1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs global value numbering to eliminate fully redundant
10 // instructions.  It also performs simple dead load elimination.
11 //
12 // Note that this pass does the value numbering itself; it does not use the
13 // ValueNumbering analysis passes.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Scalar/GVN.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DepthFirstIterator.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/MapVector.h"
22 #include "llvm/ADT/PointerIntPair.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/CFG.h"
32 #include "llvm/Analysis/DomTreeUpdater.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/InstructionSimplify.h"
35 #include "llvm/Analysis/LoopInfo.h"
36 #include "llvm/Analysis/MemoryBuiltins.h"
37 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
38 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
39 #include "llvm/Analysis/PHITransAddr.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/ValueTracking.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/Intrinsics.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Metadata.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/PassManager.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/SSAUpdater.h"
76 #include "llvm/Transforms/Utils/VNCoercion.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cstdint>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 using namespace llvm::gvn;
85 using namespace llvm::VNCoercion;
86 using namespace PatternMatch;
87 
88 #define DEBUG_TYPE "gvn"
89 
90 STATISTIC(NumGVNInstr,  "Number of instructions deleted");
91 STATISTIC(NumGVNLoad,   "Number of loads deleted");
92 STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
93 STATISTIC(NumGVNBlocks, "Number of blocks merged");
94 STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
95 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
96 STATISTIC(NumPRELoad,   "Number of loads PRE'd");
97 
98 static cl::opt<bool> EnablePRE("enable-pre",
99                                cl::init(true), cl::Hidden);
100 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
101 static cl::opt<bool> EnableMemDep("enable-gvn-memdep", cl::init(true));
102 
103 // Maximum allowed recursion depth.
104 static cl::opt<uint32_t>
105 MaxRecurseDepth("gvn-max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
106                 cl::desc("Max recurse depth in GVN (default = 1000)"));
107 
108 static cl::opt<uint32_t> MaxNumDeps(
109     "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore,
110     cl::desc("Max number of dependences to attempt Load PRE (default = 100)"));
111 
112 struct llvm::GVN::Expression {
113   uint32_t opcode;
114   Type *type;
115   bool commutative = false;
116   SmallVector<uint32_t, 4> varargs;
117 
118   Expression(uint32_t o = ~2U) : opcode(o) {}
119 
120   bool operator==(const Expression &other) const {
121     if (opcode != other.opcode)
122       return false;
123     if (opcode == ~0U || opcode == ~1U)
124       return true;
125     if (type != other.type)
126       return false;
127     if (varargs != other.varargs)
128       return false;
129     return true;
130   }
131 
132   friend hash_code hash_value(const Expression &Value) {
133     return hash_combine(
134         Value.opcode, Value.type,
135         hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
136   }
137 };
138 
139 namespace llvm {
140 
141 template <> struct DenseMapInfo<GVN::Expression> {
142   static inline GVN::Expression getEmptyKey() { return ~0U; }
143   static inline GVN::Expression getTombstoneKey() { return ~1U; }
144 
145   static unsigned getHashValue(const GVN::Expression &e) {
146     using llvm::hash_value;
147 
148     return static_cast<unsigned>(hash_value(e));
149   }
150 
151   static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) {
152     return LHS == RHS;
153   }
154 };
155 
156 } // end namespace llvm
157 
158 /// Represents a particular available value that we know how to materialize.
159 /// Materialization of an AvailableValue never fails.  An AvailableValue is
160 /// implicitly associated with a rematerialization point which is the
161 /// location of the instruction from which it was formed.
162 struct llvm::gvn::AvailableValue {
163   enum ValType {
164     SimpleVal, // A simple offsetted value that is accessed.
165     LoadVal,   // A value produced by a load.
166     MemIntrin, // A memory intrinsic which is loaded from.
167     UndefVal   // A UndefValue representing a value from dead block (which
168                // is not yet physically removed from the CFG).
169   };
170 
171   /// V - The value that is live out of the block.
172   PointerIntPair<Value *, 2, ValType> Val;
173 
174   /// Offset - The byte offset in Val that is interesting for the load query.
175   unsigned Offset;
176 
177   static AvailableValue get(Value *V, unsigned Offset = 0) {
178     AvailableValue Res;
179     Res.Val.setPointer(V);
180     Res.Val.setInt(SimpleVal);
181     Res.Offset = Offset;
182     return Res;
183   }
184 
185   static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
186     AvailableValue Res;
187     Res.Val.setPointer(MI);
188     Res.Val.setInt(MemIntrin);
189     Res.Offset = Offset;
190     return Res;
191   }
192 
193   static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) {
194     AvailableValue Res;
195     Res.Val.setPointer(LI);
196     Res.Val.setInt(LoadVal);
197     Res.Offset = Offset;
198     return Res;
199   }
200 
201   static AvailableValue getUndef() {
202     AvailableValue Res;
203     Res.Val.setPointer(nullptr);
204     Res.Val.setInt(UndefVal);
205     Res.Offset = 0;
206     return Res;
207   }
208 
209   bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
210   bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
211   bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
212   bool isUndefValue() const { return Val.getInt() == UndefVal; }
213 
214   Value *getSimpleValue() const {
215     assert(isSimpleValue() && "Wrong accessor");
216     return Val.getPointer();
217   }
218 
219   LoadInst *getCoercedLoadValue() const {
220     assert(isCoercedLoadValue() && "Wrong accessor");
221     return cast<LoadInst>(Val.getPointer());
222   }
223 
224   MemIntrinsic *getMemIntrinValue() const {
225     assert(isMemIntrinValue() && "Wrong accessor");
226     return cast<MemIntrinsic>(Val.getPointer());
227   }
228 
229   /// Emit code at the specified insertion point to adjust the value defined
230   /// here to the specified type. This handles various coercion cases.
231   Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt,
232                                   GVN &gvn) const;
233 };
234 
235 /// Represents an AvailableValue which can be rematerialized at the end of
236 /// the associated BasicBlock.
237 struct llvm::gvn::AvailableValueInBlock {
238   /// BB - The basic block in question.
239   BasicBlock *BB;
240 
241   /// AV - The actual available value
242   AvailableValue AV;
243 
244   static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
245     AvailableValueInBlock Res;
246     Res.BB = BB;
247     Res.AV = std::move(AV);
248     return Res;
249   }
250 
251   static AvailableValueInBlock get(BasicBlock *BB, Value *V,
252                                    unsigned Offset = 0) {
253     return get(BB, AvailableValue::get(V, Offset));
254   }
255 
256   static AvailableValueInBlock getUndef(BasicBlock *BB) {
257     return get(BB, AvailableValue::getUndef());
258   }
259 
260   /// Emit code at the end of this block to adjust the value defined here to
261   /// the specified type. This handles various coercion cases.
262   Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const {
263     return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn);
264   }
265 };
266 
267 //===----------------------------------------------------------------------===//
268 //                     ValueTable Internal Functions
269 //===----------------------------------------------------------------------===//
270 
271 GVN::Expression GVN::ValueTable::createExpr(Instruction *I) {
272   Expression e;
273   e.type = I->getType();
274   e.opcode = I->getOpcode();
275   for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
276        OI != OE; ++OI)
277     e.varargs.push_back(lookupOrAdd(*OI));
278   if (I->isCommutative()) {
279     // Ensure that commutative instructions that only differ by a permutation
280     // of their operands get the same value number by sorting the operand value
281     // numbers.  Since all commutative instructions have two operands it is more
282     // efficient to sort by hand rather than using, say, std::sort.
283     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
284     if (e.varargs[0] > e.varargs[1])
285       std::swap(e.varargs[0], e.varargs[1]);
286     e.commutative = true;
287   }
288 
289   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
290     // Sort the operand value numbers so x<y and y>x get the same value number.
291     CmpInst::Predicate Predicate = C->getPredicate();
292     if (e.varargs[0] > e.varargs[1]) {
293       std::swap(e.varargs[0], e.varargs[1]);
294       Predicate = CmpInst::getSwappedPredicate(Predicate);
295     }
296     e.opcode = (C->getOpcode() << 8) | Predicate;
297     e.commutative = true;
298   } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
299     for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
300          II != IE; ++II)
301       e.varargs.push_back(*II);
302   }
303 
304   return e;
305 }
306 
307 GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode,
308                                                CmpInst::Predicate Predicate,
309                                                Value *LHS, Value *RHS) {
310   assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
311          "Not a comparison!");
312   Expression e;
313   e.type = CmpInst::makeCmpResultType(LHS->getType());
314   e.varargs.push_back(lookupOrAdd(LHS));
315   e.varargs.push_back(lookupOrAdd(RHS));
316 
317   // Sort the operand value numbers so x<y and y>x get the same value number.
318   if (e.varargs[0] > e.varargs[1]) {
319     std::swap(e.varargs[0], e.varargs[1]);
320     Predicate = CmpInst::getSwappedPredicate(Predicate);
321   }
322   e.opcode = (Opcode << 8) | Predicate;
323   e.commutative = true;
324   return e;
325 }
326 
327 GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
328   assert(EI && "Not an ExtractValueInst?");
329   Expression e;
330   e.type = EI->getType();
331   e.opcode = 0;
332 
333   WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
334   if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
335     // EI is an extract from one of our with.overflow intrinsics. Synthesize
336     // a semantically equivalent expression instead of an extract value
337     // expression.
338     e.opcode = WO->getBinaryOp();
339     e.varargs.push_back(lookupOrAdd(WO->getLHS()));
340     e.varargs.push_back(lookupOrAdd(WO->getRHS()));
341     return e;
342   }
343 
344   // Not a recognised intrinsic. Fall back to producing an extract value
345   // expression.
346   e.opcode = EI->getOpcode();
347   for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
348        OI != OE; ++OI)
349     e.varargs.push_back(lookupOrAdd(*OI));
350 
351   for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
352          II != IE; ++II)
353     e.varargs.push_back(*II);
354 
355   return e;
356 }
357 
358 //===----------------------------------------------------------------------===//
359 //                     ValueTable External Functions
360 //===----------------------------------------------------------------------===//
361 
362 GVN::ValueTable::ValueTable() = default;
363 GVN::ValueTable::ValueTable(const ValueTable &) = default;
364 GVN::ValueTable::ValueTable(ValueTable &&) = default;
365 GVN::ValueTable::~ValueTable() = default;
366 
367 /// add - Insert a value into the table with a specified value number.
368 void GVN::ValueTable::add(Value *V, uint32_t num) {
369   valueNumbering.insert(std::make_pair(V, num));
370   if (PHINode *PN = dyn_cast<PHINode>(V))
371     NumberingPhi[num] = PN;
372 }
373 
374 uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) {
375   if (AA->doesNotAccessMemory(C)) {
376     Expression exp = createExpr(C);
377     uint32_t e = assignExpNewValueNum(exp).first;
378     valueNumbering[C] = e;
379     return e;
380   } else if (MD && AA->onlyReadsMemory(C)) {
381     Expression exp = createExpr(C);
382     auto ValNum = assignExpNewValueNum(exp);
383     if (ValNum.second) {
384       valueNumbering[C] = ValNum.first;
385       return ValNum.first;
386     }
387 
388     MemDepResult local_dep = MD->getDependency(C);
389 
390     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
391       valueNumbering[C] =  nextValueNumber;
392       return nextValueNumber++;
393     }
394 
395     if (local_dep.isDef()) {
396       CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
397 
398       if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
399         valueNumbering[C] = nextValueNumber;
400         return nextValueNumber++;
401       }
402 
403       for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
404         uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
405         uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
406         if (c_vn != cd_vn) {
407           valueNumbering[C] = nextValueNumber;
408           return nextValueNumber++;
409         }
410       }
411 
412       uint32_t v = lookupOrAdd(local_cdep);
413       valueNumbering[C] = v;
414       return v;
415     }
416 
417     // Non-local case.
