLoadLoadClobberFullWidthSize( 935 LoadBase, LoadOffs, LoadSize, DepLI); 936 if (Size == 0) return -1; 937 938 // Check non-obvious conditions enforced by MDA which we rely on for being 939 // able to materialize this potentially available value 940 assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!"); 941 assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load"); 942 943 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, DL); 944 } 945 946 947 948 static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr, 949 MemIntrinsic *MI, 950 const DataLayout &DL) { 951 // If the mem operation is a non-constant size, we can't handle it. 952 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength()); 953 if (!SizeCst) return -1; 954 uint64_t MemSizeInBits = SizeCst->getZExtValue()*8; 955 956 // If this is memset, we just need to see if the offset is valid in the size 957 // of the memset.. 958 if (MI->getIntrinsicID() == Intrinsic::memset) 959 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), 960 MemSizeInBits, DL); 961 962 // If we have a memcpy/memmove, the only case we can handle is if this is a 963 // copy from constant memory. In that case, we can read directly from the 964 // constant memory. 965 MemTransferInst *MTI = cast<MemTransferInst>(MI); 966 967 Constant *Src = dyn_cast<Constant>(MTI->getSource()); 968 if (!Src) return -1; 969 970 GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL)); 971 if (!GV || !GV->isConstant()) return -1; 972 973 // See if the access is within the bounds of the transfer. 974 int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, 975 MI->getDest(), MemSizeInBits, DL); 976 if (Offset == -1) 977 return Offset; 978 979 unsigned AS = Src->getType()->getPointerAddressSpace(); 980 // Otherwise, see if we can constant fold a load from the constant with the 981 // offset applied as appropriate. 982 Src = ConstantExpr::getBitCast(Src, 983 Type::getInt8PtrTy(Src->getContext(), AS)); 984 Constant *OffsetCst = 985 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); 986 Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src, 987 OffsetCst); 988 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS)); 989 if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL)) 990 return Offset; 991 return -1; 992 } 993 994 995 /// This function is called when we have a 996 /// memdep query of a load that ends up being a clobbering store. This means 997 /// that the store provides bits used by the load but we the pointers don't 998 /// mustalias. Check this case to see if there is anything more we can do 999 /// before we give up. 1000 static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset, 1001 Type *LoadTy, 1002 Instruction *InsertPt, const DataLayout &DL){ 1003 LLVMContext &Ctx = SrcVal->getType()->getContext(); 1004 1005 uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8; 1006 uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8; 1007 1008 IRBuilder<> Builder(InsertPt); 1009 1010 // Compute which bits of the stored value are being used by the load. Convert 1011 // to an integer type to start with. 1012 if (SrcVal->getType()->getScalarType()->isPointerTy()) 1013 SrcVal = Builder.CreatePtrToInt(SrcVal, 1014 DL.getIntPtrType(SrcVal->getType())); 1015 if (!SrcVal->getType()->isIntegerTy()) 1016 SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8)); 1017 1018 // Shift the bits to the least significant depending on endianness. 1019 unsigned ShiftAmt; 1020 if (DL.isLittleEndian()) 1021 ShiftAmt = Offset*8; 1022 else 1023 ShiftAmt = (StoreSize-LoadSize-Offset)*8; 1024 1025 if (ShiftAmt) 1026 SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt); 1027 1028 if (LoadSize != StoreSize) 1029 SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8)); 1030 1031 return CoerceAvailableValueToLoadType(SrcVal, LoadTy, Builder, DL); 1032 } 1033 1034 /// This function is called when we have a 1035 /// memdep query of a load that ends up being a clobbering load. This means 1036 /// that the load *may* provide bits used by the load but we can't be sure 1037 /// because the pointers don't mustalias. Check this case to see if there is 1038 /// anything more we can do before we give up. 1039 static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, 1040 Type *LoadTy, Instruction *InsertPt, 1041 GVN &gvn) { 1042 const DataLayout &DL = SrcVal->getModule()->getDataLayout(); 1043 // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to 1044 // widen SrcVal out to a larger load. 1045 unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType()); 1046 unsigned LoadSize = DL.getTypeStoreSize(LoadTy); 1047 if (Offset+LoadSize > SrcValStoreSize) { 1048 assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!"); 1049 assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load"); 1050 // If we have a load/load clobber an DepLI can be widened to cover this 1051 // load, then we should widen it to the next power of 2 size big enough! 1052 unsigned NewLoadSize = Offset+LoadSize; 1053 if (!isPowerOf2_32(NewLoadSize)) 1054 NewLoadSize = NextPowerOf2(NewLoadSize); 1055 1056 Value *PtrVal = SrcVal->getPointerOperand(); 1057 1058 // Insert the new load after the old load. This ensures that subsequent 1059 // memdep queries will find the new load. We can't easily remove the old 1060 // load completely because it is already in the value numbering table. 1061 IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal)); 1062 Type *DestPTy = 1063 IntegerType::get(LoadTy->getContext(), NewLoadSize*8); 1064 DestPTy = PointerType::get(DestPTy, 1065 PtrVal->getType()->getPointerAddressSpace()); 1066 Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc()); 1067 PtrVal = Builder.CreateBitCast(PtrVal, DestPTy); 1068 LoadInst *NewLoad = Builder.CreateLoad(PtrVal); 1069 NewLoad->takeName(SrcVal); 1070 NewLoad->setAlignment(SrcVal->getAlignment()); 1071 1072 DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n"); 1073 DEBUG(dbgs() << "TO: " << *NewLoad << "\n"); 1074 1075 // Replace uses of the original load with the wider load. On a big endian 1076 // system, we need to shift down to get the relevant bits. 1077 Value *RV = NewLoad; 1078 if (DL.isBigEndian()) 1079 RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8); 1080 RV = Builder.CreateTrunc(RV, SrcVal->getType()); 1081 SrcVal->replaceAllUsesWith(RV); 1082 1083 // We would like to use gvn.markInstructionForDeletion here, but we can't 1084 // because the load is already memoized into the leader map table that GVN 1085 // tracks. It is potentially possible to remove the load from the table, 1086 // but then there all of the operations based on it would need to be 1087 // rehashed. Just leave the dead load around. 1088 gvn.getMemDep().removeInstruction(SrcVal); 1089 SrcVal = NewLoad; 1090 } 1091 1092 return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL); 1093 } 1094 1095 1096 /// This function is called when we have a 1097 /// memdep query of a load that ends up being a clobbering mem intrinsic. 1098 static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, 1099 Type *LoadTy, Instruction *InsertPt, 1100 const DataLayout &DL){ 1101 LLVMContext &Ctx = LoadTy->getContext(); 1102 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy)/8; 1103 1104 IRBuilder<> Builder(InsertPt); 1105 1106 // We know that this method is only called when the mem transfer fully 1107 // provides the bits for the load. 1108 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) { 1109 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and 1110 // independently of what the offset is. 1111 Value *Val = MSI->getValue(); 1112 if (LoadSize != 1) 1113 Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8)); 1114 1115 Value *OneElt = Val; 1116 1117 // Splat the value out to the right number of bits. 1118 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) { 1119 // If we can double the number of bytes set, do it. 1120 if (NumBytesSet*2 <= LoadSize) { 1121 Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8); 1122 Val = Builder.CreateOr(Val, ShVal); 1123 NumBytesSet <<= 1; 1124 continue; 1125 } 1126 1127 // Otherwise insert one byte at a time. 1128 Value *ShVal = Builder.CreateShl(Val, 1*8); 1129 Val = Builder.CreateOr(OneElt, ShVal); 1130 ++NumBytesSet; 1131 } 1132 1133 return CoerceAvailableValueToLoadType(Val, LoadTy, Builder, DL); 1134 } 1135 1136 // Otherwise, this is a memcpy/memmove from a constant global. 