1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global value numbering to eliminate fully redundant
11 // instructions.  It also performs simple dead load elimination.
12 //
13 // Note that this pass does the value numbering itself; it does not use the
14 // ValueNumbering analysis passes.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Transforms/Scalar/GVN.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DepthFirstIterator.h"
21 #include "llvm/ADT/Hashing.h"
22 #include "llvm/ADT/MapVector.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/CFG.h"
30 #include "llvm/Analysis/ConstantFolding.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryBuiltins.h"
35 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
36 #include "llvm/Analysis/PHITransAddr.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/IR/PatternMatch.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include "llvm/Transforms/Utils/SSAUpdater.h"
53 #include <vector>
54 using namespace llvm;
55 using namespace llvm::gvn;
56 using namespace PatternMatch;
57 
58 #define DEBUG_TYPE "gvn"
59 
60 STATISTIC(NumGVNInstr,  "Number of instructions deleted");
61 STATISTIC(NumGVNLoad,   "Number of loads deleted");
62 STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
63 STATISTIC(NumGVNBlocks, "Number of blocks merged");
64 STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
65 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
66 STATISTIC(NumPRELoad,   "Number of loads PRE'd");
67 
68 static cl::opt<bool> EnablePRE("enable-pre",
69                                cl::init(true), cl::Hidden);
70 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
71 
72 // Maximum allowed recursion depth.
73 static cl::opt<uint32_t>
74 MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
75                 cl::desc("Max recurse depth (default = 1000)"));
76 
77 struct llvm::GVN::Expression {
78   uint32_t opcode;
79   Type *type;
80   SmallVector<uint32_t, 4> varargs;
81 
82   Expression(uint32_t o = ~2U) : opcode(o) {}
83 
84   bool operator==(const Expression &other) const {
85     if (opcode != other.opcode)
86       return false;
87     if (opcode == ~0U || opcode == ~1U)
88       return true;
89     if (type != other.type)
90       return false;
91     if (varargs != other.varargs)
92       return false;
93     return true;
94   }
95 
96   friend hash_code hash_value(const Expression &Value) {
97     return hash_combine(
98         Value.opcode, Value.type,
99         hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
100   }
101 };
102 
103 namespace llvm {
104 template <> struct DenseMapInfo<GVN::Expression> {
105   static inline GVN::Expression getEmptyKey() { return ~0U; }
106 
107   static inline GVN::Expression getTombstoneKey() { return ~1U; }
108 
109   static unsigned getHashValue(const GVN::Expression &e) {
110     using llvm::hash_value;
111     return static_cast<unsigned>(hash_value(e));
112   }
113   static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) {
114     return LHS == RHS;
115   }
116 };
117 } // End llvm namespace.
118 
119 /// Represents a particular available value that we know how to materialize.
120 /// Materialization of an AvailableValue never fails.  An AvailableValue is
121 /// implicitly associated with a rematerialization point which is the
122 /// location of the instruction from which it was formed.
123 struct llvm::gvn::AvailableValue {
124   enum ValType {
125     SimpleVal, // A simple offsetted value that is accessed.
126     LoadVal,   // A value produced by a load.
127     MemIntrin, // A memory intrinsic which is loaded from.
128     UndefVal   // A UndefValue representing a value from dead block (which
129                // is not yet physically removed from the CFG).
130   };
131 
132   /// V - The value that is live out of the block.
133   PointerIntPair<Value *, 2, ValType> Val;
134 
135   /// Offset - The byte offset in Val that is interesting for the load query.
136   unsigned Offset;
137 
138   static AvailableValue get(Value *V, unsigned Offset = 0) {
139     AvailableValue Res;
140     Res.Val.setPointer(V);
141     Res.Val.setInt(SimpleVal);
142     Res.Offset = Offset;
143     return Res;
144   }
145 
146   static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
147     AvailableValue Res;
148     Res.Val.setPointer(MI);
149     Res.Val.setInt(MemIntrin);
150     Res.Offset = Offset;
151     return Res;
152   }
153 
154   static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) {
155     AvailableValue Res;
156     Res.Val.setPointer(LI);
157     Res.Val.setInt(LoadVal);
158     Res.Offset = Offset;
159     return Res;
160   }
161 
162   static AvailableValue getUndef() {
163     AvailableValue Res;
164     Res.Val.setPointer(nullptr);
165     Res.Val.setInt(UndefVal);
166     Res.Offset = 0;
167     return Res;
168   }
169 
170   bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
171   bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
172   bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
173   bool isUndefValue() const { return Val.getInt() == UndefVal; }
174 
175   Value *getSimpleValue() const {
176     assert(isSimpleValue() && "Wrong accessor");
177     return Val.getPointer();
178   }
179 
180   LoadInst *getCoercedLoadValue() const {
181     assert(isCoercedLoadValue() && "Wrong accessor");
182     return cast<LoadInst>(Val.getPointer());
183   }
184 
185   MemIntrinsic *getMemIntrinValue() const {
186     assert(isMemIntrinValue() && "Wrong accessor");
187     return cast<MemIntrinsic>(Val.getPointer());
188   }
189 
190   /// Emit code at the specified insertion point to adjust the value defined
191   /// here to the specified type. This handles various coercion cases.
192   Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt,
193                                   GVN &gvn) const;
194 };
195 
196 /// Represents an AvailableValue which can be rematerialized at the end of
197 /// the associated BasicBlock.
198 struct llvm::gvn::AvailableValueInBlock {
199   /// BB - The basic block in question.
200   BasicBlock *BB;
201 
202   /// AV - The actual available value
203   AvailableValue AV;
204 
205   static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
206     AvailableValueInBlock Res;
207     Res.BB = BB;
208     Res.AV = std::move(AV);
209     return Res;
210   }
211 
212   static AvailableValueInBlock get(BasicBlock *BB, Value *V,
213                                    unsigned Offset = 0) {
214     return get(BB, AvailableValue::get(V, Offset));
215   }
216   static AvailableValueInBlock getUndef(BasicBlock *BB) {
217     return get(BB, AvailableValue::getUndef());
218   }
219 
220   /// Emit code at the end of this block to adjust the value defined here to
221   /// the specified type. This handles various coercion cases.
222   Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const {
223     return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn);
224   }
225 };
226 
227 //===----------------------------------------------------------------------===//
228 //                     ValueTable Internal Functions
229 //===----------------------------------------------------------------------===//
230 
231 GVN::Expression GVN::ValueTable::createExpr(Instruction *I) {
232   Expression e;
233   e.type = I->getType();
234   e.opcode = I->getOpcode();
235   for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
236        OI != OE; ++OI)
237     e.varargs.push_back(lookupOrAdd(*OI));
238   if (I->isCommutative()) {
239     // Ensure that commutative instructions that only differ by a permutation
240     // of their operands get the same value number by sorting the operand value
241     // numbers.  Since all commutative instructions have two operands it is more
242     // efficient to sort by hand rather than using, say, std::sort.
243     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
244     if (e.varargs[0] > e.varargs[1])
245       std::swap(e.varargs[0], e.varargs[1]);
246   }
247 
248   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
249     // Sort the operand value numbers so x<y and y>x get the same value number.
250     CmpInst::Predicate Predicate = C->getPredicate();
251     if (e.varargs[0] > e.varargs[1]) {
252       std::swap(e.varargs[0], e.varargs[1]);
253       Predicate = CmpInst::getSwappedPredicate(Predicate);
254     }
255     e.opcode = (C->getOpcode() << 8) | Predicate;
256   } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
257     for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
258          II != IE; ++II)
259       e.varargs.push_back(*II);
260   }
261 
262   return e;
263 }
264 
265 GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode,
266                                                CmpInst::Predicate Predicate,
267                                                Value *LHS, Value *RHS) {
268   assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
269          "Not a comparison!");
270   Expression e;
271   e.type = CmpInst::makeCmpResultType(LHS->getType());
272   e.varargs.push_back(lookupOrAdd(LHS));
273   e.varargs.push_back(lookupOrAdd(RHS));
274 
275   // Sort the operand value numbers so x<y and y>x get the same value number.
276   if (e.varargs[0] > e.varargs[1]) {
277     std::swap(e.varargs[0], e.varargs[1]);
278     Predicate = CmpInst::getSwappedPredicate(Predicate);
279   }
280   e.opcode = (Opcode << 8) | Predicate;
281   return e;
282 }
283 
284 GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
285   assert(EI && "Not an ExtractValueInst?");
286   Expression e;
287   e.type = EI->getType();
288   e.opcode = 0;
289 
290   IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
291   if (I != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
292     // EI might be an extract from one of our recognised intrinsics. If it
293     // is we'll synthesize a semantically equivalent expression instead on
294     // an extract value expression.
295     switch (I->getIntrinsicID()) {
296       case Intrinsic::sadd_with_overflow:
297       case Intrinsic::uadd_with_overflow:
298         e.opcode = Instruction::Add;
299         break;
300       case Intrinsic::ssub_with_overflow:
301       case Intrinsic::usub_with_overflow:
302         e.opcode = Instruction::Sub;
303         break;
304       case Intrinsic::smul_with_overflow:
305       case Intrinsic::umul_with_overflow:
306         e.opcode = Instruction::Mul;
307         break;
308       default:
309         break;
310     }
311 
312     if (e.opcode != 0) {
313       // Intrinsic recognized. Grab its args to finish building the expression.
314       assert(I->getNumArgOperands() == 2 &&
315              "Expect two args for recognised intrinsics.");
316       e.varargs.push_back(lookupOrAdd(I->getArgOperand(0)));
317       e.varargs.push_back(lookupOrAdd(I->getArgOperand(1)));
318       return e;
319     }
320   }
321 
322   // Not a recognised intrinsic. Fall back to producing an extract value
323   // expression.
324   e.opcode = EI->getOpcode();
325   for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
326        OI != OE; ++OI)
327     e.varargs.push_back(lookupOrAdd(*OI));
328 
329   for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
330          II != IE; ++II)
331     e.varargs.push_back(*II);
332 
333   return e;
334 }
335 
336 //===----------------------------------------------------------------------===//
337 //                     ValueTable External Functions
338 //===----------------------------------------------------------------------===//
339 
340 GVN::ValueTable::ValueTable() : nextValueNumber(1) {}
341 GVN::ValueTable::ValueTable(const ValueTable &Arg)
342     : valueNumbering(Arg.valueNumbering),
343       expressionNumbering(Arg.expressionNumbering), AA(Arg.AA), MD(Arg.MD),
344       DT(Arg.DT), nextValueNumber(Arg.nextValueNumber) {}
345 GVN::ValueTable::ValueTable(ValueTable &&Arg)
346     : valueNumbering(std::move(Arg.valueNumbering)),
347       expressionNumbering(std::move(Arg.expressionNumbering)),
348       AA(std::move(Arg.AA)), MD(std::move(Arg.MD)), DT(std::move(Arg.DT)),
349       nextValueNumber(std::move(Arg.nextValueNumber)) {}
350 GVN::ValueTable::~ValueTable() {}
351 
352 /// add - Insert a value into the table with a specified value number.
353 void GVN::ValueTable::add(Value *V, uint32_t num) {
354   valueNumbering.insert(std::make_pair(V, num));
355 }
356 
357 uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) {
358   if (AA->doesNotAccessMemory(C)) {
359     Expression exp = createExpr(C);
360     uint32_t &e = expressionNumbering[exp];
361     if (!e) e = nextValueNumber++;
362     valueNumbering[C] = e;
363     return e;
364   } else if (AA->onlyReadsMemory(C)) {
365     Expression exp = createExpr(C);
366     uint32_t &e = expressionNumbering[exp];
367     if (!e) {
368       e = nextValueNumber++;
369       valueNumbering[C] = e;
370       return e;
371     }
372     if (!MD) {
373       e = nextValueNumber++;
374       valueNumbering[C] = e;
375       return e;
376     }
377 
378     MemDepResult local_dep = MD->getDependency(C);
379 
380     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
381       valueNumbering[C] =  nextValueNumber;
382       return nextValueNumber++;
383     }
384 
385     if (local_dep.isDef()) {
386       CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
387 
388       if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
389         valueNumbering[C] = nextValueNumber;
390         return nextValueNumber++;
391       }
392 
393       for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
394         uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
395         uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
396         if (c_vn != cd_vn) {
397           valueNumbering[C] = nextValueNumber;
398           return nextValueNumber++;
399         }
400       }
401 
402       uint32_t v = lookupOrAdd(local_cdep);
403       valueNumbering[C] = v;
404       return v;
405     }
406 
407     // Non-local case.