418     const MemoryDependenceResults::NonLocalDepInfo &deps =
419         MD->getNonLocalCallDependency(C);
420     // FIXME: Move the checking logic to MemDep!
421     CallInst* cdep = nullptr;
422 
423     // Check to see if we have a single dominating call instruction that is
424     // identical to C.
425     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
426       const NonLocalDepEntry *I = &deps[i];
427       if (I->getResult().isNonLocal())
428         continue;
429 
430       // We don't handle non-definitions.  If we already have a call, reject
431       // instruction dependencies.
432       if (!I->getResult().isDef() || cdep != nullptr) {
433         cdep = nullptr;
434         break;
435       }
436 
437       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
438       // FIXME: All duplicated with non-local case.
439       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
440         cdep = NonLocalDepCall;
441         continue;
442       }
443 
444       cdep = nullptr;
445       break;
446     }
447 
448     if (!cdep) {
449       valueNumbering[C] = nextValueNumber;
450       return nextValueNumber++;
451     }
452 
453     if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
454       valueNumbering[C] = nextValueNumber;
455       return nextValueNumber++;
456     }
457     for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
458       uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
459       uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
460       if (c_vn != cd_vn) {
461         valueNumbering[C] = nextValueNumber;
462         return nextValueNumber++;
463       }
464     }
465 
466     uint32_t v = lookupOrAdd(cdep);
467     valueNumbering[C] = v;
468     return v;
469   } else {
470     valueNumbering[C] = nextValueNumber;
471     return nextValueNumber++;
472   }
473 }
474 
475 /// Returns true if a value number exists for the specified value.
476 bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; }
477 
478 /// lookup_or_add - Returns the value number for the specified value, assigning
479 /// it a new number if it did not have one before.
480 uint32_t GVN::ValueTable::lookupOrAdd(Value *V) {
481   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
482   if (VI != valueNumbering.end())
483     return VI->second;
484 
485   if (!isa<Instruction>(V)) {
486     valueNumbering[V] = nextValueNumber;
487     return nextValueNumber++;
488   }
489 
490   Instruction* I = cast<Instruction>(V);
491   Expression exp;
492   switch (I->getOpcode()) {
493     case Instruction::Call:
494       return lookupOrAddCall(cast<CallInst>(I));
495     case Instruction::Add:
496     case Instruction::FAdd:
497     case Instruction::Sub:
498     case Instruction::FSub:
499     case Instruction::Mul:
500     case Instruction::FMul:
501     case Instruction::UDiv:
502     case Instruction::SDiv:
503     case Instruction::FDiv:
504     case Instruction::URem:
505     case Instruction::SRem:
506     case Instruction::FRem:
507     case Instruction::Shl:
508     case Instruction::LShr:
509     case Instruction::AShr:
510     case Instruction::And:
511     case Instruction::Or:
512     case Instruction::Xor:
513     case Instruction::ICmp:
514     case Instruction::FCmp:
515     case Instruction::Trunc:
516     case Instruction::ZExt:
517     case Instruction::SExt:
518     case Instruction::FPToUI:
519     case Instruction::FPToSI:
520     case Instruction::UIToFP:
521     case Instruction::SIToFP:
522     case Instruction::FPTrunc:
523     case Instruction::FPExt:
524     case Instruction::PtrToInt:
525     case Instruction::IntToPtr:
526     case Instruction::AddrSpaceCast:
527     case Instruction::BitCast:
528     case Instruction::Select:
529     case Instruction::ExtractElement:
530     case Instruction::InsertElement:
531     case Instruction::ShuffleVector:
532     case Instruction::InsertValue:
533     case Instruction::GetElementPtr:
534       exp = createExpr(I);
535       break;
536     case Instruction::ExtractValue:
537       exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
538       break;
539     case Instruction::PHI:
540       valueNumbering[V] = nextValueNumber;
541       NumberingPhi[nextValueNumber] = cast<PHINode>(V);
542       return nextValueNumber++;
543     default:
544       valueNumbering[V] = nextValueNumber;
545       return nextValueNumber++;
546   }
547 
548   uint32_t e = assignExpNewValueNum(exp).first;
549   valueNumbering[V] = e;
550   return e;
551 }
552 
553 /// Returns the value number of the specified value. Fails if
554 /// the value has not yet been numbered.
555 uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const {
556   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
557   if (Verify) {
558     assert(VI != valueNumbering.end() && "Value not numbered?");
559     return VI->second;
560   }
561   return (VI != valueNumbering.end()) ? VI->second : 0;
562 }
563 
564 /// Returns the value number of the given comparison,
565 /// assigning it a new number if it did not have one before.  Useful when
566 /// we deduced the result of a comparison, but don't immediately have an
567 /// instruction realizing that comparison to hand.
568 uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode,
569                                          CmpInst::Predicate Predicate,
570                                          Value *LHS, Value *RHS) {
571   Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
572   return assignExpNewValueNum(exp).first;
573 }
574 
575 /// Remove all entries from the ValueTable.
576 void GVN::ValueTable::clear() {
577   valueNumbering.clear();
578   expressionNumbering.clear();
579   NumberingPhi.clear();
580   PhiTranslateTable.clear();
581   nextValueNumber = 1;
582   Expressions.clear();
583   ExprIdx.clear();
584   nextExprNumber = 0;
585 }
586 
587 /// Remove a value from the value numbering.
588 void GVN::ValueTable::erase(Value *V) {
589   uint32_t Num = valueNumbering.lookup(V);
590   valueNumbering.erase(V);
591   // If V is PHINode, V <--> value number is an one-to-one mapping.
592   if (isa<PHINode>(V))
593     NumberingPhi.erase(Num);
594 }
595 
596 /// verifyRemoved - Verify that the value is removed from all internal data
597 /// structures.
598 void GVN::ValueTable::verifyRemoved(const Value *V) const {
599   for (DenseMap<Value*, uint32_t>::const_iterator
600          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
601     assert(I->first != V && "Inst still occurs in value numbering map!");
602   }
603 }
604 
605 //===----------------------------------------------------------------------===//
606 //                                GVN Pass
607 //===----------------------------------------------------------------------===//
608 
609 PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) {
610   // FIXME: The order of evaluation of these 'getResult' calls is very
611   // significant! Re-ordering these variables will cause GVN when run alone to
612   // be less effective! We should fix memdep and basic-aa to not exhibit this
613   // behavior, but until then don't change the order here.
614   auto &AC = AM.getResult<AssumptionAnalysis>(F);
615   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
616   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
617   auto &AA = AM.getResult<AAManager>(F);
618   auto &MemDep = AM.getResult<MemoryDependenceAnalysis>(F);
619   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
620   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
621   bool Changed = runImpl(F, AC, DT, TLI, AA, &MemDep, LI, &ORE);
622   if (!Changed)
623     return PreservedAnalyses::all();
624   PreservedAnalyses PA;
625   PA.preserve<DominatorTreeAnalysis>();
626   PA.preserve<GlobalsAA>();
627   PA.preserve<TargetLibraryAnalysis>();
628   return PA;
629 }
630 
631 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
632 LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const {
633   errs() << "{\n";
634   for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
635        E = d.end(); I != E; ++I) {
636       errs() << I->first << "\n";
637       I->second->dump();
638   }
639   errs() << "}\n";
640 }
641 #endif
642 
643 /// Return true if we can prove that the value
644 /// we're analyzing is fully available in the specified block.  As we go, keep
645 /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
646 /// map is actually a tri-state map with the following values:
647 ///   0) we know the block *is not* fully available.
648 ///   1) we know the block *is* fully available.
649 ///   2) we do not know whether the block is fully available or not, but we are
650 ///      currently speculating that it will be.
651 ///   3) we are speculating for this block and have used that to speculate for
652 ///      other blocks.
653 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
654                             DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
655                             uint32_t RecurseDepth) {
656   if (RecurseDepth > MaxRecurseDepth)
657     return false;
658 
659   // Optimistically assume that the block is fully available and check to see
660   // if we already know about this block in one lookup.
661   std::pair<DenseMap<BasicBlock*, char>::iterator, bool> IV =
662     FullyAvailableBlocks.insert(std::make_pair(BB, 2));
663 
664   // If the entry already existed for this block, return the precomputed value.
665   if (!IV.second) {
666     // If this is a speculative "available" value, mark it as being used for
667     // speculation of other blocks.
668     if (IV.first->second == 2)
669       IV.first->second = 3;
670     return IV.first->second != 0;
671   }
672 
673   // Otherwise, see if it is fully available in all predecessors.
674   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
675 
676   // If this block has no predecessors, it isn't live-in here.
677   if (PI == PE)
678     goto SpeculationFailure;
679 
680   for (; PI != PE; ++PI)
681     // If the value isn't fully available in one of our predecessors, then it
682     // isn't fully available in this block either.  Undo our previous
683     // optimistic assumption and bail out.
684     if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
685       goto SpeculationFailure;
686 
687   return true;
688 
689 // If we get here, we found out that this is not, after
690 // all, a fully-available block.  We have a problem if we speculated on this and
691 // used the speculation to mark other blocks as available.
692 SpeculationFailure:
693   char &BBVal = FullyAvailableBlocks[BB];
694 
695   // If we didn't speculate on this, just return with it set to false.
696   if (BBVal == 2) {
697     BBVal = 0;
698     return false;
699   }
700 
701   // If we did speculate on this value, we could have blocks set to 1 that are
702   // incorrect.  Walk the (transitive) successors of this block and mark them as
703   // 0 if set to one.
704   SmallVector<BasicBlock*, 32> BBWorklist;
705   BBWorklist.push_back(BB);
706 
707   do {
708     BasicBlock *Entry = BBWorklist.pop_back_val();
709     // Note that this sets blocks to 0 (unavailable) if they happen to not
710     // already be in FullyAvailableBlocks.  This is safe.
711     char &EntryVal = FullyAvailableBlocks[Entry];
712     if (EntryVal == 0) continue;  // Already unavailable.
713 
714     // Mark as unavailable.
715     EntryVal = 0;
716 
717     BBWorklist.append(succ_begin(Entry), succ_end(Entry));
718   } while (!BBWorklist.empty());
719 
720   return false;
721 }
722 
723 /// Given a set of loads specified by ValuesPerBlock,
724 /// construct SSA form, allowing us to eliminate LI.  This returns the value
725 /// that should be used at LI's definition site.
726 static Value *ConstructSSAForLoadSet(LoadInst *LI,
727                          SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
728                                      GVN &gvn) {
729   // Check for the fully redundant, dominating load case.  In this case, we can
730   // just use the dominating value directly.
731   if (ValuesPerBlock.size() == 1 &&
732       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
733                                                LI->getParent())) {
734     assert(!ValuesPerBlock[0].AV.isUndefValue() &&
735            "Dead BB dominate this block");
736     return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
737   }
738 
739   // Otherwise, we have to construct SSA form.
