1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs global value numbering to eliminate fully redundant 10 // instructions. It also performs simple dead load elimination. 11 // 12 // Note that this pass does the value numbering itself; it does not use the 13 // ValueNumbering analysis passes. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Scalar/GVN.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/MapVector.h" 22 #include "llvm/ADT/PointerIntPair.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/AssumeBundleQueries.h" 31 #include "llvm/Analysis/AssumptionCache.h" 32 #include "llvm/Analysis/CFG.h" 33 #include "llvm/Analysis/DomTreeUpdater.h" 34 #include "llvm/Analysis/GlobalsModRef.h" 35 #include "llvm/Analysis/InstructionSimplify.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/MemoryBuiltins.h" 38 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 39 #include "llvm/Analysis/MemorySSA.h" 40 #include "llvm/Analysis/MemorySSAUpdater.h" 41 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 42 #include "llvm/Analysis/PHITransAddr.h" 43 #include "llvm/Analysis/TargetLibraryInfo.h" 44 #include "llvm/Analysis/ValueTracking.h" 45 #include "llvm/Config/llvm-config.h" 46 #include "llvm/IR/Attributes.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Metadata.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/Operator.h" 63 #include "llvm/IR/PassManager.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/IR/Type.h" 66 #include "llvm/IR/Use.h" 67 #include "llvm/IR/Value.h" 68 #include "llvm/InitializePasses.h" 69 #include "llvm/Pass.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/CommandLine.h" 72 #include "llvm/Support/Compiler.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Transforms/Utils.h" 76 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 77 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 78 #include "llvm/Transforms/Utils/Local.h" 79 #include "llvm/Transforms/Utils/SSAUpdater.h" 80 #include "llvm/Transforms/Utils/VNCoercion.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <cstdint> 84 #include <utility> 85 86 using namespace llvm; 87 using namespace llvm::gvn; 88 using namespace llvm::VNCoercion; 89 using namespace PatternMatch; 90 91 #define DEBUG_TYPE "gvn" 92 93 STATISTIC(NumGVNInstr, "Number of instructions deleted"); 94 STATISTIC(NumGVNLoad, "Number of loads deleted"); 95 STATISTIC(NumGVNPRE, "Number of instructions PRE'd"); 96 STATISTIC(NumGVNBlocks, "Number of blocks merged"); 97 STATISTIC(NumGVNSimpl, "Number of instructions simplified"); 98 STATISTIC(NumGVNEqProp, "Number of equalities propagated"); 99 STATISTIC(NumPRELoad, "Number of loads PRE'd"); 100 STATISTIC(NumPRELoopLoad, "Number of loop loads PRE'd"); 101 102 STATISTIC(IsValueFullyAvailableInBlockNumSpeculationsMax, 103 "Number of blocks speculated as available in " 104 "IsValueFullyAvailableInBlock(), max"); 105 STATISTIC(MaxBBSpeculationCutoffReachedTimes, 106 "Number of times we we reached gvn-max-block-speculations cut-off " 107 "preventing further exploration"); 108 109 static cl::opt<bool> GVNEnablePRE("enable-pre", cl::init(true), cl::Hidden); 110 static cl::opt<bool> GVNEnableLoadPRE("enable-load-pre", cl::init(true)); 111 static cl::opt<bool> GVNEnableLoadInLoopPRE("enable-load-in-loop-pre", 112 cl::init(true)); 113 static cl::opt<bool> 114 GVNEnableSplitBackedgeInLoadPRE("enable-split-backedge-in-load-pre", 115 cl::init(true)); 116 static cl::opt<bool> GVNEnableMemDep("enable-gvn-memdep", cl::init(true)); 117 118 static cl::opt<uint32_t> MaxNumDeps( 119 "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore, 120 cl::desc("Max number of dependences to attempt Load PRE (default = 100)")); 121 122 // This is based on IsValueFullyAvailableInBlockNumSpeculationsMax stat. 123 static cl::opt<uint32_t> MaxBBSpeculations( 124 "gvn-max-block-speculations", cl::Hidden, cl::init(600), cl::ZeroOrMore, 125 cl::desc("Max number of blocks we're willing to speculate on (and recurse " 126 "into) when deducing if a value is fully available or not in GVN " 127 "(default = 600)")); 128 129 struct llvm::GVN::Expression { 130 uint32_t opcode; 131 bool commutative = false; 132 Type *type = nullptr; 133 SmallVector<uint32_t, 4> varargs; 134 135 Expression(uint32_t o = ~2U) : opcode(o) {} 136 137 bool operator==(const Expression &other) const { 138 if (opcode != other.opcode) 139 return false; 140 if (opcode == ~0U || opcode == ~1U) 141 return true; 142 if (type != other.type) 143 return false; 144 if (varargs != other.varargs) 145 return false; 146 return true; 147 } 148 149 friend hash_code hash_value(const Expression &Value) { 150 return hash_combine( 151 Value.opcode, Value.type, 152 hash_combine_range(Value.varargs.begin(), Value.varargs.end())); 153 } 154 }; 155 156 namespace llvm { 157 158 template <> struct DenseMapInfo<GVN::Expression> { 159 static inline GVN::Expression getEmptyKey() { return ~0U; } 160 static inline GVN::Expression getTombstoneKey() { return ~1U; } 161 162 static unsigned getHashValue(const GVN::Expression &e) { 163 using llvm::hash_value; 164 165 return static_cast<unsigned>(hash_value(e)); 166 } 167 168 static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) { 169 return LHS == RHS; 170 } 171 }; 172 173 } // end namespace llvm 174 175 /// Represents a particular available value that we know how to materialize. 176 /// Materialization of an AvailableValue never fails. An AvailableValue is 177 /// implicitly associated with a rematerialization point which is the 178 /// location of the instruction from which it was formed. 179 struct llvm::gvn::AvailableValue { 180 enum ValType { 181 SimpleVal, // A simple offsetted value that is accessed. 182 LoadVal, // A value produced by a load. 183 MemIntrin, // A memory intrinsic which is loaded from. 184 UndefVal // A UndefValue representing a value from dead block (which 185 // is not yet physically removed from the CFG). 186 }; 187 188 /// V - The value that is live out of the block. 189 PointerIntPair<Value *, 2, ValType> Val; 190 191 /// Offset - The byte offset in Val that is interesting for the load query. 192 unsigned Offset = 0; 193 194 static AvailableValue get(Value *V, unsigned Offset = 0) { 195 AvailableValue Res; 196 Res.Val.setPointer(V); 197 Res.Val.setInt(SimpleVal); 198 Res.Offset = Offset; 199 return Res; 200 } 201 202 static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) { 203 AvailableValue Res; 204 Res.Val.setPointer(MI); 205 Res.Val.setInt(MemIntrin); 206 Res.Offset = Offset; 207 return Res; 208 } 209 210 static AvailableValue getLoad(LoadInst *Load, unsigned Offset = 0) { 211 AvailableValue Res; 212 Res.Val.setPointer(Load); 213 Res.Val.setInt(LoadVal); 214 Res.Offset = Offset; 215 return Res; 216 } 217 218 static AvailableValue getUndef() { 219 AvailableValue Res; 220 Res.Val.setPointer(nullptr); 221 Res.Val.setInt(UndefVal); 222 Res.Offset = 0; 223 return Res; 224 } 225 226 bool isSimpleValue() const { return Val.getInt() == SimpleVal; } 227 bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; } 228 bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; } 229 bool isUndefValue() const { return Val.getInt() == UndefVal; } 230 231 Value *getSimpleValue() const { 232 assert(isSimpleValue() && "Wrong accessor"); 233 return Val.getPointer(); 234 } 235 236 LoadInst *getCoercedLoadValue() const { 237 assert(isCoercedLoadValue() && "Wrong accessor"); 238 return cast<LoadInst>(Val.getPointer()); 239 } 240 241 MemIntrinsic *getMemIntrinValue() const { 242 assert(isMemIntrinValue() && "Wrong accessor"); 243 return cast<MemIntrinsic>(Val.getPointer()); 244 } 245 246 /// Emit code at the specified insertion point to adjust the value defined 247 /// here to the specified type. This handles various coercion cases. 248 Value *MaterializeAdjustedValue(LoadInst *Load, Instruction *InsertPt, 249 GVN &gvn) const; 250 }; 251 252 /// Represents an AvailableValue which can be rematerialized at the end of 253 /// the associated BasicBlock. 254 struct llvm::gvn::AvailableValueInBlock { 255 /// BB - The basic block in question. 256 BasicBlock *BB = nullptr; 257 258 /// AV - The actual available value 259 AvailableValue AV; 260 261 static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) { 262 AvailableValueInBlock Res; 263 Res.BB = BB; 264 Res.AV = std::move(AV); 265 return Res; 266 } 267 268 static AvailableValueInBlock get(BasicBlock *BB, Value *V, 269 unsigned Offset = 0) { 270 return get(BB, AvailableValue::get(V, Offset)); 271 } 272 273 static AvailableValueInBlock getUndef(BasicBlock *BB) { 274 return get(BB, AvailableValue::getUndef()); 275 } 276 277 /// Emit code at the end of this block to adjust the value defined here to 278 /// the specified type. This handles various coercion cases. 279 Value *MaterializeAdjustedValue(LoadInst *Load, GVN &gvn) const { 280 return AV.MaterializeAdjustedValue(Load, BB->getTerminator(), gvn); 281 } 282 }; 283 284 //===----------------------------------------------------------------------===// 285 // ValueTable Internal Functions 286 //===----------------------------------------------------------------------===// 287 288 GVN::Expression GVN::ValueTable::createExpr(Instruction *I) { 289 Expression e; 290 e.type = I->getType(); 291 e.opcode = I->getOpcode(); 292 if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(I)) { 293 // gc.relocate is 'special' call: its second and third operands are 294 // not real values, but indices into statepoint's argument list. 295 // Use the refered to values for purposes of identity. 296 e.varargs.push_back(lookupOrAdd(GCR->getOperand(0))); 297 e.varargs.push_back(lookupOrAdd(GCR->getBasePtr())); 298 e.varargs.push_back(lookupOrAdd(GCR->getDerivedPtr())); 299 } else { 300 for (Use &Op : I->operands()) 301 e.varargs.push_back(lookupOrAdd(Op)); 302 } 303 if (I->isCommutative()) { 304 // Ensure that commutative instructions that only differ by a permutation 305 // of their operands get the same value number by sorting the operand value 306 // numbers. Since commutative operands are the 1st two operands it is more 307 // efficient to sort by hand rather than using, say, std::sort. 308 assert(I->getNumOperands() >= 2 && "Unsupported commutative instruction!"); 309 if (e.varargs[0] > e.varargs[1]) 310 std::swap(e.varargs[0], e.varargs[1]); 311 e.commutative = true; 312 } 313 314 if (auto *C = dyn_cast<CmpInst>(I)) { 315 // Sort the operand value numbers so x<y and y>x get the same value number. 316 CmpInst::Predicate Predicate = C->getPredicate(); 317 if (e.varargs[0] > e.varargs[1]) { 318 std::swap(e.varargs[0], e.varargs[1]); 319 Predicate = CmpInst::getSwappedPredicate(Predicate); 320 } 321 e.opcode = (C->getOpcode() << 8) | Predicate; 322 e.commutative = true; 323 } else if (auto *E = dyn_cast<InsertValueInst>(I)) { 324 e.varargs.append(E->idx_begin(), E->idx_end()); 325 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 326 ArrayRef<int> ShuffleMask = SVI->getShuffleMask(); 327 e.varargs.append(ShuffleMask.begin(), ShuffleMask.end()); 328 } 329 330 return e; 331 } 332 333 GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode, 334 CmpInst::Predicate Predicate, 335 Value *LHS, Value *RHS) { 336 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 337 "Not a comparison!"); 338 Expression e; 339 e.type = CmpInst::makeCmpResultType(LHS->getType()); 340 e.varargs.push_back(lookupOrAdd(LHS)); 341 e.varargs.push_back(lookupOrAdd(RHS)); 342 343 // Sort the operand value numbers so x<y and y>x get the same value number. 344 if (e.varargs[0] > e.varargs[1]) { 345 std::swap(e.varargs[0], e.varargs[1]); 346 Predicate = CmpInst::getSwappedPredicate(Predicate); 347 } 348 e.opcode = (Opcode << 8) | Predicate; 349 e.commutative = true; 350 return e; 351 } 352 353 GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) { 354 assert(EI && "Not an ExtractValueInst?"); 355 Expression e; 356 e.type = EI->getType(); 357 e.opcode = 0; 358 359 WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand()); 360 if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) { 361 // EI is an extract from one of our with.overflow intrinsics. Synthesize 362 // a semantically equivalent expression instead of an extract value 363 // expression. 364 e.opcode = WO->getBinaryOp(); 365 e.varargs.push_back(lookupOrAdd(WO->getLHS())); 366 e.varargs.push_back(lookupOrAdd(WO->getRHS())); 367 return e; 368 } 369 370 // Not a recognised intrinsic. Fall back to producing an extract value 371 // expression. 372 e.opcode = EI->getOpcode(); 373 for (Use &Op : EI->operands()) 374 e.varargs.push_back(lookupOrAdd(Op)); 375 376 append_range(e.varargs, EI->indices()); 377 378 return e; 379 } 380 381 //===----------------------------------------------------------------------===// 382 // ValueTable External Functions 383 //===----------------------------------------------------------------------===// 384 385 GVN::ValueTable::ValueTable() = default; 386 GVN::ValueTable::ValueTable(const ValueTable &) = default; 387 GVN::ValueTable::ValueTable(ValueTable &&) = default; 388 GVN::ValueTable::~ValueTable() = default; 389 GVN::ValueTable &GVN::ValueTable::operator=(const GVN::ValueTable &Arg) = default; 390 391 /// add - Insert a value into the table with a specified value number. 392 void GVN::ValueTable::add(Value *V, uint32_t num) { 393 valueNumbering.insert(std::make_pair(V, num)); 394 if (PHINode *PN = dyn_cast<PHINode>(V)) 395 NumberingPhi[num] = PN; 396 } 397 398 uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) { 399 if (AA->doesNotAccessMemory(C)) { 400 Expression exp = createExpr(C); 401 uint32_t e = assignExpNewValueNum(exp).first; 402 valueNumbering[C] = e; 403 return e; 404 } else if (MD && AA->onlyReadsMemory(C)) { 405 Expression exp = createExpr(C); 406 auto ValNum = assignExpNewValueNum(exp); 407 if (ValNum.second) { 408 valueNumbering[C] = ValNum.first; 409 return ValNum.first; 410 } 411 412 MemDepResult local_dep = MD->getDependency(C); 413 414 if (!local_dep.isDef() && !local_dep.isNonLocal()) { 415 valueNumbering[C] = nextValueNumber; 416 return nextValueNumber++; 417 } 418 419 if (local_dep.isDef()) { 420 // For masked load/store intrinsics, the local_dep may actully be 421 // a normal load or store instruction. 