1137 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst); 1138 Constant *Src = cast<Constant>(MTI->getSource()); 1139 unsigned AS = Src->getType()->getPointerAddressSpace(); 1140 1141 // Otherwise, see if we can constant fold a load from the constant with the 1142 // offset applied as appropriate. 1143 Src = ConstantExpr::getBitCast(Src, 1144 Type::getInt8PtrTy(Src->getContext(), AS)); 1145 Constant *OffsetCst = 1146 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); 1147 Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src, 1148 OffsetCst); 1149 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS)); 1150 return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL); 1151 } 1152 1153 1154 /// Given a set of loads specified by ValuesPerBlock, 1155 /// construct SSA form, allowing us to eliminate LI. This returns the value 1156 /// that should be used at LI's definition site. 1157 static Value *ConstructSSAForLoadSet(LoadInst *LI, 1158 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, 1159 GVN &gvn) { 1160 // Check for the fully redundant, dominating load case. In this case, we can 1161 // just use the dominating value directly. 1162 if (ValuesPerBlock.size() == 1 && 1163 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB, 1164 LI->getParent())) { 1165 assert(!ValuesPerBlock[0].AV.isUndefValue() && 1166 "Dead BB dominate this block"); 1167 return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn); 1168 } 1169 1170 // Otherwise, we have to construct SSA form. 1171 SmallVector<PHINode*, 8> NewPHIs; 1172 SSAUpdater SSAUpdate(&NewPHIs); 1173 SSAUpdate.Initialize(LI->getType(), LI->getName()); 1174 1175 for (const AvailableValueInBlock &AV : ValuesPerBlock) { 1176 BasicBlock *BB = AV.BB; 1177 1178 if (SSAUpdate.HasValueForBlock(BB)) 1179 continue; 1180 1181 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn)); 1182 } 1183 1184 // Perform PHI construction. 1185 return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent()); 1186 } 1187 1188 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI, 1189 Instruction *InsertPt, 1190 GVN &gvn) const { 1191 Value *Res; 1192 Type *LoadTy = LI->getType(); 1193 const DataLayout &DL = LI->getModule()->getDataLayout(); 1194 if (isSimpleValue()) { 1195 Res = getSimpleValue(); 1196 if (Res->getType() != LoadTy) { 1197 Res = GetStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL); 1198 1199 DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " " 1200 << *getSimpleValue() << '\n' 1201 << *Res << '\n' << "\n\n\n"); 1202 } 1203 } else if (isCoercedLoadValue()) { 1204 LoadInst *Load = getCoercedLoadValue(); 1205 if (Load->getType() == LoadTy && Offset == 0) { 1206 Res = Load; 1207 } else { 1208 Res = GetLoadValueForLoad(Load, Offset, LoadTy, InsertPt, gvn); 1209 1210 DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << " " 1211 << *getCoercedLoadValue() << '\n' 1212 << *Res << '\n' << "\n\n\n"); 1213 } 1214 } else if (isMemIntrinValue()) { 1215 Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy, 1216 InsertPt, DL); 1217 DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset 1218 << " " << *getMemIntrinValue() << '\n' 1219 << *Res << '\n' << "\n\n\n"); 1220 } else { 1221 assert(isUndefValue() && "Should be UndefVal"); 1222 DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";); 1223 return UndefValue::get(LoadTy); 1224 } 1225 assert(Res && "failed to materialize?"); 1226 return Res; 1227 } 1228 1229 static bool isLifetimeStart(const Instruction *Inst) { 1230 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst)) 1231 return II->getIntrinsicID() == Intrinsic::lifetime_start; 1232 return false; 1233 } 1234 1235 bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo, 1236 Value *Address, AvailableValue &Res) { 1237 1238 assert((DepInfo.isDef() || DepInfo.isClobber()) && 1239 "expected a local dependence"); 1240 assert(LI->isUnordered() && "rules below are incorrect for ordered access"); 1241 1242 const DataLayout &DL = LI->getModule()->getDataLayout(); 1243 1244 if (DepInfo.isClobber()) { 1245 // If the dependence is to a store that writes to a superset of the bits 1246 // read by the load, we can extract the bits we need for the load from the 1247 // stored value. 1248 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) { 1249 // Can't forward from non-atomic to atomic without violating memory model. 1250 if (Address && LI->isAtomic() <= DepSI->isAtomic()) { 1251 int Offset = 1252 AnalyzeLoadFromClobberingStore(LI->getType(), Address, DepSI); 1253 if (Offset != -1) { 1254 Res = AvailableValue::get(DepSI->getValueOperand(), Offset); 1255 return true; 1256 } 1257 } 1258 } 1259 1260 // Check to see if we have something like this: 1261 // load i32* P 1262 // load i8* (P+1) 1263 // if we have this, replace the later with an extraction from the former. 1264 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) { 1265 // If this is a clobber and L is the first instruction in its block, then 1266 // we have the first instruction in the entry block. 1267 // Can't forward from non-atomic to atomic without violating memory model. 1268 if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) { 1269 int Offset = 1270 AnalyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL); 1271 1272 if (Offset != -1) { 1273 Res = AvailableValue::getLoad(DepLI, Offset); 1274 return true; 1275 } 1276 } 1277 } 1278 1279 // If the clobbering value is a memset/memcpy/memmove, see if we can 1280 // forward a value on from it. 1281 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) { 1282 if (Address && !LI->isAtomic()) { 1283 int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address, 1284 DepMI, DL); 1285 if (Offset != -1) { 1286 Res = AvailableValue::getMI(DepMI, Offset); 1287 return true; 1288 } 1289 } 1290 } 1291 // Nothing known about this clobber, have to be conservative 1292 DEBUG( 1293 // fast print dep, using operator<< on instruction is too slow. 1294 dbgs() << "GVN: load "; 1295 LI->printAsOperand(dbgs()); 1296 Instruction *I = DepInfo.getInst(); 1297 dbgs() << " is clobbered by " << *I << '\n'; 1298 ); 1299 return false; 1300 } 1301 assert(DepInfo.isDef() && "follows from above"); 1302 1303 Instruction *DepInst = DepInfo.getInst(); 1304 1305 // Loading the allocation -> undef. 1306 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) || 1307 // Loading immediately after lifetime begin -> undef. 1308 isLifetimeStart(DepInst)) { 1309 Res = AvailableValue::get(UndefValue::get(LI->getType())); 1310 return true; 1311 } 1312 1313 // Loading from calloc (which zero initializes memory) -> zero 1314 if (isCallocLikeFn(DepInst, TLI)) { 1315 Res = AvailableValue::get(Constant::getNullValue(LI->getType())); 1316 return true; 1317 } 1318 1319 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) { 1320 // Reject loads and stores that are to the same address but are of 1321 // different types if we have to. If the stored value is larger or equal to 1322 // the loaded value, we can reuse it. 1323 if (S->getValueOperand()->getType() != LI->getType() && 1324 !CanCoerceMustAliasedValueToLoad(S->getValueOperand(), 1325 LI->getType(), DL)) 1326 return false; 1327 1328 // Can't forward from non-atomic to atomic without violating memory model. 1329 if (S->isAtomic() < LI->isAtomic()) 1330 return false; 1331 1332 Res = AvailableValue::get(S->getValueOperand()); 1333 return true; 1334 } 1335 1336 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) { 1337 // If the types mismatch and we can't handle it, reject reuse of the load. 1338 // If the stored value is larger or equal to the loaded value, we can reuse 1339 // it. 1340 if (LD->getType() != LI->getType() && 1341 !CanCoerceMustAliasedValueToLoad(LD, LI->getType(), DL)) 1342 return false; 1343 1344 // Can't forward from non-atomic to atomic without violating memory model. 1345 if (LD->isAtomic() < LI->isAtomic()) 1346 return false; 1347 1348 Res = AvailableValue::getLoad(LD); 1349 return true; 1350 } 1351 1352 // Unknown def - must be conservative 1353 DEBUG( 1354 // fast print dep, using operator<< on instruction is too slow. 1355 dbgs() << "GVN: load "; 1356 LI->printAsOperand(dbgs()); 1357 dbgs() << " has unknown def " << *DepInst << '\n'; 1358 ); 1359 return false; 1360 } 1361 1362 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps, 1363 AvailValInBlkVect &ValuesPerBlock, 1364 UnavailBlkVect &UnavailableBlocks) { 1365 1366 // Filter out useless results (non-locals, etc). Keep track of the blocks 1367 // where we have a value available in repl, also keep track of whether we see 1368 // dependencies that produce an unknown value for the load (such as a call 1369 // that could potentially clobber the load). 