740   SmallVector<PHINode*, 8> NewPHIs;
741   SSAUpdater SSAUpdate(&NewPHIs);
742   SSAUpdate.Initialize(LI->getType(), LI->getName());
743 
744   for (const AvailableValueInBlock &AV : ValuesPerBlock) {
745     BasicBlock *BB = AV.BB;
746 
747     if (SSAUpdate.HasValueForBlock(BB))
748       continue;
749 
750     // If the value is the load that we will be eliminating, and the block it's
751     // available in is the block that the load is in, then don't add it as
752     // SSAUpdater will resolve the value to the relevant phi which may let it
753     // avoid phi construction entirely if there's actually only one value.
754     if (BB == LI->getParent() &&
755         ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == LI) ||
756          (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == LI)))
757       continue;
758 
759     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
760   }
761 
762   // Perform PHI construction.
763   return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
764 }
765 
766 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI,
767                                                 Instruction *InsertPt,
768                                                 GVN &gvn) const {
769   Value *Res;
770   Type *LoadTy = LI->getType();
771   const DataLayout &DL = LI->getModule()->getDataLayout();
772   if (isSimpleValue()) {
773     Res = getSimpleValue();
774     if (Res->getType() != LoadTy) {
775       Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
776 
777       LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset
778                         << "  " << *getSimpleValue() << '\n'
779                         << *Res << '\n'
780                         << "\n\n\n");
781     }
782   } else if (isCoercedLoadValue()) {
783     LoadInst *Load = getCoercedLoadValue();
784     if (Load->getType() == LoadTy && Offset == 0) {
785       Res = Load;
786     } else {
787       Res = getLoadValueForLoad(Load, Offset, LoadTy, InsertPt, DL);
788       // We would like to use gvn.markInstructionForDeletion here, but we can't
789       // because the load is already memoized into the leader map table that GVN
790       // tracks.  It is potentially possible to remove the load from the table,
791       // but then there all of the operations based on it would need to be
792       // rehashed.  Just leave the dead load around.
793       gvn.getMemDep().removeInstruction(Load);
794       LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset
795                         << "  " << *getCoercedLoadValue() << '\n'
796                         << *Res << '\n'
797                         << "\n\n\n");
798     }
799   } else if (isMemIntrinValue()) {
800     Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
801                                  InsertPt, DL);
802     LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
803                       << "  " << *getMemIntrinValue() << '\n'
804                       << *Res << '\n'
805                       << "\n\n\n");
806   } else {
807     assert(isUndefValue() && "Should be UndefVal");
808     LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
809     return UndefValue::get(LoadTy);
810   }
811   assert(Res && "failed to materialize?");
812   return Res;
813 }
814 
815 static bool isLifetimeStart(const Instruction *Inst) {
816   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
817     return II->getIntrinsicID() == Intrinsic::lifetime_start;
818   return false;
819 }
820 
821 /// Try to locate the three instruction involved in a missed
822 /// load-elimination case that is due to an intervening store.
823 static void reportMayClobberedLoad(LoadInst *LI, MemDepResult DepInfo,
824                                    DominatorTree *DT,
825                                    OptimizationRemarkEmitter *ORE) {
826   using namespace ore;
827 
828   User *OtherAccess = nullptr;
829 
830   OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", LI);
831   R << "load of type " << NV("Type", LI->getType()) << " not eliminated"
832     << setExtraArgs();
833 
834   for (auto *U : LI->getPointerOperand()->users())
835     if (U != LI && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
836         DT->dominates(cast<Instruction>(U), LI)) {
837       // FIXME: for now give up if there are multiple memory accesses that
838       // dominate the load.  We need further analysis to decide which one is
839       // that we're forwarding from.
840       if (OtherAccess)
841         OtherAccess = nullptr;
842       else
843         OtherAccess = U;
844     }
845 
846   if (OtherAccess)
847     R << " in favor of " << NV("OtherAccess", OtherAccess);
848 
849   R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst());
850 
851   ORE->emit(R);
852 }
853 
854 bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo,
855                                   Value *Address, AvailableValue &Res) {
856   assert((DepInfo.isDef() || DepInfo.isClobber()) &&
857          "expected a local dependence");
858   assert(LI->isUnordered() && "rules below are incorrect for ordered access");
859 
860   const DataLayout &DL = LI->getModule()->getDataLayout();
861 
862   Instruction *DepInst = DepInfo.getInst();
863   if (DepInfo.isClobber()) {
864     // If the dependence is to a store that writes to a superset of the bits
865     // read by the load, we can extract the bits we need for the load from the
866     // stored value.
867     if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
868       // Can't forward from non-atomic to atomic without violating memory model.
869       if (Address && LI->isAtomic() <= DepSI->isAtomic()) {
870         int Offset =
871           analyzeLoadFromClobberingStore(LI->getType(), Address, DepSI, DL);
872         if (Offset != -1) {
873           Res = AvailableValue::get(DepSI->getValueOperand(), Offset);
874           return true;
875         }
876       }
877     }
878 
879     // Check to see if we have something like this:
880     //    load i32* P
881     //    load i8* (P+1)
882     // if we have this, replace the later with an extraction from the former.
883     if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
884       // If this is a clobber and L is the first instruction in its block, then
885       // we have the first instruction in the entry block.
886       // Can't forward from non-atomic to atomic without violating memory model.
887       if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) {
888         int Offset =
889           analyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
890 
891         if (Offset != -1) {
892           Res = AvailableValue::getLoad(DepLI, Offset);
893           return true;
894         }
895       }
896     }
897 
898     // If the clobbering value is a memset/memcpy/memmove, see if we can
899     // forward a value on from it.
900     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
901       if (Address && !LI->isAtomic()) {
902         int Offset = analyzeLoadFromClobberingMemInst(LI->getType(), Address,
903                                                       DepMI, DL);
904         if (Offset != -1) {
905           Res = AvailableValue::getMI(DepMI, Offset);
906           return true;
907         }
908       }
909     }
910     // Nothing known about this clobber, have to be conservative
911     LLVM_DEBUG(
912         // fast print dep, using operator<< on instruction is too slow.
913         dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
914         dbgs() << " is clobbered by " << *DepInst << '\n';);
915     if (ORE->allowExtraAnalysis(DEBUG_TYPE))
916       reportMayClobberedLoad(LI, DepInfo, DT, ORE);
917 
918     return false;
919   }
920   assert(DepInfo.isDef() && "follows from above");
921 
922   // Loading the allocation -> undef.
923   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
924       // Loading immediately after lifetime begin -> undef.
925       isLifetimeStart(DepInst)) {
926     Res = AvailableValue::get(UndefValue::get(LI->getType()));
927     return true;
928   }
929 
930   // Loading from calloc (which zero initializes memory) -> zero
931   if (isCallocLikeFn(DepInst, TLI)) {
932     Res = AvailableValue::get(Constant::getNullValue(LI->getType()));
933     return true;
934   }
935 
936   if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
937     // Reject loads and stores that are to the same address but are of
938     // different types if we have to. If the stored value is larger or equal to
939     // the loaded value, we can reuse it.
940     if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), LI->getType(),
941                                          DL))
942       return false;
943 
944     // Can't forward from non-atomic to atomic without violating memory model.
945     if (S->isAtomic() < LI->isAtomic())
946       return false;
947 
948     Res = AvailableValue::get(S->getValueOperand());
949     return true;
950   }
951 
952   if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
953     // If the types mismatch and we can't handle it, reject reuse of the load.
954     // If the stored value is larger or equal to the loaded value, we can reuse
955     // it.
956     if (!canCoerceMustAliasedValueToLoad(LD, LI->getType(), DL))
957       return false;
958 
959     // Can't forward from non-atomic to atomic without violating memory model.
960     if (LD->isAtomic() < LI->isAtomic())
961       return false;
962 
963     Res = AvailableValue::getLoad(LD);
964     return true;
965   }
966 
967   // Unknown def - must be conservative
968   LLVM_DEBUG(
969       // fast print dep, using operator<< on instruction is too slow.
970       dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
971       dbgs() << " has unknown def " << *DepInst << '\n';);
972   return false;
973 }
974 
975 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
976                                   AvailValInBlkVect &ValuesPerBlock,
977                                   UnavailBlkVect &UnavailableBlocks) {
978   // Filter out useless results (non-locals, etc).  Keep track of the blocks
979   // where we have a value available in repl, also keep track of whether we see
980   // dependencies that produce an unknown value for the load (such as a call
981   // that could potentially clobber the load).
982   unsigned NumDeps = Deps.size();
983   for (unsigned i = 0, e = NumDeps; i != e; ++i) {
984     BasicBlock *DepBB = Deps[i].getBB();
985     MemDepResult DepInfo = Deps[i].getResult();
986 
987     if (DeadBlocks.count(DepBB)) {
988       // Dead dependent mem-op disguise as a load evaluating the same value
989       // as the load in question.
990       ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
991       continue;
992     }
993 
994     if (!DepInfo.isDef() && !DepInfo.isClobber()) {
995       UnavailableBlocks.push_back(DepBB);
996       continue;
997     }
998 
999     // The address being loaded in this non-local block may not be the same as
1000     // the pointer operand of the load if PHI translation occurs.  Make sure
1001     // to consider the right address.
1002     Value *Address = Deps[i].getAddress();
1003 
1004     AvailableValue AV;
1005     if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) {
1006       // subtlety: because we know this was a non-local dependency, we know
1007       // it's safe to materialize anywhere between the instruction within
1008       // DepInfo and the end of it's block.
1009       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1010                                                           std::move(AV)));
1011     } else {
1012       UnavailableBlocks.push_back(DepBB);
1013     }
1014   }
1015 
1016   assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() &&
1017          "post condition violation");
1018 }
1019 
1020 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
1021                          UnavailBlkVect &UnavailableBlocks) {
1022   // Okay, we have *some* definitions of the value.  This means that the value
1023   // is available in some of our (transitive) predecessors.  Lets think about
1024   // doing PRE of this load.  This will involve inserting a new load into the
1025   // predecessor when it's not available.  We could do this in general, but
1026   // prefer to not increase code size.  As such, we only do this when we know
1027   // that we only have to insert *one* load (which means we're basically moving
1028   // the load, not inserting a new one).
1029 
1030   SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
1031                                         UnavailableBlocks.end());
1032 
1033   // Let's find the first basic block with more than one predecessor.  Walk
1034   // backwards through predecessors if needed.
1035   BasicBlock *LoadBB = LI->getParent();
1036   BasicBlock *TmpBB = LoadBB;
1037   bool IsSafeToSpeculativelyExecute = isSafeToSpeculativelyExecute(LI);
1038 
1039   // Check that there is no implicit control flow instructions above our load in
1040   // its block. If there is an instruction that doesn't always pass the
1041   // execution to the following instruction, then moving through it may become
1042   // invalid. For example:
1043   //
1044   // int arr[LEN];
1045   // int index = ???;
1046   // ...
1047   // guard(0 <= index && index < LEN);
1048   // use(arr[index]);
1049   //
1050   // It is illegal to move the array access to any point above the guard,
1051   // because if the index is out of bounds we should deoptimize rather than
1052   // access the array.
1053   // Check that there is no guard in this block above our instruction.
1054   if (!IsSafeToSpeculativelyExecute && ICF->isDominatedByICFIFromSameBlock(LI))
1055     return false;
1056   while (TmpBB->getSinglePredecessor()) {
1057     TmpBB = TmpBB->getSinglePredecessor();
1058     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1059       return false;
1060     if (Blockers.count(TmpBB))
1061       return false;
1062 
1063     // If any of these blocks has more than one successor (i.e. if the edge we
1064     // just traversed was critical), then there are other paths through this
1065     // block along which the load may not be anticipated.  Hoisting the load
1066     // above this block would be adding the load to execution paths along
1067     // which it was not previously executed.
