1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Float2Int pass, which aims to demote floating 10 // point operations to work on integers, where that is losslessly possible. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/Float2Int.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Dominators.h" 21 #include "llvm/IR/IRBuilder.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/InitializePasses.h" 24 #include "llvm/Pass.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Transforms/Scalar.h" 29 #include <deque> 30 #include <functional> // For std::function 31 32 #define DEBUG_TYPE "float2int" 33 34 using namespace llvm; 35 36 // The algorithm is simple. Start at instructions that convert from the 37 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use 38 // graph, using an equivalence datastructure to unify graphs that interfere. 39 // 40 // Mappable instructions are those with an integer corrollary that, given 41 // integer domain inputs, produce an integer output; fadd, for example. 42 // 43 // If a non-mappable instruction is seen, this entire def-use graph is marked 44 // as non-transformable. If we see an instruction that converts from the 45 // integer domain to FP domain (uitofp,sitofp), we terminate our walk. 46 47 /// The largest integer type worth dealing with. 48 static cl::opt<unsigned> 49 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden, 50 cl::desc("Max integer bitwidth to consider in float2int" 51 "(default=64)")); 52 53 namespace { 54 struct Float2IntLegacyPass : public FunctionPass { 55 static char ID; // Pass identification, replacement for typeid 56 Float2IntLegacyPass() : FunctionPass(ID) { 57 initializeFloat2IntLegacyPassPass(*PassRegistry::getPassRegistry()); 58 } 59 60 bool runOnFunction(Function &F) override { 61 if (skipFunction(F)) 62 return false; 63 64 const DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 65 return Impl.runImpl(F, DT); 66 } 67 68 void getAnalysisUsage(AnalysisUsage &AU) const override { 69 AU.setPreservesCFG(); 70 AU.addRequired<DominatorTreeWrapperPass>(); 71 AU.addPreserved<GlobalsAAWrapperPass>(); 72 } 73 74 private: 75 Float2IntPass Impl; 76 }; 77 } 78 79 char Float2IntLegacyPass::ID = 0; 80 INITIALIZE_PASS(Float2IntLegacyPass, "float2int", "Float to int", false, false) 81 82 // Given a FCmp predicate, return a matching ICmp predicate if one 83 // exists, otherwise return BAD_ICMP_PREDICATE. 84 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) { 85 switch (P) { 86 case CmpInst::FCMP_OEQ: 87 case CmpInst::FCMP_UEQ: 88 return CmpInst::ICMP_EQ; 89 case CmpInst::FCMP_OGT: 90 case CmpInst::FCMP_UGT: 91 return CmpInst::ICMP_SGT; 92 case CmpInst::FCMP_OGE: 93 case CmpInst::FCMP_UGE: 94 return CmpInst::ICMP_SGE; 95 case CmpInst::FCMP_OLT: 96 case CmpInst::FCMP_ULT: 97 return CmpInst::ICMP_SLT; 98 case CmpInst::FCMP_OLE: 99 case CmpInst::FCMP_ULE: 100 return CmpInst::ICMP_SLE; 101 case CmpInst::FCMP_ONE: 102 case CmpInst::FCMP_UNE: 103 return CmpInst::ICMP_NE; 104 default: 105 return CmpInst::BAD_ICMP_PREDICATE; 106 } 107 } 108 109 // Given a floating point binary operator, return the matching 110 // integer version. 111 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) { 112 switch (Opcode) { 113 default: llvm_unreachable("Unhandled opcode!"); 114 case Instruction::FAdd: return Instruction::Add; 115 case Instruction::FSub: return Instruction::Sub; 116 case Instruction::FMul: return Instruction::Mul; 117 } 118 } 119 120 // Find the roots - instructions that convert from the FP domain to 121 // integer domain. 122 void Float2IntPass::findRoots(Function &F, const DominatorTree &DT) { 123 for (BasicBlock &BB : F) { 124 // Unreachable code can take on strange forms that we are not prepared to 125 // handle. For example, an instruction may have itself as an operand. 