408     const MemoryDependenceResults::NonLocalDepInfo &deps =
409       MD->getNonLocalCallDependency(CallSite(C));
410     // FIXME: Move the checking logic to MemDep!
411     CallInst* cdep = nullptr;
412 
413     // Check to see if we have a single dominating call instruction that is
414     // identical to C.
415     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
416       const NonLocalDepEntry *I = &deps[i];
417       if (I->getResult().isNonLocal())
418         continue;
419 
420       // We don't handle non-definitions.  If we already have a call, reject
421       // instruction dependencies.
422       if (!I->getResult().isDef() || cdep != nullptr) {
423         cdep = nullptr;
424         break;
425       }
426 
427       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
428       // FIXME: All duplicated with non-local case.
429       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
430         cdep = NonLocalDepCall;
431         continue;
432       }
433 
434       cdep = nullptr;
435       break;
436     }
437 
438     if (!cdep) {
439       valueNumbering[C] = nextValueNumber;
440       return nextValueNumber++;
441     }
442 
443     if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
444       valueNumbering[C] = nextValueNumber;
445       return nextValueNumber++;
446     }
447     for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
448       uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
449       uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
450       if (c_vn != cd_vn) {
451         valueNumbering[C] = nextValueNumber;
452         return nextValueNumber++;
453       }
454     }
455 
456     uint32_t v = lookupOrAdd(cdep);
457     valueNumbering[C] = v;
458     return v;
459 
460   } else {
461     valueNumbering[C] = nextValueNumber;
462     return nextValueNumber++;
463   }
464 }
465 
466 /// Returns true if a value number exists for the specified value.
467 bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; }
468 
469 /// lookup_or_add - Returns the value number for the specified value, assigning
470 /// it a new number if it did not have one before.
471 uint32_t GVN::ValueTable::lookupOrAdd(Value *V) {
472   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
473   if (VI != valueNumbering.end())
474     return VI->second;
475 
476   if (!isa<Instruction>(V)) {
477     valueNumbering[V] = nextValueNumber;
478     return nextValueNumber++;
479   }
480 
481   Instruction* I = cast<Instruction>(V);
482   Expression exp;
483   switch (I->getOpcode()) {
484     case Instruction::Call:
485       return lookupOrAddCall(cast<CallInst>(I));
486     case Instruction::Add:
487     case Instruction::FAdd:
488     case Instruction::Sub:
489     case Instruction::FSub:
490     case Instruction::Mul:
491     case Instruction::FMul:
492     case Instruction::UDiv:
493     case Instruction::SDiv:
494     case Instruction::FDiv:
495     case Instruction::URem:
496     case Instruction::SRem:
497     case Instruction::FRem:
498     case Instruction::Shl:
499     case Instruction::LShr:
500     case Instruction::AShr:
501     case Instruction::And:
502     case Instruction::Or:
503     case Instruction::Xor:
504     case Instruction::ICmp:
505     case Instruction::FCmp:
506     case Instruction::Trunc:
507     case Instruction::ZExt:
508     case Instruction::SExt:
509     case Instruction::FPToUI:
510     case Instruction::FPToSI:
511     case Instruction::UIToFP:
512     case Instruction::SIToFP:
513     case Instruction::FPTrunc:
514     case Instruction::FPExt:
515     case Instruction::PtrToInt:
516     case Instruction::IntToPtr:
517     case Instruction::BitCast:
518     case Instruction::Select:
519     case Instruction::ExtractElement:
520     case Instruction::InsertElement:
521     case Instruction::ShuffleVector:
522     case Instruction::InsertValue:
523     case Instruction::GetElementPtr:
524       exp = createExpr(I);
525       break;
526     case Instruction::ExtractValue:
527       exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
528       break;
529     default:
530       valueNumbering[V] = nextValueNumber;
531       return nextValueNumber++;
532   }
533 
534   uint32_t& e = expressionNumbering[exp];
535   if (!e) e = nextValueNumber++;
536   valueNumbering[V] = e;
537   return e;
538 }
539 
540 /// Returns the value number of the specified value. Fails if
541 /// the value has not yet been numbered.
542 uint32_t GVN::ValueTable::lookup(Value *V) const {
543   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
544   assert(VI != valueNumbering.end() && "Value not numbered?");
545   return VI->second;
546 }
547 
548 /// Returns the value number of the given comparison,
549 /// assigning it a new number if it did not have one before.  Useful when
550 /// we deduced the result of a comparison, but don't immediately have an
551 /// instruction realizing that comparison to hand.
552 uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode,
553                                          CmpInst::Predicate Predicate,
554                                          Value *LHS, Value *RHS) {
555   Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
556   uint32_t& e = expressionNumbering[exp];
557   if (!e) e = nextValueNumber++;
558   return e;
559 }
560 
561 /// Remove all entries from the ValueTable.
562 void GVN::ValueTable::clear() {
563   valueNumbering.clear();
564   expressionNumbering.clear();
565   nextValueNumber = 1;
566 }
567 
568 /// Remove a value from the value numbering.
569 void GVN::ValueTable::erase(Value *V) {
570   valueNumbering.erase(V);
571 }
572 
573 /// verifyRemoved - Verify that the value is removed from all internal data
574 /// structures.
575 void GVN::ValueTable::verifyRemoved(const Value *V) const {
576   for (DenseMap<Value*, uint32_t>::const_iterator
577          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
578     assert(I->first != V && "Inst still occurs in value numbering map!");
579   }
580 }
581 
582 //===----------------------------------------------------------------------===//
583 //                                GVN Pass
584 //===----------------------------------------------------------------------===//
585 
586 PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) {
587   // FIXME: The order of evaluation of these 'getResult' calls is very
588   // significant! Re-ordering these variables will cause GVN when run alone to
589   // be less effective! We should fix memdep and basic-aa to not exhibit this
590   // behavior, but until then don't change the order here.
591   auto &AC = AM.getResult<AssumptionAnalysis>(F);
592   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
593   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
594   auto &AA = AM.getResult<AAManager>(F);
595   auto &MemDep = AM.getResult<MemoryDependenceAnalysis>(F);
596   bool Changed = runImpl(F, AC, DT, TLI, AA, &MemDep);
597   if (!Changed)
598     return PreservedAnalyses::all();
599   PreservedAnalyses PA;
600   PA.preserve<DominatorTreeAnalysis>();
601   PA.preserve<GlobalsAA>();
602   return PA;
603 }
604 
605 LLVM_DUMP_METHOD
606 void GVN::dump(DenseMap<uint32_t, Value*>& d) {
607   errs() << "{\n";
608   for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
609        E = d.end(); I != E; ++I) {
610       errs() << I->first << "\n";
611       I->second->dump();
612   }
613   errs() << "}\n";
614 }
615 
616 /// Return true if we can prove that the value
617 /// we're analyzing is fully available in the specified block.  As we go, keep
618 /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
619 /// map is actually a tri-state map with the following values:
620 ///   0) we know the block *is not* fully available.
621 ///   1) we know the block *is* fully available.
622 ///   2) we do not know whether the block is fully available or not, but we are
623 ///      currently speculating that it will be.
624 ///   3) we are speculating for this block and have used that to speculate for
625 ///      other blocks.
626 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
627                             DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
628                             uint32_t RecurseDepth) {
629   if (RecurseDepth > MaxRecurseDepth)
630     return false;
631 
632   // Optimistically assume that the block is fully available and check to see
633   // if we already know about this block in one lookup.
634   std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
635     FullyAvailableBlocks.insert(std::make_pair(BB, 2));
636 
637   // If the entry already existed for this block, return the precomputed value.
638   if (!IV.second) {
639     // If this is a speculative "available" value, mark it as being used for
640     // speculation of other blocks.
641     if (IV.first->second == 2)
642       IV.first->second = 3;
643     return IV.first->second != 0;
644   }
645 
646   // Otherwise, see if it is fully available in all predecessors.
647   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
648 
649   // If this block has no predecessors, it isn't live-in here.
650   if (PI == PE)
651     goto SpeculationFailure;
652 
653   for (; PI != PE; ++PI)
654     // If the value isn't fully available in one of our predecessors, then it
655     // isn't fully available in this block either.  Undo our previous
656     // optimistic assumption and bail out.
657     if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
658       goto SpeculationFailure;
659 
660   return true;
661 
662 // If we get here, we found out that this is not, after
663 // all, a fully-available block.  We have a problem if we speculated on this and
664 // used the speculation to mark other blocks as available.
665 SpeculationFailure:
666   char &BBVal = FullyAvailableBlocks[BB];
667 
668   // If we didn't speculate on this, just return with it set to false.
669   if (BBVal == 2) {
670     BBVal = 0;
671     return false;
672   }
673 
674   // If we did speculate on this value, we could have blocks set to 1 that are
675   // incorrect.  Walk the (transitive) successors of this block and mark them as
676   // 0 if set to one.
677   SmallVector<BasicBlock*, 32> BBWorklist;
678   BBWorklist.push_back(BB);
679 
680   do {
681     BasicBlock *Entry = BBWorklist.pop_back_val();
682     // Note that this sets blocks to 0 (unavailable) if they happen to not
683     // already be in FullyAvailableBlocks.  This is safe.
684     char &EntryVal = FullyAvailableBlocks[Entry];
685     if (EntryVal == 0) continue;  // Already unavailable.
686 
687     // Mark as unavailable.
688     EntryVal = 0;
689 
690     BBWorklist.append(succ_begin(Entry), succ_end(Entry));
691   } while (!BBWorklist.empty());
692 
693   return false;
694 }
695 
696 
697 /// Return true if CoerceAvailableValueToLoadType will succeed.
698 static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
699                                             Type *LoadTy,
700                                             const DataLayout &DL) {
701   // If the loaded or stored value is an first class array or struct, don't try
702   // to transform them.  We need to be able to bitcast to integer.
703   if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
704       StoredVal->getType()->isStructTy() ||
705       StoredVal->getType()->isArrayTy())
706     return false;
707 
708   // The store has to be at least as big as the load.
709   if (DL.getTypeSizeInBits(StoredVal->getType()) <
710         DL.getTypeSizeInBits(LoadTy))
711     return false;
712 
713   return true;
714 }
715 
716 /// If we saw a store of a value to memory, and
717 /// then a load from a must-aliased pointer of a different type, try to coerce
718 /// the stored value.  LoadedTy is the type of the load we want to replace.
719 /// IRB is IRBuilder used to insert new instructions.
720 ///
721 /// If we can't do it, return null.
722 static Value *CoerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
723                                              IRBuilder<> &IRB,
724                                              const DataLayout &DL) {
725   assert(CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
726          "precondition violation - materialization can't fail");
727 
728   if (auto *C = dyn_cast<Constant>(StoredVal))
729     if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
730       StoredVal = FoldedStoredVal;
731 
732   // If this is already the right type, just return it.
733   Type *StoredValTy = StoredVal->getType();
734 
735   uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy);
736   uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy);
737 
738   // If the store and reload are the same size, we can always reuse it.
739   if (StoredValSize == LoadedValSize) {
740     // Pointer to Pointer -> use bitcast.
741     if (StoredValTy->getScalarType()->isPointerTy() &&
742         LoadedTy->getScalarType()->isPointerTy()) {
743       StoredVal = IRB.CreateBitCast(StoredVal, LoadedTy);
744     } else {
745       // Convert source pointers to integers, which can be bitcast.
746       if (StoredValTy->getScalarType()->isPointerTy()) {
747         StoredValTy = DL.getIntPtrType(StoredValTy);
748         StoredVal = IRB.CreatePtrToInt(StoredVal, StoredValTy);
749       }
750 
751       Type *TypeToCastTo = LoadedTy;
752       if (TypeToCastTo->getScalarType()->isPointerTy())
753         TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
754 
755       if (StoredValTy != TypeToCastTo)
756         StoredVal = IRB.CreateBitCast(StoredVal, TypeToCastTo);
757 
758       // Cast to pointer if the load needs a pointer type.