1068     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1069       return false;
1070 
1071     // Check that there is no implicit control flow in a block above.
1072     if (!IsSafeToSpeculativelyExecute && ICF->hasICF(TmpBB))
1073       return false;
1074   }
1075 
1076   assert(TmpBB);
1077   LoadBB = TmpBB;
1078 
1079   // Check to see how many predecessors have the loaded value fully
1080   // available.
1081   MapVector<BasicBlock *, Value *> PredLoads;
1082   DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1083   for (const AvailableValueInBlock &AV : ValuesPerBlock)
1084     FullyAvailableBlocks[AV.BB] = true;
1085   for (BasicBlock *UnavailableBB : UnavailableBlocks)
1086     FullyAvailableBlocks[UnavailableBB] = false;
1087 
1088   SmallVector<BasicBlock *, 4> CriticalEdgePred;
1089   for (BasicBlock *Pred : predecessors(LoadBB)) {
1090     // If any predecessor block is an EH pad that does not allow non-PHI
1091     // instructions before the terminator, we can't PRE the load.
1092     if (Pred->getTerminator()->isEHPad()) {
1093       LLVM_DEBUG(
1094           dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
1095                  << Pred->getName() << "': " << *LI << '\n');
1096       return false;
1097     }
1098 
1099     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
1100       continue;
1101     }
1102 
1103     if (Pred->getTerminator()->getNumSuccessors() != 1) {
1104       if (isa<IndirectBrInst>(Pred->getTerminator())) {
1105         LLVM_DEBUG(
1106             dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1107                    << Pred->getName() << "': " << *LI << '\n');
1108         return false;
1109       }
1110 
1111       // FIXME: Can we support the fallthrough edge?
1112       if (isa<CallBrInst>(Pred->getTerminator())) {
1113         LLVM_DEBUG(
1114             dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '"
1115                    << Pred->getName() << "': " << *LI << '\n');
1116         return false;
1117       }
1118 
1119       if (LoadBB->isEHPad()) {
1120         LLVM_DEBUG(
1121             dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
1122                    << Pred->getName() << "': " << *LI << '\n');
1123         return false;
1124       }
1125 
1126       CriticalEdgePred.push_back(Pred);
1127     } else {
1128       // Only add the predecessors that will not be split for now.
1129       PredLoads[Pred] = nullptr;
1130     }
1131   }
1132 
1133   // Decide whether PRE is profitable for this load.
1134   unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
1135   assert(NumUnavailablePreds != 0 &&
1136          "Fully available value should already be eliminated!");
1137 
1138   // If this load is unavailable in multiple predecessors, reject it.
1139   // FIXME: If we could restructure the CFG, we could make a common pred with
1140   // all the preds that don't have an available LI and insert a new load into
1141   // that one block.
1142   if (NumUnavailablePreds != 1)
1143       return false;
1144 
1145   // Split critical edges, and update the unavailable predecessors accordingly.
1146   for (BasicBlock *OrigPred : CriticalEdgePred) {
1147     BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1148     assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
1149     PredLoads[NewPred] = nullptr;
1150     LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1151                       << LoadBB->getName() << '\n');
1152   }
1153 
1154   // Check if the load can safely be moved to all the unavailable predecessors.
1155   bool CanDoPRE = true;
1156   const DataLayout &DL = LI->getModule()->getDataLayout();
1157   SmallVector<Instruction*, 8> NewInsts;
1158   for (auto &PredLoad : PredLoads) {
1159     BasicBlock *UnavailablePred = PredLoad.first;
1160 
1161     // Do PHI translation to get its value in the predecessor if necessary.  The
1162     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1163 
1164     // If all preds have a single successor, then we know it is safe to insert
1165     // the load on the pred (?!?), so we can insert code to materialize the
1166     // pointer if it is not available.
1167     PHITransAddr Address(LI->getPointerOperand(), DL, AC);
1168     Value *LoadPtr = nullptr;
1169     LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1170                                                 *DT, NewInsts);
1171 
1172     // If we couldn't find or insert a computation of this phi translated value,
1173     // we fail PRE.
1174     if (!LoadPtr) {
1175       LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1176                         << *LI->getPointerOperand() << "\n");
1177       CanDoPRE = false;
1178       break;
1179     }
1180 
1181     PredLoad.second = LoadPtr;
1182   }
1183 
1184   if (!CanDoPRE) {
1185     while (!NewInsts.empty()) {
1186       Instruction *I = NewInsts.pop_back_val();
1187       markInstructionForDeletion(I);
1188     }
1189     // HINT: Don't revert the edge-splitting as following transformation may
1190     // also need to split these critical edges.
1191     return !CriticalEdgePred.empty();
1192   }
1193 
1194   // Okay, we can eliminate this load by inserting a reload in the predecessor
1195   // and using PHI construction to get the value in the other predecessors, do
1196   // it.
1197   LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1198   LLVM_DEBUG(if (!NewInsts.empty()) dbgs()
1199              << "INSERTED " << NewInsts.size() << " INSTS: " << *NewInsts.back()
1200              << '\n');
1201 
1202   // Assign value numbers to the new instructions.
1203   for (Instruction *I : NewInsts) {
1204     // Instructions that have been inserted in predecessor(s) to materialize
1205     // the load address do not retain their original debug locations. Doing
1206     // so could lead to confusing (but correct) source attributions.
1207     if (const DebugLoc &DL = I->getDebugLoc())
1208       I->setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
1209 
1210     // FIXME: We really _ought_ to insert these value numbers into their
1211     // parent's availability map.  However, in doing so, we risk getting into
1212     // ordering issues.  If a block hasn't been processed yet, we would be
1213     // marking a value as AVAIL-IN, which isn't what we intend.
1214     VN.lookupOrAdd(I);
1215   }
1216 
1217   for (const auto &PredLoad : PredLoads) {
1218     BasicBlock *UnavailablePred = PredLoad.first;
1219     Value *LoadPtr = PredLoad.second;
1220 
1221     auto *NewLoad =
1222         new LoadInst(LI->getType(), LoadPtr, LI->getName() + ".pre",
1223                      LI->isVolatile(), LI->getAlignment(), LI->getOrdering(),
1224                      LI->getSyncScopeID(), UnavailablePred->getTerminator());
1225     NewLoad->setDebugLoc(LI->getDebugLoc());
1226 
1227     // Transfer the old load's AA tags to the new load.
1228     AAMDNodes Tags;
1229     LI->getAAMetadata(Tags);
1230     if (Tags)
1231       NewLoad->setAAMetadata(Tags);
1232 
1233     if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load))
1234       NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
1235     if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group))
1236       NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
1237     if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range))
1238       NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
1239 
1240     // We do not propagate the old load's debug location, because the new
1241     // load now lives in a different BB, and we want to avoid a jumpy line
1242     // table.
1243     // FIXME: How do we retain source locations without causing poor debugging
1244     // behavior?
1245 
1246     // Add the newly created load.
1247     ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1248                                                         NewLoad));
1249     MD->invalidateCachedPointerInfo(LoadPtr);
1250     LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1251   }
1252 
1253   // Perform PHI construction.
1254   Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1255   LI->replaceAllUsesWith(V);
1256   if (isa<PHINode>(V))
1257     V->takeName(LI);
1258   if (Instruction *I = dyn_cast<Instruction>(V))
1259     I->setDebugLoc(LI->getDebugLoc());
1260   if (V->getType()->isPtrOrPtrVectorTy())
1261     MD->invalidateCachedPointerInfo(V);
1262   markInstructionForDeletion(LI);
1263   ORE->emit([&]() {
1264     return OptimizationRemark(DEBUG_TYPE, "LoadPRE", LI)
1265            << "load eliminated by PRE";
1266   });
1267   ++NumPRELoad;
1268   return true;
1269 }
1270 
1271 static void reportLoadElim(LoadInst *LI, Value *AvailableValue,
1272                            OptimizationRemarkEmitter *ORE) {
1273   using namespace ore;
1274 
1275   ORE->emit([&]() {
1276     return OptimizationRemark(DEBUG_TYPE, "LoadElim", LI)
1277            << "load of type " << NV("Type", LI->getType()) << " eliminated"
1278            << setExtraArgs() << " in favor of "
1279            << NV("InfavorOfValue", AvailableValue);
1280   });
1281 }
1282 
1283 /// Attempt to eliminate a load whose dependencies are
1284 /// non-local by performing PHI construction.
1285 bool GVN::processNonLocalLoad(LoadInst *LI) {
1286   // non-local speculations are not allowed under asan.
1287   if (LI->getParent()->getParent()->hasFnAttribute(
1288           Attribute::SanitizeAddress) ||
1289       LI->getParent()->getParent()->hasFnAttribute(
1290           Attribute::SanitizeHWAddress))
1291     return false;
1292 
1293   // Step 1: Find the non-local dependencies of the load.
1294   LoadDepVect Deps;
1295   MD->getNonLocalPointerDependency(LI, Deps);
1296 
1297   // If we had to process more than one hundred blocks to find the
1298   // dependencies, this load isn't worth worrying about.  Optimizing
1299   // it will be too expensive.
1300   unsigned NumDeps = Deps.size();
1301   if (NumDeps > MaxNumDeps)
1302     return false;
1303 
1304   // If we had a phi translation failure, we'll have a single entry which is a
1305   // clobber in the current block.  Reject this early.
1306   if (NumDeps == 1 &&
1307       !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1308     LLVM_DEBUG(dbgs() << "GVN: non-local load "; LI->printAsOperand(dbgs());
1309                dbgs() << " has unknown dependencies\n";);
1310     return false;
1311   }
1312 
1313   // If this load follows a GEP, see if we can PRE the indices before analyzing.
1314   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
1315     for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
1316                                         OE = GEP->idx_end();
1317          OI != OE; ++OI)
1318       if (Instruction *I = dyn_cast<Instruction>(OI->get()))
1319         performScalarPRE(I);
1320   }
1321 
1322   // Step 2: Analyze the availability of the load
1323   AvailValInBlkVect ValuesPerBlock;
1324   UnavailBlkVect UnavailableBlocks;
1325   AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
1326 
1327   // If we have no predecessors that produce a known value for this load, exit
1328   // early.
1329   if (ValuesPerBlock.empty())
1330     return false;
1331 
1332   // Step 3: Eliminate fully redundancy.
1333   //
1334   // If all of the instructions we depend on produce a known value for this
1335   // load, then it is fully redundant and we can use PHI insertion to compute
1336   // its value.  Insert PHIs and remove the fully redundant value now.
1337   if (UnavailableBlocks.empty()) {
1338     LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1339 
1340     // Perform PHI construction.
1341     Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1342     LI->replaceAllUsesWith(V);
1343 
1344     if (isa<PHINode>(V))
1345       V->takeName(LI);
1346     if (Instruction *I = dyn_cast<Instruction>(V))
1347       // If instruction I has debug info, then we should not update it.
1348       // Also, if I has a null DebugLoc, then it is still potentially incorrect
1349       // to propagate LI's DebugLoc because LI may not post-dominate I.