126 if (!DT.isReachableFromEntry(&BB)) 127 continue; 128 129 for (Instruction &I : BB) { 130 if (isa<VectorType>(I.getType())) 131 continue; 132 switch (I.getOpcode()) { 133 default: break; 134 case Instruction::FPToUI: 135 case Instruction::FPToSI: 136 Roots.insert(&I); 137 break; 138 case Instruction::FCmp: 139 if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) != 140 CmpInst::BAD_ICMP_PREDICATE) 141 Roots.insert(&I); 142 break; 143 } 144 } 145 } 146 } 147 148 // Helper - mark I as having been traversed, having range R. 149 void Float2IntPass::seen(Instruction *I, ConstantRange R) { 150 LLVM_DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n"); 151 auto IT = SeenInsts.find(I); 152 if (IT != SeenInsts.end()) 153 IT->second = std::move(R); 154 else 155 SeenInsts.insert(std::make_pair(I, std::move(R))); 156 } 157 158 // Helper - get a range representing a poison value. 159 ConstantRange Float2IntPass::badRange() { 160 return ConstantRange::getFull(MaxIntegerBW + 1); 161 } 162 ConstantRange Float2IntPass::unknownRange() { 163 return ConstantRange::getEmpty(MaxIntegerBW + 1); 164 } 165 ConstantRange Float2IntPass::validateRange(ConstantRange R) { 166 if (R.getBitWidth() > MaxIntegerBW + 1) 167 return badRange(); 168 return R; 169 } 170 171 // The most obvious way to structure the search is a depth-first, eager 172 // search from each root. However, that require direct recursion and so 173 // can only handle small instruction sequences. Instead, we split the search 174 // up into two phases: 175 // - walkBackwards: A breadth-first walk of the use-def graph starting from 176 // the roots. Populate "SeenInsts" with interesting 177 // instructions and poison values if they're obvious and 178 // cheap to compute. Calculate the equivalance set structure 179 // while we're here too. 180 // - walkForwards: Iterate over SeenInsts in reverse order, so we visit 181 // defs before their uses. Calculate the real range info. 182 183 // Breadth-first walk of the use-def graph; determine the set of nodes 184 // we care about and eagerly determine if some of them are poisonous. 185 void Float2IntPass::walkBackwards() { 186 std::deque<Instruction*> Worklist(Roots.begin(), Roots.end()); 187 while (!Worklist.empty()) { 188 Instruction *I = Worklist.back(); 189 Worklist.pop_back(); 190 191 if (SeenInsts.find(I) != SeenInsts.end()) 192 // Seen already. 193 continue; 194 195 switch (I->getOpcode()) { 196 // FIXME: Handle select and phi nodes. 197 default: 198 // Path terminated uncleanly. 199 seen(I, badRange()); 200 break; 201 202 case Instruction::UIToFP: 203 case Instruction::SIToFP: { 204 // Path terminated cleanly - use the type of the integer input to seed 205 // the analysis. 206 unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); 207 auto Input = ConstantRange::getFull(BW); 208 auto CastOp = (Instruction::CastOps)I->getOpcode(); 209 seen(I, validateRange(Input.castOp(CastOp, MaxIntegerBW+1))); 210 continue; 211 } 212 213 case Instruction::FNeg: 214 case Instruction::FAdd: 215 case Instruction::FSub: 216 case Instruction::FMul: 217 case Instruction::FPToUI: 218 case Instruction::FPToSI: 219 case Instruction::FCmp: 220 seen(I, unknownRange()); 221 break; 222 } 223 224 for (Value *O : I->operands()) { 225 if (Instruction *OI = dyn_cast<Instruction>(O)) { 226 // Unify def-use chains if they interfere. 227 ECs.unionSets(I, OI); 228 if (SeenInsts.find(I)->second != badRange()) 229 Worklist.push_back(OI); 230 } else if (!isa<ConstantFP>(O)) { 231 // Not an instruction or ConstantFP? we can't do anything. 232 seen(I, badRange()); 233 } 234 } 235 } 236 } 237 238 // Calculate result range from operand ranges 239 ConstantRange Float2IntPass::calcRange(Instruction *I) { 240 std::function<ConstantRange(ArrayRef<ConstantRange>)> Op; 241 switch (I->getOpcode()) { 242 // FIXME: Handle select and phi nodes. 243 default: 244 case Instruction::UIToFP: 245 case Instruction::SIToFP: 246 llvm_unreachable("Should have been handled in walkForwards!"); 247 248 case Instruction::FNeg: 249 Op = [](ArrayRef<ConstantRange> Ops) { 250 assert(Ops.size() == 1 && "FNeg is a unary operator!"); 251 unsigned Size = Ops[0].getBitWidth(); 252 auto Zero = ConstantRange(APInt::getZero(Size)); 253 return Zero.sub(Ops[0]); 254 }; 255 break; 256 257 case Instruction::FAdd: 258 case Instruction::FSub: 259 case Instruction::FMul: 260 Op = [I](ArrayRef<ConstantRange> Ops) { 261 assert(Ops.size() == 2 && "its a binary operator!"); 262 auto BinOp = (Instruction::BinaryOps) I->getOpcode(); 263 return Ops[0].binaryOp(BinOp, Ops[1]); 264 }; 265 break; 266 267 // 268 // Root-only instructions - we'll only see these if they're the 269 // first node in a walk. 270 // 271 case Instruction::FPToUI: 272 case Instruction::FPToSI: 273 Op = [I](ArrayRef<ConstantRange> Ops) { 274 assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!"); 275 // Note: We're ignoring the casts output size here as that's what the 276 // caller expects. 