759       if (LoadedTy->getScalarType()->isPointerTy())
760         StoredVal = IRB.CreateIntToPtr(StoredVal, LoadedTy);
761     }
762 
763     if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
764       if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
765         StoredVal = FoldedStoredVal;
766 
767     return StoredVal;
768   }
769 
770   // If the loaded value is smaller than the available value, then we can
771   // extract out a piece from it.  If the available value is too small, then we
772   // can't do anything.
773   assert(StoredValSize >= LoadedValSize &&
774          "CanCoerceMustAliasedValueToLoad fail");
775 
776   // Convert source pointers to integers, which can be manipulated.
777   if (StoredValTy->getScalarType()->isPointerTy()) {
778     StoredValTy = DL.getIntPtrType(StoredValTy);
779     StoredVal = IRB.CreatePtrToInt(StoredVal, StoredValTy);
780   }
781 
782   // Convert vectors and fp to integer, which can be manipulated.
783   if (!StoredValTy->isIntegerTy()) {
784     StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
785     StoredVal = IRB.CreateBitCast(StoredVal, StoredValTy);
786   }
787 
788   // If this is a big-endian system, we need to shift the value down to the low
789   // bits so that a truncate will work.
790   if (DL.isBigEndian()) {
791     uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy) -
792                         DL.getTypeStoreSizeInBits(LoadedTy);
793     StoredVal = IRB.CreateLShr(StoredVal, ShiftAmt, "tmp");
794   }
795 
796   // Truncate the integer to the right size now.
797   Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
798   StoredVal  = IRB.CreateTrunc(StoredVal, NewIntTy, "trunc");
799 
800   if (LoadedTy != NewIntTy) {
801     // If the result is a pointer, inttoptr.
802     if (LoadedTy->getScalarType()->isPointerTy())
803       StoredVal = IRB.CreateIntToPtr(StoredVal, LoadedTy, "inttoptr");
804     else
805       // Otherwise, bitcast.
806       StoredVal = IRB.CreateBitCast(StoredVal, LoadedTy, "bitcast");
807   }
808 
809   if (auto *C = dyn_cast<Constant>(StoredVal))
810     if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
811       StoredVal = FoldedStoredVal;
812 
813   return StoredVal;
814 }
815 
816 /// This function is called when we have a
817 /// memdep query of a load that ends up being a clobbering memory write (store,
818 /// memset, memcpy, memmove).  This means that the write *may* provide bits used
819 /// by the load but we can't be sure because the pointers don't mustalias.
820 ///
821 /// Check this case to see if there is anything more we can do before we give
822 /// up.  This returns -1 if we have to give up, or a byte number in the stored
823 /// value of the piece that feeds the load.
824 static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
825                                           Value *WritePtr,
826                                           uint64_t WriteSizeInBits,
827                                           const DataLayout &DL) {
828   // If the loaded or stored value is a first class array or struct, don't try
829   // to transform them.  We need to be able to bitcast to integer.
830   if (LoadTy->isStructTy() || LoadTy->isArrayTy())
831     return -1;
832 
833   int64_t StoreOffset = 0, LoadOffset = 0;
834   Value *StoreBase =
835       GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
836   Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
837   if (StoreBase != LoadBase)
838     return -1;
839 
840   // If the load and store are to the exact same address, they should have been
841   // a must alias.  AA must have gotten confused.
842   // FIXME: Study to see if/when this happens.  One case is forwarding a memset
843   // to a load from the base of the memset.
844 #if 0
845   if (LoadOffset == StoreOffset) {
846     dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
847     << "Base       = " << *StoreBase << "\n"
848     << "Store Ptr  = " << *WritePtr << "\n"
849     << "Store Offs = " << StoreOffset << "\n"
850     << "Load Ptr   = " << *LoadPtr << "\n";
851     abort();
852   }
853 #endif
854 
855   // If the load and store don't overlap at all, the store doesn't provide
856   // anything to the load.  In this case, they really don't alias at all, AA
857   // must have gotten confused.
858   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy);
859 
860   if ((WriteSizeInBits & 7) | (LoadSize & 7))
861     return -1;
862   uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
863   LoadSize >>= 3;
864 
865 
866   bool isAAFailure = false;
867   if (StoreOffset < LoadOffset)
868     isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
869   else
870     isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
871 
872   if (isAAFailure) {
873 #if 0
874     dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
875     << "Base       = " << *StoreBase << "\n"
876     << "Store Ptr  = " << *WritePtr << "\n"
877     << "Store Offs = " << StoreOffset << "\n"
878     << "Load Ptr   = " << *LoadPtr << "\n";
879     abort();
880 #endif
881     return -1;
882   }
883 
884   // If the Load isn't completely contained within the stored bits, we don't
885   // have all the bits to feed it.  We could do something crazy in the future
886   // (issue a smaller load then merge the bits in) but this seems unlikely to be
887   // valuable.
888   if (StoreOffset > LoadOffset ||
889       StoreOffset+StoreSize < LoadOffset+LoadSize)
890     return -1;
891 
892   // Okay, we can do this transformation.  Return the number of bytes into the
893   // store that the load is.
894   return LoadOffset-StoreOffset;
895 }
896 
897 /// This function is called when we have a
898 /// memdep query of a load that ends up being a clobbering store.
899 static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
900                                           StoreInst *DepSI) {
901   // Cannot handle reading from store of first-class aggregate yet.
902   if (DepSI->getValueOperand()->getType()->isStructTy() ||
903       DepSI->getValueOperand()->getType()->isArrayTy())
904     return -1;
905 
906   const DataLayout &DL = DepSI->getModule()->getDataLayout();
907   Value *StorePtr = DepSI->getPointerOperand();
908   uint64_t StoreSize =DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
909   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
910                                         StorePtr, StoreSize, DL);
911 }
912 
913 /// This function is called when we have a
914 /// memdep query of a load that ends up being clobbered by another load.  See if
915 /// the other load can feed into the second load.
916 static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
917                                          LoadInst *DepLI, const DataLayout &DL){
918   // Cannot handle reading from store of first-class aggregate yet.
919   if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
920     return -1;
921 
922   Value *DepPtr = DepLI->getPointerOperand();
923   uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType());
924   int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
925   if (R != -1) return R;
926 
927   // If we have a load/load clobber an DepLI can be widened to cover this load,
928   // then we should widen it!
929   int64_t LoadOffs = 0;
930   const Value *LoadBase =
931       GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
932   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
933 
934   unsigned Size = MemoryDependenceResults::getLoadLoadClobberFullWidthSize(
935       LoadBase, LoadOffs, LoadSize, DepLI);
936   if (Size == 0) return -1;
937 
938   // Check non-obvious conditions enforced by MDA which we rely on for being
939   // able to materialize this potentially available value
940   assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!");
941   assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load");
942 
943   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, DL);
944 }
945 
946 
947 
948 static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
949                                             MemIntrinsic *MI,
950                                             const DataLayout &DL) {
951   // If the mem operation is a non-constant size, we can't handle it.
952   ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
953   if (!SizeCst) return -1;
954   uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
955 
956   // If this is memset, we just need to see if the offset is valid in the size
957   // of the memset..
958   if (MI->getIntrinsicID() == Intrinsic::memset)
959     return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
960                                           MemSizeInBits, DL);
961 
962   // If we have a memcpy/memmove, the only case we can handle is if this is a
963   // copy from constant memory.  In that case, we can read directly from the
964   // constant memory.
965   MemTransferInst *MTI = cast<MemTransferInst>(MI);
966 
967   Constant *Src = dyn_cast<Constant>(MTI->getSource());
968   if (!Src) return -1;
969 
970   GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL));
971   if (!GV || !GV->isConstant()) return -1;
972 
973   // See if the access is within the bounds of the transfer.
974   int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
975                                               MI->getDest(), MemSizeInBits, DL);
976   if (Offset == -1)
977     return Offset;
978 
979   unsigned AS = Src->getType()->getPointerAddressSpace();
980   // Otherwise, see if we can constant fold a load from the constant with the
981   // offset applied as appropriate.
982   Src = ConstantExpr::getBitCast(Src,
983                                  Type::getInt8PtrTy(Src->getContext(), AS));
984   Constant *OffsetCst =
985     ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
986   Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
987                                        OffsetCst);
988   Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
989   if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL))
990     return Offset;
991   return -1;
992 }
993 
994 
995 /// This function is called when we have a
996 /// memdep query of a load that ends up being a clobbering store.  This means
997 /// that the store provides bits used by the load but we the pointers don't
998 /// mustalias.  Check this case to see if there is anything more we can do
999 /// before we give up.
1000 static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1001                                    Type *LoadTy,
1002                                    Instruction *InsertPt, const DataLayout &DL){
1003   LLVMContext &Ctx = SrcVal->getType()->getContext();
1004 
1005   uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1006   uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8;
1007 
1008   IRBuilder<> Builder(InsertPt);
1009 
1010   // Compute which bits of the stored value are being used by the load.  Convert
1011   // to an integer type to start with.
1012   if (SrcVal->getType()->getScalarType()->isPointerTy())
1013     SrcVal = Builder.CreatePtrToInt(SrcVal,
1014         DL.getIntPtrType(SrcVal->getType()));
1015   if (!SrcVal->getType()->isIntegerTy())
1016     SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
1017 
1018   // Shift the bits to the least significant depending on endianness.
1019   unsigned ShiftAmt;
1020   if (DL.isLittleEndian())
1021     ShiftAmt = Offset*8;
1022   else
1023     ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1024 
1025   if (ShiftAmt)
1026     SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
1027 
1028   if (LoadSize != StoreSize)
1029     SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
1030 
1031   return CoerceAvailableValueToLoadType(SrcVal, LoadTy, Builder, DL);
1032 }
1033 
1034 /// This function is called when we have a
1035 /// memdep query of a load that ends up being a clobbering load.  This means
1036 /// that the load *may* provide bits used by the load but we can't be sure
1037 /// because the pointers don't mustalias.  Check this case to see if there is
1038 /// anything more we can do before we give up.
1039 static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
1040                                   Type *LoadTy, Instruction *InsertPt,
1041                                   GVN &gvn) {
1042   const DataLayout &DL = SrcVal->getModule()->getDataLayout();
1043   // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
1044   // widen SrcVal out to a larger load.
1045   unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType());
1046   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
1047   if (Offset+LoadSize > SrcValStoreSize) {
1048     assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
1049     assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
1050     // If we have a load/load clobber an DepLI can be widened to cover this
1051     // load, then we should widen it to the next power of 2 size big enough!
1052     unsigned NewLoadSize = Offset+LoadSize;
1053     if (!isPowerOf2_32(NewLoadSize))
1054       NewLoadSize = NextPowerOf2(NewLoadSize);
1055 
1056     Value *PtrVal = SrcVal->getPointerOperand();
1057 
1058     // Insert the new load after the old load.  This ensures that subsequent
1059     // memdep queries will find the new load.  We can't easily remove the old
1060     // load completely because it is already in the value numbering table.
1061     IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
1062     Type *DestPTy =
1063       IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
1064     DestPTy = PointerType::get(DestPTy,
1065                                PtrVal->getType()->getPointerAddressSpace());
1066     Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
1067     PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
1068     LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
1069     NewLoad->takeName(SrcVal);
1070     NewLoad->setAlignment(SrcVal->getAlignment());
1071 
1072     DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
1073     DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
1074 
1075     // Replace uses of the original load with the wider load.  On a big endian
1076     // system, we need to shift down to get the relevant bits.
1077     Value *RV = NewLoad;
1078     if (DL.isBigEndian())
1079       RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8);
1080     RV = Builder.CreateTrunc(RV, SrcVal->getType());
1081     SrcVal->replaceAllUsesWith(RV);
1082 
1083     // We would like to use gvn.markInstructionForDeletion here, but we can't
1084     // because the load is already memoized into the leader map table that GVN
1085     // tracks.  It is potentially possible to remove the load from the table,
1086     // but then there all of the operations based on it would need to be
1087     // rehashed.  Just leave the dead load around.