1370 unsigned NumDeps = Deps.size(); 1371 for (unsigned i = 0, e = NumDeps; i != e; ++i) { 1372 BasicBlock *DepBB = Deps[i].getBB(); 1373 MemDepResult DepInfo = Deps[i].getResult(); 1374 1375 if (DeadBlocks.count(DepBB)) { 1376 // Dead dependent mem-op disguise as a load evaluating the same value 1377 // as the load in question. 1378 ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB)); 1379 continue; 1380 } 1381 1382 if (!DepInfo.isDef() && !DepInfo.isClobber()) { 1383 UnavailableBlocks.push_back(DepBB); 1384 continue; 1385 } 1386 1387 // The address being loaded in this non-local block may not be the same as 1388 // the pointer operand of the load if PHI translation occurs. Make sure 1389 // to consider the right address. 1390 Value *Address = Deps[i].getAddress(); 1391 1392 AvailableValue AV; 1393 if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) { 1394 // subtlety: because we know this was a non-local dependency, we know 1395 // it's safe to materialize anywhere between the instruction within 1396 // DepInfo and the end of it's block. 1397 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, 1398 std::move(AV))); 1399 } else { 1400 UnavailableBlocks.push_back(DepBB); 1401 } 1402 } 1403 1404 assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() && 1405 "post condition violation"); 1406 } 1407 1408 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock, 1409 UnavailBlkVect &UnavailableBlocks) { 1410 // Okay, we have *some* definitions of the value. This means that the value 1411 // is available in some of our (transitive) predecessors. Lets think about 1412 // doing PRE of this load. This will involve inserting a new load into the 1413 // predecessor when it's not available. We could do this in general, but 1414 // prefer to not increase code size. As such, we only do this when we know 1415 // that we only have to insert *one* load (which means we're basically moving 1416 // the load, not inserting a new one). 1417 1418 SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(), 1419 UnavailableBlocks.end()); 1420 1421 // Let's find the first basic block with more than one predecessor. Walk 1422 // backwards through predecessors if needed. 1423 BasicBlock *LoadBB = LI->getParent(); 1424 BasicBlock *TmpBB = LoadBB; 1425 1426 while (TmpBB->getSinglePredecessor()) { 1427 TmpBB = TmpBB->getSinglePredecessor(); 1428 if (TmpBB == LoadBB) // Infinite (unreachable) loop. 1429 return false; 1430 if (Blockers.count(TmpBB)) 1431 return false; 1432 1433 // If any of these blocks has more than one successor (i.e. if the edge we 1434 // just traversed was critical), then there are other paths through this 1435 // block along which the load may not be anticipated. Hoisting the load 1436 // above this block would be adding the load to execution paths along 1437 // which it was not previously executed. 1438 if (TmpBB->getTerminator()->getNumSuccessors() != 1) 1439 return false; 1440 } 1441 1442 assert(TmpBB); 1443 LoadBB = TmpBB; 1444 1445 // Check to see how many predecessors have the loaded value fully 1446 // available. 1447 MapVector<BasicBlock *, Value *> PredLoads; 1448 DenseMap<BasicBlock*, char> FullyAvailableBlocks; 1449 for (const AvailableValueInBlock &AV : ValuesPerBlock) 1450 FullyAvailableBlocks[AV.BB] = true; 1451 for (BasicBlock *UnavailableBB : UnavailableBlocks) 1452 FullyAvailableBlocks[UnavailableBB] = false; 1453 1454 SmallVector<BasicBlock *, 4> CriticalEdgePred; 1455 for (BasicBlock *Pred : predecessors(LoadBB)) { 1456 // If any predecessor block is an EH pad that does not allow non-PHI 1457 // instructions before the terminator, we can't PRE the load. 1458 if (Pred->getTerminator()->isEHPad()) { 1459 DEBUG(dbgs() 1460 << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '" 1461 << Pred->getName() << "': " << *LI << '\n'); 1462 return false; 1463 } 1464 1465 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) { 1466 continue; 1467 } 1468 1469 if (Pred->getTerminator()->getNumSuccessors() != 1) { 1470 if (isa<IndirectBrInst>(Pred->getTerminator())) { 1471 DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '" 1472 << Pred->getName() << "': " << *LI << '\n'); 1473 return false; 1474 } 1475 1476 if (LoadBB->isEHPad()) { 1477 DEBUG(dbgs() 1478 << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '" 1479 << Pred->getName() << "': " << *LI << '\n'); 1480 return false; 1481 } 1482 1483 CriticalEdgePred.push_back(Pred); 1484 } else { 1485 // Only add the predecessors that will not be split for now. 1486 PredLoads[Pred] = nullptr; 1487 } 1488 } 1489 1490 // Decide whether PRE is profitable for this load. 1491 unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size(); 1492 assert(NumUnavailablePreds != 0 && 1493 "Fully available value should already be eliminated!"); 1494 1495 // If this load is unavailable in multiple predecessors, reject it. 1496 // FIXME: If we could restructure the CFG, we could make a common pred with 1497 // all the preds that don't have an available LI and insert a new load into 1498 // that one block. 1499 if (NumUnavailablePreds != 1) 1500 return false; 1501 1502 // Split critical edges, and update the unavailable predecessors accordingly. 1503 for (BasicBlock *OrigPred : CriticalEdgePred) { 1504 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB); 1505 assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!"); 1506 PredLoads[NewPred] = nullptr; 1507 DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->" 1508 << LoadBB->getName() << '\n'); 1509 } 1510 1511 // Check if the load can safely be moved to all the unavailable predecessors. 1512 bool CanDoPRE = true; 1513 const DataLayout &DL = LI->getModule()->getDataLayout(); 1514 SmallVector<Instruction*, 8> NewInsts; 1515 for (auto &PredLoad : PredLoads) { 1516 BasicBlock *UnavailablePred = PredLoad.first; 1517 1518 // Do PHI translation to get its value in the predecessor if necessary. The 1519 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred. 1520 1521 // If all preds have a single successor, then we know it is safe to insert 1522 // the load on the pred (?!?), so we can insert code to materialize the 1523 // pointer if it is not available. 1524 PHITransAddr Address(LI->getPointerOperand(), DL, AC); 1525 Value *LoadPtr = nullptr; 1526 LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, 1527 *DT, NewInsts); 1528 1529 // If we couldn't find or insert a computation of this phi translated value, 1530 // we fail PRE. 1531 if (!LoadPtr) { 1532 DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: " 1533 << *LI->getPointerOperand() << "\n"); 1534 CanDoPRE = false; 1535 break; 1536 } 1537 1538 PredLoad.second = LoadPtr; 1539 } 1540 1541 if (!CanDoPRE) { 1542 while (!NewInsts.empty()) { 1543 Instruction *I = NewInsts.pop_back_val(); 1544 if (MD) MD->removeInstruction(I); 1545 I->eraseFromParent(); 1546 } 1547 // HINT: Don't revert the edge-splitting as following transformation may 1548 // also need to split these critical edges. 1549 return !CriticalEdgePred.empty(); 1550 } 1551 1552 // Okay, we can eliminate this load by inserting a reload in the predecessor 1553 // and using PHI construction to get the value in the other predecessors, do 1554 // it. 1555 DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n'); 1556 DEBUG(if (!NewInsts.empty()) 1557 dbgs() << "INSERTED " << NewInsts.size() << " INSTS: " 1558 << *NewInsts.back() << '\n'); 1559 1560 // Assign value numbers to the new instructions. 1561 for (Instruction *I : NewInsts) { 1562 // FIXME: We really _ought_ to insert these value numbers into their 1563 // parent's availability map. However, in doing so, we risk getting into 1564 // ordering issues. If a block hasn't been processed yet, we would be 1565 // marking a value as AVAIL-IN, which isn't what we intend. 1566 VN.lookupOrAdd(I); 1567 } 1568 1569 for (const auto &PredLoad : PredLoads) { 1570 BasicBlock *UnavailablePred = PredLoad.first; 1571 Value *LoadPtr = PredLoad.second; 1572 1573 auto *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", 1574 LI->isVolatile(), LI->getAlignment(), 1575 LI->getOrdering(), LI->getSynchScope(), 1576 UnavailablePred->getTerminator()); 1577 1578 // Transfer the old load's AA tags to the new load. 1579 AAMDNodes Tags; 1580 LI->getAAMetadata(Tags); 1581 if (Tags) 1582 NewLoad->setAAMetadata(Tags); 1583 1584 if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load)) 1585 NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD); 1586 if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group)) 1587 NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD); 1588 if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) 1589 NewLoad->setMetadata(LLVMContext::MD_range, RangeMD); 1590 1591 // Transfer DebugLoc. 