422 CallInst *local_cdep = dyn_cast<CallInst>(local_dep.getInst()); 423 424 if (!local_cdep || local_cdep->arg_size() != C->arg_size()) { 425 valueNumbering[C] = nextValueNumber; 426 return nextValueNumber++; 427 } 428 429 for (unsigned i = 0, e = C->arg_size(); i < e; ++i) { 430 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 431 uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i)); 432 if (c_vn != cd_vn) { 433 valueNumbering[C] = nextValueNumber; 434 return nextValueNumber++; 435 } 436 } 437 438 uint32_t v = lookupOrAdd(local_cdep); 439 valueNumbering[C] = v; 440 return v; 441 } 442 443 // Non-local case. 444 const MemoryDependenceResults::NonLocalDepInfo &deps = 445 MD->getNonLocalCallDependency(C); 446 // FIXME: Move the checking logic to MemDep! 447 CallInst* cdep = nullptr; 448 449 // Check to see if we have a single dominating call instruction that is 450 // identical to C. 451 for (unsigned i = 0, e = deps.size(); i != e; ++i) { 452 const NonLocalDepEntry *I = &deps[i]; 453 if (I->getResult().isNonLocal()) 454 continue; 455 456 // We don't handle non-definitions. If we already have a call, reject 457 // instruction dependencies. 458 if (!I->getResult().isDef() || cdep != nullptr) { 459 cdep = nullptr; 460 break; 461 } 462 463 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst()); 464 // FIXME: All duplicated with non-local case. 465 if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){ 466 cdep = NonLocalDepCall; 467 continue; 468 } 469 470 cdep = nullptr; 471 break; 472 } 473 474 if (!cdep) { 475 valueNumbering[C] = nextValueNumber; 476 return nextValueNumber++; 477 } 478 479 if (cdep->arg_size() != C->arg_size()) { 480 valueNumbering[C] = nextValueNumber; 481 return nextValueNumber++; 482 } 483 for (unsigned i = 0, e = C->arg_size(); i < e; ++i) { 484 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 485 uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i)); 486 if (c_vn != cd_vn) { 487 valueNumbering[C] = nextValueNumber; 488 return nextValueNumber++; 489 } 490 } 491 492 uint32_t v = lookupOrAdd(cdep); 493 valueNumbering[C] = v; 494 return v; 495 } else { 496 valueNumbering[C] = nextValueNumber; 497 return nextValueNumber++; 498 } 499 } 500 501 /// Returns true if a value number exists for the specified value. 502 bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; } 503 504 /// lookup_or_add - Returns the value number for the specified value, assigning 505 /// it a new number if it did not have one before. 506 uint32_t GVN::ValueTable::lookupOrAdd(Value *V) { 507 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); 508 if (VI != valueNumbering.end()) 509 return VI->second; 510 511 if (!isa<Instruction>(V)) { 512 valueNumbering[V] = nextValueNumber; 513 return nextValueNumber++; 514 } 515 516 Instruction* I = cast<Instruction>(V); 517 Expression exp; 518 switch (I->getOpcode()) { 519 case Instruction::Call: 520 return lookupOrAddCall(cast<CallInst>(I)); 521 case Instruction::FNeg: 522 case Instruction::Add: 523 case Instruction::FAdd: 524 case Instruction::Sub: 525 case Instruction::FSub: 526 case Instruction::Mul: 527 case Instruction::FMul: 528 case Instruction::UDiv: 529 case Instruction::SDiv: 530 case Instruction::FDiv: 531 case Instruction::URem: 532 case Instruction::SRem: 533 case Instruction::FRem: 534 case Instruction::Shl: 535 case Instruction::LShr: 536 case Instruction::AShr: 537 case Instruction::And: 538 case Instruction::Or: 539 case Instruction::Xor: 540 case Instruction::ICmp: 541 case Instruction::FCmp: 542 case Instruction::Trunc: 543 case Instruction::ZExt: 544 case Instruction::SExt: 545 case Instruction::FPToUI: 546 case Instruction::FPToSI: 547 case Instruction::UIToFP: 548 case Instruction::SIToFP: 549 case Instruction::FPTrunc: 550 case Instruction::FPExt: 551 case Instruction::PtrToInt: 552 case Instruction::IntToPtr: 553 case Instruction::AddrSpaceCast: 554 case Instruction::BitCast: 555 case Instruction::Select: 556 case Instruction::Freeze: 557 case Instruction::ExtractElement: 558 case Instruction::InsertElement: 559 case Instruction::ShuffleVector: 560 case Instruction::InsertValue: 561 case Instruction::GetElementPtr: 562 exp = createExpr(I); 563 break; 564 case Instruction::ExtractValue: 565 exp = createExtractvalueExpr(cast<ExtractValueInst>(I)); 566 break; 567 case Instruction::PHI: 568 valueNumbering[V] = nextValueNumber; 569 NumberingPhi[nextValueNumber] = cast<PHINode>(V); 570 return nextValueNumber++; 571 default: 572 valueNumbering[V] = nextValueNumber; 573 return nextValueNumber++; 574 } 575 576 uint32_t e = assignExpNewValueNum(exp).first; 577 valueNumbering[V] = e; 578 return e; 579 } 580 581 /// Returns the value number of the specified value. Fails if 582 /// the value has not yet been numbered. 583 uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const { 584 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V); 585 if (Verify) { 586 assert(VI != valueNumbering.end() && "Value not numbered?"); 587 return VI->second; 588 } 589 return (VI != valueNumbering.end()) ? VI->second : 0; 590 } 591 592 /// Returns the value number of the given comparison, 593 /// assigning it a new number if it did not have one before. Useful when 594 /// we deduced the result of a comparison, but don't immediately have an 595 /// instruction realizing that comparison to hand. 596 uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode, 597 CmpInst::Predicate Predicate, 598 Value *LHS, Value *RHS) { 599 Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS); 600 return assignExpNewValueNum(exp).first; 601 } 602 603 /// Remove all entries from the ValueTable. 604 void GVN::ValueTable::clear() { 605 valueNumbering.clear(); 606 expressionNumbering.clear(); 607 NumberingPhi.clear(); 608 PhiTranslateTable.clear(); 609 nextValueNumber = 1; 610 Expressions.clear(); 611 ExprIdx.clear(); 612 nextExprNumber = 0; 613 } 614 615 /// Remove a value from the value numbering. 616 void GVN::ValueTable::erase(Value *V) { 617 uint32_t Num = valueNumbering.lookup(V); 618 valueNumbering.erase(V); 619 // If V is PHINode, V <--> value number is an one-to-one mapping. 620 if (isa<PHINode>(V)) 621 NumberingPhi.erase(Num); 622 } 623 624 /// verifyRemoved - Verify that the value is removed from all internal data 625 /// structures. 626 void GVN::ValueTable::verifyRemoved(const Value *V) const { 627 for (DenseMap<Value*, uint32_t>::const_iterator 628 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) { 629 assert(I->first != V && "Inst still occurs in value numbering map!"); 630 } 631 } 632 633 //===----------------------------------------------------------------------===// 634 // GVN Pass 635 //===----------------------------------------------------------------------===// 636 637 bool GVN::isPREEnabled() const { 638 return Options.AllowPRE.getValueOr(GVNEnablePRE); 639 } 640 641 bool GVN::isLoadPREEnabled() const { 642 return Options.AllowLoadPRE.getValueOr(GVNEnableLoadPRE); 643 } 644 645 bool GVN::isLoadInLoopPREEnabled() const { 646 return Options.AllowLoadInLoopPRE.getValueOr(GVNEnableLoadInLoopPRE); 647 } 648 649 bool GVN::isLoadPRESplitBackedgeEnabled() const { 650 return Options.AllowLoadPRESplitBackedge.getValueOr( 651 GVNEnableSplitBackedgeInLoadPRE); 652 } 653 654 bool GVN::isMemDepEnabled() const { 655 return Options.AllowMemDep.getValueOr(GVNEnableMemDep); 656 } 657 658 PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) { 659 // FIXME: The order of evaluation of these 'getResult' calls is very 660 // significant! Re-ordering these variables will cause GVN when run alone to 661 // be less effective! We should fix memdep and basic-aa to not exhibit this 662 // behavior, but until then don't change the order here. 663 auto &AC = AM.getResult<AssumptionAnalysis>(F); 664 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 665 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 666 auto &AA = AM.getResult<AAManager>(F); 667 auto *MemDep = 668 isMemDepEnabled() ? &AM.getResult<MemoryDependenceAnalysis>(F) : nullptr; 669 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 670 auto *MSSA = AM.getCachedResult<MemorySSAAnalysis>(F); 671 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 672 bool Changed = runImpl(F, AC, DT, TLI, AA, MemDep, LI, &ORE, 673 MSSA ? &MSSA->getMSSA() : nullptr); 674 if (!Changed) 675 return PreservedAnalyses::all(); 676 PreservedAnalyses PA; 677 PA.preserve<DominatorTreeAnalysis>(); 678 PA.preserve<TargetLibraryAnalysis>(); 679 if (MSSA) 680 PA.preserve<MemorySSAAnalysis>(); 681 if (LI) 682 PA.preserve<LoopAnalysis>(); 683 return PA; 684 } 685 686 void GVN::printPipeline( 687 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 688 static_cast<PassInfoMixin<GVN> *>(this)->printPipeline(OS, 689 MapClassName2PassName); 690 691 OS << "<"; 692 if (Options.AllowPRE != None) 693 OS << (Options.AllowPRE.getValue() ? "" : "no-") << "pre;"; 694 if (Options.AllowLoadPRE != None) 695 OS << (Options.AllowLoadPRE.getValue() ? "" : "no-") << "load-pre;"; 696 if (Options.AllowLoadPRESplitBackedge != None) 697 OS << (Options.AllowLoadPRESplitBackedge.getValue() ? "" : "no-") 698 << "split-backedge-load-pre;"; 699 if (Options.AllowMemDep != None) 700 OS << (Options.AllowMemDep.getValue() ? "" : "no-") << "memdep"; 701 OS << ">"; 702 } 703 704 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 705 LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const { 706 errs() << "{\n"; 707 for (auto &I : d) { 708 errs() << I.first << "\n"; 709 I.second->dump(); 710 } 711 errs() << "}\n"; 712 } 713 #endif 714 715 enum class AvailabilityState : char { 716 /// We know the block *is not* fully available. This is a fixpoint. 717 Unavailable = 0, 718 /// We know the block *is* fully available. This is a fixpoint. 719 Available = 1, 720 /// We do not know whether the block is fully available or not, 721 /// but we are currently speculating that it will be. 722 /// If it would have turned out that the block was, in fact, not fully 723 /// available, this would have been cleaned up into an Unavailable. 724 SpeculativelyAvailable = 2, 725 }; 726 727 /// Return true if we can prove that the value 728 /// we're analyzing is fully available in the specified block. As we go, keep 729 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This 730 /// map is actually a tri-state map with the following values: 731 /// 0) we know the block *is not* fully available. 732 /// 1) we know the block *is* fully available. 733 /// 2) we do not know whether the block is fully available or not, but we are 734 /// currently speculating that it will be. 735 static bool IsValueFullyAvailableInBlock( 736 BasicBlock *BB, 737 DenseMap<BasicBlock *, AvailabilityState> &FullyAvailableBlocks) { 738 SmallVector<BasicBlock *, 32> Worklist; 739 Optional<BasicBlock *> UnavailableBB; 740 741 // The number of times we didn't find an entry for a block in a map and 742 // optimistically inserted an entry marking block as speculatively available. 743 unsigned NumNewNewSpeculativelyAvailableBBs = 0; 744 745 #ifndef NDEBUG 746 SmallSet<BasicBlock *, 32> NewSpeculativelyAvailableBBs; 747 SmallVector<BasicBlock *, 32> AvailableBBs; 748 #endif 749 750 Worklist.emplace_back(BB); 751 while (!Worklist.empty()) { 752 BasicBlock *CurrBB = Worklist.pop_back_val(); // LoadFO - depth-first! 753 // Optimistically assume that the block is Speculatively Available and check 754 // to see if we already know about this block in one lookup. 755 std::pair<DenseMap<BasicBlock *, AvailabilityState>::iterator, bool> IV = 756 FullyAvailableBlocks.try_emplace( 757 CurrBB, AvailabilityState::SpeculativelyAvailable); 758 AvailabilityState &State = IV.first->second; 759 760 // Did the entry already exist for this block? 761 if (!IV.second) { 762 if (State == AvailabilityState::Unavailable) { 763 UnavailableBB = CurrBB; 764 break; // Backpropagate unavailability info. 765 } 766 767 #ifndef NDEBUG 768 AvailableBBs.emplace_back(CurrBB); 769 #endif 770 continue; // Don't recurse further, but continue processing worklist. 771 } 772 773 // No entry found for block. 774 ++NumNewNewSpeculativelyAvailableBBs; 775 bool OutOfBudget = NumNewNewSpeculativelyAvailableBBs > MaxBBSpeculations; 776 777 // If we have exhausted our budget, mark this block as unavailable. 778 // Also, if this block has no predecessors, the value isn't live-in here. 779 if (OutOfBudget || pred_empty(CurrBB)) { 780 MaxBBSpeculationCutoffReachedTimes += (int)OutOfBudget; 781 State = AvailabilityState::Unavailable; 782 UnavailableBB = CurrBB; 783 break; // Backpropagate unavailability info. 784 } 785 786 // Tentatively consider this block as speculatively available. 787 #ifndef NDEBUG 788 NewSpeculativelyAvailableBBs.insert(CurrBB); 789 #endif 790 // And further recurse into block's predecessors, in depth-first order! 791 Worklist.append(pred_begin(CurrBB), pred_end(CurrBB)); 792 } 793 794 #if LLVM_ENABLE_STATS 795 IsValueFullyAvailableInBlockNumSpeculationsMax.updateMax( 796 NumNewNewSpeculativelyAvailableBBs); 797 #endif 798 799 // If the block isn't marked as fixpoint yet 800 // (the Unavailable and Available states are fixpoints) 801 auto MarkAsFixpointAndEnqueueSuccessors = 802 [&](BasicBlock *BB, AvailabilityState FixpointState) { 803 auto It = FullyAvailableBlocks.find(BB); 804 if (It == FullyAvailableBlocks.end()) 805 return; // Never queried this block, leave as-is. 806 switch (AvailabilityState &State = It->second) { 807 case AvailabilityState::Unavailable: 808 case AvailabilityState::Available: 809 return; // Don't backpropagate further, continue processing worklist. 810 case AvailabilityState::SpeculativelyAvailable: // Fix it! 811 State = FixpointState; 812 #ifndef NDEBUG 813 assert(NewSpeculativelyAvailableBBs.erase(BB) && 814 "Found a speculatively available successor leftover?"); 815 #endif 816 // Queue successors for further processing. 817 Worklist.append(succ_begin(BB), succ_end(BB)); 818 return; 819 } 820 }; 821 822 if (UnavailableBB) { 823 // Okay, we have encountered an unavailable block. 824 // Mark speculatively available blocks reachable from UnavailableBB as 825 // unavailable as well. Paths are terminated when they reach blocks not in 826 // FullyAvailableBlocks or they are not marked as speculatively available. 