1088     gvn.getMemDep().removeInstruction(SrcVal);
1089     SrcVal = NewLoad;
1090   }
1091 
1092   return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
1093 }
1094 
1095 
1096 /// This function is called when we have a
1097 /// memdep query of a load that ends up being a clobbering mem intrinsic.
1098 static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1099                                      Type *LoadTy, Instruction *InsertPt,
1100                                      const DataLayout &DL){
1101   LLVMContext &Ctx = LoadTy->getContext();
1102   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy)/8;
1103 
1104   IRBuilder<> Builder(InsertPt);
1105 
1106   // We know that this method is only called when the mem transfer fully
1107   // provides the bits for the load.
1108   if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1109     // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1110     // independently of what the offset is.
1111     Value *Val = MSI->getValue();
1112     if (LoadSize != 1)
1113       Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1114 
1115     Value *OneElt = Val;
1116 
1117     // Splat the value out to the right number of bits.
1118     for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1119       // If we can double the number of bytes set, do it.
1120       if (NumBytesSet*2 <= LoadSize) {
1121         Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1122         Val = Builder.CreateOr(Val, ShVal);
1123         NumBytesSet <<= 1;
1124         continue;
1125       }
1126 
1127       // Otherwise insert one byte at a time.
1128       Value *ShVal = Builder.CreateShl(Val, 1*8);
1129       Val = Builder.CreateOr(OneElt, ShVal);
1130       ++NumBytesSet;
1131     }
1132 
1133     return CoerceAvailableValueToLoadType(Val, LoadTy, Builder, DL);
1134   }
1135 
1136   // Otherwise, this is a memcpy/memmove from a constant global.
1137   MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1138   Constant *Src = cast<Constant>(MTI->getSource());
1139   unsigned AS = Src->getType()->getPointerAddressSpace();
1140 
1141   // Otherwise, see if we can constant fold a load from the constant with the
1142   // offset applied as appropriate.
1143   Src = ConstantExpr::getBitCast(Src,
1144                                  Type::getInt8PtrTy(Src->getContext(), AS));
1145   Constant *OffsetCst =
1146     ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1147   Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
1148                                        OffsetCst);
1149   Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
1150   return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL);
1151 }
1152 
1153 
1154 /// Given a set of loads specified by ValuesPerBlock,
1155 /// construct SSA form, allowing us to eliminate LI.  This returns the value
1156 /// that should be used at LI's definition site.
1157 static Value *ConstructSSAForLoadSet(LoadInst *LI,
1158                          SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1159                                      GVN &gvn) {
1160   // Check for the fully redundant, dominating load case.  In this case, we can
1161   // just use the dominating value directly.
1162   if (ValuesPerBlock.size() == 1 &&
1163       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
1164                                                LI->getParent())) {
1165     assert(!ValuesPerBlock[0].AV.isUndefValue() &&
1166            "Dead BB dominate this block");
1167     return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
1168   }
1169 
1170   // Otherwise, we have to construct SSA form.
1171   SmallVector<PHINode*, 8> NewPHIs;
1172   SSAUpdater SSAUpdate(&NewPHIs);
1173   SSAUpdate.Initialize(LI->getType(), LI->getName());
1174 
1175   for (const AvailableValueInBlock &AV : ValuesPerBlock) {
1176     BasicBlock *BB = AV.BB;
1177 
1178     if (SSAUpdate.HasValueForBlock(BB))
1179       continue;
1180 
1181     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
1182   }
1183 
1184   // Perform PHI construction.
1185   return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1186 }
1187 
1188 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI,
1189                                                 Instruction *InsertPt,
1190                                                 GVN &gvn) const {
1191   Value *Res;
1192   Type *LoadTy = LI->getType();
1193   const DataLayout &DL = LI->getModule()->getDataLayout();
1194   if (isSimpleValue()) {
1195     Res = getSimpleValue();
1196     if (Res->getType() != LoadTy) {
1197       Res = GetStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
1198 
1199       DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1200                    << *getSimpleValue() << '\n'
1201                    << *Res << '\n' << "\n\n\n");
1202     }
1203   } else if (isCoercedLoadValue()) {
1204     LoadInst *Load = getCoercedLoadValue();
1205     if (Load->getType() == LoadTy && Offset == 0) {
1206       Res = Load;
1207     } else {
1208       Res = GetLoadValueForLoad(Load, Offset, LoadTy, InsertPt, gvn);
1209 
1210       DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
1211                    << *getCoercedLoadValue() << '\n'
1212                    << *Res << '\n' << "\n\n\n");
1213     }
1214   } else if (isMemIntrinValue()) {
1215     Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
1216                                  InsertPt, DL);
1217     DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1218                  << "  " << *getMemIntrinValue() << '\n'
1219                  << *Res << '\n' << "\n\n\n");
1220   } else {
1221     assert(isUndefValue() && "Should be UndefVal");
1222     DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
1223     return UndefValue::get(LoadTy);
1224   }
1225   assert(Res && "failed to materialize?");
1226   return Res;
1227 }
1228 
1229 static bool isLifetimeStart(const Instruction *Inst) {
1230   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1231     return II->getIntrinsicID() == Intrinsic::lifetime_start;
1232   return false;
1233 }
1234 
1235 bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo,
1236                                   Value *Address, AvailableValue &Res) {
1237 
1238   assert((DepInfo.isDef() || DepInfo.isClobber()) &&
1239          "expected a local dependence");
1240   assert(LI->isUnordered() && "rules below are incorrect for ordered access");
1241 
1242   const DataLayout &DL = LI->getModule()->getDataLayout();
1243 
1244   if (DepInfo.isClobber()) {
1245     // If the dependence is to a store that writes to a superset of the bits
1246     // read by the load, we can extract the bits we need for the load from the
1247     // stored value.
1248     if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1249       // Can't forward from non-atomic to atomic without violating memory model.
1250       if (Address && LI->isAtomic() <= DepSI->isAtomic()) {
1251         int Offset =
1252           AnalyzeLoadFromClobberingStore(LI->getType(), Address, DepSI);
1253         if (Offset != -1) {
1254           Res = AvailableValue::get(DepSI->getValueOperand(), Offset);
1255           return true;
1256         }
1257       }
1258     }
1259 
1260     // Check to see if we have something like this:
1261     //    load i32* P
1262     //    load i8* (P+1)
1263     // if we have this, replace the later with an extraction from the former.
1264     if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
1265       // If this is a clobber and L is the first instruction in its block, then
1266       // we have the first instruction in the entry block.
1267       // Can't forward from non-atomic to atomic without violating memory model.
1268       if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) {
1269         int Offset =
1270           AnalyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
1271 
1272         if (Offset != -1) {
1273           Res = AvailableValue::getLoad(DepLI, Offset);
1274           return true;
1275         }
1276       }
1277     }
1278 
1279     // If the clobbering value is a memset/memcpy/memmove, see if we can
1280     // forward a value on from it.
1281     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1282       if (Address && !LI->isAtomic()) {
1283         int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1284                                                       DepMI, DL);
1285         if (Offset != -1) {
1286           Res = AvailableValue::getMI(DepMI, Offset);
1287           return true;
1288         }
1289       }
1290     }
1291     // Nothing known about this clobber, have to be conservative
1292     DEBUG(
1293       // fast print dep, using operator<< on instruction is too slow.
1294       dbgs() << "GVN: load ";
1295       LI->printAsOperand(dbgs());
1296       Instruction *I = DepInfo.getInst();
1297       dbgs() << " is clobbered by " << *I << '\n';
1298     );
1299     return false;
1300   }
1301   assert(DepInfo.isDef() && "follows from above");
1302 
1303   Instruction *DepInst = DepInfo.getInst();
1304 
1305   // Loading the allocation -> undef.
1306   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
1307       // Loading immediately after lifetime begin -> undef.
1308       isLifetimeStart(DepInst)) {
1309     Res = AvailableValue::get(UndefValue::get(LI->getType()));
1310     return true;
1311   }
1312 
1313   // Loading from calloc (which zero initializes memory) -> zero
1314   if (isCallocLikeFn(DepInst, TLI)) {
1315     Res = AvailableValue::get(Constant::getNullValue(LI->getType()));
1316     return true;
1317   }
1318 
1319   if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1320     // Reject loads and stores that are to the same address but are of
1321     // different types if we have to. If the stored value is larger or equal to
1322     // the loaded value, we can reuse it.
1323     if (S->getValueOperand()->getType() != LI->getType() &&
1324         !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1325                                          LI->getType(), DL))
1326       return false;
1327 
1328     // Can't forward from non-atomic to atomic without violating memory model.
1329     if (S->isAtomic() < LI->isAtomic())
1330       return false;
1331 
1332     Res = AvailableValue::get(S->getValueOperand());
1333     return true;
1334   }
1335 
1336   if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1337     // If the types mismatch and we can't handle it, reject reuse of the load.
1338     // If the stored value is larger or equal to the loaded value, we can reuse
1339     // it.
1340     if (LD->getType() != LI->getType() &&
1341         !CanCoerceMustAliasedValueToLoad(LD, LI->getType(), DL))
1342       return false;
1343 
1344     // Can't forward from non-atomic to atomic without violating memory model.
1345     if (LD->isAtomic() < LI->isAtomic())
1346       return false;
1347 
1348     Res = AvailableValue::getLoad(LD);
1349     return true;
1350   }
1351 
1352   // Unknown def - must be conservative
1353   DEBUG(
1354     // fast print dep, using operator<< on instruction is too slow.
1355     dbgs() << "GVN: load ";
1356     LI->printAsOperand(dbgs());
1357     dbgs() << " has unknown def " << *DepInst << '\n';
1358   );
1359   return false;
1360 }
1361 
1362 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
1363                                   AvailValInBlkVect &ValuesPerBlock,
1364                                   UnavailBlkVect &UnavailableBlocks) {
1365 
1366   // Filter out useless results (non-locals, etc).  Keep track of the blocks
1367   // where we have a value available in repl, also keep track of whether we see
1368   // dependencies that produce an unknown value for the load (such as a call
1369   // that could potentially clobber the load).
1370   unsigned NumDeps = Deps.size();
1371   for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1372     BasicBlock *DepBB = Deps[i].getBB();
1373     MemDepResult DepInfo = Deps[i].getResult();
1374 
1375     if (DeadBlocks.count(DepBB)) {
1376       // Dead dependent mem-op disguise as a load evaluating the same value
1377       // as the load in question.
1378       ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
1379       continue;
1380     }
1381 
1382     if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1383       UnavailableBlocks.push_back(DepBB);
1384       continue;
1385     }
1386 
1387     // The address being loaded in this non-local block may not be the same as
1388     // the pointer operand of the load if PHI translation occurs.  Make sure
1389     // to consider the right address.
1390     Value *Address = Deps[i].getAddress();
1391 
1392     AvailableValue AV;
1393     if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) {
1394       // subtlety: because we know this was a non-local dependency, we know
1395       // it's safe to materialize anywhere between the instruction within
1396       // DepInfo and the end of it's block.
1397       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1398                                                           std::move(AV)));
1399     } else {
1400       UnavailableBlocks.push_back(DepBB);
1401     }
1402   }
1403 
1404   assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() &&
1405          "post condition violation");
1406 }
1407 
1408 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
1409                          UnavailBlkVect &UnavailableBlocks) {
1410   // Okay, we have *some* definitions of the value.  This means that the value
1411   // is available in some of our (transitive) predecessors.  Lets think about
1412   // doing PRE of this load.  This will involve inserting a new load into the
1413   // predecessor when it's not available.  We could do this in general, but
1414   // prefer to not increase code size.  As such, we only do this when we know
1415   // that we only have to insert *one* load (which means we're basically moving
1416   // the load, not inserting a new one).
1417 
1418   SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
1419                                         UnavailableBlocks.end());
1420 
1421   // Let's find the first basic block with more than one predecessor.  Walk
1422   // backwards through predecessors if needed.