1350       if (LI->getDebugLoc() && LI->getParent() == I->getParent())
1351         I->setDebugLoc(LI->getDebugLoc());
1352     if (V->getType()->isPtrOrPtrVectorTy())
1353       MD->invalidateCachedPointerInfo(V);
1354     markInstructionForDeletion(LI);
1355     ++NumGVNLoad;
1356     reportLoadElim(LI, V, ORE);
1357     return true;
1358   }
1359 
1360   // Step 4: Eliminate partial redundancy.
1361   if (!EnablePRE || !EnableLoadPRE)
1362     return false;
1363 
1364   return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
1365 }
1366 
1367 bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) {
1368   assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume &&
1369          "This function can only be called with llvm.assume intrinsic");
1370   Value *V = IntrinsicI->getArgOperand(0);
1371 
1372   if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
1373     if (Cond->isZero()) {
1374       Type *Int8Ty = Type::getInt8Ty(V->getContext());
1375       // Insert a new store to null instruction before the load to indicate that
1376       // this code is not reachable.  FIXME: We could insert unreachable
1377       // instruction directly because we can modify the CFG.
1378       new StoreInst(UndefValue::get(Int8Ty),
1379                     Constant::getNullValue(Int8Ty->getPointerTo()),
1380                     IntrinsicI);
1381     }
1382     markInstructionForDeletion(IntrinsicI);
1383     return false;
1384   } else if (isa<Constant>(V)) {
1385     // If it's not false, and constant, it must evaluate to true. This means our
1386     // assume is assume(true), and thus, pointless, and we don't want to do
1387     // anything more here.
1388     return false;
1389   }
1390 
1391   Constant *True = ConstantInt::getTrue(V->getContext());
1392   bool Changed = false;
1393 
1394   for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
1395     BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
1396 
1397     // This property is only true in dominated successors, propagateEquality
1398     // will check dominance for us.
1399     Changed |= propagateEquality(V, True, Edge, false);
1400   }
1401 
1402   // We can replace assume value with true, which covers cases like this:
1403   // call void @llvm.assume(i1 %cmp)
1404   // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
1405   ReplaceWithConstMap[V] = True;
1406 
1407   // If one of *cmp *eq operand is const, adding it to map will cover this:
1408   // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
1409   // call void @llvm.assume(i1 %cmp)
1410   // ret float %0 ; will change it to ret float 3.000000e+00
1411   if (auto *CmpI = dyn_cast<CmpInst>(V)) {
1412     if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ ||
1413         CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
1414         (CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
1415          CmpI->getFastMathFlags().noNaNs())) {
1416       Value *CmpLHS = CmpI->getOperand(0);
1417       Value *CmpRHS = CmpI->getOperand(1);
1418       if (isa<Constant>(CmpLHS))
1419         std::swap(CmpLHS, CmpRHS);
1420       auto *RHSConst = dyn_cast<Constant>(CmpRHS);
1421 
1422       // If only one operand is constant.
1423       if (RHSConst != nullptr && !isa<Constant>(CmpLHS))
1424         ReplaceWithConstMap[CmpLHS] = RHSConst;
1425     }
1426   }
1427   return Changed;
1428 }
1429 
1430 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1431   patchReplacementInstruction(I, Repl);
1432   I->replaceAllUsesWith(Repl);
1433 }
1434 
1435 /// Attempt to eliminate a load, first by eliminating it
1436 /// locally, and then attempting non-local elimination if that fails.
1437 bool GVN::processLoad(LoadInst *L) {
1438   if (!MD)
1439     return false;
1440 
1441   // This code hasn't been audited for ordered or volatile memory access
1442   if (!L->isUnordered())
1443     return false;
1444 
1445   if (L->use_empty()) {
1446     markInstructionForDeletion(L);
1447     return true;
1448   }
1449 
1450   // ... to a pointer that has been loaded from before...
1451   MemDepResult Dep = MD->getDependency(L);
1452 
1453   // If it is defined in another block, try harder.
1454   if (Dep.isNonLocal())
1455     return processNonLocalLoad(L);
1456 
1457   // Only handle the local case below
1458   if (!Dep.isDef() && !Dep.isClobber()) {
1459     // This might be a NonFuncLocal or an Unknown
1460     LLVM_DEBUG(
1461         // fast print dep, using operator<< on instruction is too slow.
1462         dbgs() << "GVN: load "; L->printAsOperand(dbgs());
1463         dbgs() << " has unknown dependence\n";);
1464     return false;
1465   }
1466 
1467   AvailableValue AV;
1468   if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) {
1469     Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this);
1470 
1471     // Replace the load!
1472     patchAndReplaceAllUsesWith(L, AvailableValue);
1473     markInstructionForDeletion(L);
1474     ++NumGVNLoad;
1475     reportLoadElim(L, AvailableValue, ORE);
1476     // Tell MDA to rexamine the reused pointer since we might have more
1477     // information after forwarding it.
1478     if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy())
1479       MD->invalidateCachedPointerInfo(AvailableValue);
1480     return true;
1481   }
1482 
1483   return false;
1484 }
1485 
1486 /// Return a pair the first field showing the value number of \p Exp and the
1487 /// second field showing whether it is a value number newly created.
1488 std::pair<uint32_t, bool>
1489 GVN::ValueTable::assignExpNewValueNum(Expression &Exp) {
1490   uint32_t &e = expressionNumbering[Exp];
1491   bool CreateNewValNum = !e;
1492   if (CreateNewValNum) {
1493     Expressions.push_back(Exp);
1494     if (ExprIdx.size() < nextValueNumber + 1)
1495       ExprIdx.resize(nextValueNumber * 2);
1496     e = nextValueNumber;
1497     ExprIdx[nextValueNumber++] = nextExprNumber++;
1498   }
1499   return {e, CreateNewValNum};
1500 }
1501 
1502 /// Return whether all the values related with the same \p num are
1503 /// defined in \p BB.
1504 bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB,
1505                                      GVN &Gvn) {
1506   LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
1507   while (Vals && Vals->BB == BB)
1508     Vals = Vals->Next;
1509   return !Vals;
1510 }
1511 
1512 /// Wrap phiTranslateImpl to provide caching functionality.
1513 uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred,
1514                                        const BasicBlock *PhiBlock, uint32_t Num,
1515                                        GVN &Gvn) {
1516   auto FindRes = PhiTranslateTable.find({Num, Pred});
1517   if (FindRes != PhiTranslateTable.end())
1518     return FindRes->second;
1519   uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
1520   PhiTranslateTable.insert({{Num, Pred}, NewNum});
1521   return NewNum;
1522 }
1523 
1524 /// Translate value number \p Num using phis, so that it has the values of
1525 /// the phis in BB.
1526 uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred,
1527                                            const BasicBlock *PhiBlock,
1528                                            uint32_t Num, GVN &Gvn) {
1529   if (PHINode *PN = NumberingPhi[Num]) {
1530     for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
1531       if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
1532         if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false))
1533           return TransVal;
1534     }
1535     return Num;
1536   }
1537 
1538   // If there is any value related with Num is defined in a BB other than
1539   // PhiBlock, it cannot depend on a phi in PhiBlock without going through
1540   // a backedge. We can do an early exit in that case to save compile time.
1541   if (!areAllValsInBB(Num, PhiBlock, Gvn))
1542     return Num;
1543 
1544   if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
1545     return Num;
1546   Expression Exp = Expressions[ExprIdx[Num]];
1547 
1548   for (unsigned i = 0; i < Exp.varargs.size(); i++) {
1549     // For InsertValue and ExtractValue, some varargs are index numbers
1550     // instead of value numbers. Those index numbers should not be
1551     // translated.
1552     if ((i > 1 && Exp.opcode == Instruction::InsertValue) ||
1553         (i > 0 && Exp.opcode == Instruction::ExtractValue))
1554       continue;
1555     Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn);
1556   }
1557 
1558   if (Exp.commutative) {
1559     assert(Exp.varargs.size() == 2 && "Unsupported commutative expression!");
1560     if (Exp.varargs[0] > Exp.varargs[1]) {
1561       std::swap(Exp.varargs[0], Exp.varargs[1]);
1562       uint32_t Opcode = Exp.opcode >> 8;
1563       if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
1564         Exp.opcode = (Opcode << 8) |
1565                      CmpInst::getSwappedPredicate(
1566                          static_cast<CmpInst::Predicate>(Exp.opcode & 255));
1567     }
1568   }
1569 
1570   if (uint32_t NewNum = expressionNumbering[Exp])
1571     return NewNum;
1572   return Num;
1573 }
1574 
1575 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed
1576 /// again.
1577 void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num,
1578                                                const BasicBlock &CurrBlock) {
1579   for (const BasicBlock *Pred : predecessors(&CurrBlock)) {
1580     auto FindRes = PhiTranslateTable.find({Num, Pred});
1581     if (FindRes != PhiTranslateTable.end())
1582       PhiTranslateTable.erase(FindRes);
1583   }
1584 }
1585 
1586 // In order to find a leader for a given value number at a
1587 // specific basic block, we first obtain the list of all Values for that number,
1588 // and then scan the list to find one whose block dominates the block in
1589 // question.  This is fast because dominator tree queries consist of only
1590 // a few comparisons of DFS numbers.
1591 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
1592   LeaderTableEntry Vals = LeaderTable[num];
1593   if (!Vals.Val) return nullptr;
1594 
1595   Value *Val = nullptr;
1596   if (DT->dominates(Vals.BB, BB)) {
1597     Val = Vals.Val;
1598     if (isa<Constant>(Val)) return Val;
1599   }
1600 
1601   LeaderTableEntry* Next = Vals.Next;
1602   while (Next) {
1603     if (DT->dominates(Next->BB, BB)) {
1604       if (isa<Constant>(Next->Val)) return Next->Val;
1605       if (!Val) Val = Next->Val;
1606     }
1607 
1608     Next = Next->Next;
1609   }
1610 
1611   return Val;
1612 }
1613 
1614 /// There is an edge from 'Src' to 'Dst'.  Return
1615 /// true if every path from the entry block to 'Dst' passes via this edge.  In
1616 /// particular 'Dst' must not be reachable via another edge from 'Src'.
1617 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
1618                                        DominatorTree *DT) {
1619   // While in theory it is interesting to consider the case in which Dst has
1620   // more than one predecessor, because Dst might be part of a loop which is
1621   // only reachable from Src, in practice it is pointless since at the time
1622   // GVN runs all such loops have preheaders, which means that Dst will have
1623   // been changed to have only one predecessor, namely Src.
1624   const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
1625   assert((!Pred || Pred == E.getStart()) &&
1626          "No edge between these basic blocks!");
1627   return Pred != nullptr;
1628 }
1629 
1630 void GVN::assignBlockRPONumber(Function &F) {
1631   BlockRPONumber.clear();
1632   uint32_t NextBlockNumber = 1;
1633   ReversePostOrderTraversal<Function *> RPOT(&F);
1634   for (BasicBlock *BB : RPOT)
1635     BlockRPONumber[BB] = NextBlockNumber++;
1636   InvalidBlockRPONumbers = false;
1637 }
1638 
1639 // Tries to replace instruction with const, using information from
1640 // ReplaceWithConstMap.