827 Worklist.clear(); 828 Worklist.append(succ_begin(*UnavailableBB), succ_end(*UnavailableBB)); 829 while (!Worklist.empty()) 830 MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(), 831 AvailabilityState::Unavailable); 832 } 833 834 #ifndef NDEBUG 835 Worklist.clear(); 836 for (BasicBlock *AvailableBB : AvailableBBs) 837 Worklist.append(succ_begin(AvailableBB), succ_end(AvailableBB)); 838 while (!Worklist.empty()) 839 MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(), 840 AvailabilityState::Available); 841 842 assert(NewSpeculativelyAvailableBBs.empty() && 843 "Must have fixed all the new speculatively available blocks."); 844 #endif 845 846 return !UnavailableBB; 847 } 848 849 /// Given a set of loads specified by ValuesPerBlock, 850 /// construct SSA form, allowing us to eliminate Load. This returns the value 851 /// that should be used at Load's definition site. 852 static Value * 853 ConstructSSAForLoadSet(LoadInst *Load, 854 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, 855 GVN &gvn) { 856 // Check for the fully redundant, dominating load case. In this case, we can 857 // just use the dominating value directly. 858 if (ValuesPerBlock.size() == 1 && 859 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB, 860 Load->getParent())) { 861 assert(!ValuesPerBlock[0].AV.isUndefValue() && 862 "Dead BB dominate this block"); 863 return ValuesPerBlock[0].MaterializeAdjustedValue(Load, gvn); 864 } 865 866 // Otherwise, we have to construct SSA form. 867 SmallVector<PHINode*, 8> NewPHIs; 868 SSAUpdater SSAUpdate(&NewPHIs); 869 SSAUpdate.Initialize(Load->getType(), Load->getName()); 870 871 for (const AvailableValueInBlock &AV : ValuesPerBlock) { 872 BasicBlock *BB = AV.BB; 873 874 if (AV.AV.isUndefValue()) 875 continue; 876 877 if (SSAUpdate.HasValueForBlock(BB)) 878 continue; 879 880 // If the value is the load that we will be eliminating, and the block it's 881 // available in is the block that the load is in, then don't add it as 882 // SSAUpdater will resolve the value to the relevant phi which may let it 883 // avoid phi construction entirely if there's actually only one value. 884 if (BB == Load->getParent() && 885 ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == Load) || 886 (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == Load))) 887 continue; 888 889 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(Load, gvn)); 890 } 891 892 // Perform PHI construction. 893 return SSAUpdate.GetValueInMiddleOfBlock(Load->getParent()); 894 } 895 896 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *Load, 897 Instruction *InsertPt, 898 GVN &gvn) const { 899 Value *Res; 900 Type *LoadTy = Load->getType(); 901 const DataLayout &DL = Load->getModule()->getDataLayout(); 902 if (isSimpleValue()) { 903 Res = getSimpleValue(); 904 if (Res->getType() != LoadTy) { 905 Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL); 906 907 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset 908 << " " << *getSimpleValue() << '\n' 909 << *Res << '\n' 910 << "\n\n\n"); 911 } 912 } else if (isCoercedLoadValue()) { 913 LoadInst *CoercedLoad = getCoercedLoadValue(); 914 if (CoercedLoad->getType() == LoadTy && Offset == 0) { 915 Res = CoercedLoad; 916 } else { 917 Res = getLoadValueForLoad(CoercedLoad, Offset, LoadTy, InsertPt, DL); 918 // We would like to use gvn.markInstructionForDeletion here, but we can't 919 // because the load is already memoized into the leader map table that GVN 920 // tracks. It is potentially possible to remove the load from the table, 921 // but then there all of the operations based on it would need to be 922 // rehashed. Just leave the dead load around. 923 gvn.getMemDep().removeInstruction(CoercedLoad); 924 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset 925 << " " << *getCoercedLoadValue() << '\n' 926 << *Res << '\n' 927 << "\n\n\n"); 928 } 929 } else if (isMemIntrinValue()) { 930 Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy, 931 InsertPt, DL); 932 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset 933 << " " << *getMemIntrinValue() << '\n' 934 << *Res << '\n' 935 << "\n\n\n"); 936 } else { 937 llvm_unreachable("Should not materialize value from dead block"); 938 } 939 assert(Res && "failed to materialize?"); 940 return Res; 941 } 942 943 static bool isLifetimeStart(const Instruction *Inst) { 944 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst)) 945 return II->getIntrinsicID() == Intrinsic::lifetime_start; 946 return false; 947 } 948 949 /// Assuming To can be reached from both From and Between, does Between lie on 950 /// every path from From to To? 951 static bool liesBetween(const Instruction *From, Instruction *Between, 952 const Instruction *To, DominatorTree *DT) { 953 if (From->getParent() == Between->getParent()) 954 return DT->dominates(From, Between); 955 SmallSet<BasicBlock *, 1> Exclusion; 956 Exclusion.insert(Between->getParent()); 957 return !isPotentiallyReachable(From, To, &Exclusion, DT); 958 } 959 960 /// Try to locate the three instruction involved in a missed 961 /// load-elimination case that is due to an intervening store. 962 static void reportMayClobberedLoad(LoadInst *Load, MemDepResult DepInfo, 963 DominatorTree *DT, 964 OptimizationRemarkEmitter *ORE) { 965 using namespace ore; 966 967 User *OtherAccess = nullptr; 968 969 OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", Load); 970 R << "load of type " << NV("Type", Load->getType()) << " not eliminated" 971 << setExtraArgs(); 972 973 for (auto *U : Load->getPointerOperand()->users()) { 974 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U)) && 975 cast<Instruction>(U)->getFunction() == Load->getFunction() && 976 DT->dominates(cast<Instruction>(U), Load)) { 977 // Use the most immediately dominating value 978 if (OtherAccess) { 979 if (DT->dominates(cast<Instruction>(OtherAccess), cast<Instruction>(U))) 980 OtherAccess = U; 981 else 982 assert(DT->dominates(cast<Instruction>(U), 983 cast<Instruction>(OtherAccess))); 984 } else 985 OtherAccess = U; 986 } 987 } 988 989 if (!OtherAccess) { 990 // There is no dominating use, check if we can find a closest non-dominating 991 // use that lies between any other potentially available use and Load. 992 for (auto *U : Load->getPointerOperand()->users()) { 993 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U)) && 994 cast<Instruction>(U)->getFunction() == Load->getFunction() && 995 isPotentiallyReachable(cast<Instruction>(U), Load, nullptr, DT)) { 996 if (OtherAccess) { 997 if (liesBetween(cast<Instruction>(OtherAccess), cast<Instruction>(U), 998 Load, DT)) { 999 OtherAccess = U; 1000 } else if (!liesBetween(cast<Instruction>(U), 1001 cast<Instruction>(OtherAccess), Load, DT)) { 1002 // These uses are both partially available at Load were it not for 1003 // the clobber, but neither lies strictly after the other. 1004 OtherAccess = nullptr; 1005 break; 1006 } // else: keep current OtherAccess since it lies between U and Load 1007 } else { 1008 OtherAccess = U; 1009 } 1010 } 1011 } 1012 } 1013 1014 if (OtherAccess) 1015 R << " in favor of " << NV("OtherAccess", OtherAccess); 1016 1017 R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst()); 1018 1019 ORE->emit(R); 1020 } 1021 1022 bool GVN::AnalyzeLoadAvailability(LoadInst *Load, MemDepResult DepInfo, 1023 Value *Address, AvailableValue &Res) { 1024 assert((DepInfo.isDef() || DepInfo.isClobber()) && 1025 "expected a local dependence"); 1026 assert(Load->isUnordered() && "rules below are incorrect for ordered access"); 1027 1028 const DataLayout &DL = Load->getModule()->getDataLayout(); 1029 1030 Instruction *DepInst = DepInfo.getInst(); 1031 if (DepInfo.isClobber()) { 1032 // If the dependence is to a store that writes to a superset of the bits 1033 // read by the load, we can extract the bits we need for the load from the 1034 // stored value. 1035 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) { 1036 // Can't forward from non-atomic to atomic without violating memory model. 1037 if (Address && Load->isAtomic() <= DepSI->isAtomic()) { 1038 int Offset = 1039 analyzeLoadFromClobberingStore(Load->getType(), Address, DepSI, DL); 1040 if (Offset != -1) { 1041 Res = AvailableValue::get(DepSI->getValueOperand(), Offset); 1042 return true; 1043 } 1044 } 1045 } 1046 1047 // Check to see if we have something like this: 1048 // load i32* P 1049 // load i8* (P+1) 1050 // if we have this, replace the later with an extraction from the former. 1051 if (LoadInst *DepLoad = dyn_cast<LoadInst>(DepInst)) { 1052 // If this is a clobber and L is the first instruction in its block, then 1053 // we have the first instruction in the entry block. 1054 // Can't forward from non-atomic to atomic without violating memory model. 1055 if (DepLoad != Load && Address && 1056 Load->isAtomic() <= DepLoad->isAtomic()) { 1057 Type *LoadType = Load->getType(); 1058 int Offset = -1; 1059 1060 // If MD reported clobber, check it was nested. 1061 if (DepInfo.isClobber() && 1062 canCoerceMustAliasedValueToLoad(DepLoad, LoadType, DL)) { 1063 const auto ClobberOff = MD->getClobberOffset(DepLoad); 1064 // GVN has no deal with a negative offset. 1065 Offset = (ClobberOff == None || ClobberOff.getValue() < 0) 1066 ? -1 1067 : ClobberOff.getValue(); 1068 } 1069 if (Offset == -1) 1070 Offset = 1071 analyzeLoadFromClobberingLoad(LoadType, Address, DepLoad, DL); 1072 if (Offset != -1) { 1073 Res = AvailableValue::getLoad(DepLoad, Offset); 1074 return true; 1075 } 1076 } 1077 } 1078 1079 // If the clobbering value is a memset/memcpy/memmove, see if we can 1080 // forward a value on from it. 1081 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) { 1082 if (Address && !Load->isAtomic()) { 1083 int Offset = analyzeLoadFromClobberingMemInst(Load->getType(), Address, 1084 DepMI, DL); 1085 if (Offset != -1) { 1086 Res = AvailableValue::getMI(DepMI, Offset); 1087 return true; 1088 } 1089 } 1090 } 1091 // Nothing known about this clobber, have to be conservative 1092 LLVM_DEBUG( 1093 // fast print dep, using operator<< on instruction is too slow. 1094 dbgs() << "GVN: load "; Load->printAsOperand(dbgs()); 1095 dbgs() << " is clobbered by " << *DepInst << '\n';); 1096 if (ORE->allowExtraAnalysis(DEBUG_TYPE)) 1097 reportMayClobberedLoad(Load, DepInfo, DT, ORE); 1098 1099 return false; 1100 } 1101 assert(DepInfo.isDef() && "follows from above"); 1102 1103 // Loading the allocation -> undef. 1104 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) || 1105 isAlignedAllocLikeFn(DepInst, TLI) || 1106 // Loading immediately after lifetime begin -> undef. 1107 isLifetimeStart(DepInst)) { 1108 Res = AvailableValue::get(UndefValue::get(Load->getType())); 1109 return true; 1110 } 1111 1112 // Loading from calloc (which zero initializes memory) -> zero 1113 if (isCallocLikeFn(DepInst, TLI)) { 1114 Res = AvailableValue::get(Constant::getNullValue(Load->getType())); 1115 return true; 1116 } 1117 1118 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) { 1119 // Reject loads and stores that are to the same address but are of 1120 // different types if we have to. If the stored value is convertable to 1121 // the loaded value, we can reuse it. 1122 if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), Load->getType(), 1123 DL)) 1124 return false; 1125 1126 // Can't forward from non-atomic to atomic without violating memory model. 1127 if (S->isAtomic() < Load->isAtomic()) 1128 return false; 1129 1130 Res = AvailableValue::get(S->getValueOperand()); 1131 return true; 1132 } 1133 1134 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) { 1135 // If the types mismatch and we can't handle it, reject reuse of the load. 1136 // If the stored value is larger or equal to the loaded value, we can reuse 1137 // it. 1138 if (!canCoerceMustAliasedValueToLoad(LD, Load->getType(), DL)) 1139 return false; 1140 1141 // Can't forward from non-atomic to atomic without violating memory model. 1142 if (LD->isAtomic() < Load->isAtomic()) 1143 return false; 1144 1145 Res = AvailableValue::getLoad(LD); 1146 return true; 1147 } 1148 1149 // Unknown def - must be conservative 1150 LLVM_DEBUG( 1151 // fast print dep, using operator<< on instruction is too slow. 1152 dbgs() << "GVN: load "; Load->printAsOperand(dbgs()); 1153 dbgs() << " has unknown def " << *DepInst << '\n';); 1154 return false; 1155 } 1156 1157 void GVN::AnalyzeLoadAvailability(LoadInst *Load, LoadDepVect &Deps, 1158 AvailValInBlkVect &ValuesPerBlock, 1159 UnavailBlkVect &UnavailableBlocks) { 1160 // Filter out useless results (non-locals, etc). Keep track of the blocks 1161 // where we have a value available in repl, also keep track of whether we see 1162 // dependencies that produce an unknown value for the load (such as a call 1163 // that could potentially clobber the load). 1164 unsigned NumDeps = Deps.size(); 1165 for (unsigned i = 0, e = NumDeps; i != e; ++i) { 1166 BasicBlock *DepBB = Deps[i].getBB(); 1167 MemDepResult DepInfo = Deps[i].getResult(); 1168 1169 if (DeadBlocks.count(DepBB)) { 1170 // Dead dependent mem-op disguise as a load evaluating the same value 1171 // as the load in question. 1172 ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB)); 1173 continue; 1174 } 1175 1176 if (!DepInfo.isDef() && !DepInfo.isClobber()) { 1177 UnavailableBlocks.push_back(DepBB); 1178 continue; 1179 } 1180 1181 // The address being loaded in this non-local block may not be the same as 1182 // the pointer operand of the load if PHI translation occurs. Make sure 1183 // to consider the right address. 1184 Value *Address = Deps[i].getAddress(); 1185 1186 AvailableValue AV; 1187 if (AnalyzeLoadAvailability(Load, DepInfo, Address, AV)) { 1188 // subtlety: because we know this was a non-local dependency, we know 1189 // it's safe to materialize anywhere between the instruction within 1190 // DepInfo and the end of it's block. 1191 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, 1192 std::move(AV))); 1193 } else { 1194 UnavailableBlocks.push_back(DepBB); 1195 } 1196 } 1197 1198 assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() && 1199 "post condition violation"); 1200 } 1201 1202 void GVN::eliminatePartiallyRedundantLoad( 1203 LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, 1204 MapVector<BasicBlock *, Value *> &AvailableLoads) { 1205 for (const auto &AvailableLoad : AvailableLoads) { 1206 BasicBlock *UnavailableBlock = AvailableLoad.first; 1207 Value *LoadPtr = AvailableLoad.second; 1208 1209 auto *NewLoad = 1210 new LoadInst(Load->getType(), LoadPtr, Load->getName() + ".pre", 1211 Load->isVolatile(), Load->getAlign(), Load->getOrdering(), 1212 Load->getSyncScopeID(), UnavailableBlock->getTerminator()); 1213 NewLoad->setDebugLoc(Load->getDebugLoc()); 1214 if (MSSAU) { 1215 auto *MSSA = MSSAU->getMemorySSA(); 1216 // Get the defining access of the original load or use the load if it is a 1217 // MemoryDef (e.g. because it is volatile). The inserted loads are 1218 // guaranteed to load from the same definition. 