1423   BasicBlock *LoadBB = LI->getParent();
1424   BasicBlock *TmpBB = LoadBB;
1425 
1426   while (TmpBB->getSinglePredecessor()) {
1427     TmpBB = TmpBB->getSinglePredecessor();
1428     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1429       return false;
1430     if (Blockers.count(TmpBB))
1431       return false;
1432 
1433     // If any of these blocks has more than one successor (i.e. if the edge we
1434     // just traversed was critical), then there are other paths through this
1435     // block along which the load may not be anticipated.  Hoisting the load
1436     // above this block would be adding the load to execution paths along
1437     // which it was not previously executed.
1438     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1439       return false;
1440   }
1441 
1442   assert(TmpBB);
1443   LoadBB = TmpBB;
1444 
1445   // Check to see how many predecessors have the loaded value fully
1446   // available.
1447   MapVector<BasicBlock *, Value *> PredLoads;
1448   DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1449   for (const AvailableValueInBlock &AV : ValuesPerBlock)
1450     FullyAvailableBlocks[AV.BB] = true;
1451   for (BasicBlock *UnavailableBB : UnavailableBlocks)
1452     FullyAvailableBlocks[UnavailableBB] = false;
1453 
1454   SmallVector<BasicBlock *, 4> CriticalEdgePred;
1455   for (BasicBlock *Pred : predecessors(LoadBB)) {
1456     // If any predecessor block is an EH pad that does not allow non-PHI
1457     // instructions before the terminator, we can't PRE the load.
1458     if (Pred->getTerminator()->isEHPad()) {
1459       DEBUG(dbgs()
1460             << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
1461             << Pred->getName() << "': " << *LI << '\n');
1462       return false;
1463     }
1464 
1465     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
1466       continue;
1467     }
1468 
1469     if (Pred->getTerminator()->getNumSuccessors() != 1) {
1470       if (isa<IndirectBrInst>(Pred->getTerminator())) {
1471         DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1472               << Pred->getName() << "': " << *LI << '\n');
1473         return false;
1474       }
1475 
1476       if (LoadBB->isEHPad()) {
1477         DEBUG(dbgs()
1478               << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
1479               << Pred->getName() << "': " << *LI << '\n');
1480         return false;
1481       }
1482 
1483       CriticalEdgePred.push_back(Pred);
1484     } else {
1485       // Only add the predecessors that will not be split for now.
1486       PredLoads[Pred] = nullptr;
1487     }
1488   }
1489 
1490   // Decide whether PRE is profitable for this load.
1491   unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
1492   assert(NumUnavailablePreds != 0 &&
1493          "Fully available value should already be eliminated!");
1494 
1495   // If this load is unavailable in multiple predecessors, reject it.
1496   // FIXME: If we could restructure the CFG, we could make a common pred with
1497   // all the preds that don't have an available LI and insert a new load into
1498   // that one block.
1499   if (NumUnavailablePreds != 1)
1500       return false;
1501 
1502   // Split critical edges, and update the unavailable predecessors accordingly.
1503   for (BasicBlock *OrigPred : CriticalEdgePred) {
1504     BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1505     assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
1506     PredLoads[NewPred] = nullptr;
1507     DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1508                  << LoadBB->getName() << '\n');
1509   }
1510 
1511   // Check if the load can safely be moved to all the unavailable predecessors.
1512   bool CanDoPRE = true;
1513   const DataLayout &DL = LI->getModule()->getDataLayout();
1514   SmallVector<Instruction*, 8> NewInsts;
1515   for (auto &PredLoad : PredLoads) {
1516     BasicBlock *UnavailablePred = PredLoad.first;
1517 
1518     // Do PHI translation to get its value in the predecessor if necessary.  The
1519     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1520 
1521     // If all preds have a single successor, then we know it is safe to insert
1522     // the load on the pred (?!?), so we can insert code to materialize the
1523     // pointer if it is not available.
1524     PHITransAddr Address(LI->getPointerOperand(), DL, AC);
1525     Value *LoadPtr = nullptr;
1526     LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1527                                                 *DT, NewInsts);
1528 
1529     // If we couldn't find or insert a computation of this phi translated value,
1530     // we fail PRE.
1531     if (!LoadPtr) {
1532       DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1533             << *LI->getPointerOperand() << "\n");
1534       CanDoPRE = false;
1535       break;
1536     }
1537 
1538     PredLoad.second = LoadPtr;
1539   }
1540 
1541   if (!CanDoPRE) {
1542     while (!NewInsts.empty()) {
1543       Instruction *I = NewInsts.pop_back_val();
1544       if (MD) MD->removeInstruction(I);
1545       I->eraseFromParent();
1546     }
1547     // HINT: Don't revert the edge-splitting as following transformation may
1548     // also need to split these critical edges.
1549     return !CriticalEdgePred.empty();
1550   }
1551 
1552   // Okay, we can eliminate this load by inserting a reload in the predecessor
1553   // and using PHI construction to get the value in the other predecessors, do
1554   // it.
1555   DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1556   DEBUG(if (!NewInsts.empty())
1557           dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1558                  << *NewInsts.back() << '\n');
1559 
1560   // Assign value numbers to the new instructions.
1561   for (Instruction *I : NewInsts) {
1562     // FIXME: We really _ought_ to insert these value numbers into their
1563     // parent's availability map.  However, in doing so, we risk getting into
1564     // ordering issues.  If a block hasn't been processed yet, we would be
1565     // marking a value as AVAIL-IN, which isn't what we intend.
1566     VN.lookupOrAdd(I);
1567   }
1568 
1569   for (const auto &PredLoad : PredLoads) {
1570     BasicBlock *UnavailablePred = PredLoad.first;
1571     Value *LoadPtr = PredLoad.second;
1572 
1573     auto *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre",
1574                                  LI->isVolatile(), LI->getAlignment(),
1575                                  LI->getOrdering(), LI->getSynchScope(),
1576                                  UnavailablePred->getTerminator());
1577 
1578     // Transfer the old load's AA tags to the new load.
1579     AAMDNodes Tags;
1580     LI->getAAMetadata(Tags);
1581     if (Tags)
1582       NewLoad->setAAMetadata(Tags);
1583 
1584     if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load))
1585       NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
1586     if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group))
1587       NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
1588     if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range))
1589       NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
1590 
1591     // Transfer DebugLoc.
1592     NewLoad->setDebugLoc(LI->getDebugLoc());
1593 
1594     // Add the newly created load.
1595     ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1596                                                         NewLoad));
1597     MD->invalidateCachedPointerInfo(LoadPtr);
1598     DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1599   }
1600 
1601   // Perform PHI construction.
1602   Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1603   LI->replaceAllUsesWith(V);
1604   if (isa<PHINode>(V))
1605     V->takeName(LI);
1606   if (Instruction *I = dyn_cast<Instruction>(V))
1607     I->setDebugLoc(LI->getDebugLoc());
1608   if (V->getType()->getScalarType()->isPointerTy())
1609     MD->invalidateCachedPointerInfo(V);
1610   markInstructionForDeletion(LI);
1611   ++NumPRELoad;
1612   return true;
1613 }
1614 
1615 /// Attempt to eliminate a load whose dependencies are
1616 /// non-local by performing PHI construction.
1617 bool GVN::processNonLocalLoad(LoadInst *LI) {
1618   // non-local speculations are not allowed under asan.
1619   if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeAddress))
1620     return false;
1621 
1622   // Step 1: Find the non-local dependencies of the load.
1623   LoadDepVect Deps;
1624   MD->getNonLocalPointerDependency(LI, Deps);
1625 
1626   // If we had to process more than one hundred blocks to find the
1627   // dependencies, this load isn't worth worrying about.  Optimizing
1628   // it will be too expensive.
1629   unsigned NumDeps = Deps.size();
1630   if (NumDeps > 100)
1631     return false;
1632 
1633   // If we had a phi translation failure, we'll have a single entry which is a
1634   // clobber in the current block.  Reject this early.
1635   if (NumDeps == 1 &&
1636       !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1637     DEBUG(
1638       dbgs() << "GVN: non-local load ";
1639       LI->printAsOperand(dbgs());
1640       dbgs() << " has unknown dependencies\n";
1641     );
1642     return false;
1643   }
1644 
1645   // If this load follows a GEP, see if we can PRE the indices before analyzing.
1646   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
1647     for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
1648                                         OE = GEP->idx_end();
1649          OI != OE; ++OI)
1650       if (Instruction *I = dyn_cast<Instruction>(OI->get()))
1651         performScalarPRE(I);
1652   }
1653 
1654   // Step 2: Analyze the availability of the load
1655   AvailValInBlkVect ValuesPerBlock;
1656   UnavailBlkVect UnavailableBlocks;
1657   AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
1658 
1659   // If we have no predecessors that produce a known value for this load, exit
1660   // early.
1661   if (ValuesPerBlock.empty())
1662     return false;
1663 
1664   // Step 3: Eliminate fully redundancy.
1665   //
1666   // If all of the instructions we depend on produce a known value for this
1667   // load, then it is fully redundant and we can use PHI insertion to compute
1668   // its value.  Insert PHIs and remove the fully redundant value now.
1669   if (UnavailableBlocks.empty()) {
1670     DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1671 
1672     // Perform PHI construction.
1673     Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1674     LI->replaceAllUsesWith(V);
1675 
1676     if (isa<PHINode>(V))
1677       V->takeName(LI);
1678     if (Instruction *I = dyn_cast<Instruction>(V))
1679       if (LI->getDebugLoc())
1680         I->setDebugLoc(LI->getDebugLoc());
1681     if (V->getType()->getScalarType()->isPointerTy())
1682       MD->invalidateCachedPointerInfo(V);
1683     markInstructionForDeletion(LI);
1684     ++NumGVNLoad;
1685     return true;
1686   }
1687 
1688   // Step 4: Eliminate partial redundancy.
1689   if (!EnablePRE || !EnableLoadPRE)
1690     return false;
1691 
1692   return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
1693 }
1694 
1695 bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) {
1696   assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume &&
1697          "This function can only be called with llvm.assume intrinsic");
1698   Value *V = IntrinsicI->getArgOperand(0);
1699 
1700   if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
1701     if (Cond->isZero()) {
1702       Type *Int8Ty = Type::getInt8Ty(V->getContext());
1703       // Insert a new store to null instruction before the load to indicate that
1704       // this code is not reachable.  FIXME: We could insert unreachable
1705       // instruction directly because we can modify the CFG.
1706       new StoreInst(UndefValue::get(Int8Ty),
1707                     Constant::getNullValue(Int8Ty->getPointerTo()),
1708                     IntrinsicI);
1709     }
1710     markInstructionForDeletion(IntrinsicI);
1711     return false;
1712   }
1713 
1714   Constant *True = ConstantInt::getTrue(V->getContext());
1715   bool Changed = false;
1716 
1717   for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
1718     BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
1719 
1720     // This property is only true in dominated successors, propagateEquality
1721     // will check dominance for us.
1722     Changed |= propagateEquality(V, True, Edge, false);
1723   }
1724 
1725   // We can replace assume value with true, which covers cases like this:
1726   // call void @llvm.assume(i1 %cmp)
1727   // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
1728   ReplaceWithConstMap[V] = True;
1729 
1730   // If one of *cmp *eq operand is const, adding it to map will cover this:
1731   // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
1732   // call void @llvm.assume(i1 %cmp)
1733   // ret float %0 ; will change it to ret float 3.000000e+00
1734   if (auto *CmpI = dyn_cast<CmpInst>(V)) {
1735     if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ ||
1736         CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
1737         (CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
1738          CmpI->getFastMathFlags().noNaNs())) {
1739       Value *CmpLHS = CmpI->getOperand(0);
1740       Value *CmpRHS = CmpI->getOperand(1);
1741       if (isa<Constant>(CmpLHS))
1742         std::swap(CmpLHS, CmpRHS);
1743       auto *RHSConst = dyn_cast<Constant>(CmpRHS);
1744 
1745       // If only one operand is constant.
1746       if (RHSConst != nullptr && !isa<Constant>(CmpLHS))
1747         ReplaceWithConstMap[CmpLHS] = RHSConst;
1748     }
1749   }
1750   return Changed;
1751 }
1752 
1753 static void patchReplacementInstruction(Instruction *I, Value *Repl) {
1754   auto *ReplInst = dyn_cast<Instruction>(Repl);
1755   if (!ReplInst)
1756     return;
1757 
1758   // Patch the replacement so that it is not more restrictive than the value
1759   // being replaced.