1641 bool GVN::replaceOperandsWithConsts(Instruction *Instr) const {
1642   bool Changed = false;
1643   for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
1644     Value *Operand = Instr->getOperand(OpNum);
1645     auto it = ReplaceWithConstMap.find(Operand);
1646     if (it != ReplaceWithConstMap.end()) {
1647       assert(!isa<Constant>(Operand) &&
1648              "Replacing constants with constants is invalid");
1649       LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with "
1650                         << *it->second << " in instruction " << *Instr << '\n');
1651       Instr->setOperand(OpNum, it->second);
1652       Changed = true;
1653     }
1654   }
1655   return Changed;
1656 }
1657 
1658 /// The given values are known to be equal in every block
1659 /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
1660 /// 'RHS' everywhere in the scope.  Returns whether a change was made.
1661 /// If DominatesByEdge is false, then it means that we will propagate the RHS
1662 /// value starting from the end of Root.Start.
1663 bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
1664                             bool DominatesByEdge) {
1665   SmallVector<std::pair<Value*, Value*>, 4> Worklist;
1666   Worklist.push_back(std::make_pair(LHS, RHS));
1667   bool Changed = false;
1668   // For speed, compute a conservative fast approximation to
1669   // DT->dominates(Root, Root.getEnd());
1670   const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
1671 
1672   while (!Worklist.empty()) {
1673     std::pair<Value*, Value*> Item = Worklist.pop_back_val();
1674     LHS = Item.first; RHS = Item.second;
1675 
1676     if (LHS == RHS)
1677       continue;
1678     assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
1679 
1680     // Don't try to propagate equalities between constants.
1681     if (isa<Constant>(LHS) && isa<Constant>(RHS))
1682       continue;
1683 
1684     // Prefer a constant on the right-hand side, or an Argument if no constants.
1685     if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
1686       std::swap(LHS, RHS);
1687     assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
1688 
1689     // If there is no obvious reason to prefer the left-hand side over the
1690     // right-hand side, ensure the longest lived term is on the right-hand side,
1691     // so the shortest lived term will be replaced by the longest lived.
1692     // This tends to expose more simplifications.
1693     uint32_t LVN = VN.lookupOrAdd(LHS);
1694     if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
1695         (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
1696       // Move the 'oldest' value to the right-hand side, using the value number
1697       // as a proxy for age.
1698       uint32_t RVN = VN.lookupOrAdd(RHS);
1699       if (LVN < RVN) {
1700         std::swap(LHS, RHS);
1701         LVN = RVN;
1702       }
1703     }
1704 
1705     // If value numbering later sees that an instruction in the scope is equal
1706     // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
1707     // the invariant that instructions only occur in the leader table for their
1708     // own value number (this is used by removeFromLeaderTable), do not do this
1709     // if RHS is an instruction (if an instruction in the scope is morphed into
1710     // LHS then it will be turned into RHS by the next GVN iteration anyway, so
1711     // using the leader table is about compiling faster, not optimizing better).
1712     // The leader table only tracks basic blocks, not edges. Only add to if we
1713     // have the simple case where the edge dominates the end.
1714     if (RootDominatesEnd && !isa<Instruction>(RHS))
1715       addToLeaderTable(LVN, RHS, Root.getEnd());
1716 
1717     // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
1718     // LHS always has at least one use that is not dominated by Root, this will
1719     // never do anything if LHS has only one use.
1720     if (!LHS->hasOneUse()) {
1721       unsigned NumReplacements =
1722           DominatesByEdge
1723               ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
1724               : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());
1725 
1726       Changed |= NumReplacements > 0;
1727       NumGVNEqProp += NumReplacements;
1728       // Cached information for anything that uses LHS will be invalid.
1729       if (MD)
1730         MD->invalidateCachedPointerInfo(LHS);
1731     }
1732 
1733     // Now try to deduce additional equalities from this one. For example, if
1734     // the known equality was "(A != B)" == "false" then it follows that A and B
1735     // are equal in the scope. Only boolean equalities with an explicit true or
1736     // false RHS are currently supported.
1737     if (!RHS->getType()->isIntegerTy(1))
1738       // Not a boolean equality - bail out.
1739       continue;
1740     ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
1741     if (!CI)
1742       // RHS neither 'true' nor 'false' - bail out.
1743       continue;
1744     // Whether RHS equals 'true'.  Otherwise it equals 'false'.
1745     bool isKnownTrue = CI->isMinusOne();
1746     bool isKnownFalse = !isKnownTrue;
1747 
1748     // If "A && B" is known true then both A and B are known true.  If "A || B"
1749     // is known false then both A and B are known false.
1750     Value *A, *B;
1751     if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
1752         (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
1753       Worklist.push_back(std::make_pair(A, RHS));
1754       Worklist.push_back(std::make_pair(B, RHS));
1755       continue;
1756     }
1757 
1758     // If we are propagating an equality like "(A == B)" == "true" then also
1759     // propagate the equality A == B.  When propagating a comparison such as
1760     // "(A >= B)" == "true", replace all instances of "A < B" with "false".
1761     if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
1762       Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
1763 
1764       // If "A == B" is known true, or "A != B" is known false, then replace
1765       // A with B everywhere in the scope.
1766       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
1767           (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
1768         Worklist.push_back(std::make_pair(Op0, Op1));
1769 
1770       // Handle the floating point versions of equality comparisons too.
1771       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) ||
1772           (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) {
1773 
1774         // Floating point -0.0 and 0.0 compare equal, so we can only
1775         // propagate values if we know that we have a constant and that
1776         // its value is non-zero.
1777 
1778         // FIXME: We should do this optimization if 'no signed zeros' is
1779         // applicable via an instruction-level fast-math-flag or some other
1780         // indicator that relaxed FP semantics are being used.
1781 
1782         if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero())
1783           Worklist.push_back(std::make_pair(Op0, Op1));
1784       }
1785 
1786       // If "A >= B" is known true, replace "A < B" with false everywhere.
1787       CmpInst::Predicate NotPred = Cmp->getInversePredicate();
1788       Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
1789       // Since we don't have the instruction "A < B" immediately to hand, work
1790       // out the value number that it would have and use that to find an
1791       // appropriate instruction (if any).
1792       uint32_t NextNum = VN.getNextUnusedValueNumber();
1793       uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
1794       // If the number we were assigned was brand new then there is no point in
1795       // looking for an instruction realizing it: there cannot be one!
1796       if (Num < NextNum) {
1797         Value *NotCmp = findLeader(Root.getEnd(), Num);
1798         if (NotCmp && isa<Instruction>(NotCmp)) {
1799           unsigned NumReplacements =
1800               DominatesByEdge
1801                   ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
1802                   : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
1803                                              Root.getStart());
1804           Changed |= NumReplacements > 0;
1805           NumGVNEqProp += NumReplacements;
1806           // Cached information for anything that uses NotCmp will be invalid.
1807           if (MD)
1808             MD->invalidateCachedPointerInfo(NotCmp);
1809         }
1810       }
1811       // Ensure that any instruction in scope that gets the "A < B" value number
1812       // is replaced with false.
1813       // The leader table only tracks basic blocks, not edges. Only add to if we
1814       // have the simple case where the edge dominates the end.
1815       if (RootDominatesEnd)
1816         addToLeaderTable(Num, NotVal, Root.getEnd());
1817 
1818       continue;
1819     }
1820   }
1821 
1822   return Changed;
1823 }
1824 
1825 /// When calculating availability, handle an instruction
1826 /// by inserting it into the appropriate sets
1827 bool GVN::processInstruction(Instruction *I) {
1828   // Ignore dbg info intrinsics.
1829   if (isa<DbgInfoIntrinsic>(I))
1830     return false;
1831 
1832   // If the instruction can be easily simplified then do so now in preference
1833   // to value numbering it.  Value numbering often exposes redundancies, for
1834   // example if it determines that %y is equal to %x then the instruction
1835   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
1836   const DataLayout &DL = I->getModule()->getDataLayout();
1837   if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) {
1838     bool Changed = false;
1839     if (!I->use_empty()) {
1840       I->replaceAllUsesWith(V);
1841       Changed = true;
1842     }
1843     if (isInstructionTriviallyDead(I, TLI)) {
1844       markInstructionForDeletion(I);
1845       Changed = true;
1846     }
1847     if (Changed) {
1848       if (MD && V->getType()->isPtrOrPtrVectorTy())
1849         MD->invalidateCachedPointerInfo(V);
1850       ++NumGVNSimpl;
1851       return true;
1852     }
1853   }
1854 
1855   if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I))
1856     if (IntrinsicI->getIntrinsicID() == Intrinsic::assume)
1857       return processAssumeIntrinsic(IntrinsicI);
1858 
1859   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1860     if (processLoad(LI))
1861       return true;
1862 
1863     unsigned Num = VN.lookupOrAdd(LI);
1864     addToLeaderTable(Num, LI, LI->getParent());
1865     return false;
1866   }
1867 
1868   // For conditional branches, we can perform simple conditional propagation on
1869   // the condition value itself.
1870   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1871     if (!BI->isConditional())
1872       return false;
1873 
1874     if (isa<Constant>(BI->getCondition()))
1875       return processFoldableCondBr(BI);
1876 
1877     Value *BranchCond = BI->getCondition();
1878     BasicBlock *TrueSucc = BI->getSuccessor(0);
1879     BasicBlock *FalseSucc = BI->getSuccessor(1);
1880     // Avoid multiple edges early.
1881     if (TrueSucc == FalseSucc)
1882       return false;
1883 
1884     BasicBlock *Parent = BI->getParent();
1885     bool Changed = false;
1886 
1887     Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
1888     BasicBlockEdge TrueE(Parent, TrueSucc);
1889     Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
1890 
1891     Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
1892     BasicBlockEdge FalseE(Parent, FalseSucc);
1893     Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
1894 
1895     return Changed;
1896   }
1897 
1898   // For switches, propagate the case values into the case destinations.
1899   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1900     Value *SwitchCond = SI->getCondition();
1901     BasicBlock *Parent = SI->getParent();
1902     bool Changed = false;
1903 
1904     // Remember how many outgoing edges there are to every successor.
1905     SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
1906     for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
1907       ++SwitchEdges[SI->getSuccessor(i)];
1908 
1909     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
1910          i != e; ++i) {
1911       BasicBlock *Dst = i->getCaseSuccessor();
1912       // If there is only a single edge, propagate the case value into it.
1913       if (SwitchEdges.lookup(Dst) == 1) {
1914         BasicBlockEdge E(Parent, Dst);
1915         Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true);
1916       }
1917     }
1918     return Changed;
1919   }
1920 
1921   // Instructions with void type don't return a value, so there's
1922   // no point in trying to find redundancies in them.
1923   if (I->getType()->isVoidTy())
1924     return false;
1925 
1926   uint32_t NextNum = VN.getNextUnusedValueNumber();
1927   unsigned Num = VN.lookupOrAdd(I);
1928 
1929   // Allocations are always uniquely numbered, so we can save time and memory
1930   // by fast failing them.
1931   if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) {
1932     addToLeaderTable(Num, I, I->getParent());
1933     return false;
1934   }
1935 
1936   // If the number we were assigned was a brand new VN, then we don't
1937   // need to do a lookup to see if the number already exists
1938   // somewhere in the domtree: it can't!
1939   if (Num >= NextNum) {
1940     addToLeaderTable(Num, I, I->getParent());
1941     return false;
1942   }
1943 
1944   // Perform fast-path value-number based elimination of values inherited from
1945   // dominators.
1946   Value *Repl = findLeader(I->getParent(), Num);
1947   if (!Repl) {
1948     // Failure, just remember this instance for future use.
1949     addToLeaderTable(Num, I, I->getParent());
1950     return false;
1951   } else if (Repl == I) {
1952     // If I was the result of a shortcut PRE, it might already be in the table
1953     // and the best replacement for itself. Nothing to do.