1592 NewLoad->setDebugLoc(LI->getDebugLoc()); 1593 1594 // Add the newly created load. 1595 ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred, 1596 NewLoad)); 1597 MD->invalidateCachedPointerInfo(LoadPtr); 1598 DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n'); 1599 } 1600 1601 // Perform PHI construction. 1602 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); 1603 LI->replaceAllUsesWith(V); 1604 if (isa<PHINode>(V)) 1605 V->takeName(LI); 1606 if (Instruction *I = dyn_cast<Instruction>(V)) 1607 I->setDebugLoc(LI->getDebugLoc()); 1608 if (V->getType()->getScalarType()->isPointerTy()) 1609 MD->invalidateCachedPointerInfo(V); 1610 markInstructionForDeletion(LI); 1611 ++NumPRELoad; 1612 return true; 1613 } 1614 1615 /// Attempt to eliminate a load whose dependencies are 1616 /// non-local by performing PHI construction. 1617 bool GVN::processNonLocalLoad(LoadInst *LI) { 1618 // non-local speculations are not allowed under asan. 1619 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeAddress)) 1620 return false; 1621 1622 // Step 1: Find the non-local dependencies of the load. 1623 LoadDepVect Deps; 1624 MD->getNonLocalPointerDependency(LI, Deps); 1625 1626 // If we had to process more than one hundred blocks to find the 1627 // dependencies, this load isn't worth worrying about. Optimizing 1628 // it will be too expensive. 1629 unsigned NumDeps = Deps.size(); 1630 if (NumDeps > 100) 1631 return false; 1632 1633 // If we had a phi translation failure, we'll have a single entry which is a 1634 // clobber in the current block. Reject this early. 1635 if (NumDeps == 1 && 1636 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) { 1637 DEBUG( 1638 dbgs() << "GVN: non-local load "; 1639 LI->printAsOperand(dbgs()); 1640 dbgs() << " has unknown dependencies\n"; 1641 ); 1642 return false; 1643 } 1644 1645 // If this load follows a GEP, see if we can PRE the indices before analyzing. 1646 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) { 1647 for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(), 1648 OE = GEP->idx_end(); 1649 OI != OE; ++OI) 1650 if (Instruction *I = dyn_cast<Instruction>(OI->get())) 1651 performScalarPRE(I); 1652 } 1653 1654 // Step 2: Analyze the availability of the load 1655 AvailValInBlkVect ValuesPerBlock; 1656 UnavailBlkVect UnavailableBlocks; 1657 AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks); 1658 1659 // If we have no predecessors that produce a known value for this load, exit 1660 // early. 1661 if (ValuesPerBlock.empty()) 1662 return false; 1663 1664 // Step 3: Eliminate fully redundancy. 1665 // 1666 // If all of the instructions we depend on produce a known value for this 1667 // load, then it is fully redundant and we can use PHI insertion to compute 1668 // its value. Insert PHIs and remove the fully redundant value now. 1669 if (UnavailableBlocks.empty()) { 1670 DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n'); 1671 1672 // Perform PHI construction. 1673 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); 1674 LI->replaceAllUsesWith(V); 1675 1676 if (isa<PHINode>(V)) 1677 V->takeName(LI); 1678 if (Instruction *I = dyn_cast<Instruction>(V)) 1679 if (LI->getDebugLoc()) 1680 I->setDebugLoc(LI->getDebugLoc()); 1681 if (V->getType()->getScalarType()->isPointerTy()) 1682 MD->invalidateCachedPointerInfo(V); 1683 markInstructionForDeletion(LI); 1684 ++NumGVNLoad; 1685 return true; 1686 } 1687 1688 // Step 4: Eliminate partial redundancy. 1689 if (!EnablePRE || !EnableLoadPRE) 1690 return false; 1691 1692 return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks); 1693 } 1694 1695 bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) { 1696 assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume && 1697 "This function can only be called with llvm.assume intrinsic"); 1698 Value *V = IntrinsicI->getArgOperand(0); 1699 1700 if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) { 1701 if (Cond->isZero()) { 1702 Type *Int8Ty = Type::getInt8Ty(V->getContext()); 1703 // Insert a new store to null instruction before the load to indicate that 1704 // this code is not reachable. FIXME: We could insert unreachable 1705 // instruction directly because we can modify the CFG. 1706 new StoreInst(UndefValue::get(Int8Ty), 1707 Constant::getNullValue(Int8Ty->getPointerTo()), 1708 IntrinsicI); 1709 } 1710 markInstructionForDeletion(IntrinsicI); 1711 return false; 1712 } 1713 1714 Constant *True = ConstantInt::getTrue(V->getContext()); 1715 bool Changed = false; 1716 1717 for (BasicBlock *Successor : successors(IntrinsicI->getParent())) { 1718 BasicBlockEdge Edge(IntrinsicI->getParent(), Successor); 1719 1720 // This property is only true in dominated successors, propagateEquality 1721 // will check dominance for us. 1722 Changed |= propagateEquality(V, True, Edge, false); 1723 } 1724 1725 // We can replace assume value with true, which covers cases like this: 1726 // call void @llvm.assume(i1 %cmp) 1727 // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true 1728 ReplaceWithConstMap[V] = True; 1729 1730 // If one of *cmp *eq operand is const, adding it to map will cover this: 1731 // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen 1732 // call void @llvm.assume(i1 %cmp) 1733 // ret float %0 ; will change it to ret float 3.000000e+00 1734 if (auto *CmpI = dyn_cast<CmpInst>(V)) { 1735 if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ || 1736 CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ || 1737 (CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ && 1738 CmpI->getFastMathFlags().noNaNs())) { 1739 Value *CmpLHS = CmpI->getOperand(0); 1740 Value *CmpRHS = CmpI->getOperand(1); 1741 if (isa<Constant>(CmpLHS)) 1742 std::swap(CmpLHS, CmpRHS); 1743 auto *RHSConst = dyn_cast<Constant>(CmpRHS); 1744 1745 // If only one operand is constant. 1746 if (RHSConst != nullptr && !isa<Constant>(CmpLHS)) 1747 ReplaceWithConstMap[CmpLHS] = RHSConst; 1748 } 1749 } 1750 return Changed; 1751 } 1752 1753 static void patchReplacementInstruction(Instruction *I, Value *Repl) { 1754 auto *ReplInst = dyn_cast<Instruction>(Repl); 1755 if (!ReplInst) 1756 return; 1757 1758 // Patch the replacement so that it is not more restrictive than the value 1759 // being replaced. 1760 ReplInst->andIRFlags(I); 1761 1762 // FIXME: If both the original and replacement value are part of the 1763 // same control-flow region (meaning that the execution of one 1764 // guarantees the execution of the other), then we can combine the 1765 // noalias scopes here and do better than the general conservative 1766 // answer used in combineMetadata(). 1767 1768 // In general, GVN unifies expressions over different control-flow 1769 // regions, and so we need a conservative combination of the noalias 1770 // scopes. 1771 static const unsigned KnownIDs[] = { 1772 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1773 LLVMContext::MD_noalias, LLVMContext::MD_range, 1774 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 1775 LLVMContext::MD_invariant_group}; 1776 combineMetadata(ReplInst, I, KnownIDs); 1777 } 1778 1779 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { 1780 patchReplacementInstruction(I, Repl); 1781 I->replaceAllUsesWith(Repl); 1782 } 1783 1784 /// Attempt to eliminate a load, first by eliminating it 1785 /// locally, and then attempting non-local elimination if that fails. 1786 bool GVN::processLoad(LoadInst *L) { 1787 if (!MD) 1788 return false; 1789 1790 // This code hasn't been audited for ordered or volatile memory access 1791 if (!L->isUnordered()) 1792 return false; 1793 1794 if (L->use_empty()) { 1795 markInstructionForDeletion(L); 1796 return true; 1797 } 1798 1799 // ... to a pointer that has been loaded from before... 1800 MemDepResult Dep = MD->getDependency(L); 1801 1802 // If it is defined in another block, try harder. 