1760   ReplInst->andIRFlags(I);
1761 
1762   // FIXME: If both the original and replacement value are part of the
1763   // same control-flow region (meaning that the execution of one
1764   // guarantees the execution of the other), then we can combine the
1765   // noalias scopes here and do better than the general conservative
1766   // answer used in combineMetadata().
1767 
1768   // In general, GVN unifies expressions over different control-flow
1769   // regions, and so we need a conservative combination of the noalias
1770   // scopes.
1771   static const unsigned KnownIDs[] = {
1772       LLVMContext::MD_tbaa,           LLVMContext::MD_alias_scope,
1773       LLVMContext::MD_noalias,        LLVMContext::MD_range,
1774       LLVMContext::MD_fpmath,         LLVMContext::MD_invariant_load,
1775       LLVMContext::MD_invariant_group};
1776   combineMetadata(ReplInst, I, KnownIDs);
1777 }
1778 
1779 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1780   patchReplacementInstruction(I, Repl);
1781   I->replaceAllUsesWith(Repl);
1782 }
1783 
1784 /// Attempt to eliminate a load, first by eliminating it
1785 /// locally, and then attempting non-local elimination if that fails.
1786 bool GVN::processLoad(LoadInst *L) {
1787   if (!MD)
1788     return false;
1789 
1790   // This code hasn't been audited for ordered or volatile memory access
1791   if (!L->isUnordered())
1792     return false;
1793 
1794   if (L->use_empty()) {
1795     markInstructionForDeletion(L);
1796     return true;
1797   }
1798 
1799   // ... to a pointer that has been loaded from before...
1800   MemDepResult Dep = MD->getDependency(L);
1801 
1802   // If it is defined in another block, try harder.
1803   if (Dep.isNonLocal())
1804     return processNonLocalLoad(L);
1805 
1806   // Only handle the local case below
1807   if (!Dep.isDef() && !Dep.isClobber()) {
1808     // This might be a NonFuncLocal or an Unknown
1809     DEBUG(
1810       // fast print dep, using operator<< on instruction is too slow.
1811       dbgs() << "GVN: load ";
1812       L->printAsOperand(dbgs());
1813       dbgs() << " has unknown dependence\n";
1814     );
1815     return false;
1816   }
1817 
1818   AvailableValue AV;
1819   if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) {
1820     Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this);
1821 
1822     // Replace the load!
1823     patchAndReplaceAllUsesWith(L, AvailableValue);
1824     markInstructionForDeletion(L);
1825     ++NumGVNLoad;
1826     // Tell MDA to rexamine the reused pointer since we might have more
1827     // information after forwarding it.
1828     if (MD && AvailableValue->getType()->getScalarType()->isPointerTy())
1829       MD->invalidateCachedPointerInfo(AvailableValue);
1830     return true;
1831   }
1832 
1833   return false;
1834 }
1835 
1836 // In order to find a leader for a given value number at a
1837 // specific basic block, we first obtain the list of all Values for that number,
1838 // and then scan the list to find one whose block dominates the block in
1839 // question.  This is fast because dominator tree queries consist of only
1840 // a few comparisons of DFS numbers.
1841 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
1842   LeaderTableEntry Vals = LeaderTable[num];
1843   if (!Vals.Val) return nullptr;
1844 
1845   Value *Val = nullptr;
1846   if (DT->dominates(Vals.BB, BB)) {
1847     Val = Vals.Val;
1848     if (isa<Constant>(Val)) return Val;
1849   }
1850 
1851   LeaderTableEntry* Next = Vals.Next;
1852   while (Next) {
1853     if (DT->dominates(Next->BB, BB)) {
1854       if (isa<Constant>(Next->Val)) return Next->Val;
1855       if (!Val) Val = Next->Val;
1856     }
1857 
1858     Next = Next->Next;
1859   }
1860 
1861   return Val;
1862 }
1863 
1864 /// There is an edge from 'Src' to 'Dst'.  Return
1865 /// true if every path from the entry block to 'Dst' passes via this edge.  In
1866 /// particular 'Dst' must not be reachable via another edge from 'Src'.
1867 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
1868                                        DominatorTree *DT) {
1869   // While in theory it is interesting to consider the case in which Dst has
1870   // more than one predecessor, because Dst might be part of a loop which is
1871   // only reachable from Src, in practice it is pointless since at the time
1872   // GVN runs all such loops have preheaders, which means that Dst will have
1873   // been changed to have only one predecessor, namely Src.
1874   const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
1875   assert((!Pred || Pred == E.getStart()) &&
1876          "No edge between these basic blocks!");
1877   return Pred != nullptr;
1878 }
1879 
1880 // Tries to replace instruction with const, using information from
1881 // ReplaceWithConstMap.
1882 bool GVN::replaceOperandsWithConsts(Instruction *Instr) const {
1883   bool Changed = false;
1884   for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
1885     Value *Operand = Instr->getOperand(OpNum);
1886     auto it = ReplaceWithConstMap.find(Operand);
1887     if (it != ReplaceWithConstMap.end()) {
1888       assert(!isa<Constant>(Operand) &&
1889              "Replacing constants with constants is invalid");
1890       DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " << *it->second
1891                    << " in instruction " << *Instr << '\n');
1892       Instr->setOperand(OpNum, it->second);
1893       Changed = true;
1894     }
1895   }
1896   return Changed;
1897 }
1898 
1899 /// The given values are known to be equal in every block
1900 /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
1901 /// 'RHS' everywhere in the scope.  Returns whether a change was made.
1902 /// If DominatesByEdge is false, then it means that we will propagate the RHS
1903 /// value starting from the end of Root.Start.
1904 bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
1905                             bool DominatesByEdge) {
1906   SmallVector<std::pair<Value*, Value*>, 4> Worklist;
1907   Worklist.push_back(std::make_pair(LHS, RHS));
1908   bool Changed = false;
1909   // For speed, compute a conservative fast approximation to
1910   // DT->dominates(Root, Root.getEnd());
1911   const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
1912 
1913   while (!Worklist.empty()) {
1914     std::pair<Value*, Value*> Item = Worklist.pop_back_val();
1915     LHS = Item.first; RHS = Item.second;
1916 
1917     if (LHS == RHS)
1918       continue;
1919     assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
1920 
1921     // Don't try to propagate equalities between constants.
1922     if (isa<Constant>(LHS) && isa<Constant>(RHS))
1923       continue;
1924 
1925     // Prefer a constant on the right-hand side, or an Argument if no constants.
1926     if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
1927       std::swap(LHS, RHS);
1928     assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
1929 
1930     // If there is no obvious reason to prefer the left-hand side over the
1931     // right-hand side, ensure the longest lived term is on the right-hand side,
1932     // so the shortest lived term will be replaced by the longest lived.
1933     // This tends to expose more simplifications.
1934     uint32_t LVN = VN.lookupOrAdd(LHS);
1935     if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
1936         (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
1937       // Move the 'oldest' value to the right-hand side, using the value number
1938       // as a proxy for age.
1939       uint32_t RVN = VN.lookupOrAdd(RHS);
1940       if (LVN < RVN) {
1941         std::swap(LHS, RHS);
1942         LVN = RVN;
1943       }
1944     }
1945 
1946     // If value numbering later sees that an instruction in the scope is equal
1947     // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
1948     // the invariant that instructions only occur in the leader table for their
1949     // own value number (this is used by removeFromLeaderTable), do not do this
1950     // if RHS is an instruction (if an instruction in the scope is morphed into
1951     // LHS then it will be turned into RHS by the next GVN iteration anyway, so
1952     // using the leader table is about compiling faster, not optimizing better).
1953     // The leader table only tracks basic blocks, not edges. Only add to if we
1954     // have the simple case where the edge dominates the end.
1955     if (RootDominatesEnd && !isa<Instruction>(RHS))
1956       addToLeaderTable(LVN, RHS, Root.getEnd());
1957 
1958     // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
1959     // LHS always has at least one use that is not dominated by Root, this will
1960     // never do anything if LHS has only one use.
1961     if (!LHS->hasOneUse()) {
1962       unsigned NumReplacements =
1963           DominatesByEdge
1964               ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
1965               : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());
1966 
1967       Changed |= NumReplacements > 0;
1968       NumGVNEqProp += NumReplacements;
1969     }
1970 
1971     // Now try to deduce additional equalities from this one. For example, if
1972     // the known equality was "(A != B)" == "false" then it follows that A and B
1973     // are equal in the scope. Only boolean equalities with an explicit true or
1974     // false RHS are currently supported.
1975     if (!RHS->getType()->isIntegerTy(1))
1976       // Not a boolean equality - bail out.
1977       continue;
1978     ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
1979     if (!CI)
1980       // RHS neither 'true' nor 'false' - bail out.
1981       continue;
1982     // Whether RHS equals 'true'.  Otherwise it equals 'false'.
1983     bool isKnownTrue = CI->isAllOnesValue();
1984     bool isKnownFalse = !isKnownTrue;
1985 
1986     // If "A && B" is known true then both A and B are known true.  If "A || B"
1987     // is known false then both A and B are known false.
1988     Value *A, *B;
1989     if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
1990         (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
1991       Worklist.push_back(std::make_pair(A, RHS));
1992       Worklist.push_back(std::make_pair(B, RHS));
1993       continue;
1994     }
1995 
1996     // If we are propagating an equality like "(A == B)" == "true" then also
1997     // propagate the equality A == B.  When propagating a comparison such as
1998     // "(A >= B)" == "true", replace all instances of "A < B" with "false".
1999     if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
2000       Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2001 
2002       // If "A == B" is known true, or "A != B" is known false, then replace
2003       // A with B everywhere in the scope.
2004       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
2005           (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
2006         Worklist.push_back(std::make_pair(Op0, Op1));
2007 
2008       // Handle the floating point versions of equality comparisons too.
2009       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) ||
2010           (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) {
2011 
2012         // Floating point -0.0 and 0.0 compare equal, so we can only
2013         // propagate values if we know that we have a constant and that
2014         // its value is non-zero.
2015 
2016         // FIXME: We should do this optimization if 'no signed zeros' is
2017         // applicable via an instruction-level fast-math-flag or some other
2018         // indicator that relaxed FP semantics are being used.
2019 
2020         if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero())
2021           Worklist.push_back(std::make_pair(Op0, Op1));
2022       }
2023 
2024       // If "A >= B" is known true, replace "A < B" with false everywhere.
2025       CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2026       Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
2027       // Since we don't have the instruction "A < B" immediately to hand, work
2028       // out the value number that it would have and use that to find an
2029       // appropriate instruction (if any).
2030       uint32_t NextNum = VN.getNextUnusedValueNumber();
2031       uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2032       // If the number we were assigned was brand new then there is no point in
2033       // looking for an instruction realizing it: there cannot be one!
2034       if (Num < NextNum) {
2035         Value *NotCmp = findLeader(Root.getEnd(), Num);
2036         if (NotCmp && isa<Instruction>(NotCmp)) {
2037           unsigned NumReplacements =
2038               DominatesByEdge
2039                   ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
2040                   : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
2041                                              Root.getStart());
2042           Changed |= NumReplacements > 0;
2043           NumGVNEqProp += NumReplacements;
2044         }
2045       }
2046       // Ensure that any instruction in scope that gets the "A < B" value number
2047       // is replaced with false.
2048       // The leader table only tracks basic blocks, not edges. Only add to if we
2049       // have the simple case where the edge dominates the end.
2050       if (RootDominatesEnd)
2051         addToLeaderTable(Num, NotVal, Root.getEnd());
2052 
2053       continue;
2054     }
2055   }
2056 
2057   return Changed;
2058 }
2059 
2060 /// When calculating availability, handle an instruction
2061 /// by inserting it into the appropriate sets
2062 bool GVN::processInstruction(Instruction *I) {
2063   // Ignore dbg info intrinsics.