1954     return false;
1955   }
1956 
1957   // Remove it!
1958   patchAndReplaceAllUsesWith(I, Repl);
1959   if (MD && Repl->getType()->isPtrOrPtrVectorTy())
1960     MD->invalidateCachedPointerInfo(Repl);
1961   markInstructionForDeletion(I);
1962   return true;
1963 }
1964 
1965 /// runOnFunction - This is the main transformation entry point for a function.
1966 bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
1967                   const TargetLibraryInfo &RunTLI, AAResults &RunAA,
1968                   MemoryDependenceResults *RunMD, LoopInfo *LI,
1969                   OptimizationRemarkEmitter *RunORE) {
1970   AC = &RunAC;
1971   DT = &RunDT;
1972   VN.setDomTree(DT);
1973   TLI = &RunTLI;
1974   VN.setAliasAnalysis(&RunAA);
1975   MD = RunMD;
1976   ImplicitControlFlowTracking ImplicitCFT(DT);
1977   ICF = &ImplicitCFT;
1978   VN.setMemDep(MD);
1979   ORE = RunORE;
1980   InvalidBlockRPONumbers = true;
1981 
1982   bool Changed = false;
1983   bool ShouldContinue = true;
1984 
1985   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
1986   // Merge unconditional branches, allowing PRE to catch more
1987   // optimization opportunities.
1988   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1989     BasicBlock *BB = &*FI++;
1990 
1991     bool removedBlock = MergeBlockIntoPredecessor(BB, &DTU, LI, nullptr, MD);
1992     if (removedBlock)
1993       ++NumGVNBlocks;
1994 
1995     Changed |= removedBlock;
1996   }
1997 
1998   unsigned Iteration = 0;
1999   while (ShouldContinue) {
2000     LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2001     ShouldContinue = iterateOnFunction(F);
2002     Changed |= ShouldContinue;
2003     ++Iteration;
2004   }
2005 
2006   if (EnablePRE) {
2007     // Fabricate val-num for dead-code in order to suppress assertion in
2008     // performPRE().
2009     assignValNumForDeadCode();
2010     bool PREChanged = true;
2011     while (PREChanged) {
2012       PREChanged = performPRE(F);
2013       Changed |= PREChanged;
2014     }
2015   }
2016 
2017   // FIXME: Should perform GVN again after PRE does something.  PRE can move
2018   // computations into blocks where they become fully redundant.  Note that
2019   // we can't do this until PRE's critical edge splitting updates memdep.
2020   // Actually, when this happens, we should just fully integrate PRE into GVN.
2021 
2022   cleanupGlobalSets();
2023   // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2024   // iteration.
2025   DeadBlocks.clear();
2026 
2027   return Changed;
2028 }
2029 
2030 bool GVN::processBlock(BasicBlock *BB) {
2031   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2032   // (and incrementing BI before processing an instruction).
2033   assert(InstrsToErase.empty() &&
2034          "We expect InstrsToErase to be empty across iterations");
2035   if (DeadBlocks.count(BB))
2036     return false;
2037 
2038   // Clearing map before every BB because it can be used only for single BB.
2039   ReplaceWithConstMap.clear();
2040   bool ChangedFunction = false;
2041 
2042   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2043        BI != BE;) {
2044     if (!ReplaceWithConstMap.empty())
2045       ChangedFunction |= replaceOperandsWithConsts(&*BI);
2046     ChangedFunction |= processInstruction(&*BI);
2047 
2048     if (InstrsToErase.empty()) {
2049       ++BI;
2050       continue;
2051     }
2052 
2053     // If we need some instructions deleted, do it now.
2054     NumGVNInstr += InstrsToErase.size();
2055 
2056     // Avoid iterator invalidation.
2057     bool AtStart = BI == BB->begin();
2058     if (!AtStart)
2059       --BI;
2060 
2061     for (auto *I : InstrsToErase) {
2062       assert(I->getParent() == BB && "Removing instruction from wrong block?");
2063       LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n');
2064       salvageDebugInfo(*I);
2065       if (MD) MD->removeInstruction(I);
2066       LLVM_DEBUG(verifyRemoved(I));
2067       ICF->removeInstruction(I);
2068       I->eraseFromParent();
2069     }
2070     InstrsToErase.clear();
2071 
2072     if (AtStart)
2073       BI = BB->begin();
2074     else
2075       ++BI;
2076   }
2077 
2078   return ChangedFunction;
2079 }
2080 
2081 // Instantiate an expression in a predecessor that lacked it.
2082 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
2083                                     BasicBlock *Curr, unsigned int ValNo) {
2084   // Because we are going top-down through the block, all value numbers
2085   // will be available in the predecessor by the time we need them.  Any
2086   // that weren't originally present will have been instantiated earlier
2087   // in this loop.
2088   bool success = true;
2089   for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
2090     Value *Op = Instr->getOperand(i);
2091     if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2092       continue;
2093     // This could be a newly inserted instruction, in which case, we won't
2094     // find a value number, and should give up before we hurt ourselves.
2095     // FIXME: Rewrite the infrastructure to let it easier to value number
2096     // and process newly inserted instructions.
2097     if (!VN.exists(Op)) {
2098       success = false;
2099       break;
2100     }
2101     uint32_t TValNo =
2102         VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this);
2103     if (Value *V = findLeader(Pred, TValNo)) {
2104       Instr->setOperand(i, V);
2105     } else {
2106       success = false;
2107       break;
2108     }
2109   }
2110 
2111   // Fail out if we encounter an operand that is not available in
2112   // the PRE predecessor.  This is typically because of loads which
2113   // are not value numbered precisely.
2114   if (!success)
2115     return false;
2116 
2117   Instr->insertBefore(Pred->getTerminator());
2118   Instr->setName(Instr->getName() + ".pre");
2119   Instr->setDebugLoc(Instr->getDebugLoc());
2120 
2121   unsigned Num = VN.lookupOrAdd(Instr);
2122   VN.add(Instr, Num);
2123 
2124   // Update the availability map to include the new instruction.
2125   addToLeaderTable(Num, Instr, Pred);
2126   return true;
2127 }
2128 
2129 bool GVN::performScalarPRE(Instruction *CurInst) {
2130   if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() ||
2131       isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
2132       CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2133       isa<DbgInfoIntrinsic>(CurInst))
2134     return false;
2135 
2136   // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2137   // sinking the compare again, and it would force the code generator to
2138   // move the i1 from processor flags or predicate registers into a general
2139   // purpose register.
2140   if (isa<CmpInst>(CurInst))
2141     return false;
2142 
2143   // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from
2144   // sinking the addressing mode computation back to its uses. Extending the
2145   // GEP's live range increases the register pressure, and therefore it can
2146   // introduce unnecessary spills.
2147   //
2148   // This doesn't prevent Load PRE. PHI translation will make the GEP available
2149   // to the load by moving it to the predecessor block if necessary.
2150   if (isa<GetElementPtrInst>(CurInst))
2151     return false;
2152 
2153   // We don't currently value number ANY inline asm calls.
2154   if (auto *CallB = dyn_cast<CallBase>(CurInst))
2155     if (CallB->isInlineAsm())
2156       return false;
2157 
2158   uint32_t ValNo = VN.lookup(CurInst);
2159 
2160   // Look for the predecessors for PRE opportunities.  We're
2161   // only trying to solve the basic diamond case, where
2162   // a value is computed in the successor and one predecessor,
2163   // but not the other.  We also explicitly disallow cases
2164   // where the successor is its own predecessor, because they're
2165   // more complicated to get right.
2166   unsigned NumWith = 0;
2167   unsigned NumWithout = 0;
2168   BasicBlock *PREPred = nullptr;
2169   BasicBlock *CurrentBlock = CurInst->getParent();
2170 
2171   // Update the RPO numbers for this function.
2172   if (InvalidBlockRPONumbers)
2173     assignBlockRPONumber(*CurrentBlock->getParent());
2174 
2175   SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
2176   for (BasicBlock *P : predecessors(CurrentBlock)) {
2177     // We're not interested in PRE where blocks with predecessors that are
2178     // not reachable.
2179     if (!DT->isReachableFromEntry(P)) {
2180       NumWithout = 2;
2181       break;
2182     }
2183     // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and
2184     // when CurInst has operand defined in CurrentBlock (so it may be defined
2185     // by phi in the loop header).
2186     assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) &&
2187            "Invalid BlockRPONumber map.");
2188     if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] &&
2189         llvm::any_of(CurInst->operands(), [&](const Use &U) {
2190           if (auto *Inst = dyn_cast<Instruction>(U.get()))
2191             return Inst->getParent() == CurrentBlock;
2192           return false;
2193         })) {
2194       NumWithout = 2;
2195       break;
2196     }
2197 
2198     uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this);
2199     Value *predV = findLeader(P, TValNo);
2200     if (!predV) {
2201       predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
2202       PREPred = P;
2203       ++NumWithout;
2204     } else if (predV == CurInst) {
2205       /* CurInst dominates this predecessor. */
2206       NumWithout = 2;
2207       break;
2208     } else {
2209       predMap.push_back(std::make_pair(predV, P));
2210       ++NumWith;
2211     }
2212   }
2213 
2214   // Don't do PRE when it might increase code size, i.e. when
2215   // we would need to insert instructions in more than one pred.
2216   if (NumWithout > 1 || NumWith == 0)
2217     return false;
2218 
2219   // We may have a case where all predecessors have the instruction,
2220   // and we just need to insert a phi node. Otherwise, perform
2221   // insertion.
2222   Instruction *PREInstr = nullptr;
2223 
2224   if (NumWithout != 0) {
2225     if (!isSafeToSpeculativelyExecute(CurInst)) {
2226       // It is only valid to insert a new instruction if the current instruction
2227       // is always executed. An instruction with implicit control flow could
2228       // prevent us from doing it. If we cannot speculate the execution, then
2229       // PRE should be prohibited.
2230       if (ICF->isDominatedByICFIFromSameBlock(CurInst))
2231         return false;
2232     }
2233 
2234     // Don't do PRE across indirect branch.
2235     if (isa<IndirectBrInst>(PREPred->getTerminator()))
2236       return false;
2237 
2238     // Don't do PRE across callbr.
2239     // FIXME: Can we do this across the fallthrough edge?
2240     if (isa<CallBrInst>(PREPred->getTerminator()))
2241       return false;
2242 
2243     // We can't do PRE safely on a critical edge, so instead we schedule
2244     // the edge to be split and perform the PRE the next time we iterate
2245     // on the function.
2246     unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2247     if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2248       toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2249       return false;
2250     }
2251     // We need to insert somewhere, so let's give it a shot
2252     PREInstr = CurInst->clone();
2253     if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
2254       // If we failed insertion, make sure we remove the instruction.
2255       LLVM_DEBUG(verifyRemoved(PREInstr));
2256       PREInstr->deleteValue();
2257       return false;
2258     }
2259   }
2260 
2261   // Either we should have filled in the PRE instruction, or we should
2262   // not have needed insertions.
2263   assert(PREInstr != nullptr || NumWithout == 0);
2264 
2265   ++NumGVNPRE;
2266 
2267   // Create a PHI to make the value available in this block.