1803 if (Dep.isNonLocal()) 1804 return processNonLocalLoad(L); 1805 1806 // Only handle the local case below 1807 if (!Dep.isDef() && !Dep.isClobber()) { 1808 // This might be a NonFuncLocal or an Unknown 1809 DEBUG( 1810 // fast print dep, using operator<< on instruction is too slow. 1811 dbgs() << "GVN: load "; 1812 L->printAsOperand(dbgs()); 1813 dbgs() << " has unknown dependence\n"; 1814 ); 1815 return false; 1816 } 1817 1818 AvailableValue AV; 1819 if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) { 1820 Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this); 1821 1822 // Replace the load! 1823 patchAndReplaceAllUsesWith(L, AvailableValue); 1824 markInstructionForDeletion(L); 1825 ++NumGVNLoad; 1826 // Tell MDA to rexamine the reused pointer since we might have more 1827 // information after forwarding it. 1828 if (MD && AvailableValue->getType()->getScalarType()->isPointerTy()) 1829 MD->invalidateCachedPointerInfo(AvailableValue); 1830 return true; 1831 } 1832 1833 return false; 1834 } 1835 1836 // In order to find a leader for a given value number at a 1837 // specific basic block, we first obtain the list of all Values for that number, 1838 // and then scan the list to find one whose block dominates the block in 1839 // question. This is fast because dominator tree queries consist of only 1840 // a few comparisons of DFS numbers. 1841 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) { 1842 LeaderTableEntry Vals = LeaderTable[num]; 1843 if (!Vals.Val) return nullptr; 1844 1845 Value *Val = nullptr; 1846 if (DT->dominates(Vals.BB, BB)) { 1847 Val = Vals.Val; 1848 if (isa<Constant>(Val)) return Val; 1849 } 1850 1851 LeaderTableEntry* Next = Vals.Next; 1852 while (Next) { 1853 if (DT->dominates(Next->BB, BB)) { 1854 if (isa<Constant>(Next->Val)) return Next->Val; 1855 if (!Val) Val = Next->Val; 1856 } 1857 1858 Next = Next->Next; 1859 } 1860 1861 return Val; 1862 } 1863 1864 /// There is an edge from 'Src' to 'Dst'. Return 1865 /// true if every path from the entry block to 'Dst' passes via this edge. In 1866 /// particular 'Dst' must not be reachable via another edge from 'Src'. 1867 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, 1868 DominatorTree *DT) { 1869 // While in theory it is interesting to consider the case in which Dst has 1870 // more than one predecessor, because Dst might be part of a loop which is 1871 // only reachable from Src, in practice it is pointless since at the time 1872 // GVN runs all such loops have preheaders, which means that Dst will have 1873 // been changed to have only one predecessor, namely Src. 1874 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); 1875 assert((!Pred || Pred == E.getStart()) && 1876 "No edge between these basic blocks!"); 1877 return Pred != nullptr; 1878 } 1879 1880 // Tries to replace instruction with const, using information from 1881 // ReplaceWithConstMap. 1882 bool GVN::replaceOperandsWithConsts(Instruction *Instr) const { 1883 bool Changed = false; 1884 for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) { 1885 Value *Operand = Instr->getOperand(OpNum); 1886 auto it = ReplaceWithConstMap.find(Operand); 1887 if (it != ReplaceWithConstMap.end()) { 1888 assert(!isa<Constant>(Operand) && 1889 "Replacing constants with constants is invalid"); 1890 DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " << *it->second 1891 << " in instruction " << *Instr << '\n'); 1892 Instr->setOperand(OpNum, it->second); 1893 Changed = true; 1894 } 1895 } 1896 return Changed; 1897 } 1898 1899 /// The given values are known to be equal in every block 1900 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with 1901 /// 'RHS' everywhere in the scope. Returns whether a change was made. 1902 /// If DominatesByEdge is false, then it means that we will propagate the RHS 1903 /// value starting from the end of Root.Start. 1904 bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root, 1905 bool DominatesByEdge) { 1906 SmallVector<std::pair<Value*, Value*>, 4> Worklist; 1907 Worklist.push_back(std::make_pair(LHS, RHS)); 1908 bool Changed = false; 1909 // For speed, compute a conservative fast approximation to 1910 // DT->dominates(Root, Root.getEnd()); 1911 const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT); 1912 1913 while (!Worklist.empty()) { 1914 std::pair<Value*, Value*> Item = Worklist.pop_back_val(); 1915 LHS = Item.first; RHS = Item.second; 1916 1917 if (LHS == RHS) 1918 continue; 1919 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!"); 1920 1921 // Don't try to propagate equalities between constants. 1922 if (isa<Constant>(LHS) && isa<Constant>(RHS)) 1923 continue; 1924 1925 // Prefer a constant on the right-hand side, or an Argument if no constants. 1926 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS))) 1927 std::swap(LHS, RHS); 1928 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!"); 1929 1930 // If there is no obvious reason to prefer the left-hand side over the 1931 // right-hand side, ensure the longest lived term is on the right-hand side, 1932 // so the shortest lived term will be replaced by the longest lived. 1933 // This tends to expose more simplifications. 1934 uint32_t LVN = VN.lookupOrAdd(LHS); 1935 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) || 1936 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) { 1937 // Move the 'oldest' value to the right-hand side, using the value number 1938 // as a proxy for age. 1939 uint32_t RVN = VN.lookupOrAdd(RHS); 1940 if (LVN < RVN) { 1941 std::swap(LHS, RHS); 1942 LVN = RVN; 1943 } 1944 } 1945 1946 // If value numbering later sees that an instruction in the scope is equal 1947 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve 1948 // the invariant that instructions only occur in the leader table for their 1949 // own value number (this is used by removeFromLeaderTable), do not do this 1950 // if RHS is an instruction (if an instruction in the scope is morphed into 1951 // LHS then it will be turned into RHS by the next GVN iteration anyway, so 1952 // using the leader table is about compiling faster, not optimizing better). 1953 // The leader table only tracks basic blocks, not edges. Only add to if we 1954 // have the simple case where the edge dominates the end. 1955 if (RootDominatesEnd && !isa<Instruction>(RHS)) 1956 addToLeaderTable(LVN, RHS, Root.getEnd()); 1957 1958 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As 1959 // LHS always has at least one use that is not dominated by Root, this will 1960 // never do anything if LHS has only one use. 1961 if (!LHS->hasOneUse()) { 1962 unsigned NumReplacements = 1963 DominatesByEdge 1964 ? replaceDominatedUsesWith(LHS, RHS, *DT, Root) 1965 : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart()); 1966 1967 Changed |= NumReplacements > 0; 1968 NumGVNEqProp += NumReplacements; 1969 } 1970 1971 // Now try to deduce additional equalities from this one. For example, if 1972 // the known equality was "(A != B)" == "false" then it follows that A and B 1973 // are equal in the scope. Only boolean equalities with an explicit true or 1974 // false RHS are currently supported. 1975 if (!RHS->getType()->isIntegerTy(1)) 1976 // Not a boolean equality - bail out. 1977 continue; 1978 ConstantInt *CI = dyn_cast<ConstantInt>(RHS); 1979 if (!CI) 1980 // RHS neither 'true' nor 'false' - bail out. 1981 continue; 1982 // Whether RHS equals 'true'. Otherwise it equals 'false'. 1983 bool isKnownTrue = CI->isAllOnesValue(); 1984 bool isKnownFalse = !isKnownTrue; 1985 1986 // If "A && B" is known true then both A and B are known true. If "A || B" 1987 // is known false then both A and B are known false. 1988 Value *A, *B; 1989 if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) || 1990 (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) { 1991 Worklist.push_back(std::make_pair(A, RHS)); 1992 Worklist.push_back(std::make_pair(B, RHS)); 1993 continue; 1994 } 1995 1996 // If we are propagating an equality like "(A == B)" == "true" then also 1997 // propagate the equality A == B. When propagating a comparison such as 1998 // "(A >= B)" == "true", replace all instances of "A < B" with "false". 1999 if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) { 2000 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); 2001 2002 // If "A == B" is known true, or "A != B" is known false, then replace 2003 // A with B everywhere in the scope. 2004 if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) || 2005 (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE)) 2006 Worklist.push_back(std::make_pair(Op0, Op1)); 2007 2008 // Handle the floating point versions of equality comparisons too. 2009 if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) || 2010 (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) { 2011 2012 // Floating point -0.0 and 0.0 compare equal, so we can only 2013 // propagate values if we know that we have a constant and that 2014 // its value is non-zero. 2015 2016 // FIXME: We should do this optimization if 'no signed zeros' is 2017 // applicable via an instruction-level fast-math-flag or some other 2018 // indicator that relaxed FP semantics are being used. 2019 2020 if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero()) 2021 Worklist.push_back(std::make_pair(Op0, Op1)); 2022 } 2023 2024 // If "A >= B" is known true, replace "A < B" with false everywhere. 