1219 auto *LoadAcc = MSSA->getMemoryAccess(Load); 1220 auto *DefiningAcc = 1221 isa<MemoryDef>(LoadAcc) ? LoadAcc : LoadAcc->getDefiningAccess(); 1222 auto *NewAccess = MSSAU->createMemoryAccessInBB( 1223 NewLoad, DefiningAcc, NewLoad->getParent(), 1224 MemorySSA::BeforeTerminator); 1225 if (auto *NewDef = dyn_cast<MemoryDef>(NewAccess)) 1226 MSSAU->insertDef(NewDef, /*RenameUses=*/true); 1227 else 1228 MSSAU->insertUse(cast<MemoryUse>(NewAccess), /*RenameUses=*/true); 1229 } 1230 1231 // Transfer the old load's AA tags to the new load. 1232 AAMDNodes Tags = Load->getAAMetadata(); 1233 if (Tags) 1234 NewLoad->setAAMetadata(Tags); 1235 1236 if (auto *MD = Load->getMetadata(LLVMContext::MD_invariant_load)) 1237 NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD); 1238 if (auto *InvGroupMD = Load->getMetadata(LLVMContext::MD_invariant_group)) 1239 NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD); 1240 if (auto *RangeMD = Load->getMetadata(LLVMContext::MD_range)) 1241 NewLoad->setMetadata(LLVMContext::MD_range, RangeMD); 1242 if (auto *AccessMD = Load->getMetadata(LLVMContext::MD_access_group)) 1243 if (LI && 1244 LI->getLoopFor(Load->getParent()) == LI->getLoopFor(UnavailableBlock)) 1245 NewLoad->setMetadata(LLVMContext::MD_access_group, AccessMD); 1246 1247 // We do not propagate the old load's debug location, because the new 1248 // load now lives in a different BB, and we want to avoid a jumpy line 1249 // table. 1250 // FIXME: How do we retain source locations without causing poor debugging 1251 // behavior? 1252 1253 // Add the newly created load. 1254 ValuesPerBlock.push_back( 1255 AvailableValueInBlock::get(UnavailableBlock, NewLoad)); 1256 MD->invalidateCachedPointerInfo(LoadPtr); 1257 LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n'); 1258 } 1259 1260 // Perform PHI construction. 1261 Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this); 1262 Load->replaceAllUsesWith(V); 1263 if (isa<PHINode>(V)) 1264 V->takeName(Load); 1265 if (Instruction *I = dyn_cast<Instruction>(V)) 1266 I->setDebugLoc(Load->getDebugLoc()); 1267 if (V->getType()->isPtrOrPtrVectorTy()) 1268 MD->invalidateCachedPointerInfo(V); 1269 markInstructionForDeletion(Load); 1270 ORE->emit([&]() { 1271 return OptimizationRemark(DEBUG_TYPE, "LoadPRE", Load) 1272 << "load eliminated by PRE"; 1273 }); 1274 } 1275 1276 bool GVN::PerformLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, 1277 UnavailBlkVect &UnavailableBlocks) { 1278 // Okay, we have *some* definitions of the value. This means that the value 1279 // is available in some of our (transitive) predecessors. Lets think about 1280 // doing PRE of this load. This will involve inserting a new load into the 1281 // predecessor when it's not available. We could do this in general, but 1282 // prefer to not increase code size. As such, we only do this when we know 1283 // that we only have to insert *one* load (which means we're basically moving 1284 // the load, not inserting a new one). 1285 1286 SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(), 1287 UnavailableBlocks.end()); 1288 1289 // Let's find the first basic block with more than one predecessor. Walk 1290 // backwards through predecessors if needed. 1291 BasicBlock *LoadBB = Load->getParent(); 1292 BasicBlock *TmpBB = LoadBB; 1293 1294 // Check that there is no implicit control flow instructions above our load in 1295 // its block. If there is an instruction that doesn't always pass the 1296 // execution to the following instruction, then moving through it may become 1297 // invalid. For example: 1298 // 1299 // int arr[LEN]; 1300 // int index = ???; 1301 // ... 1302 // guard(0 <= index && index < LEN); 1303 // use(arr[index]); 1304 // 1305 // It is illegal to move the array access to any point above the guard, 1306 // because if the index is out of bounds we should deoptimize rather than 1307 // access the array. 1308 // Check that there is no guard in this block above our instruction. 1309 bool MustEnsureSafetyOfSpeculativeExecution = 1310 ICF->isDominatedByICFIFromSameBlock(Load); 1311 1312 while (TmpBB->getSinglePredecessor()) { 1313 TmpBB = TmpBB->getSinglePredecessor(); 1314 if (TmpBB == LoadBB) // Infinite (unreachable) loop. 1315 return false; 1316 if (Blockers.count(TmpBB)) 1317 return false; 1318 1319 // If any of these blocks has more than one successor (i.e. if the edge we 1320 // just traversed was critical), then there are other paths through this 1321 // block along which the load may not be anticipated. Hoisting the load 1322 // above this block would be adding the load to execution paths along 1323 // which it was not previously executed. 1324 if (TmpBB->getTerminator()->getNumSuccessors() != 1) 1325 return false; 1326 1327 // Check that there is no implicit control flow in a block above. 1328 MustEnsureSafetyOfSpeculativeExecution = 1329 MustEnsureSafetyOfSpeculativeExecution || ICF->hasICF(TmpBB); 1330 } 1331 1332 assert(TmpBB); 1333 LoadBB = TmpBB; 1334 1335 // Check to see how many predecessors have the loaded value fully 1336 // available. 1337 MapVector<BasicBlock *, Value *> PredLoads; 1338 DenseMap<BasicBlock *, AvailabilityState> FullyAvailableBlocks; 1339 for (const AvailableValueInBlock &AV : ValuesPerBlock) 1340 FullyAvailableBlocks[AV.BB] = AvailabilityState::Available; 1341 for (BasicBlock *UnavailableBB : UnavailableBlocks) 1342 FullyAvailableBlocks[UnavailableBB] = AvailabilityState::Unavailable; 1343 1344 SmallVector<BasicBlock *, 4> CriticalEdgePred; 1345 for (BasicBlock *Pred : predecessors(LoadBB)) { 1346 // If any predecessor block is an EH pad that does not allow non-PHI 1347 // instructions before the terminator, we can't PRE the load. 1348 if (Pred->getTerminator()->isEHPad()) { 1349 LLVM_DEBUG( 1350 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '" 1351 << Pred->getName() << "': " << *Load << '\n'); 1352 return false; 1353 } 1354 1355 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) { 1356 continue; 1357 } 1358 1359 if (Pred->getTerminator()->getNumSuccessors() != 1) { 1360 if (isa<IndirectBrInst>(Pred->getTerminator())) { 1361 LLVM_DEBUG( 1362 dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '" 1363 << Pred->getName() << "': " << *Load << '\n'); 1364 return false; 1365 } 1366 1367 // FIXME: Can we support the fallthrough edge? 1368 if (isa<CallBrInst>(Pred->getTerminator())) { 1369 LLVM_DEBUG( 1370 dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '" 1371 << Pred->getName() << "': " << *Load << '\n'); 1372 return false; 1373 } 1374 1375 if (LoadBB->isEHPad()) { 1376 LLVM_DEBUG( 1377 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '" 1378 << Pred->getName() << "': " << *Load << '\n'); 1379 return false; 1380 } 1381 1382 // Do not split backedge as it will break the canonical loop form. 1383 if (!isLoadPRESplitBackedgeEnabled()) 1384 if (DT->dominates(LoadBB, Pred)) { 1385 LLVM_DEBUG( 1386 dbgs() 1387 << "COULD NOT PRE LOAD BECAUSE OF A BACKEDGE CRITICAL EDGE '" 1388 << Pred->getName() << "': " << *Load << '\n'); 1389 return false; 1390 } 1391 1392 CriticalEdgePred.push_back(Pred); 1393 } else { 1394 // Only add the predecessors that will not be split for now. 1395 PredLoads[Pred] = nullptr; 1396 } 1397 } 1398 1399 // Decide whether PRE is profitable for this load. 1400 unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size(); 1401 assert(NumUnavailablePreds != 0 && 1402 "Fully available value should already be eliminated!"); 1403 1404 // If this load is unavailable in multiple predecessors, reject it. 1405 // FIXME: If we could restructure the CFG, we could make a common pred with 1406 // all the preds that don't have an available Load and insert a new load into 1407 // that one block. 1408 if (NumUnavailablePreds != 1) 1409 return false; 1410 1411 // Now we know where we will insert load. We must ensure that it is safe 1412 // to speculatively execute the load at that points. 1413 if (MustEnsureSafetyOfSpeculativeExecution) { 1414 if (CriticalEdgePred.size()) 1415 if (!isSafeToSpeculativelyExecute(Load, LoadBB->getFirstNonPHI(), DT)) 1416 return false; 1417 for (auto &PL : PredLoads) 1418 if (!isSafeToSpeculativelyExecute(Load, PL.first->getTerminator(), DT)) 1419 return false; 1420 } 1421 1422 // Split critical edges, and update the unavailable predecessors accordingly. 1423 for (BasicBlock *OrigPred : CriticalEdgePred) { 1424 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB); 1425 assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!"); 1426 PredLoads[NewPred] = nullptr; 1427 LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->" 1428 << LoadBB->getName() << '\n'); 1429 } 1430 1431 // Check if the load can safely be moved to all the unavailable predecessors. 1432 bool CanDoPRE = true; 1433 const DataLayout &DL = Load->getModule()->getDataLayout(); 1434 SmallVector<Instruction*, 8> NewInsts; 1435 for (auto &PredLoad : PredLoads) { 1436 BasicBlock *UnavailablePred = PredLoad.first; 1437 1438 // Do PHI translation to get its value in the predecessor if necessary. The 1439 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred. 1440 // We do the translation for each edge we skipped by going from Load's block 1441 // to LoadBB, otherwise we might miss pieces needing translation. 1442 1443 // If all preds have a single successor, then we know it is safe to insert 1444 // the load on the pred (?!?), so we can insert code to materialize the 1445 // pointer if it is not available. 1446 Value *LoadPtr = Load->getPointerOperand(); 1447 BasicBlock *Cur = Load->getParent(); 1448 while (Cur != LoadBB) { 1449 PHITransAddr Address(LoadPtr, DL, AC); 1450 LoadPtr = Address.PHITranslateWithInsertion( 1451 Cur, Cur->getSinglePredecessor(), *DT, NewInsts); 1452 if (!LoadPtr) { 1453 CanDoPRE = false; 1454 break; 1455 } 1456 Cur = Cur->getSinglePredecessor(); 1457 } 1458 1459 if (LoadPtr) { 1460 PHITransAddr Address(LoadPtr, DL, AC); 1461 LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT, 1462 NewInsts); 1463 } 1464 // If we couldn't find or insert a computation of this phi translated value, 1465 // we fail PRE. 1466 if (!LoadPtr) { 1467 LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: " 1468 << *Load->getPointerOperand() << "\n"); 1469 CanDoPRE = false; 1470 break; 1471 } 1472 1473 PredLoad.second = LoadPtr; 1474 } 1475 1476 if (!CanDoPRE) { 1477 while (!NewInsts.empty()) { 1478 // Erase instructions generated by the failed PHI translation before 1479 // trying to number them. PHI translation might insert instructions 1480 // in basic blocks other than the current one, and we delete them 1481 // directly, as markInstructionForDeletion only allows removing from the 1482 // current basic block. 1483 NewInsts.pop_back_val()->eraseFromParent(); 1484 } 1485 // HINT: Don't revert the edge-splitting as following transformation may 1486 // also need to split these critical edges. 1487 return !CriticalEdgePred.empty(); 1488 } 1489 1490 // Okay, we can eliminate this load by inserting a reload in the predecessor 1491 // and using PHI construction to get the value in the other predecessors, do 1492 // it. 1493 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *Load << '\n'); 1494 LLVM_DEBUG(if (!NewInsts.empty()) dbgs() << "INSERTED " << NewInsts.size() 1495 << " INSTS: " << *NewInsts.back() 1496 << '\n'); 1497 1498 // Assign value numbers to the new instructions. 1499 for (Instruction *I : NewInsts) { 1500 // Instructions that have been inserted in predecessor(s) to materialize 1501 // the load address do not retain their original debug locations. Doing 1502 // so could lead to confusing (but correct) source attributions. 1503 I->updateLocationAfterHoist(); 1504 1505 // FIXME: We really _ought_ to insert these value numbers into their 1506 // parent's availability map. However, in doing so, we risk getting into 1507 // ordering issues. If a block hasn't been processed yet, we would be 1508 // marking a value as AVAIL-IN, which isn't what we intend. 1509 VN.lookupOrAdd(I); 1510 } 1511 1512 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, PredLoads); 1513 ++NumPRELoad; 1514 return true; 1515 } 1516 1517 bool GVN::performLoopLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, 1518 UnavailBlkVect &UnavailableBlocks) { 1519 if (!LI) 1520 return false; 1521 1522 const Loop *L = LI->getLoopFor(Load->getParent()); 1523 // TODO: Generalize to other loop blocks that dominate the latch. 1524 if (!L || L->getHeader() != Load->getParent()) 1525 return false; 1526 1527 BasicBlock *Preheader = L->getLoopPreheader(); 1528 BasicBlock *Latch = L->getLoopLatch(); 1529 if (!Preheader || !Latch) 1530 return false; 1531 1532 Value *LoadPtr = Load->getPointerOperand(); 1533 // Must be available in preheader. 1534 if (!L->isLoopInvariant(LoadPtr)) 1535 return false; 1536 1537 // We plan to hoist the load to preheader without introducing a new fault. 1538 // In order to do it, we need to prove that we cannot side-exit the loop 1539 // once loop header is first entered before execution of the load. 1540 if (ICF->isDominatedByICFIFromSameBlock(Load)) 1541 return false; 1542 1543 BasicBlock *LoopBlock = nullptr; 1544 for (auto *Blocker : UnavailableBlocks) { 1545 // Blockers from outside the loop are handled in preheader. 1546 if (!L->contains(Blocker)) 1547 continue; 1548 1549 // Only allow one loop block. Loop header is not less frequently executed 1550 // than each loop block, and likely it is much more frequently executed. But 1551 // in case of multiple loop blocks, we need extra information (such as block 1552 // frequency info) to understand whether it is profitable to PRE into 1553 // multiple loop blocks. 1554 if (LoopBlock) 1555 return false; 1556 1557 // Do not sink into inner loops. This may be non-profitable. 1558 if (L != LI->getLoopFor(Blocker)) 1559 return false; 1560 1561 // Blocks that dominate the latch execute on every single iteration, maybe 1562 // except the last one. So PREing into these blocks doesn't make much sense 1563 // in most cases. But the blocks that do not necessarily execute on each 1564 // iteration are sometimes much colder than the header, and this is when 1565 // PRE is potentially profitable. 1566 if (DT->dominates(Blocker, Latch)) 1567 return false; 1568 1569 // Make sure that the terminator itself doesn't clobber. 