2064   if (isa<DbgInfoIntrinsic>(I))
2065     return false;
2066 
2067   // If the instruction can be easily simplified then do so now in preference
2068   // to value numbering it.  Value numbering often exposes redundancies, for
2069   // example if it determines that %y is equal to %x then the instruction
2070   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2071   const DataLayout &DL = I->getModule()->getDataLayout();
2072   if (Value *V = SimplifyInstruction(I, DL, TLI, DT, AC)) {
2073     bool Changed = false;
2074     if (!I->use_empty()) {
2075       I->replaceAllUsesWith(V);
2076       Changed = true;
2077     }
2078     if (isInstructionTriviallyDead(I, TLI)) {
2079       markInstructionForDeletion(I);
2080       Changed = true;
2081     }
2082     if (Changed) {
2083       if (MD && V->getType()->getScalarType()->isPointerTy())
2084         MD->invalidateCachedPointerInfo(V);
2085       ++NumGVNSimpl;
2086       return true;
2087     }
2088   }
2089 
2090   if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I))
2091     if (IntrinsicI->getIntrinsicID() == Intrinsic::assume)
2092       return processAssumeIntrinsic(IntrinsicI);
2093 
2094   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
2095     if (processLoad(LI))
2096       return true;
2097 
2098     unsigned Num = VN.lookupOrAdd(LI);
2099     addToLeaderTable(Num, LI, LI->getParent());
2100     return false;
2101   }
2102 
2103   // For conditional branches, we can perform simple conditional propagation on
2104   // the condition value itself.
2105   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2106     if (!BI->isConditional())
2107       return false;
2108 
2109     if (isa<Constant>(BI->getCondition()))
2110       return processFoldableCondBr(BI);
2111 
2112     Value *BranchCond = BI->getCondition();
2113     BasicBlock *TrueSucc = BI->getSuccessor(0);
2114     BasicBlock *FalseSucc = BI->getSuccessor(1);
2115     // Avoid multiple edges early.
2116     if (TrueSucc == FalseSucc)
2117       return false;
2118 
2119     BasicBlock *Parent = BI->getParent();
2120     bool Changed = false;
2121 
2122     Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
2123     BasicBlockEdge TrueE(Parent, TrueSucc);
2124     Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
2125 
2126     Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
2127     BasicBlockEdge FalseE(Parent, FalseSucc);
2128     Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
2129 
2130     return Changed;
2131   }
2132 
2133   // For switches, propagate the case values into the case destinations.
2134   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2135     Value *SwitchCond = SI->getCondition();
2136     BasicBlock *Parent = SI->getParent();
2137     bool Changed = false;
2138 
2139     // Remember how many outgoing edges there are to every successor.
2140     SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2141     for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
2142       ++SwitchEdges[SI->getSuccessor(i)];
2143 
2144     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2145          i != e; ++i) {
2146       BasicBlock *Dst = i.getCaseSuccessor();
2147       // If there is only a single edge, propagate the case value into it.
2148       if (SwitchEdges.lookup(Dst) == 1) {
2149         BasicBlockEdge E(Parent, Dst);
2150         Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E, true);
2151       }
2152     }
2153     return Changed;
2154   }
2155 
2156   // Instructions with void type don't return a value, so there's
2157   // no point in trying to find redundancies in them.
2158   if (I->getType()->isVoidTy())
2159     return false;
2160 
2161   uint32_t NextNum = VN.getNextUnusedValueNumber();
2162   unsigned Num = VN.lookupOrAdd(I);
2163 
2164   // Allocations are always uniquely numbered, so we can save time and memory
2165   // by fast failing them.
2166   if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
2167     addToLeaderTable(Num, I, I->getParent());
2168     return false;
2169   }
2170 
2171   // If the number we were assigned was a brand new VN, then we don't
2172   // need to do a lookup to see if the number already exists
2173   // somewhere in the domtree: it can't!
2174   if (Num >= NextNum) {
2175     addToLeaderTable(Num, I, I->getParent());
2176     return false;
2177   }
2178 
2179   // Perform fast-path value-number based elimination of values inherited from
2180   // dominators.
2181   Value *Repl = findLeader(I->getParent(), Num);
2182   if (!Repl) {
2183     // Failure, just remember this instance for future use.
2184     addToLeaderTable(Num, I, I->getParent());
2185     return false;
2186   } else if (Repl == I) {
2187     // If I was the result of a shortcut PRE, it might already be in the table
2188     // and the best replacement for itself. Nothing to do.
2189     return false;
2190   }
2191 
2192   // Remove it!
2193   patchAndReplaceAllUsesWith(I, Repl);
2194   if (MD && Repl->getType()->getScalarType()->isPointerTy())
2195     MD->invalidateCachedPointerInfo(Repl);
2196   markInstructionForDeletion(I);
2197   return true;
2198 }
2199 
2200 /// runOnFunction - This is the main transformation entry point for a function.
2201 bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
2202                   const TargetLibraryInfo &RunTLI, AAResults &RunAA,
2203                   MemoryDependenceResults *RunMD) {
2204   AC = &RunAC;
2205   DT = &RunDT;
2206   VN.setDomTree(DT);
2207   TLI = &RunTLI;
2208   VN.setAliasAnalysis(&RunAA);
2209   MD = RunMD;
2210   VN.setMemDep(MD);
2211 
2212   bool Changed = false;
2213   bool ShouldContinue = true;
2214 
2215   // Merge unconditional branches, allowing PRE to catch more
2216   // optimization opportunities.
2217   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2218     BasicBlock *BB = &*FI++;
2219 
2220     bool removedBlock =
2221         MergeBlockIntoPredecessor(BB, DT, /* LoopInfo */ nullptr, MD);
2222     if (removedBlock) ++NumGVNBlocks;
2223 
2224     Changed |= removedBlock;
2225   }
2226 
2227   unsigned Iteration = 0;
2228   while (ShouldContinue) {
2229     DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2230     ShouldContinue = iterateOnFunction(F);
2231     Changed |= ShouldContinue;
2232     ++Iteration;
2233   }
2234 
2235   if (EnablePRE) {
2236     // Fabricate val-num for dead-code in order to suppress assertion in
2237     // performPRE().
2238     assignValNumForDeadCode();
2239     bool PREChanged = true;
2240     while (PREChanged) {
2241       PREChanged = performPRE(F);
2242       Changed |= PREChanged;
2243     }
2244   }
2245 
2246   // FIXME: Should perform GVN again after PRE does something.  PRE can move
2247   // computations into blocks where they become fully redundant.  Note that
2248   // we can't do this until PRE's critical edge splitting updates memdep.
2249   // Actually, when this happens, we should just fully integrate PRE into GVN.
2250 
2251   cleanupGlobalSets();
2252   // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2253   // iteration.
2254   DeadBlocks.clear();
2255 
2256   return Changed;
2257 }
2258 
2259 bool GVN::processBlock(BasicBlock *BB) {
2260   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2261   // (and incrementing BI before processing an instruction).
2262   assert(InstrsToErase.empty() &&
2263          "We expect InstrsToErase to be empty across iterations");
2264   if (DeadBlocks.count(BB))
2265     return false;
2266 
2267   // Clearing map before every BB because it can be used only for single BB.
2268   ReplaceWithConstMap.clear();
2269   bool ChangedFunction = false;
2270 
2271   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2272        BI != BE;) {
2273     if (!ReplaceWithConstMap.empty())
2274       ChangedFunction |= replaceOperandsWithConsts(&*BI);
2275     ChangedFunction |= processInstruction(&*BI);
2276 
2277     if (InstrsToErase.empty()) {
2278       ++BI;
2279       continue;
2280     }
2281 
2282     // If we need some instructions deleted, do it now.
2283     NumGVNInstr += InstrsToErase.size();
2284 
2285     // Avoid iterator invalidation.
2286     bool AtStart = BI == BB->begin();
2287     if (!AtStart)
2288       --BI;
2289 
2290     for (SmallVectorImpl<Instruction *>::iterator I = InstrsToErase.begin(),
2291          E = InstrsToErase.end(); I != E; ++I) {
2292       DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2293       if (MD) MD->removeInstruction(*I);
2294       DEBUG(verifyRemoved(*I));
2295       (*I)->eraseFromParent();
2296     }
2297     InstrsToErase.clear();
2298 
2299     if (AtStart)
2300       BI = BB->begin();
2301     else
2302       ++BI;
2303   }
2304 
2305   return ChangedFunction;
2306 }
2307 
2308 // Instantiate an expression in a predecessor that lacked it.
2309 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
2310                                     unsigned int ValNo) {
2311   // Because we are going top-down through the block, all value numbers
2312   // will be available in the predecessor by the time we need them.  Any
2313   // that weren't originally present will have been instantiated earlier
2314   // in this loop.
2315   bool success = true;
2316   for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
2317     Value *Op = Instr->getOperand(i);
2318     if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2319       continue;
2320     // This could be a newly inserted instruction, in which case, we won't
2321     // find a value number, and should give up before we hurt ourselves.
2322     // FIXME: Rewrite the infrastructure to let it easier to value number
2323     // and process newly inserted instructions.
2324     if (!VN.exists(Op)) {
2325       success = false;
2326       break;
2327     }
2328     if (Value *V = findLeader(Pred, VN.lookup(Op))) {
2329       Instr->setOperand(i, V);
2330     } else {
2331       success = false;
2332       break;
2333     }
2334   }
2335 
2336   // Fail out if we encounter an operand that is not available in
2337   // the PRE predecessor.  This is typically because of loads which
2338   // are not value numbered precisely.
2339   if (!success)
2340     return false;
2341 
2342   Instr->insertBefore(Pred->getTerminator());
2343   Instr->setName(Instr->getName() + ".pre");
2344   Instr->setDebugLoc(Instr->getDebugLoc());
2345   VN.add(Instr, ValNo);
2346 
2347   // Update the availability map to include the new instruction.
2348   addToLeaderTable(ValNo, Instr, Pred);
2349   return true;
2350 }
2351 
2352 bool GVN::performScalarPRE(Instruction *CurInst) {
2353   if (isa<AllocaInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
2354       isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
2355       CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2356       isa<DbgInfoIntrinsic>(CurInst))
2357     return false;
2358 
2359   // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2360   // sinking the compare again, and it would force the code generator to
2361   // move the i1 from processor flags or predicate registers into a general
2362   // purpose register.
2363   if (isa<CmpInst>(CurInst))
2364     return false;
2365 
2366   // We don't currently value number ANY inline asm calls.
2367   if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2368     if (CallI->isInlineAsm())
2369       return false;
2370 
2371   uint32_t ValNo = VN.lookup(CurInst);
2372 
2373   // Look for the predecessors for PRE opportunities.  We're
2374   // only trying to solve the basic diamond case, where
2375   // a value is computed in the successor and one predecessor,
2376   // but not the other.  We also explicitly disallow cases
2377   // where the successor is its own predecessor, because they're
2378   // more complicated to get right.
2379   unsigned NumWith = 0;
2380   unsigned NumWithout = 0;
2381   BasicBlock *PREPred = nullptr;
2382   BasicBlock *CurrentBlock = CurInst->getParent();
2383 
2384   SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
2385   for (BasicBlock *P : predecessors(CurrentBlock)) {
2386     // We're not interested in PRE where the block is its
2387     // own predecessor, or in blocks with predecessors
2388     // that are not reachable.
2389     if (P == CurrentBlock) {
2390       NumWithout = 2;
2391       break;
2392     } else if (!DT->isReachableFromEntry(P)) {
2393       NumWithout = 2;
2394       break;
2395     }
2396 
2397     Value *predV = findLeader(P, ValNo);
2398     if (!predV) {
2399       predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
2400       PREPred = P;
2401       ++NumWithout;
2402     } else if (predV == CurInst) {
2403       /* CurInst dominates this predecessor. */
2404       NumWithout = 2;
2405       break;
2406     } else {
2407       predMap.push_back(std::make_pair(predV, P));
2408       ++NumWith;
2409     }
2410   }
2411 
2412   // Don't do PRE when it might increase code size, i.e. when
2413   // we would need to insert instructions in more than one pred.
2414   if (NumWithout > 1 || NumWith == 0)
2415     return false;
2416 
2417   // We may have a case where all predecessors have the instruction,
2418   // and we just need to insert a phi node. Otherwise, perform
2419   // insertion.