2025 CmpInst::Predicate NotPred = Cmp->getInversePredicate(); 2026 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse); 2027 // Since we don't have the instruction "A < B" immediately to hand, work 2028 // out the value number that it would have and use that to find an 2029 // appropriate instruction (if any). 2030 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2031 uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1); 2032 // If the number we were assigned was brand new then there is no point in 2033 // looking for an instruction realizing it: there cannot be one! 2034 if (Num < NextNum) { 2035 Value *NotCmp = findLeader(Root.getEnd(), Num); 2036 if (NotCmp && isa<Instruction>(NotCmp)) { 2037 unsigned NumReplacements = 2038 DominatesByEdge 2039 ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root) 2040 : replaceDominatedUsesWith(NotCmp, NotVal, *DT, 2041 Root.getStart()); 2042 Changed |= NumReplacements > 0; 2043 NumGVNEqProp += NumReplacements; 2044 } 2045 } 2046 // Ensure that any instruction in scope that gets the "A < B" value number 2047 // is replaced with false. 2048 // The leader table only tracks basic blocks, not edges. Only add to if we 2049 // have the simple case where the edge dominates the end. 2050 if (RootDominatesEnd) 2051 addToLeaderTable(Num, NotVal, Root.getEnd()); 2052 2053 continue; 2054 } 2055 } 2056 2057 return Changed; 2058 } 2059 2060 /// When calculating availability, handle an instruction 2061 /// by inserting it into the appropriate sets 2062 bool GVN::processInstruction(Instruction *I) { 2063 // Ignore dbg info intrinsics. 2064 if (isa<DbgInfoIntrinsic>(I)) 2065 return false; 2066 2067 // If the instruction can be easily simplified then do so now in preference 2068 // to value numbering it. Value numbering often exposes redundancies, for 2069 // example if it determines that %y is equal to %x then the instruction 2070 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. 2071 const DataLayout &DL = I->getModule()->getDataLayout(); 2072 if (Value *V = SimplifyInstruction(I, DL, TLI, DT, AC)) { 2073 bool Changed = false; 2074 if (!I->use_empty()) { 2075 I->replaceAllUsesWith(V); 2076 Changed = true; 2077 } 2078 if (isInstructionTriviallyDead(I, TLI)) { 2079 markInstructionForDeletion(I); 2080 Changed = true; 2081 } 2082 if (Changed) { 2083 if (MD && V->getType()->getScalarType()->isPointerTy()) 2084 MD->invalidateCachedPointerInfo(V); 2085 ++NumGVNSimpl; 2086 return true; 2087 } 2088 } 2089 2090 if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I)) 2091 if (IntrinsicI->getIntrinsicID() == Intrinsic::assume) 2092 return processAssumeIntrinsic(IntrinsicI); 2093 2094 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 2095 if (processLoad(LI)) 2096 return true; 2097 2098 unsigned Num = VN.lookupOrAdd(LI); 2099 addToLeaderTable(Num, LI, LI->getParent()); 2100 return false; 2101 } 2102 2103 // For conditional branches, we can perform simple conditional propagation on 2104 // the condition value itself. 2105 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 2106 if (!BI->isConditional()) 2107 return false; 2108 2109 if (isa<Constant>(BI->getCondition())) 2110 return processFoldableCondBr(BI); 2111 2112 Value *BranchCond = BI->getCondition(); 2113 BasicBlock *TrueSucc = BI->getSuccessor(0); 2114 BasicBlock *FalseSucc = BI->getSuccessor(1); 2115 // Avoid multiple edges early. 2116 if (TrueSucc == FalseSucc) 2117 return false; 2118 2119 BasicBlock *Parent = BI->getParent(); 2120 bool Changed = false; 2121 2122 Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext()); 2123 BasicBlockEdge TrueE(Parent, TrueSucc); 2124 Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true); 2125 2126 Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext()); 2127 BasicBlockEdge FalseE(Parent, FalseSucc); 2128 Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true); 2129 2130 return Changed; 2131 } 2132 2133 // For switches, propagate the case values into the case destinations. 2134 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 2135 Value *SwitchCond = SI->getCondition(); 2136 BasicBlock *Parent = SI->getParent(); 2137 bool Changed = false; 2138 2139 // Remember how many outgoing edges there are to every successor. 2140 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 2141 for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i) 2142 ++SwitchEdges[SI->getSuccessor(i)]; 2143 2144 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2145 i != e; ++i) { 2146 BasicBlock *Dst = i.getCaseSuccessor(); 2147 // If there is only a single edge, propagate the case value into it. 2148 if (SwitchEdges.lookup(Dst) == 1) { 2149 BasicBlockEdge E(Parent, Dst); 2150 Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E, true); 2151 } 2152 } 2153 return Changed; 2154 } 2155 2156 // Instructions with void type don't return a value, so there's 2157 // no point in trying to find redundancies in them. 2158 if (I->getType()->isVoidTy()) 2159 return false; 2160 2161 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2162 unsigned Num = VN.lookupOrAdd(I); 2163 2164 // Allocations are always uniquely numbered, so we can save time and memory 2165 // by fast failing them. 2166 if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) { 2167 addToLeaderTable(Num, I, I->getParent()); 2168 return false; 2169 } 2170 2171 // If the number we were assigned was a brand new VN, then we don't 2172 // need to do a lookup to see if the number already exists 2173 // somewhere in the domtree: it can't! 2174 if (Num >= NextNum) { 2175 addToLeaderTable(Num, I, I->getParent()); 2176 return false; 2177 } 2178 2179 // Perform fast-path value-number based elimination of values inherited from 2180 // dominators. 2181 Value *Repl = findLeader(I->getParent(), Num); 2182 if (!Repl) { 2183 // Failure, just remember this instance for future use. 2184 addToLeaderTable(Num, I, I->getParent()); 2185 return false; 2186 } else if (Repl == I) { 2187 // If I was the result of a shortcut PRE, it might already be in the table 2188 // and the best replacement for itself. Nothing to do. 2189 return false; 2190 } 2191 2192 // Remove it! 2193 patchAndReplaceAllUsesWith(I, Repl); 2194 if (MD && Repl->getType()->getScalarType()->isPointerTy()) 2195 MD->invalidateCachedPointerInfo(Repl); 2196 markInstructionForDeletion(I); 2197 return true; 2198 } 2199 2200 /// runOnFunction - This is the main transformation entry point for a function. 2201 bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT, 2202 const TargetLibraryInfo &RunTLI, AAResults &RunAA, 2203 MemoryDependenceResults *RunMD) { 2204 AC = &RunAC; 2205 DT = &RunDT; 2206 VN.setDomTree(DT); 2207 TLI = &RunTLI; 2208 VN.setAliasAnalysis(&RunAA); 2209 MD = RunMD; 2210 VN.setMemDep(MD); 2211 2212 bool Changed = false; 2213 bool ShouldContinue = true; 2214 2215 // Merge unconditional branches, allowing PRE to catch more 2216 // optimization opportunities. 2217 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) { 2218 BasicBlock *BB = &*FI++; 2219 2220 bool removedBlock = 2221 MergeBlockIntoPredecessor(BB, DT, /* LoopInfo */ nullptr, MD); 2222 if (removedBlock) ++NumGVNBlocks; 2223 2224 Changed |= removedBlock; 2225 } 2226 2227 unsigned Iteration = 0; 2228 while (ShouldContinue) { 2229 DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n"); 2230 ShouldContinue = iterateOnFunction(F); 2231 Changed |= ShouldContinue; 2232 ++Iteration; 2233 } 2234 2235 if (EnablePRE) { 2236 // Fabricate val-num for dead-code in order to suppress assertion in 2237 // performPRE(). 2238 assignValNumForDeadCode(); 2239 bool PREChanged = true; 2240 while (PREChanged) { 2241 PREChanged = performPRE(F); 2242 Changed |= PREChanged; 2243 } 2244 } 2245 2246 // FIXME: Should perform GVN again after PRE does something. PRE can move 2247 // computations into blocks where they become fully redundant. Note that 2248 // we can't do this until PRE's critical edge splitting updates memdep. 2249 // Actually, when this happens, we should just fully integrate PRE into GVN. 2250 2251 cleanupGlobalSets(); 2252 // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each 2253 // iteration. 2254 DeadBlocks.clear(); 2255 2256 return Changed; 2257 } 2258 2259 bool GVN::processBlock(BasicBlock *BB) { 2260 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function 2261 // (and incrementing BI before processing an instruction). 