1570 if (Blocker->getTerminator()->mayWriteToMemory()) 1571 return false; 1572 1573 LoopBlock = Blocker; 1574 } 1575 1576 if (!LoopBlock) 1577 return false; 1578 1579 // Make sure the memory at this pointer cannot be freed, therefore we can 1580 // safely reload from it after clobber. 1581 if (LoadPtr->canBeFreed()) 1582 return false; 1583 1584 // TODO: Support critical edge splitting if blocker has more than 1 successor. 1585 MapVector<BasicBlock *, Value *> AvailableLoads; 1586 AvailableLoads[LoopBlock] = LoadPtr; 1587 AvailableLoads[Preheader] = LoadPtr; 1588 1589 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOOP LOAD: " << *Load << '\n'); 1590 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, AvailableLoads); 1591 ++NumPRELoopLoad; 1592 return true; 1593 } 1594 1595 static void reportLoadElim(LoadInst *Load, Value *AvailableValue, 1596 OptimizationRemarkEmitter *ORE) { 1597 using namespace ore; 1598 1599 ORE->emit([&]() { 1600 return OptimizationRemark(DEBUG_TYPE, "LoadElim", Load) 1601 << "load of type " << NV("Type", Load->getType()) << " eliminated" 1602 << setExtraArgs() << " in favor of " 1603 << NV("InfavorOfValue", AvailableValue); 1604 }); 1605 } 1606 1607 /// Attempt to eliminate a load whose dependencies are 1608 /// non-local by performing PHI construction. 1609 bool GVN::processNonLocalLoad(LoadInst *Load) { 1610 // non-local speculations are not allowed under asan. 1611 if (Load->getParent()->getParent()->hasFnAttribute( 1612 Attribute::SanitizeAddress) || 1613 Load->getParent()->getParent()->hasFnAttribute( 1614 Attribute::SanitizeHWAddress)) 1615 return false; 1616 1617 // Step 1: Find the non-local dependencies of the load. 1618 LoadDepVect Deps; 1619 MD->getNonLocalPointerDependency(Load, Deps); 1620 1621 // If we had to process more than one hundred blocks to find the 1622 // dependencies, this load isn't worth worrying about. Optimizing 1623 // it will be too expensive. 1624 unsigned NumDeps = Deps.size(); 1625 if (NumDeps > MaxNumDeps) 1626 return false; 1627 1628 // If we had a phi translation failure, we'll have a single entry which is a 1629 // clobber in the current block. Reject this early. 1630 if (NumDeps == 1 && 1631 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) { 1632 LLVM_DEBUG(dbgs() << "GVN: non-local load "; Load->printAsOperand(dbgs()); 1633 dbgs() << " has unknown dependencies\n";); 1634 return false; 1635 } 1636 1637 bool Changed = false; 1638 // If this load follows a GEP, see if we can PRE the indices before analyzing. 1639 if (GetElementPtrInst *GEP = 1640 dyn_cast<GetElementPtrInst>(Load->getOperand(0))) { 1641 for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(), 1642 OE = GEP->idx_end(); 1643 OI != OE; ++OI) 1644 if (Instruction *I = dyn_cast<Instruction>(OI->get())) 1645 Changed |= performScalarPRE(I); 1646 } 1647 1648 // Step 2: Analyze the availability of the load 1649 AvailValInBlkVect ValuesPerBlock; 1650 UnavailBlkVect UnavailableBlocks; 1651 AnalyzeLoadAvailability(Load, Deps, ValuesPerBlock, UnavailableBlocks); 1652 1653 // If we have no predecessors that produce a known value for this load, exit 1654 // early. 1655 if (ValuesPerBlock.empty()) 1656 return Changed; 1657 1658 // Step 3: Eliminate fully redundancy. 1659 // 1660 // If all of the instructions we depend on produce a known value for this 1661 // load, then it is fully redundant and we can use PHI insertion to compute 1662 // its value. Insert PHIs and remove the fully redundant value now. 1663 if (UnavailableBlocks.empty()) { 1664 LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *Load << '\n'); 1665 1666 // Perform PHI construction. 1667 Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this); 1668 Load->replaceAllUsesWith(V); 1669 1670 if (isa<PHINode>(V)) 1671 V->takeName(Load); 1672 if (Instruction *I = dyn_cast<Instruction>(V)) 1673 // If instruction I has debug info, then we should not update it. 1674 // Also, if I has a null DebugLoc, then it is still potentially incorrect 1675 // to propagate Load's DebugLoc because Load may not post-dominate I. 1676 if (Load->getDebugLoc() && Load->getParent() == I->getParent()) 1677 I->setDebugLoc(Load->getDebugLoc()); 1678 if (V->getType()->isPtrOrPtrVectorTy()) 1679 MD->invalidateCachedPointerInfo(V); 1680 markInstructionForDeletion(Load); 1681 ++NumGVNLoad; 1682 reportLoadElim(Load, V, ORE); 1683 return true; 1684 } 1685 1686 // Step 4: Eliminate partial redundancy. 1687 if (!isPREEnabled() || !isLoadPREEnabled()) 1688 return Changed; 1689 if (!isLoadInLoopPREEnabled() && LI && LI->getLoopFor(Load->getParent())) 1690 return Changed; 1691 1692 if (performLoopLoadPRE(Load, ValuesPerBlock, UnavailableBlocks) || 1693 PerformLoadPRE(Load, ValuesPerBlock, UnavailableBlocks)) 1694 return true; 1695 1696 return Changed; 1697 } 1698 1699 static bool impliesEquivalanceIfTrue(CmpInst* Cmp) { 1700 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_EQ) 1701 return true; 1702 1703 // Floating point comparisons can be equal, but not equivalent. Cases: 1704 // NaNs for unordered operators 1705 // +0.0 vs 0.0 for all operators 1706 if (Cmp->getPredicate() == CmpInst::Predicate::FCMP_OEQ || 1707 (Cmp->getPredicate() == CmpInst::Predicate::FCMP_UEQ && 1708 Cmp->getFastMathFlags().noNaNs())) { 1709 Value *LHS = Cmp->getOperand(0); 1710 Value *RHS = Cmp->getOperand(1); 1711 // If we can prove either side non-zero, then equality must imply 1712 // equivalence. 1713 // FIXME: We should do this optimization if 'no signed zeros' is 1714 // applicable via an instruction-level fast-math-flag or some other 1715 // indicator that relaxed FP semantics are being used. 1716 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero()) 1717 return true; 1718 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero()) 1719 return true;; 1720 // TODO: Handle vector floating point constants 1721 } 1722 return false; 1723 } 1724 1725 static bool impliesEquivalanceIfFalse(CmpInst* Cmp) { 1726 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_NE) 1727 return true; 1728 1729 // Floating point comparisons can be equal, but not equivelent. Cases: 1730 // NaNs for unordered operators 1731 // +0.0 vs 0.0 for all operators 1732 if ((Cmp->getPredicate() == CmpInst::Predicate::FCMP_ONE && 1733 Cmp->getFastMathFlags().noNaNs()) || 1734 Cmp->getPredicate() == CmpInst::Predicate::FCMP_UNE) { 1735 Value *LHS = Cmp->getOperand(0); 1736 Value *RHS = Cmp->getOperand(1); 1737 // If we can prove either side non-zero, then equality must imply 1738 // equivalence. 1739 // FIXME: We should do this optimization if 'no signed zeros' is 1740 // applicable via an instruction-level fast-math-flag or some other 1741 // indicator that relaxed FP semantics are being used. 1742 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero()) 1743 return true; 1744 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero()) 1745 return true;; 1746 // TODO: Handle vector floating point constants 1747 } 1748 return false; 1749 } 1750 1751 1752 static bool hasUsersIn(Value *V, BasicBlock *BB) { 1753 for (User *U : V->users()) 1754 if (isa<Instruction>(U) && 1755 cast<Instruction>(U)->getParent() == BB) 1756 return true; 1757 return false; 1758 } 1759 1760 bool GVN::processAssumeIntrinsic(AssumeInst *IntrinsicI) { 1761 Value *V = IntrinsicI->getArgOperand(0); 1762 1763 if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) { 1764 if (Cond->isZero()) { 1765 Type *Int8Ty = Type::getInt8Ty(V->getContext()); 1766 // Insert a new store to null instruction before the load to indicate that 1767 // this code is not reachable. FIXME: We could insert unreachable 1768 // instruction directly because we can modify the CFG. 1769 auto *NewS = new StoreInst(UndefValue::get(Int8Ty), 1770 Constant::getNullValue(Int8Ty->getPointerTo()), 1771 IntrinsicI); 1772 if (MSSAU) { 1773 const MemoryUseOrDef *FirstNonDom = nullptr; 1774 const auto *AL = 1775 MSSAU->getMemorySSA()->getBlockAccesses(IntrinsicI->getParent()); 1776 1777 // If there are accesses in the current basic block, find the first one 1778 // that does not come before NewS. The new memory access is inserted 1779 // after the found access or before the terminator if no such access is 1780 // found. 1781 if (AL) { 1782 for (auto &Acc : *AL) { 1783 if (auto *Current = dyn_cast<MemoryUseOrDef>(&Acc)) 1784 if (!Current->getMemoryInst()->comesBefore(NewS)) { 1785 FirstNonDom = Current; 1786 break; 1787 } 1788 } 1789 } 1790 1791 // This added store is to null, so it will never executed and we can 1792 // just use the LiveOnEntry def as defining access. 1793 auto *NewDef = 1794 FirstNonDom ? MSSAU->createMemoryAccessBefore( 1795 NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(), 1796 const_cast<MemoryUseOrDef *>(FirstNonDom)) 1797 : MSSAU->createMemoryAccessInBB( 1798 NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(), 1799 NewS->getParent(), MemorySSA::BeforeTerminator); 1800 1801 MSSAU->insertDef(cast<MemoryDef>(NewDef), /*RenameUses=*/false); 1802 } 1803 } 1804 if (isAssumeWithEmptyBundle(*IntrinsicI)) 1805 markInstructionForDeletion(IntrinsicI); 1806 return false; 1807 } else if (isa<Constant>(V)) { 1808 // If it's not false, and constant, it must evaluate to true. This means our 1809 // assume is assume(true), and thus, pointless, and we don't want to do 1810 // anything more here. 1811 return false; 1812 } 1813 1814 Constant *True = ConstantInt::getTrue(V->getContext()); 1815 bool Changed = false; 1816 1817 for (BasicBlock *Successor : successors(IntrinsicI->getParent())) { 1818 BasicBlockEdge Edge(IntrinsicI->getParent(), Successor); 1819 1820 // This property is only true in dominated successors, propagateEquality 1821 // will check dominance for us. 1822 Changed |= propagateEquality(V, True, Edge, false); 1823 } 1824 1825 // We can replace assume value with true, which covers cases like this: 1826 // call void @llvm.assume(i1 %cmp) 1827 // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true 1828 ReplaceOperandsWithMap[V] = True; 1829 1830 // Similarly, after assume(!NotV) we know that NotV == false. 1831 Value *NotV; 1832 if (match(V, m_Not(m_Value(NotV)))) 1833 ReplaceOperandsWithMap[NotV] = ConstantInt::getFalse(V->getContext()); 1834 1835 // If we find an equality fact, canonicalize all dominated uses in this block 1836 // to one of the two values. We heuristically choice the "oldest" of the 1837 // two where age is determined by value number. (Note that propagateEquality 1838 // above handles the cross block case.) 1839 // 1840 // Key case to cover are: 1841 // 1) 1842 // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen 1843 // call void @llvm.assume(i1 %cmp) 1844 // ret float %0 ; will change it to ret float 3.000000e+00 1845 // 2) 1846 // %load = load float, float* %addr 1847 // %cmp = fcmp oeq float %load, %0 1848 // call void @llvm.assume(i1 %cmp) 1849 // ret float %load ; will change it to ret float %0 1850 if (auto *CmpI = dyn_cast<CmpInst>(V)) { 1851 if (impliesEquivalanceIfTrue(CmpI)) { 1852 Value *CmpLHS = CmpI->getOperand(0); 1853 Value *CmpRHS = CmpI->getOperand(1); 1854 // Heuristically pick the better replacement -- the choice of heuristic 1855 // isn't terribly important here, but the fact we canonicalize on some 1856 // replacement is for exposing other simplifications. 1857 // TODO: pull this out as a helper function and reuse w/existing 1858 // (slightly different) logic. 1859 if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS)) 1860 std::swap(CmpLHS, CmpRHS); 1861 if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS)) 1862 std::swap(CmpLHS, CmpRHS); 1863 if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) || 1864 (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) { 1865 // Move the 'oldest' value to the right-hand side, using the value 1866 // number as a proxy for age. 1867 uint32_t LVN = VN.lookupOrAdd(CmpLHS); 1868 uint32_t RVN = VN.lookupOrAdd(CmpRHS); 1869 if (LVN < RVN) 1870 std::swap(CmpLHS, CmpRHS); 1871 } 1872 1873 // Handle degenerate case where we either haven't pruned a dead path or a 1874 // removed a trivial assume yet. 1875 if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS)) 1876 return Changed; 1877 1878 LLVM_DEBUG(dbgs() << "Replacing dominated uses of " 1879 << *CmpLHS << " with " 1880 << *CmpRHS << " in block " 1881 << IntrinsicI->getParent()->getName() << "\n"); 1882 1883 1884 // Setup the replacement map - this handles uses within the same block 1885 if (hasUsersIn(CmpLHS, IntrinsicI->getParent())) 1886 ReplaceOperandsWithMap[CmpLHS] = CmpRHS; 1887 1888 // NOTE: The non-block local cases are handled by the call to 1889 // propagateEquality above; this block is just about handling the block 1890 // local cases. TODO: There's a bunch of logic in propagateEqualiy which 1891 // isn't duplicated for the block local case, can we share it somehow? 1892 } 1893 } 1894 return Changed; 1895 } 1896 1897 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { 1898 patchReplacementInstruction(I, Repl); 1899 I->replaceAllUsesWith(Repl); 1900 } 1901 1902 /// Attempt to eliminate a load, first by eliminating it 1903 /// locally, and then attempting non-local elimination if that fails. 1904 bool GVN::processLoad(LoadInst *L) { 1905 if (!MD) 1906 return false; 1907 1908 // This code hasn't been audited for ordered or volatile memory access 1909 if (!L->isUnordered()) 1910 return false; 1911 1912 if (L->use_empty()) { 1913 markInstructionForDeletion(L); 1914 return true; 1915 } 1916 1917 // ... to a pointer that has been loaded from before... 1918 MemDepResult Dep = MD->getDependency(L); 1919 1920 // If it is defined in another block, try harder. 1921 if (Dep.isNonLocal()) 1922 return processNonLocalLoad(L); 1923 1924 // Only handle the local case below 1925 if (!Dep.isDef() && !Dep.isClobber()) { 1926 // This might be a NonFuncLocal or an Unknown 1927 LLVM_DEBUG( 1928 // fast print dep, using operator<< on instruction is too slow. 1929 dbgs() << "GVN: load "; L->printAsOperand(dbgs()); 1930 dbgs() << " has unknown dependence\n";); 1931 return false; 1932 } 1933 1934 AvailableValue AV; 1935 if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) { 1936 Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this); 1937 1938 // Replace the load! 1939 patchAndReplaceAllUsesWith(L, AvailableValue); 1940 markInstructionForDeletion(L); 1941 if (MSSAU) 1942 MSSAU->removeMemoryAccess(L); 1943 ++NumGVNLoad; 1944 reportLoadElim(L, AvailableValue, ORE); 1945 // Tell MDA to reexamine the reused pointer since we might have more 1946 // information after forwarding it. 1947 if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy()) 1948 MD->invalidateCachedPointerInfo(AvailableValue); 1949 return true; 1950 } 1951 1952 return false; 1953 } 1954 1955 /// Return a pair the first field showing the value number of \p Exp and the 1956 /// second field showing whether it is a value number newly created. 