2420   Instruction *PREInstr = nullptr;
2421 
2422   if (NumWithout != 0) {
2423     // Don't do PRE across indirect branch.
2424     if (isa<IndirectBrInst>(PREPred->getTerminator()))
2425       return false;
2426 
2427     // We can't do PRE safely on a critical edge, so instead we schedule
2428     // the edge to be split and perform the PRE the next time we iterate
2429     // on the function.
2430     unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2431     if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2432       toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2433       return false;
2434     }
2435     // We need to insert somewhere, so let's give it a shot
2436     PREInstr = CurInst->clone();
2437     if (!performScalarPREInsertion(PREInstr, PREPred, ValNo)) {
2438       // If we failed insertion, make sure we remove the instruction.
2439       DEBUG(verifyRemoved(PREInstr));
2440       delete PREInstr;
2441       return false;
2442     }
2443   }
2444 
2445   // Either we should have filled in the PRE instruction, or we should
2446   // not have needed insertions.
2447   assert (PREInstr != nullptr || NumWithout == 0);
2448 
2449   ++NumGVNPRE;
2450 
2451   // Create a PHI to make the value available in this block.
2452   PHINode *Phi =
2453       PHINode::Create(CurInst->getType(), predMap.size(),
2454                       CurInst->getName() + ".pre-phi", &CurrentBlock->front());
2455   for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2456     if (Value *V = predMap[i].first)
2457       Phi->addIncoming(V, predMap[i].second);
2458     else
2459       Phi->addIncoming(PREInstr, PREPred);
2460   }
2461 
2462   VN.add(Phi, ValNo);
2463   addToLeaderTable(ValNo, Phi, CurrentBlock);
2464   Phi->setDebugLoc(CurInst->getDebugLoc());
2465   CurInst->replaceAllUsesWith(Phi);
2466   if (MD && Phi->getType()->getScalarType()->isPointerTy())
2467     MD->invalidateCachedPointerInfo(Phi);
2468   VN.erase(CurInst);
2469   removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2470 
2471   DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2472   if (MD)
2473     MD->removeInstruction(CurInst);
2474   DEBUG(verifyRemoved(CurInst));
2475   CurInst->eraseFromParent();
2476   ++NumGVNInstr;
2477 
2478   return true;
2479 }
2480 
2481 /// Perform a purely local form of PRE that looks for diamond
2482 /// control flow patterns and attempts to perform simple PRE at the join point.
2483 bool GVN::performPRE(Function &F) {
2484   bool Changed = false;
2485   for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
2486     // Nothing to PRE in the entry block.
2487     if (CurrentBlock == &F.getEntryBlock())
2488       continue;
2489 
2490     // Don't perform PRE on an EH pad.
2491     if (CurrentBlock->isEHPad())
2492       continue;
2493 
2494     for (BasicBlock::iterator BI = CurrentBlock->begin(),
2495                               BE = CurrentBlock->end();
2496          BI != BE;) {
2497       Instruction *CurInst = &*BI++;
2498       Changed |= performScalarPRE(CurInst);
2499     }
2500   }
2501 
2502   if (splitCriticalEdges())
2503     Changed = true;
2504 
2505   return Changed;
2506 }
2507 
2508 /// Split the critical edge connecting the given two blocks, and return
2509 /// the block inserted to the critical edge.
2510 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
2511   BasicBlock *BB =
2512       SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT));
2513   if (MD)
2514     MD->invalidateCachedPredecessors();
2515   return BB;
2516 }
2517 
2518 /// Split critical edges found during the previous
2519 /// iteration that may enable further optimization.
2520 bool GVN::splitCriticalEdges() {
2521   if (toSplit.empty())
2522     return false;
2523   do {
2524     std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2525     SplitCriticalEdge(Edge.first, Edge.second,
2526                       CriticalEdgeSplittingOptions(DT));
2527   } while (!toSplit.empty());
2528   if (MD) MD->invalidateCachedPredecessors();
2529   return true;
2530 }
2531 
2532 /// Executes one iteration of GVN
2533 bool GVN::iterateOnFunction(Function &F) {
2534   cleanupGlobalSets();
2535 
2536   // Top-down walk of the dominator tree
2537   bool Changed = false;
2538   // Save the blocks this function have before transformation begins. GVN may
2539   // split critical edge, and hence may invalidate the RPO/DT iterator.
2540   //
2541   std::vector<BasicBlock *> BBVect;
2542   BBVect.reserve(256);
2543   // Needed for value numbering with phi construction to work.
2544   ReversePostOrderTraversal<Function *> RPOT(&F);
2545   for (ReversePostOrderTraversal<Function *>::rpo_iterator RI = RPOT.begin(),
2546                                                            RE = RPOT.end();
2547        RI != RE; ++RI)
2548     BBVect.push_back(*RI);
2549 
2550   for (std::vector<BasicBlock *>::iterator I = BBVect.begin(), E = BBVect.end();
2551        I != E; I++)
2552     Changed |= processBlock(*I);
2553 
2554   return Changed;
2555 }
2556 
2557 void GVN::cleanupGlobalSets() {
2558   VN.clear();
2559   LeaderTable.clear();
2560   TableAllocator.Reset();
2561 }
2562 
2563 /// Verify that the specified instruction does not occur in our
2564 /// internal data structures.
2565 void GVN::verifyRemoved(const Instruction *Inst) const {
2566   VN.verifyRemoved(Inst);
2567 
2568   // Walk through the value number scope to make sure the instruction isn't
2569   // ferreted away in it.
2570   for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2571        I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2572     const LeaderTableEntry *Node = &I->second;
2573     assert(Node->Val != Inst && "Inst still in value numbering scope!");
2574 
2575     while (Node->Next) {
2576       Node = Node->Next;
2577       assert(Node->Val != Inst && "Inst still in value numbering scope!");
2578     }
2579   }
2580 }
2581 
2582 /// BB is declared dead, which implied other blocks become dead as well. This
2583 /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
2584 /// live successors, update their phi nodes by replacing the operands
2585 /// corresponding to dead blocks with UndefVal.
2586 void GVN::addDeadBlock(BasicBlock *BB) {
2587   SmallVector<BasicBlock *, 4> NewDead;
2588   SmallSetVector<BasicBlock *, 4> DF;
2589 
2590   NewDead.push_back(BB);
2591   while (!NewDead.empty()) {
2592     BasicBlock *D = NewDead.pop_back_val();
2593     if (DeadBlocks.count(D))
2594       continue;
2595 
2596     // All blocks dominated by D are dead.
2597     SmallVector<BasicBlock *, 8> Dom;
2598     DT->getDescendants(D, Dom);
2599     DeadBlocks.insert(Dom.begin(), Dom.end());
2600 
2601     // Figure out the dominance-frontier(D).
2602     for (BasicBlock *B : Dom) {
2603       for (BasicBlock *S : successors(B)) {
2604         if (DeadBlocks.count(S))
2605           continue;
2606 
2607         bool AllPredDead = true;
2608         for (BasicBlock *P : predecessors(S))
2609           if (!DeadBlocks.count(P)) {
2610             AllPredDead = false;
2611             break;
2612           }
2613 
2614         if (!AllPredDead) {
2615           // S could be proved dead later on. That is why we don't update phi
2616           // operands at this moment.
2617           DF.insert(S);
2618         } else {
2619           // While S is not dominated by D, it is dead by now. This could take
2620           // place if S already have a dead predecessor before D is declared
2621           // dead.
2622           NewDead.push_back(S);
2623         }
2624       }
2625     }
2626   }
2627 
2628   // For the dead blocks' live successors, update their phi nodes by replacing
2629   // the operands corresponding to dead blocks with UndefVal.
2630   for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
2631         I != E; I++) {
2632     BasicBlock *B = *I;
2633     if (DeadBlocks.count(B))
2634       continue;
2635 
2636     SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
2637     for (BasicBlock *P : Preds) {
2638       if (!DeadBlocks.count(P))
2639         continue;
2640 
2641       if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) {
2642         if (BasicBlock *S = splitCriticalEdges(P, B))
2643           DeadBlocks.insert(P = S);
2644       }
2645 
2646       for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) {
2647         PHINode &Phi = cast<PHINode>(*II);
2648         Phi.setIncomingValue(Phi.getBasicBlockIndex(P),
2649                              UndefValue::get(Phi.getType()));
2650       }
2651     }
2652   }
2653 }
2654 
2655 // If the given branch is recognized as a foldable branch (i.e. conditional
2656 // branch with constant condition), it will perform following analyses and
2657 // transformation.
2658 //  1) If the dead out-coming edge is a critical-edge, split it. Let
2659 //     R be the target of the dead out-coming edge.
2660 //  1) Identify the set of dead blocks implied by the branch's dead outcoming
2661 //     edge. The result of this step will be {X| X is dominated by R}
2662 //  2) Identify those blocks which haves at least one dead predecessor. The
2663 //     result of this step will be dominance-frontier(R).
2664 //  3) Update the PHIs in DF(R) by replacing the operands corresponding to
2665 //     dead blocks with "UndefVal" in an hope these PHIs will optimized away.
2666 //
2667 // Return true iff *NEW* dead code are found.
2668 bool GVN::processFoldableCondBr(BranchInst *BI) {
2669   if (!BI || BI->isUnconditional())
2670     return false;
2671 
2672   // If a branch has two identical successors, we cannot declare either dead.
2673   if (BI->getSuccessor(0) == BI->getSuccessor(1))
2674     return false;
2675 
2676   ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
2677   if (!Cond)
2678     return false;
2679 
2680   BasicBlock *DeadRoot =
2681       Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
2682   if (DeadBlocks.count(DeadRoot))
2683     return false;
2684 
2685   if (!DeadRoot->getSinglePredecessor())
2686     DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
2687 
2688   addDeadBlock(DeadRoot);
2689   return true;
2690 }
2691 
2692 // performPRE() will trigger assert if it comes across an instruction without
2693 // associated val-num. As it normally has far more live instructions than dead
2694 // instructions, it makes more sense just to "fabricate" a val-number for the
2695 // dead code than checking if instruction involved is dead or not.
2696 void GVN::assignValNumForDeadCode() {
2697   for (BasicBlock *BB : DeadBlocks) {
2698     for (Instruction &Inst : *BB) {
2699       unsigned ValNum = VN.lookupOrAdd(&Inst);
2700       addToLeaderTable(ValNum, &Inst, BB);
2701     }
2702   }
2703 }
2704 
2705 class llvm::gvn::GVNLegacyPass : public FunctionPass {
2706 public:
2707   static char ID; // Pass identification, replacement for typeid
2708   explicit GVNLegacyPass(bool NoLoads = false)
2709       : FunctionPass(ID), NoLoads(NoLoads) {
2710     initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
2711   }
2712 
2713   bool runOnFunction(Function &F) override {
2714     if (skipFunction(F))
2715       return false;
2716 
2717     return Impl.runImpl(
2718         F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
2719         getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
2720         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
2721         getAnalysis<AAResultsWrapperPass>().getAAResults(),
2722         NoLoads ? nullptr
2723                 : &getAnalysis<MemoryDependenceWrapperPass>().getMemDep());
2724   }
2725 
2726   void getAnalysisUsage(AnalysisUsage &AU) const override {
2727     AU.addRequired<AssumptionCacheTracker>();
2728     AU.addRequired<DominatorTreeWrapperPass>();
2729     AU.addRequired<TargetLibraryInfoWrapperPass>();
2730     if (!NoLoads)
2731       AU.addRequired<MemoryDependenceWrapperPass>();
2732     AU.addRequired<AAResultsWrapperPass>();
2733 
2734     AU.addPreserved<DominatorTreeWrapperPass>();
2735     AU.addPreserved<GlobalsAAWrapperPass>();
2736   }
2737 
2738 private:
2739   bool NoLoads;
2740   GVN Impl;
2741 };
2742 
2743 char GVNLegacyPass::ID = 0;
2744 
2745 // The public interface to this file...
2746 FunctionPass *llvm::createGVNPass(bool NoLoads) {
2747   return new GVNLegacyPass(NoLoads);
2748 }
2749 
2750 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
2751 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2752 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
2753 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2754 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2755 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2756 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
2757 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
2758