2262 assert(InstrsToErase.empty() && 2263 "We expect InstrsToErase to be empty across iterations"); 2264 if (DeadBlocks.count(BB)) 2265 return false; 2266 2267 // Clearing map before every BB because it can be used only for single BB. 2268 ReplaceWithConstMap.clear(); 2269 bool ChangedFunction = false; 2270 2271 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); 2272 BI != BE;) { 2273 if (!ReplaceWithConstMap.empty()) 2274 ChangedFunction |= replaceOperandsWithConsts(&*BI); 2275 ChangedFunction |= processInstruction(&*BI); 2276 2277 if (InstrsToErase.empty()) { 2278 ++BI; 2279 continue; 2280 } 2281 2282 // If we need some instructions deleted, do it now. 2283 NumGVNInstr += InstrsToErase.size(); 2284 2285 // Avoid iterator invalidation. 2286 bool AtStart = BI == BB->begin(); 2287 if (!AtStart) 2288 --BI; 2289 2290 for (SmallVectorImpl<Instruction *>::iterator I = InstrsToErase.begin(), 2291 E = InstrsToErase.end(); I != E; ++I) { 2292 DEBUG(dbgs() << "GVN removed: " << **I << '\n'); 2293 if (MD) MD->removeInstruction(*I); 2294 DEBUG(verifyRemoved(*I)); 2295 (*I)->eraseFromParent(); 2296 } 2297 InstrsToErase.clear(); 2298 2299 if (AtStart) 2300 BI = BB->begin(); 2301 else 2302 ++BI; 2303 } 2304 2305 return ChangedFunction; 2306 } 2307 2308 // Instantiate an expression in a predecessor that lacked it. 2309 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred, 2310 unsigned int ValNo) { 2311 // Because we are going top-down through the block, all value numbers 2312 // will be available in the predecessor by the time we need them. Any 2313 // that weren't originally present will have been instantiated earlier 2314 // in this loop. 2315 bool success = true; 2316 for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) { 2317 Value *Op = Instr->getOperand(i); 2318 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op)) 2319 continue; 2320 // This could be a newly inserted instruction, in which case, we won't 2321 // find a value number, and should give up before we hurt ourselves. 2322 // FIXME: Rewrite the infrastructure to let it easier to value number 2323 // and process newly inserted instructions. 2324 if (!VN.exists(Op)) { 2325 success = false; 2326 break; 2327 } 2328 if (Value *V = findLeader(Pred, VN.lookup(Op))) { 2329 Instr->setOperand(i, V); 2330 } else { 2331 success = false; 2332 break; 2333 } 2334 } 2335 2336 // Fail out if we encounter an operand that is not available in 2337 // the PRE predecessor. This is typically because of loads which 2338 // are not value numbered precisely. 2339 if (!success) 2340 return false; 2341 2342 Instr->insertBefore(Pred->getTerminator()); 2343 Instr->setName(Instr->getName() + ".pre"); 2344 Instr->setDebugLoc(Instr->getDebugLoc()); 2345 VN.add(Instr, ValNo); 2346 2347 // Update the availability map to include the new instruction. 2348 addToLeaderTable(ValNo, Instr, Pred); 2349 return true; 2350 } 2351 2352 bool GVN::performScalarPRE(Instruction *CurInst) { 2353 if (isa<AllocaInst>(CurInst) || isa<TerminatorInst>(CurInst) || 2354 isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() || 2355 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || 2356 isa<DbgInfoIntrinsic>(CurInst)) 2357 return false; 2358 2359 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from 2360 // sinking the compare again, and it would force the code generator to 2361 // move the i1 from processor flags or predicate registers into a general 2362 // purpose register. 2363 if (isa<CmpInst>(CurInst)) 2364 return false; 2365 2366 // We don't currently value number ANY inline asm calls. 2367 if (CallInst *CallI = dyn_cast<CallInst>(CurInst)) 2368 if (CallI->isInlineAsm()) 2369 return false; 2370 2371 uint32_t ValNo = VN.lookup(CurInst); 2372 2373 // Look for the predecessors for PRE opportunities. We're 2374 // only trying to solve the basic diamond case, where 2375 // a value is computed in the successor and one predecessor, 2376 // but not the other. We also explicitly disallow cases 2377 // where the successor is its own predecessor, because they're 2378 // more complicated to get right. 2379 unsigned NumWith = 0; 2380 unsigned NumWithout = 0; 2381 BasicBlock *PREPred = nullptr; 2382 BasicBlock *CurrentBlock = CurInst->getParent(); 2383 2384 SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap; 2385 for (BasicBlock *P : predecessors(CurrentBlock)) { 2386 // We're not interested in PRE where the block is its 2387 // own predecessor, or in blocks with predecessors 2388 // that are not reachable. 2389 if (P == CurrentBlock) { 2390 NumWithout = 2; 2391 break; 2392 } else if (!DT->isReachableFromEntry(P)) { 2393 NumWithout = 2; 2394 break; 2395 } 2396 2397 Value *predV = findLeader(P, ValNo); 2398 if (!predV) { 2399 predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P)); 2400 PREPred = P; 2401 ++NumWithout; 2402 } else if (predV == CurInst) { 2403 /* CurInst dominates this predecessor. */ 2404 NumWithout = 2; 2405 break; 2406 } else { 2407 predMap.push_back(std::make_pair(predV, P)); 2408 ++NumWith; 2409 } 2410 } 2411 2412 // Don't do PRE when it might increase code size, i.e. when 2413 // we would need to insert instructions in more than one pred. 2414 if (NumWithout > 1 || NumWith == 0) 2415 return false; 2416 2417 // We may have a case where all predecessors have the instruction, 2418 // and we just need to insert a phi node. Otherwise, perform 2419 // insertion. 2420 Instruction *PREInstr = nullptr; 2421 2422 if (NumWithout != 0) { 2423 // Don't do PRE across indirect branch. 2424 if (isa<IndirectBrInst>(PREPred->getTerminator())) 2425 return false; 2426 2427 // We can't do PRE safely on a critical edge, so instead we schedule 2428 // the edge to be split and perform the PRE the next time we iterate 2429 // on the function. 2430 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock); 2431 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { 2432 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); 2433 return false; 2434 } 2435 // We need to insert somewhere, so let's give it a shot 2436 PREInstr = CurInst->clone(); 2437 if (!performScalarPREInsertion(PREInstr, PREPred, ValNo)) { 2438 // If we failed insertion, make sure we remove the instruction. 2439 DEBUG(verifyRemoved(PREInstr)); 2440 delete PREInstr; 2441 return false; 2442 } 2443 } 2444 2445 // Either we should have filled in the PRE instruction, or we should 2446 // not have needed insertions. 2447 assert (PREInstr != nullptr || NumWithout == 0); 2448 2449 ++NumGVNPRE; 2450 2451 // Create a PHI to make the value available in this block. 2452 PHINode *Phi = 2453 PHINode::Create(CurInst->getType(), predMap.size(), 2454 CurInst->getName() + ".pre-phi", &CurrentBlock->front()); 2455 for (unsigned i = 0, e = predMap.size(); i != e; ++i) { 2456 if (Value *V = predMap[i].first) 2457 Phi->addIncoming(V, predMap[i].second); 2458 else 2459 Phi->addIncoming(PREInstr, PREPred); 2460 } 2461 2462 VN.add(Phi, ValNo); 2463 addToLeaderTable(ValNo, Phi, CurrentBlock); 2464 Phi->setDebugLoc(CurInst->getDebugLoc()); 2465 CurInst->replaceAllUsesWith(Phi); 2466 if (MD && Phi->getType()->getScalarType()->isPointerTy()) 2467 MD->invalidateCachedPointerInfo(Phi); 2468 VN.erase(CurInst); 2469 removeFromLeaderTable(ValNo, CurInst, CurrentBlock); 2470 2471 DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n'); 2472 if (MD) 2473 MD->removeInstruction(CurInst); 2474 DEBUG(verifyRemoved(CurInst)); 2475 CurInst->eraseFromParent(); 2476 ++NumGVNInstr; 2477 2478 return true; 2479 } 2480 2481 /// Perform a purely local form of PRE that looks for diamond 2482 /// control flow patterns and attempts to perform simple PRE at the join point. 2483 bool GVN::performPRE(Function &F) { 2484 bool Changed = false; 2485 for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) { 2486 // Nothing to PRE in the entry block. 2487 if (CurrentBlock == &F.getEntryBlock()) 2488 continue; 2489 2490 // Don't perform PRE on an EH pad. 2491 if (CurrentBlock->isEHPad()) 2492 continue; 2493 2494 for (BasicBlock::iterator BI = CurrentBlock->begin(), 2495 BE = CurrentBlock->end(); 2496 BI != BE;) { 2497 Instruction *CurInst = &*BI++; 2498 Changed |= performScalarPRE(CurInst); 2499 } 2500 } 2501 2502 if (splitCriticalEdges()) 2503 Changed = true; 2504 2505 return Changed; 2506 } 2507 2508 /// Split the critical edge connecting the given two blocks, and return 2509 /// the block inserted to the critical edge. 2510 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) { 2511 BasicBlock *BB = 2512 SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT)); 2513 if (MD) 2514 MD->invalidateCachedPredecessors(); 2515 return BB; 2516 } 2517 2518 /// Split critical edges found during the previous 2519 /// iteration that may enable further optimization. 