1957 std::pair<uint32_t, bool> 1958 GVN::ValueTable::assignExpNewValueNum(Expression &Exp) { 1959 uint32_t &e = expressionNumbering[Exp]; 1960 bool CreateNewValNum = !e; 1961 if (CreateNewValNum) { 1962 Expressions.push_back(Exp); 1963 if (ExprIdx.size() < nextValueNumber + 1) 1964 ExprIdx.resize(nextValueNumber * 2); 1965 e = nextValueNumber; 1966 ExprIdx[nextValueNumber++] = nextExprNumber++; 1967 } 1968 return {e, CreateNewValNum}; 1969 } 1970 1971 /// Return whether all the values related with the same \p num are 1972 /// defined in \p BB. 1973 bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB, 1974 GVN &Gvn) { 1975 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; 1976 while (Vals && Vals->BB == BB) 1977 Vals = Vals->Next; 1978 return !Vals; 1979 } 1980 1981 /// Wrap phiTranslateImpl to provide caching functionality. 1982 uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred, 1983 const BasicBlock *PhiBlock, uint32_t Num, 1984 GVN &Gvn) { 1985 auto FindRes = PhiTranslateTable.find({Num, Pred}); 1986 if (FindRes != PhiTranslateTable.end()) 1987 return FindRes->second; 1988 uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn); 1989 PhiTranslateTable.insert({{Num, Pred}, NewNum}); 1990 return NewNum; 1991 } 1992 1993 // Return true if the value number \p Num and NewNum have equal value. 1994 // Return false if the result is unknown. 1995 bool GVN::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum, 1996 const BasicBlock *Pred, 1997 const BasicBlock *PhiBlock, GVN &Gvn) { 1998 CallInst *Call = nullptr; 1999 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; 2000 while (Vals) { 2001 Call = dyn_cast<CallInst>(Vals->Val); 2002 if (Call && Call->getParent() == PhiBlock) 2003 break; 2004 Vals = Vals->Next; 2005 } 2006 2007 if (AA->doesNotAccessMemory(Call)) 2008 return true; 2009 2010 if (!MD || !AA->onlyReadsMemory(Call)) 2011 return false; 2012 2013 MemDepResult local_dep = MD->getDependency(Call); 2014 if (!local_dep.isNonLocal()) 2015 return false; 2016 2017 const MemoryDependenceResults::NonLocalDepInfo &deps = 2018 MD->getNonLocalCallDependency(Call); 2019 2020 // Check to see if the Call has no function local clobber. 2021 for (const NonLocalDepEntry &D : deps) { 2022 if (D.getResult().isNonFuncLocal()) 2023 return true; 2024 } 2025 return false; 2026 } 2027 2028 /// Translate value number \p Num using phis, so that it has the values of 2029 /// the phis in BB. 2030 uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred, 2031 const BasicBlock *PhiBlock, 2032 uint32_t Num, GVN &Gvn) { 2033 if (PHINode *PN = NumberingPhi[Num]) { 2034 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 2035 if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred) 2036 if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false)) 2037 return TransVal; 2038 } 2039 return Num; 2040 } 2041 2042 // If there is any value related with Num is defined in a BB other than 2043 // PhiBlock, it cannot depend on a phi in PhiBlock without going through 2044 // a backedge. We can do an early exit in that case to save compile time. 2045 if (!areAllValsInBB(Num, PhiBlock, Gvn)) 2046 return Num; 2047 2048 if (Num >= ExprIdx.size() || ExprIdx[Num] == 0) 2049 return Num; 2050 Expression Exp = Expressions[ExprIdx[Num]]; 2051 2052 for (unsigned i = 0; i < Exp.varargs.size(); i++) { 2053 // For InsertValue and ExtractValue, some varargs are index numbers 2054 // instead of value numbers. Those index numbers should not be 2055 // translated. 2056 if ((i > 1 && Exp.opcode == Instruction::InsertValue) || 2057 (i > 0 && Exp.opcode == Instruction::ExtractValue) || 2058 (i > 1 && Exp.opcode == Instruction::ShuffleVector)) 2059 continue; 2060 Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn); 2061 } 2062 2063 if (Exp.commutative) { 2064 assert(Exp.varargs.size() >= 2 && "Unsupported commutative instruction!"); 2065 if (Exp.varargs[0] > Exp.varargs[1]) { 2066 std::swap(Exp.varargs[0], Exp.varargs[1]); 2067 uint32_t Opcode = Exp.opcode >> 8; 2068 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) 2069 Exp.opcode = (Opcode << 8) | 2070 CmpInst::getSwappedPredicate( 2071 static_cast<CmpInst::Predicate>(Exp.opcode & 255)); 2072 } 2073 } 2074 2075 if (uint32_t NewNum = expressionNumbering[Exp]) { 2076 if (Exp.opcode == Instruction::Call && NewNum != Num) 2077 return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num; 2078 return NewNum; 2079 } 2080 return Num; 2081 } 2082 2083 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed 2084 /// again. 2085 void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num, 2086 const BasicBlock &CurrBlock) { 2087 for (const BasicBlock *Pred : predecessors(&CurrBlock)) 2088 PhiTranslateTable.erase({Num, Pred}); 2089 } 2090 2091 // In order to find a leader for a given value number at a 2092 // specific basic block, we first obtain the list of all Values for that number, 2093 // and then scan the list to find one whose block dominates the block in 2094 // question. This is fast because dominator tree queries consist of only 2095 // a few comparisons of DFS numbers. 2096 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) { 2097 LeaderTableEntry Vals = LeaderTable[num]; 2098 if (!Vals.Val) return nullptr; 2099 2100 Value *Val = nullptr; 2101 if (DT->dominates(Vals.BB, BB)) { 2102 Val = Vals.Val; 2103 if (isa<Constant>(Val)) return Val; 2104 } 2105 2106 LeaderTableEntry* Next = Vals.Next; 2107 while (Next) { 2108 if (DT->dominates(Next->BB, BB)) { 2109 if (isa<Constant>(Next->Val)) return Next->Val; 2110 if (!Val) Val = Next->Val; 2111 } 2112 2113 Next = Next->Next; 2114 } 2115 2116 return Val; 2117 } 2118 2119 /// There is an edge from 'Src' to 'Dst'. Return 2120 /// true if every path from the entry block to 'Dst' passes via this edge. In 2121 /// particular 'Dst' must not be reachable via another edge from 'Src'. 2122 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, 2123 DominatorTree *DT) { 2124 // While in theory it is interesting to consider the case in which Dst has 2125 // more than one predecessor, because Dst might be part of a loop which is 2126 // only reachable from Src, in practice it is pointless since at the time 2127 // GVN runs all such loops have preheaders, which means that Dst will have 2128 // been changed to have only one predecessor, namely Src. 2129 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); 2130 assert((!Pred || Pred == E.getStart()) && 2131 "No edge between these basic blocks!"); 2132 return Pred != nullptr; 2133 } 2134 2135 void GVN::assignBlockRPONumber(Function &F) { 2136 BlockRPONumber.clear(); 2137 uint32_t NextBlockNumber = 1; 2138 ReversePostOrderTraversal<Function *> RPOT(&F); 2139 for (BasicBlock *BB : RPOT) 2140 BlockRPONumber[BB] = NextBlockNumber++; 2141 InvalidBlockRPONumbers = false; 2142 } 2143 2144 bool GVN::replaceOperandsForInBlockEquality(Instruction *Instr) const { 2145 bool Changed = false; 2146 for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) { 2147 Value *Operand = Instr->getOperand(OpNum); 2148 auto it = ReplaceOperandsWithMap.find(Operand); 2149 if (it != ReplaceOperandsWithMap.end()) { 2150 LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " 2151 << *it->second << " in instruction " << *Instr << '\n'); 2152 Instr->setOperand(OpNum, it->second); 2153 Changed = true; 2154 } 2155 } 2156 return Changed; 2157 } 2158 2159 /// The given values are known to be equal in every block 2160 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with 2161 /// 'RHS' everywhere in the scope. Returns whether a change was made. 2162 /// If DominatesByEdge is false, then it means that we will propagate the RHS 2163 /// value starting from the end of Root.Start. 2164 bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root, 2165 bool DominatesByEdge) { 2166 SmallVector<std::pair<Value*, Value*>, 4> Worklist; 2167 Worklist.push_back(std::make_pair(LHS, RHS)); 2168 bool Changed = false; 2169 // For speed, compute a conservative fast approximation to 2170 // DT->dominates(Root, Root.getEnd()); 2171 const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT); 2172 2173 while (!Worklist.empty()) { 2174 std::pair<Value*, Value*> Item = Worklist.pop_back_val(); 2175 LHS = Item.first; RHS = Item.second; 2176 2177 if (LHS == RHS) 2178 continue; 2179 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!"); 2180 2181 // Don't try to propagate equalities between constants. 2182 if (isa<Constant>(LHS) && isa<Constant>(RHS)) 2183 continue; 2184 2185 // Prefer a constant on the right-hand side, or an Argument if no constants. 2186 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS))) 2187 std::swap(LHS, RHS); 2188 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!"); 2189 2190 // If there is no obvious reason to prefer the left-hand side over the 2191 // right-hand side, ensure the longest lived term is on the right-hand side, 2192 // so the shortest lived term will be replaced by the longest lived. 2193 // This tends to expose more simplifications. 2194 uint32_t LVN = VN.lookupOrAdd(LHS); 2195 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) || 2196 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) { 2197 // Move the 'oldest' value to the right-hand side, using the value number 2198 // as a proxy for age. 2199 uint32_t RVN = VN.lookupOrAdd(RHS); 2200 if (LVN < RVN) { 2201 std::swap(LHS, RHS); 2202 LVN = RVN; 2203 } 2204 } 2205 2206 // If value numbering later sees that an instruction in the scope is equal 2207 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve 2208 // the invariant that instructions only occur in the leader table for their 2209 // own value number (this is used by removeFromLeaderTable), do not do this 2210 // if RHS is an instruction (if an instruction in the scope is morphed into 2211 // LHS then it will be turned into RHS by the next GVN iteration anyway, so 2212 // using the leader table is about compiling faster, not optimizing better). 2213 // The leader table only tracks basic blocks, not edges. Only add to if we 2214 // have the simple case where the edge dominates the end. 2215 if (RootDominatesEnd && !isa<Instruction>(RHS)) 2216 addToLeaderTable(LVN, RHS, Root.getEnd()); 2217 2218 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As 2219 // LHS always has at least one use that is not dominated by Root, this will 2220 // never do anything if LHS has only one use. 2221 if (!LHS->hasOneUse()) { 2222 unsigned NumReplacements = 2223 DominatesByEdge 2224 ? replaceDominatedUsesWith(LHS, RHS, *DT, Root) 2225 : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart()); 2226 2227 Changed |= NumReplacements > 0; 2228 NumGVNEqProp += NumReplacements; 2229 // Cached information for anything that uses LHS will be invalid. 2230 if (MD) 2231 MD->invalidateCachedPointerInfo(LHS); 2232 } 2233 2234 // Now try to deduce additional equalities from this one. For example, if 2235 // the known equality was "(A != B)" == "false" then it follows that A and B 2236 // are equal in the scope. Only boolean equalities with an explicit true or 2237 // false RHS are currently supported. 2238 if (!RHS->getType()->isIntegerTy(1)) 2239 // Not a boolean equality - bail out. 2240 continue; 2241 ConstantInt *CI = dyn_cast<ConstantInt>(RHS); 2242 if (!CI) 2243 // RHS neither 'true' nor 'false' - bail out. 2244 continue; 2245 // Whether RHS equals 'true'. Otherwise it equals 'false'. 2246 bool isKnownTrue = CI->isMinusOne(); 2247 bool isKnownFalse = !isKnownTrue; 2248 2249 // If "A && B" is known true then both A and B are known true. If "A || B" 2250 // is known false then both A and B are known false. 2251 Value *A, *B; 2252 if ((isKnownTrue && match(LHS, m_LogicalAnd(m_Value(A), m_Value(B)))) || 2253 (isKnownFalse && match(LHS, m_LogicalOr(m_Value(A), m_Value(B))))) { 2254 Worklist.push_back(std::make_pair(A, RHS)); 2255 Worklist.push_back(std::make_pair(B, RHS)); 2256 continue; 2257 } 2258 2259 // If we are propagating an equality like "(A == B)" == "true" then also 2260 // propagate the equality A == B. When propagating a comparison such as 2261 // "(A >= B)" == "true", replace all instances of "A < B" with "false". 2262 if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) { 2263 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); 2264 2265 // If "A == B" is known true, or "A != B" is known false, then replace 2266 // A with B everywhere in the scope. For floating point operations, we 2267 // have to be careful since equality does not always imply equivalance. 2268 if ((isKnownTrue && impliesEquivalanceIfTrue(Cmp)) || 2269 (isKnownFalse && impliesEquivalanceIfFalse(Cmp))) 2270 Worklist.push_back(std::make_pair(Op0, Op1)); 2271 2272 // If "A >= B" is known true, replace "A < B" with false everywhere. 2273 CmpInst::Predicate NotPred = Cmp->getInversePredicate(); 2274 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse); 2275 // Since we don't have the instruction "A < B" immediately to hand, work 2276 // out the value number that it would have and use that to find an 2277 // appropriate instruction (if any). 2278 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2279 uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1); 2280 // If the number we were assigned was brand new then there is no point in 2281 // looking for an instruction realizing it: there cannot be one! 2282 if (Num < NextNum) { 2283 Value *NotCmp = findLeader(Root.getEnd(), Num); 2284 if (NotCmp && isa<Instruction>(NotCmp)) { 2285 unsigned NumReplacements = 2286 DominatesByEdge 2287 ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root) 2288 : replaceDominatedUsesWith(NotCmp, NotVal, *DT, 2289 Root.getStart()); 2290 Changed |= NumReplacements > 0; 2291 NumGVNEqProp += NumReplacements; 2292 // Cached information for anything that uses NotCmp will be invalid. 2293 if (MD) 2294 MD->invalidateCachedPointerInfo(NotCmp); 2295 } 2296 } 2297 // Ensure that any instruction in scope that gets the "A < B" value number 2298 // is replaced with false. 