2268   PHINode *Phi =
2269       PHINode::Create(CurInst->getType(), predMap.size(),
2270                       CurInst->getName() + ".pre-phi", &CurrentBlock->front());
2271   for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2272     if (Value *V = predMap[i].first) {
2273       // If we use an existing value in this phi, we have to patch the original
2274       // value because the phi will be used to replace a later value.
2275       patchReplacementInstruction(CurInst, V);
2276       Phi->addIncoming(V, predMap[i].second);
2277     } else
2278       Phi->addIncoming(PREInstr, PREPred);
2279   }
2280 
2281   VN.add(Phi, ValNo);
2282   // After creating a new PHI for ValNo, the phi translate result for ValNo will
2283   // be changed, so erase the related stale entries in phi translate cache.
2284   VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock);
2285   addToLeaderTable(ValNo, Phi, CurrentBlock);
2286   Phi->setDebugLoc(CurInst->getDebugLoc());
2287   CurInst->replaceAllUsesWith(Phi);
2288   if (MD && Phi->getType()->isPtrOrPtrVectorTy())
2289     MD->invalidateCachedPointerInfo(Phi);
2290   VN.erase(CurInst);
2291   removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2292 
2293   LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2294   if (MD)
2295     MD->removeInstruction(CurInst);
2296   LLVM_DEBUG(verifyRemoved(CurInst));
2297   // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes
2298   // some assertion failures.
2299   ICF->removeInstruction(CurInst);
2300   CurInst->eraseFromParent();
2301   ++NumGVNInstr;
2302 
2303   return true;
2304 }
2305 
2306 /// Perform a purely local form of PRE that looks for diamond
2307 /// control flow patterns and attempts to perform simple PRE at the join point.
2308 bool GVN::performPRE(Function &F) {
2309   bool Changed = false;
2310   for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
2311     // Nothing to PRE in the entry block.
2312     if (CurrentBlock == &F.getEntryBlock())
2313       continue;
2314 
2315     // Don't perform PRE on an EH pad.
2316     if (CurrentBlock->isEHPad())
2317       continue;
2318 
2319     for (BasicBlock::iterator BI = CurrentBlock->begin(),
2320                               BE = CurrentBlock->end();
2321          BI != BE;) {
2322       Instruction *CurInst = &*BI++;
2323       Changed |= performScalarPRE(CurInst);
2324     }
2325   }
2326 
2327   if (splitCriticalEdges())
2328     Changed = true;
2329 
2330   return Changed;
2331 }
2332 
2333 /// Split the critical edge connecting the given two blocks, and return
2334 /// the block inserted to the critical edge.
2335 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
2336   BasicBlock *BB =
2337       SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT));
2338   if (MD)
2339     MD->invalidateCachedPredecessors();
2340   InvalidBlockRPONumbers = true;
2341   return BB;
2342 }
2343 
2344 /// Split critical edges found during the previous
2345 /// iteration that may enable further optimization.
2346 bool GVN::splitCriticalEdges() {
2347   if (toSplit.empty())
2348     return false;
2349   do {
2350     std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val();
2351     SplitCriticalEdge(Edge.first, Edge.second,
2352                       CriticalEdgeSplittingOptions(DT));
2353   } while (!toSplit.empty());
2354   if (MD) MD->invalidateCachedPredecessors();
2355   InvalidBlockRPONumbers = true;
2356   return true;
2357 }
2358 
2359 /// Executes one iteration of GVN
2360 bool GVN::iterateOnFunction(Function &F) {
2361   cleanupGlobalSets();
2362 
2363   // Top-down walk of the dominator tree
2364   bool Changed = false;
2365   // Needed for value numbering with phi construction to work.
2366   // RPOT walks the graph in its constructor and will not be invalidated during
2367   // processBlock.
2368   ReversePostOrderTraversal<Function *> RPOT(&F);
2369 
2370   for (BasicBlock *BB : RPOT)
2371     Changed |= processBlock(BB);
2372 
2373   return Changed;
2374 }
2375 
2376 void GVN::cleanupGlobalSets() {
2377   VN.clear();
2378   LeaderTable.clear();
2379   BlockRPONumber.clear();
2380   TableAllocator.Reset();
2381   ICF->clear();
2382   InvalidBlockRPONumbers = true;
2383 }
2384 
2385 /// Verify that the specified instruction does not occur in our
2386 /// internal data structures.
2387 void GVN::verifyRemoved(const Instruction *Inst) const {
2388   VN.verifyRemoved(Inst);
2389 
2390   // Walk through the value number scope to make sure the instruction isn't
2391   // ferreted away in it.
2392   for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2393        I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2394     const LeaderTableEntry *Node = &I->second;
2395     assert(Node->Val != Inst && "Inst still in value numbering scope!");
2396 
2397     while (Node->Next) {
2398       Node = Node->Next;
2399       assert(Node->Val != Inst && "Inst still in value numbering scope!");
2400     }
2401   }
2402 }
2403 
2404 /// BB is declared dead, which implied other blocks become dead as well. This
2405 /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
2406 /// live successors, update their phi nodes by replacing the operands
2407 /// corresponding to dead blocks with UndefVal.
2408 void GVN::addDeadBlock(BasicBlock *BB) {
2409   SmallVector<BasicBlock *, 4> NewDead;
2410   SmallSetVector<BasicBlock *, 4> DF;
2411 
2412   NewDead.push_back(BB);
2413   while (!NewDead.empty()) {
2414     BasicBlock *D = NewDead.pop_back_val();
2415     if (DeadBlocks.count(D))
2416       continue;
2417 
2418     // All blocks dominated by D are dead.
2419     SmallVector<BasicBlock *, 8> Dom;
2420     DT->getDescendants(D, Dom);
2421     DeadBlocks.insert(Dom.begin(), Dom.end());
2422 
2423     // Figure out the dominance-frontier(D).
2424     for (BasicBlock *B : Dom) {
2425       for (BasicBlock *S : successors(B)) {
2426         if (DeadBlocks.count(S))
2427           continue;
2428 
2429         bool AllPredDead = true;
2430         for (BasicBlock *P : predecessors(S))
2431           if (!DeadBlocks.count(P)) {
2432             AllPredDead = false;
2433             break;
2434           }
2435 
2436         if (!AllPredDead) {
2437           // S could be proved dead later on. That is why we don't update phi
2438           // operands at this moment.
2439           DF.insert(S);
2440         } else {
2441           // While S is not dominated by D, it is dead by now. This could take
2442           // place if S already have a dead predecessor before D is declared
2443           // dead.
2444           NewDead.push_back(S);
2445         }
2446       }
2447     }
2448   }
2449 
2450   // For the dead blocks' live successors, update their phi nodes by replacing
2451   // the operands corresponding to dead blocks with UndefVal.
2452   for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
2453         I != E; I++) {
2454     BasicBlock *B = *I;
2455     if (DeadBlocks.count(B))
2456       continue;
2457 
2458     SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
2459     for (BasicBlock *P : Preds) {
2460       if (!DeadBlocks.count(P))
2461         continue;
2462 
2463       if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) {
2464         if (BasicBlock *S = splitCriticalEdges(P, B))
2465           DeadBlocks.insert(P = S);
2466       }
2467 
2468       for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) {
2469         PHINode &Phi = cast<PHINode>(*II);
2470         Phi.setIncomingValue(Phi.getBasicBlockIndex(P),
2471                              UndefValue::get(Phi.getType()));
2472         if (MD)
2473           MD->invalidateCachedPointerInfo(&Phi);
2474       }
2475     }
2476   }
2477 }
2478 
2479 // If the given branch is recognized as a foldable branch (i.e. conditional
2480 // branch with constant condition), it will perform following analyses and
2481 // transformation.
2482 //  1) If the dead out-coming edge is a critical-edge, split it. Let
2483 //     R be the target of the dead out-coming edge.
2484 //  1) Identify the set of dead blocks implied by the branch's dead outcoming
2485 //     edge. The result of this step will be {X| X is dominated by R}
2486 //  2) Identify those blocks which haves at least one dead predecessor. The
2487 //     result of this step will be dominance-frontier(R).
2488 //  3) Update the PHIs in DF(R) by replacing the operands corresponding to
2489 //     dead blocks with "UndefVal" in an hope these PHIs will optimized away.
2490 //
2491 // Return true iff *NEW* dead code are found.
2492 bool GVN::processFoldableCondBr(BranchInst *BI) {
2493   if (!BI || BI->isUnconditional())
2494     return false;
2495 
2496   // If a branch has two identical successors, we cannot declare either dead.
2497   if (BI->getSuccessor(0) == BI->getSuccessor(1))
2498     return false;
2499 
2500   ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
2501   if (!Cond)
2502     return false;
2503 
2504   BasicBlock *DeadRoot =
2505       Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
2506   if (DeadBlocks.count(DeadRoot))
2507     return false;
2508 
2509   if (!DeadRoot->getSinglePredecessor())
2510     DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
2511 
2512   addDeadBlock(DeadRoot);
2513   return true;
2514 }
2515 
2516 // performPRE() will trigger assert if it comes across an instruction without
2517 // associated val-num. As it normally has far more live instructions than dead
2518 // instructions, it makes more sense just to "fabricate" a val-number for the
2519 // dead code than checking if instruction involved is dead or not.
2520 void GVN::assignValNumForDeadCode() {
2521   for (BasicBlock *BB : DeadBlocks) {
2522     for (Instruction &Inst : *BB) {
2523       unsigned ValNum = VN.lookupOrAdd(&Inst);
2524       addToLeaderTable(ValNum, &Inst, BB);
2525     }
2526   }
2527 }
2528 
2529 class llvm::gvn::GVNLegacyPass : public FunctionPass {
2530 public:
2531   static char ID; // Pass identification, replacement for typeid
2532 
2533   explicit GVNLegacyPass(bool NoMemDepAnalysis = !EnableMemDep)
2534       : FunctionPass(ID), NoMemDepAnalysis(NoMemDepAnalysis) {
2535     initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
2536   }
2537 
2538   bool runOnFunction(Function &F) override {
2539     if (skipFunction(F))
2540       return false;
2541 
2542     auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
2543 
2544     return Impl.runImpl(
2545         F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
2546         getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
2547         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
2548         getAnalysis<AAResultsWrapperPass>().getAAResults(),
2549         NoMemDepAnalysis ? nullptr
2550                 : &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(),
2551         LIWP ? &LIWP->getLoopInfo() : nullptr,
2552         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE());
2553   }
2554 
2555   void getAnalysisUsage(AnalysisUsage &AU) const override {
2556     AU.addRequired<AssumptionCacheTracker>();
2557     AU.addRequired<DominatorTreeWrapperPass>();
2558     AU.addRequired<TargetLibraryInfoWrapperPass>();
2559     if (!NoMemDepAnalysis)
2560       AU.addRequired<MemoryDependenceWrapperPass>();
2561     AU.addRequired<AAResultsWrapperPass>();
2562 
2563     AU.addPreserved<DominatorTreeWrapperPass>();
2564     AU.addPreserved<GlobalsAAWrapperPass>();
2565     AU.addPreserved<TargetLibraryInfoWrapperPass>();
2566     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2567   }
2568 
2569 private:
2570   bool NoMemDepAnalysis;
2571   GVN Impl;
2572 };
2573 
2574 char GVNLegacyPass::ID = 0;
2575 
2576 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
2577 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2578 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
2579 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2580 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2581 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2582 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
2583 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
2584 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
2585 
2586 // The public interface to this file...
2587 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) {
2588   return new GVNLegacyPass(NoMemDepAnalysis);
2589 }
2590