2520 bool GVN::splitCriticalEdges() { 2521 if (toSplit.empty()) 2522 return false; 2523 do { 2524 std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val(); 2525 SplitCriticalEdge(Edge.first, Edge.second, 2526 CriticalEdgeSplittingOptions(DT)); 2527 } while (!toSplit.empty()); 2528 if (MD) MD->invalidateCachedPredecessors(); 2529 return true; 2530 } 2531 2532 /// Executes one iteration of GVN 2533 bool GVN::iterateOnFunction(Function &F) { 2534 cleanupGlobalSets(); 2535 2536 // Top-down walk of the dominator tree 2537 bool Changed = false; 2538 // Save the blocks this function have before transformation begins. GVN may 2539 // split critical edge, and hence may invalidate the RPO/DT iterator. 2540 // 2541 std::vector<BasicBlock *> BBVect; 2542 BBVect.reserve(256); 2543 // Needed for value numbering with phi construction to work. 2544 ReversePostOrderTraversal<Function *> RPOT(&F); 2545 for (ReversePostOrderTraversal<Function *>::rpo_iterator RI = RPOT.begin(), 2546 RE = RPOT.end(); 2547 RI != RE; ++RI) 2548 BBVect.push_back(*RI); 2549 2550 for (std::vector<BasicBlock *>::iterator I = BBVect.begin(), E = BBVect.end(); 2551 I != E; I++) 2552 Changed |= processBlock(*I); 2553 2554 return Changed; 2555 } 2556 2557 void GVN::cleanupGlobalSets() { 2558 VN.clear(); 2559 LeaderTable.clear(); 2560 TableAllocator.Reset(); 2561 } 2562 2563 /// Verify that the specified instruction does not occur in our 2564 /// internal data structures. 2565 void GVN::verifyRemoved(const Instruction *Inst) const { 2566 VN.verifyRemoved(Inst); 2567 2568 // Walk through the value number scope to make sure the instruction isn't 2569 // ferreted away in it. 2570 for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator 2571 I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) { 2572 const LeaderTableEntry *Node = &I->second; 2573 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 2574 2575 while (Node->Next) { 2576 Node = Node->Next; 2577 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 2578 } 2579 } 2580 } 2581 2582 /// BB is declared dead, which implied other blocks become dead as well. This 2583 /// function is to add all these blocks to "DeadBlocks". For the dead blocks' 2584 /// live successors, update their phi nodes by replacing the operands 2585 /// corresponding to dead blocks with UndefVal. 2586 void GVN::addDeadBlock(BasicBlock *BB) { 2587 SmallVector<BasicBlock *, 4> NewDead; 2588 SmallSetVector<BasicBlock *, 4> DF; 2589 2590 NewDead.push_back(BB); 2591 while (!NewDead.empty()) { 2592 BasicBlock *D = NewDead.pop_back_val(); 2593 if (DeadBlocks.count(D)) 2594 continue; 2595 2596 // All blocks dominated by D are dead. 2597 SmallVector<BasicBlock *, 8> Dom; 2598 DT->getDescendants(D, Dom); 2599 DeadBlocks.insert(Dom.begin(), Dom.end()); 2600 2601 // Figure out the dominance-frontier(D). 2602 for (BasicBlock *B : Dom) { 2603 for (BasicBlock *S : successors(B)) { 2604 if (DeadBlocks.count(S)) 2605 continue; 2606 2607 bool AllPredDead = true; 2608 for (BasicBlock *P : predecessors(S)) 2609 if (!DeadBlocks.count(P)) { 2610 AllPredDead = false; 2611 break; 2612 } 2613 2614 if (!AllPredDead) { 2615 // S could be proved dead later on. That is why we don't update phi 2616 // operands at this moment. 2617 DF.insert(S); 2618 } else { 2619 // While S is not dominated by D, it is dead by now. This could take 2620 // place if S already have a dead predecessor before D is declared 2621 // dead. 2622 NewDead.push_back(S); 2623 } 2624 } 2625 } 2626 } 2627 2628 // For the dead blocks' live successors, update their phi nodes by replacing 2629 // the operands corresponding to dead blocks with UndefVal. 2630 for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end(); 2631 I != E; I++) { 2632 BasicBlock *B = *I; 2633 if (DeadBlocks.count(B)) 2634 continue; 2635 2636 SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B)); 2637 for (BasicBlock *P : Preds) { 2638 if (!DeadBlocks.count(P)) 2639 continue; 2640 2641 if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) { 2642 if (BasicBlock *S = splitCriticalEdges(P, B)) 2643 DeadBlocks.insert(P = S); 2644 } 2645 2646 for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) { 2647 PHINode &Phi = cast<PHINode>(*II); 2648 Phi.setIncomingValue(Phi.getBasicBlockIndex(P), 2649 UndefValue::get(Phi.getType())); 2650 } 2651 } 2652 } 2653 } 2654 2655 // If the given branch is recognized as a foldable branch (i.e. conditional 2656 // branch with constant condition), it will perform following analyses and 2657 // transformation. 2658 // 1) If the dead out-coming edge is a critical-edge, split it. Let 2659 // R be the target of the dead out-coming edge. 2660 // 1) Identify the set of dead blocks implied by the branch's dead outcoming 2661 // edge. The result of this step will be {X| X is dominated by R} 2662 // 2) Identify those blocks which haves at least one dead predecessor. The 2663 // result of this step will be dominance-frontier(R). 2664 // 3) Update the PHIs in DF(R) by replacing the operands corresponding to 2665 // dead blocks with "UndefVal" in an hope these PHIs will optimized away. 2666 // 2667 // Return true iff *NEW* dead code are found. 2668 bool GVN::processFoldableCondBr(BranchInst *BI) { 2669 if (!BI || BI->isUnconditional()) 2670 return false; 2671 2672 // If a branch has two identical successors, we cannot declare either dead. 2673 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 2674 return false; 2675 2676 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 2677 if (!Cond) 2678 return false; 2679 2680 BasicBlock *DeadRoot = 2681 Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0); 2682 if (DeadBlocks.count(DeadRoot)) 2683 return false; 2684 2685 if (!DeadRoot->getSinglePredecessor()) 2686 DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot); 2687 2688 addDeadBlock(DeadRoot); 2689 return true; 2690 } 2691 2692 // performPRE() will trigger assert if it comes across an instruction without 2693 // associated val-num. As it normally has far more live instructions than dead 2694 // instructions, it makes more sense just to "fabricate" a val-number for the 2695 // dead code than checking if instruction involved is dead or not. 2696 void GVN::assignValNumForDeadCode() { 2697 for (BasicBlock *BB : DeadBlocks) { 2698 for (Instruction &Inst : *BB) { 2699 unsigned ValNum = VN.lookupOrAdd(&Inst); 2700 addToLeaderTable(ValNum, &Inst, BB); 2701 } 2702 } 2703 } 2704 2705 class llvm::gvn::GVNLegacyPass : public FunctionPass { 2706 public: 2707 static char ID; // Pass identification, replacement for typeid 2708 explicit GVNLegacyPass(bool NoLoads = false) 2709 : FunctionPass(ID), NoLoads(NoLoads) { 2710 initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry()); 2711 } 2712 2713 bool runOnFunction(Function &F) override { 2714 if (skipFunction(F)) 2715 return false; 2716 2717 return Impl.runImpl( 2718 F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 2719 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 2720 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 2721 getAnalysis<AAResultsWrapperPass>().getAAResults(), 2722 NoLoads ? nullptr 2723 : &getAnalysis<MemoryDependenceWrapperPass>().getMemDep()); 2724 } 2725 2726 void getAnalysisUsage(AnalysisUsage &AU) const override { 2727 AU.addRequired<AssumptionCacheTracker>(); 2728 AU.addRequired<DominatorTreeWrapperPass>(); 2729 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2730 if (!NoLoads) 2731 AU.addRequired<MemoryDependenceWrapperPass>(); 2732 AU.addRequired<AAResultsWrapperPass>(); 2733 2734 AU.addPreserved<DominatorTreeWrapperPass>(); 2735 AU.addPreserved<GlobalsAAWrapperPass>(); 2736 } 2737 2738 private: 2739 bool NoLoads; 2740 GVN Impl; 2741 }; 2742 2743 char GVNLegacyPass::ID = 0; 2744 2745 // The public interface to this file... 2746 FunctionPass *llvm::createGVNPass(bool NoLoads) { 2747 return new GVNLegacyPass(NoLoads); 2748 } 2749 2750 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 2751 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2752 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 2753 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2754 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2755 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2756 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 2757 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 2758