2299 // The leader table only tracks basic blocks, not edges. Only add to if we 2300 // have the simple case where the edge dominates the end. 2301 if (RootDominatesEnd) 2302 addToLeaderTable(Num, NotVal, Root.getEnd()); 2303 2304 continue; 2305 } 2306 } 2307 2308 return Changed; 2309 } 2310 2311 /// When calculating availability, handle an instruction 2312 /// by inserting it into the appropriate sets 2313 bool GVN::processInstruction(Instruction *I) { 2314 // Ignore dbg info intrinsics. 2315 if (isa<DbgInfoIntrinsic>(I)) 2316 return false; 2317 2318 // If the instruction can be easily simplified then do so now in preference 2319 // to value numbering it. Value numbering often exposes redundancies, for 2320 // example if it determines that %y is equal to %x then the instruction 2321 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. 2322 const DataLayout &DL = I->getModule()->getDataLayout(); 2323 if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) { 2324 bool Changed = false; 2325 if (!I->use_empty()) { 2326 // Simplification can cause a special instruction to become not special. 2327 // For example, devirtualization to a willreturn function. 2328 ICF->removeUsersOf(I); 2329 I->replaceAllUsesWith(V); 2330 Changed = true; 2331 } 2332 if (isInstructionTriviallyDead(I, TLI)) { 2333 markInstructionForDeletion(I); 2334 Changed = true; 2335 } 2336 if (Changed) { 2337 if (MD && V->getType()->isPtrOrPtrVectorTy()) 2338 MD->invalidateCachedPointerInfo(V); 2339 ++NumGVNSimpl; 2340 return true; 2341 } 2342 } 2343 2344 if (auto *Assume = dyn_cast<AssumeInst>(I)) 2345 return processAssumeIntrinsic(Assume); 2346 2347 if (LoadInst *Load = dyn_cast<LoadInst>(I)) { 2348 if (processLoad(Load)) 2349 return true; 2350 2351 unsigned Num = VN.lookupOrAdd(Load); 2352 addToLeaderTable(Num, Load, Load->getParent()); 2353 return false; 2354 } 2355 2356 // For conditional branches, we can perform simple conditional propagation on 2357 // the condition value itself. 2358 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 2359 if (!BI->isConditional()) 2360 return false; 2361 2362 if (isa<Constant>(BI->getCondition())) 2363 return processFoldableCondBr(BI); 2364 2365 Value *BranchCond = BI->getCondition(); 2366 BasicBlock *TrueSucc = BI->getSuccessor(0); 2367 BasicBlock *FalseSucc = BI->getSuccessor(1); 2368 // Avoid multiple edges early. 2369 if (TrueSucc == FalseSucc) 2370 return false; 2371 2372 BasicBlock *Parent = BI->getParent(); 2373 bool Changed = false; 2374 2375 Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext()); 2376 BasicBlockEdge TrueE(Parent, TrueSucc); 2377 Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true); 2378 2379 Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext()); 2380 BasicBlockEdge FalseE(Parent, FalseSucc); 2381 Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true); 2382 2383 return Changed; 2384 } 2385 2386 // For switches, propagate the case values into the case destinations. 2387 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 2388 Value *SwitchCond = SI->getCondition(); 2389 BasicBlock *Parent = SI->getParent(); 2390 bool Changed = false; 2391 2392 // Remember how many outgoing edges there are to every successor. 2393 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 2394 for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i) 2395 ++SwitchEdges[SI->getSuccessor(i)]; 2396 2397 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2398 i != e; ++i) { 2399 BasicBlock *Dst = i->getCaseSuccessor(); 2400 // If there is only a single edge, propagate the case value into it. 2401 if (SwitchEdges.lookup(Dst) == 1) { 2402 BasicBlockEdge E(Parent, Dst); 2403 Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true); 2404 } 2405 } 2406 return Changed; 2407 } 2408 2409 // Instructions with void type don't return a value, so there's 2410 // no point in trying to find redundancies in them. 2411 if (I->getType()->isVoidTy()) 2412 return false; 2413 2414 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2415 unsigned Num = VN.lookupOrAdd(I); 2416 2417 // Allocations are always uniquely numbered, so we can save time and memory 2418 // by fast failing them. 2419 if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) { 2420 addToLeaderTable(Num, I, I->getParent()); 2421 return false; 2422 } 2423 2424 // If the number we were assigned was a brand new VN, then we don't 2425 // need to do a lookup to see if the number already exists 2426 // somewhere in the domtree: it can't! 2427 if (Num >= NextNum) { 2428 addToLeaderTable(Num, I, I->getParent()); 2429 return false; 2430 } 2431 2432 // Perform fast-path value-number based elimination of values inherited from 2433 // dominators. 2434 Value *Repl = findLeader(I->getParent(), Num); 2435 if (!Repl) { 2436 // Failure, just remember this instance for future use. 2437 addToLeaderTable(Num, I, I->getParent()); 2438 return false; 2439 } else if (Repl == I) { 2440 // If I was the result of a shortcut PRE, it might already be in the table 2441 // and the best replacement for itself. Nothing to do. 2442 return false; 2443 } 2444 2445 // Remove it! 2446 patchAndReplaceAllUsesWith(I, Repl); 2447 if (MD && Repl->getType()->isPtrOrPtrVectorTy()) 2448 MD->invalidateCachedPointerInfo(Repl); 2449 markInstructionForDeletion(I); 2450 return true; 2451 } 2452 2453 /// runOnFunction - This is the main transformation entry point for a function. 2454 bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT, 2455 const TargetLibraryInfo &RunTLI, AAResults &RunAA, 2456 MemoryDependenceResults *RunMD, LoopInfo *LI, 2457 OptimizationRemarkEmitter *RunORE, MemorySSA *MSSA) { 2458 AC = &RunAC; 2459 DT = &RunDT; 2460 VN.setDomTree(DT); 2461 TLI = &RunTLI; 2462 VN.setAliasAnalysis(&RunAA); 2463 MD = RunMD; 2464 ImplicitControlFlowTracking ImplicitCFT; 2465 ICF = &ImplicitCFT; 2466 this->LI = LI; 2467 VN.setMemDep(MD); 2468 ORE = RunORE; 2469 InvalidBlockRPONumbers = true; 2470 MemorySSAUpdater Updater(MSSA); 2471 MSSAU = MSSA ? &Updater : nullptr; 2472 2473 bool Changed = false; 2474 bool ShouldContinue = true; 2475 2476 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 2477 // Merge unconditional branches, allowing PRE to catch more 2478 // optimization opportunities. 2479 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 2480 bool removedBlock = MergeBlockIntoPredecessor(&BB, &DTU, LI, MSSAU, MD); 2481 if (removedBlock) 2482 ++NumGVNBlocks; 2483 2484 Changed |= removedBlock; 2485 } 2486 2487 unsigned Iteration = 0; 2488 while (ShouldContinue) { 2489 LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n"); 2490 ShouldContinue = iterateOnFunction(F); 2491 Changed |= ShouldContinue; 2492 ++Iteration; 2493 } 2494 2495 if (isPREEnabled()) { 2496 // Fabricate val-num for dead-code in order to suppress assertion in 2497 // performPRE(). 2498 assignValNumForDeadCode(); 2499 bool PREChanged = true; 2500 while (PREChanged) { 2501 PREChanged = performPRE(F); 2502 Changed |= PREChanged; 2503 } 2504 } 2505 2506 // FIXME: Should perform GVN again after PRE does something. PRE can move 2507 // computations into blocks where they become fully redundant. Note that 2508 // we can't do this until PRE's critical edge splitting updates memdep. 2509 // Actually, when this happens, we should just fully integrate PRE into GVN. 2510 2511 cleanupGlobalSets(); 2512 // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each 2513 // iteration. 2514 DeadBlocks.clear(); 2515 2516 if (MSSA && VerifyMemorySSA) 2517 MSSA->verifyMemorySSA(); 2518 2519 return Changed; 2520 } 2521 2522 bool GVN::processBlock(BasicBlock *BB) { 2523 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function 2524 // (and incrementing BI before processing an instruction). 2525 assert(InstrsToErase.empty() && 2526 "We expect InstrsToErase to be empty across iterations"); 2527 if (DeadBlocks.count(BB)) 2528 return false; 2529 2530 // Clearing map before every BB because it can be used only for single BB. 2531 ReplaceOperandsWithMap.clear(); 2532 bool ChangedFunction = false; 2533 2534 // Since we may not have visited the input blocks of the phis, we can't 2535 // use our normal hash approach for phis. Instead, simply look for 2536 // obvious duplicates. The first pass of GVN will tend to create 2537 // identical phis, and the second or later passes can eliminate them. 2538 ChangedFunction |= EliminateDuplicatePHINodes(BB); 2539 2540 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); 2541 BI != BE;) { 2542 if (!ReplaceOperandsWithMap.empty()) 2543 ChangedFunction |= replaceOperandsForInBlockEquality(&*BI); 2544 ChangedFunction |= processInstruction(&*BI); 2545 2546 if (InstrsToErase.empty()) { 2547 ++BI; 2548 continue; 2549 } 2550 2551 // If we need some instructions deleted, do it now. 2552 NumGVNInstr += InstrsToErase.size(); 2553 2554 // Avoid iterator invalidation. 2555 bool AtStart = BI == BB->begin(); 2556 if (!AtStart) 2557 --BI; 2558 2559 for (auto *I : InstrsToErase) { 2560 assert(I->getParent() == BB && "Removing instruction from wrong block?"); 2561 LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n'); 2562 salvageKnowledge(I, AC); 2563 salvageDebugInfo(*I); 2564 if (MD) MD->removeInstruction(I); 2565 if (MSSAU) 2566 MSSAU->removeMemoryAccess(I); 2567 LLVM_DEBUG(verifyRemoved(I)); 2568 ICF->removeInstruction(I); 2569 I->eraseFromParent(); 2570 } 2571 InstrsToErase.clear(); 2572 2573 if (AtStart) 2574 BI = BB->begin(); 2575 else 2576 ++BI; 2577 } 2578 2579 return ChangedFunction; 2580 } 2581 2582 // Instantiate an expression in a predecessor that lacked it. 2583 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred, 2584 BasicBlock *Curr, unsigned int ValNo) { 2585 // Because we are going top-down through the block, all value numbers 2586 // will be available in the predecessor by the time we need them. Any 2587 // that weren't originally present will have been instantiated earlier 2588 // in this loop. 2589 bool success = true; 2590 for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) { 2591 Value *Op = Instr->getOperand(i); 2592 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op)) 2593 continue; 2594 // This could be a newly inserted instruction, in which case, we won't 2595 // find a value number, and should give up before we hurt ourselves. 2596 // FIXME: Rewrite the infrastructure to let it easier to value number 2597 // and process newly inserted instructions. 2598 if (!VN.exists(Op)) { 2599 success = false; 2600 break; 2601 } 2602 uint32_t TValNo = 2603 VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this); 2604 if (Value *V = findLeader(Pred, TValNo)) { 2605 Instr->setOperand(i, V); 2606 } else { 2607 success = false; 2608 break; 2609 } 2610 } 2611 2612 // Fail out if we encounter an operand that is not available in 2613 // the PRE predecessor. This is typically because of loads which 2614 // are not value numbered precisely. 2615 if (!success) 2616 return false; 2617 2618 Instr->insertBefore(Pred->getTerminator()); 2619 Instr->setName(Instr->getName() + ".pre"); 2620 Instr->setDebugLoc(Instr->getDebugLoc()); 2621 2622 ICF->insertInstructionTo(Instr, Pred); 2623 2624 unsigned Num = VN.lookupOrAdd(Instr); 2625 VN.add(Instr, Num); 2626 2627 // Update the availability map to include the new instruction. 2628 addToLeaderTable(Num, Instr, Pred); 2629 return true; 2630 } 2631 2632 bool GVN::performScalarPRE(Instruction *CurInst) { 2633 if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() || 2634 isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() || 2635 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || 2636 isa<DbgInfoIntrinsic>(CurInst)) 2637 return false; 2638 2639 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from 2640 // sinking the compare again, and it would force the code generator to 2641 // move the i1 from processor flags or predicate registers into a general 2642 // purpose register. 2643 if (isa<CmpInst>(CurInst)) 2644 return false; 2645 2646 // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from 2647 // sinking the addressing mode computation back to its uses. Extending the 2648 // GEP's live range increases the register pressure, and therefore it can 2649 // introduce unnecessary spills. 2650 // 2651 // This doesn't prevent Load PRE. PHI translation will make the GEP available 2652 // to the load by moving it to the predecessor block if necessary. 2653 if (isa<GetElementPtrInst>(CurInst)) 2654 return false; 2655 2656 if (auto *CallB = dyn_cast<CallBase>(CurInst)) { 2657 // We don't currently value number ANY inline asm calls. 2658 if (CallB->isInlineAsm()) 2659 return false; 2660 // Don't do PRE on convergent calls. 2661 if (CallB->isConvergent()) 2662 return false; 2663 } 2664 2665 uint32_t ValNo = VN.lookup(CurInst); 2666 2667 // Look for the predecessors for PRE opportunities. We're 2668 // only trying to solve the basic diamond case, where 2669 // a value is computed in the successor and one predecessor, 2670 // but not the other. We also explicitly disallow cases 2671 // where the successor is its own predecessor, because they're 2672 // more complicated to get right. 2673 unsigned NumWith = 0; 2674 unsigned NumWithout = 0; 2675 BasicBlock *PREPred = nullptr; 2676 BasicBlock *CurrentBlock = CurInst->getParent(); 2677 2678 // Update the RPO numbers for this function. 2679 if (InvalidBlockRPONumbers) 2680 assignBlockRPONumber(*CurrentBlock->getParent()); 2681 2682 SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap; 2683 for (BasicBlock *P : predecessors(CurrentBlock)) { 2684 // We're not interested in PRE where blocks with predecessors that are 2685 // not reachable. 2686 if (!DT->isReachableFromEntry(P)) { 2687 NumWithout = 2; 2688 break; 2689 } 2690 // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and 2691 // when CurInst has operand defined in CurrentBlock (so it may be defined 2692 // by phi in the loop header). 2693 assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) && 2694 "Invalid BlockRPONumber map."); 2695 if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] && 2696 llvm::any_of(CurInst->operands(), [&](const Use &U) { 2697 if (auto *Inst = dyn_cast<Instruction>(U.get())) 2698 return Inst->getParent() == CurrentBlock; 2699 return false; 2700 })) { 2701 NumWithout = 2; 2702 break; 2703 } 2704 2705 uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this); 2706 Value *predV = findLeader(P, TValNo); 2707 if (!predV) { 2708 predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P)); 2709 PREPred = P; 2710 ++NumWithout; 2711 } else if (predV == CurInst) { 2712 /* CurInst dominates this predecessor. */ 2713 NumWithout = 2; 2714 break; 2715 } else { 2716 predMap.push_back(std::make_pair(predV, P)); 2717 ++NumWith; 2718 } 2719 } 2720 2721 // Don't do PRE when it might increase code size, i.e. when 2722 // we would need to insert instructions in more than one pred. 2723 if (NumWithout > 1 || NumWith == 0) 2724 return false; 2725 2726 // We may have a case where all predecessors have the instruction, 2727 // and we just need to insert a phi node. Otherwise, perform 2728 // insertion. 2729 Instruction *PREInstr = nullptr; 2730 2731 if (NumWithout != 0) { 2732 if (!isSafeToSpeculativelyExecute(CurInst)) { 2733 // It is only valid to insert a new instruction if the current instruction 2734 // is always executed. An instruction with implicit control flow could 2735 // prevent us from doing it. If we cannot speculate the execution, then 2736 // PRE should be prohibited. 2737 if (ICF->isDominatedByICFIFromSameBlock(CurInst)) 2738 return false; 2739 } 2740 2741 // Don't do PRE across indirect branch. 2742 if (isa<IndirectBrInst>(PREPred->getTerminator())) 2743 return false; 2744 2745 // Don't do PRE across callbr. 2746 // FIXME: Can we do this across the fallthrough edge? 2747 if (isa<CallBrInst>(PREPred->getTerminator())) 2748 return false; 2749 2750 // We can't do PRE safely on a critical edge, so instead we schedule 2751 // the edge to be split and perform the PRE the next time we iterate 2752 // on the function. 2753 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock); 2754 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { 2755 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); 2756 return false; 2757 } 2758 // We need to insert somewhere, so let's give it a shot 2759 PREInstr = CurInst->clone(); 2760 if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) { 2761 // If we failed insertion, make sure we remove the instruction. 2762 LLVM_DEBUG(verifyRemoved(PREInstr)); 2763 PREInstr->deleteValue(); 2764 return false; 2765 } 2766 } 2767 2768 // Either we should have filled in the PRE instruction, or we should 2769 // not have needed insertions. 2770 assert(PREInstr != nullptr || NumWithout == 0); 2771 2772 ++NumGVNPRE; 2773 2774 // Create a PHI to make the value available in this block. 2775 PHINode *Phi = 2776 PHINode::Create(CurInst->getType(), predMap.size(), 2777 CurInst->getName() + ".pre-phi", &CurrentBlock->front()); 2778 for (unsigned i = 0, e = predMap.size(); i != e; ++i) { 2779 if (Value *V = predMap[i].first) { 2780 // If we use an existing value in this phi, we have to patch the original 2781 // value because the phi will be used to replace a later value. 2782 patchReplacementInstruction(CurInst, V); 2783 Phi->addIncoming(V, predMap[i].second); 2784 } else 2785 Phi->addIncoming(PREInstr, PREPred); 2786 } 2787 2788 VN.add(Phi, ValNo); 2789 // After creating a new PHI for ValNo, the phi translate result for ValNo will 2790 // be changed, so erase the related stale entries in phi translate cache. 2791 VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock); 2792 addToLeaderTable(ValNo, Phi, CurrentBlock); 2793 Phi->setDebugLoc(CurInst->getDebugLoc()); 2794 CurInst->replaceAllUsesWith(Phi); 2795 if (MD && Phi->getType()->isPtrOrPtrVectorTy()) 2796 MD->invalidateCachedPointerInfo(Phi); 2797 VN.erase(CurInst); 2798 removeFromLeaderTable(ValNo, CurInst, CurrentBlock); 2799 2800 LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n'); 2801 if (MD) 2802 MD->removeInstruction(CurInst); 2803 if (MSSAU) 2804 MSSAU->removeMemoryAccess(CurInst); 2805 LLVM_DEBUG(verifyRemoved(CurInst)); 2806 // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes 2807 // some assertion failures. 2808 ICF->removeInstruction(CurInst); 2809 CurInst->eraseFromParent(); 2810 ++NumGVNInstr; 2811 2812 return true; 2813 } 2814 2815 /// Perform a purely local form of PRE that looks for diamond 2816 /// control flow patterns and attempts to perform simple PRE at the join point. 2817 bool GVN::performPRE(Function &F) { 2818 bool Changed = false; 2819 for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) { 2820 // Nothing to PRE in the entry block. 2821 if (CurrentBlock == &F.getEntryBlock()) 2822 continue; 2823 2824 // Don't perform PRE on an EH pad. 2825 if (CurrentBlock->isEHPad()) 2826 continue; 2827 2828 for (BasicBlock::iterator BI = CurrentBlock->begin(), 2829 BE = CurrentBlock->end(); 2830 BI != BE;) { 2831 Instruction *CurInst = &*BI++; 2832 Changed |= performScalarPRE(CurInst); 2833 } 2834 } 2835 2836 if (splitCriticalEdges()) 2837 Changed = true; 2838 2839 return Changed; 2840 } 2841 2842 /// Split the critical edge connecting the given two blocks, and return 2843 /// the block inserted to the critical edge. 2844 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) { 2845 // GVN does not require loop-simplify, do not try to preserve it if it is not 2846 // possible. 2847 BasicBlock *BB = SplitCriticalEdge( 2848 Pred, Succ, 2849 CriticalEdgeSplittingOptions(DT, LI, MSSAU).unsetPreserveLoopSimplify()); 2850 if (BB) { 2851 if (MD) 2852 MD->invalidateCachedPredecessors(); 2853 InvalidBlockRPONumbers = true; 2854 } 2855 return BB; 2856 } 2857 2858 /// Split critical edges found during the previous 2859 /// iteration that may enable further optimization. 2860 bool GVN::splitCriticalEdges() { 2861 if (toSplit.empty()) 2862 return false; 2863 2864 bool Changed = false; 2865 do { 2866 std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val(); 2867 Changed |= SplitCriticalEdge(Edge.first, Edge.second, 2868 CriticalEdgeSplittingOptions(DT, LI, MSSAU)) != 2869 nullptr; 2870 } while (!toSplit.empty()); 2871 if (Changed) { 2872 if (MD) 2873 MD->invalidateCachedPredecessors(); 2874 InvalidBlockRPONumbers = true; 2875 } 2876 return Changed; 2877 } 2878 2879 /// Executes one iteration of GVN 2880 bool GVN::iterateOnFunction(Function &F) { 2881 cleanupGlobalSets(); 2882 2883 // Top-down walk of the dominator tree 2884 bool Changed = false; 2885 // Needed for value numbering with phi construction to work. 2886 // RPOT walks the graph in its constructor and will not be invalidated during 2887 // processBlock. 2888 ReversePostOrderTraversal<Function *> RPOT(&F); 2889 2890 for (BasicBlock *BB : RPOT) 2891 Changed |= processBlock(BB); 2892 2893 return Changed; 2894 } 2895 2896 void GVN::cleanupGlobalSets() { 2897 VN.clear(); 2898 LeaderTable.clear(); 2899 BlockRPONumber.clear(); 2900 TableAllocator.Reset(); 2901 ICF->clear(); 2902 InvalidBlockRPONumbers = true; 2903 } 2904 2905 /// Verify that the specified instruction does not occur in our 2906 /// internal data structures. 2907 void GVN::verifyRemoved(const Instruction *Inst) const { 2908 VN.verifyRemoved(Inst); 2909 2910 // Walk through the value number scope to make sure the instruction isn't 2911 // ferreted away in it. 2912 for (const auto &I : LeaderTable) { 2913 const LeaderTableEntry *Node = &I.second; 2914 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 2915 2916 while (Node->Next) { 2917 Node = Node->Next; 2918 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 2919 } 2920 } 2921 } 2922 2923 /// BB is declared dead, which implied other blocks become dead as well. This 2924 /// function is to add all these blocks to "DeadBlocks". For the dead blocks' 2925 /// live successors, update their phi nodes by replacing the operands 2926 /// corresponding to dead blocks with UndefVal. 2927 void GVN::addDeadBlock(BasicBlock *BB) { 2928 SmallVector<BasicBlock *, 4> NewDead; 2929 SmallSetVector<BasicBlock *, 4> DF; 2930 2931 NewDead.push_back(BB); 2932 while (!NewDead.empty()) { 2933 BasicBlock *D = NewDead.pop_back_val(); 2934 if (DeadBlocks.count(D)) 2935 continue; 2936 2937 // All blocks dominated by D are dead. 2938 SmallVector<BasicBlock *, 8> Dom; 2939 DT->getDescendants(D, Dom); 2940 DeadBlocks.insert(Dom.begin(), Dom.end()); 2941 2942 // Figure out the dominance-frontier(D). 2943 for (BasicBlock *B : Dom) { 2944 for (BasicBlock *S : successors(B)) { 2945 if (DeadBlocks.count(S)) 2946 continue; 2947 2948 bool AllPredDead = true; 2949 for (BasicBlock *P : predecessors(S)) 2950 if (!DeadBlocks.count(P)) { 2951 AllPredDead = false; 2952 break; 2953 } 2954 2955 if (!AllPredDead) { 2956 // S could be proved dead later on. That is why we don't update phi 2957 // operands at this moment. 2958 DF.insert(S); 2959 } else { 2960 // While S is not dominated by D, it is dead by now. This could take 2961 // place if S already have a dead predecessor before D is declared 2962 // dead. 2963 NewDead.push_back(S); 2964 } 2965 } 2966 } 2967 } 2968 2969 // For the dead blocks' live successors, update their phi nodes by replacing 2970 // the operands corresponding to dead blocks with UndefVal. 2971 for (BasicBlock *B : DF) { 2972 if (DeadBlocks.count(B)) 2973 continue; 2974 2975 // First, split the critical edges. This might also create additional blocks 2976 // to preserve LoopSimplify form and adjust edges accordingly. 2977 SmallVector<BasicBlock *, 4> Preds(predecessors(B)); 2978 for (BasicBlock *P : Preds) { 2979 if (!DeadBlocks.count(P)) 2980 continue; 2981 2982 if (llvm::is_contained(successors(P), B) && 2983 isCriticalEdge(P->getTerminator(), B)) { 2984 if (BasicBlock *S = splitCriticalEdges(P, B)) 2985 DeadBlocks.insert(P = S); 2986 } 2987 } 2988 2989 // Now undef the incoming values from the dead predecessors. 2990 for (BasicBlock *P : predecessors(B)) { 2991 if (!DeadBlocks.count(P)) 2992 continue; 2993 for (PHINode &Phi : B->phis()) { 2994 Phi.setIncomingValueForBlock(P, UndefValue::get(Phi.getType())); 2995 if (MD) 2996 MD->invalidateCachedPointerInfo(&Phi); 2997 } 2998 } 2999 } 3000 } 3001 3002 // If the given branch is recognized as a foldable branch (i.e. conditional 3003 // branch with constant condition), it will perform following analyses and 3004 // transformation. 3005 // 1) If the dead out-coming edge is a critical-edge, split it. Let 3006 // R be the target of the dead out-coming edge. 3007 // 1) Identify the set of dead blocks implied by the branch's dead outcoming 3008 // edge. The result of this step will be {X| X is dominated by R} 3009 // 2) Identify those blocks which haves at least one dead predecessor. The 3010 // result of this step will be dominance-frontier(R). 3011 // 3) Update the PHIs in DF(R) by replacing the operands corresponding to 3012 // dead blocks with "UndefVal" in an hope these PHIs will optimized away. 3013 // 3014 // Return true iff *NEW* dead code are found. 3015 bool GVN::processFoldableCondBr(BranchInst *BI) { 3016 if (!BI || BI->isUnconditional()) 3017 return false; 3018 3019 // If a branch has two identical successors, we cannot declare either dead. 3020 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 3021 return false; 3022 3023 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 3024 if (!Cond) 3025 return false; 3026 3027 BasicBlock *DeadRoot = 3028 Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0); 3029 if (DeadBlocks.count(DeadRoot)) 3030 return false; 3031 3032 if (!DeadRoot->getSinglePredecessor()) 3033 DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot); 3034 3035 addDeadBlock(DeadRoot); 3036 return true; 3037 } 3038 3039 // performPRE() will trigger assert if it comes across an instruction without 3040 // associated val-num. As it normally has far more live instructions than dead 3041 // instructions, it makes more sense just to "fabricate" a val-number for the 3042 // dead code than checking if instruction involved is dead or not. 3043 void GVN::assignValNumForDeadCode() { 3044 for (BasicBlock *BB : DeadBlocks) { 3045 for (Instruction &Inst : *BB) { 3046 unsigned ValNum = VN.lookupOrAdd(&Inst); 3047 addToLeaderTable(ValNum, &Inst, BB); 3048 } 3049 } 3050 } 3051 3052 class llvm::gvn::GVNLegacyPass : public FunctionPass { 3053 public: 3054 static char ID; // Pass identification, replacement for typeid 3055 3056 explicit GVNLegacyPass(bool NoMemDepAnalysis = !GVNEnableMemDep) 3057 : FunctionPass(ID), Impl(GVNOptions().setMemDep(!NoMemDepAnalysis)) { 3058 initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry()); 3059 } 3060 3061 bool runOnFunction(Function &F) override { 3062 if (skipFunction(F)) 3063 return false; 3064 3065 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3066 3067 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 3068 return Impl.runImpl( 3069 F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 3070 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 3071 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 3072 getAnalysis<AAResultsWrapperPass>().getAAResults(), 3073 Impl.isMemDepEnabled() 3074 ? &getAnalysis<MemoryDependenceWrapperPass>().getMemDep() 3075 : nullptr, 3076 LIWP ? &LIWP->getLoopInfo() : nullptr, 3077 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), 3078 MSSAWP ? &MSSAWP->getMSSA() : nullptr); 3079 } 3080 3081 void getAnalysisUsage(AnalysisUsage &AU) const override { 3082 AU.addRequired<AssumptionCacheTracker>(); 3083 AU.addRequired<DominatorTreeWrapperPass>(); 3084 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3085 AU.addRequired<LoopInfoWrapperPass>(); 3086 if (Impl.isMemDepEnabled()) 3087 AU.addRequired<MemoryDependenceWrapperPass>(); 3088 AU.addRequired<AAResultsWrapperPass>(); 3089 AU.addPreserved<DominatorTreeWrapperPass>(); 3090 AU.addPreserved<GlobalsAAWrapperPass>(); 3091 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 3092 AU.addPreserved<LoopInfoWrapperPass>(); 3093 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3094 AU.addPreserved<MemorySSAWrapperPass>(); 3095 } 3096 3097 private: 3098 GVN Impl; 3099 }; 3100 3101 char GVNLegacyPass::ID = 0; 3102 3103 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 3104 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3105 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 3106 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3107 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3108 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3109 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3110 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3111 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 3112 3113 // The public interface to this file... 3114 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) { 3115 return new GVNLegacyPass(NoMemDepAnalysis); 3116 } 3117