277 auto CastOp = (Instruction::CastOps)I->getOpcode(); 278 return Ops[0].castOp(CastOp, MaxIntegerBW+1); 279 }; 280 break; 281 282 case Instruction::FCmp: 283 Op = [](ArrayRef<ConstantRange> Ops) { 284 assert(Ops.size() == 2 && "FCmp is a binary operator!"); 285 return Ops[0].unionWith(Ops[1]); 286 }; 287 break; 288 } 289 290 SmallVector<ConstantRange, 4> OpRanges; 291 for (Value *O : I->operands()) { 292 if (Instruction *OI = dyn_cast<Instruction>(O)) { 293 assert(SeenInsts.find(OI) != SeenInsts.end() && 294 "def not seen before use!"); 295 OpRanges.push_back(SeenInsts.find(OI)->second); 296 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) { 297 // Work out if the floating point number can be losslessly represented 298 // as an integer. 299 // APFloat::convertToInteger(&Exact) purports to do what we want, but 300 // the exactness can be too precise. For example, negative zero can 301 // never be exactly converted to an integer. 302 // 303 // Instead, we ask APFloat to round itself to an integral value - this 304 // preserves sign-of-zero - then compare the result with the original. 305 // 306 const APFloat &F = CF->getValueAPF(); 307 308 // First, weed out obviously incorrect values. Non-finite numbers 309 // can't be represented and neither can negative zero, unless 310 // we're in fast math mode. 311 if (!F.isFinite() || 312 (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) && 313 !I->hasNoSignedZeros())) 314 return badRange(); 315 316 APFloat NewF = F; 317 auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven); 318 if (Res != APFloat::opOK || NewF != F) 319 return badRange(); 320 321 // OK, it's representable. Now get it. 322 APSInt Int(MaxIntegerBW+1, false); 323 bool Exact; 324 CF->getValueAPF().convertToInteger(Int, 325 APFloat::rmNearestTiesToEven, 326 &Exact); 327 OpRanges.push_back(ConstantRange(Int)); 328 } else { 329 llvm_unreachable("Should have already marked this as badRange!"); 330 } 331 } 332 333 // Reduce the operands' ranges to a single range. 334 return Op(OpRanges); 335 } 336 337 // Walk forwards down the list of seen instructions, so we visit defs before 338 // uses. 339 void Float2IntPass::walkForwards() { 340 for (auto &It : reverse(SeenInsts)) { 341 if (It.second != unknownRange()) 342 continue; 343 344 Instruction *I = It.first; 345 seen(I, calcRange(I)); 346 } 347 } 348 349 // If there is a valid transform to be done, do it. 350 bool Float2IntPass::validateAndTransform() { 351 bool MadeChange = false; 352 353 // Iterate over every disjoint partition of the def-use graph. 354 for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) { 355 ConstantRange R(MaxIntegerBW + 1, false); 356 bool Fail = false; 357 Type *ConvertedToTy = nullptr; 358 359 // For every member of the partition, union all the ranges together. 360 for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); 361 MI != ME; ++MI) { 362 Instruction *I = *MI; 363 auto SeenI = SeenInsts.find(I); 364 if (SeenI == SeenInsts.end()) 365 continue; 366 367 R = R.unionWith(SeenI->second); 368 // We need to ensure I has no users that have not been seen. 369 // If it does, transformation would be illegal. 370 // 371 // Don't count the roots, as they terminate the graphs. 372 if (!Roots.contains(I)) { 373 // Set the type of the conversion while we're here. 374 if (!ConvertedToTy) 375 ConvertedToTy = I->getType(); 376 for (User *U : I->users()) { 377 Instruction *UI = dyn_cast<Instruction>(U); 378 if (!UI || SeenInsts.find(UI) == SeenInsts.end()) { 379 LLVM_DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n"); 380 Fail = true; 381 break; 382 } 383 } 384 } 385 if (Fail) 386 break; 387 } 388 389 // If the set was empty, or we failed, or the range is poisonous, 390 // bail out. 391 if (ECs.member_begin(It) == ECs.member_end() || Fail || 392 R.isFullSet() || R.isSignWrappedSet()) 393 continue; 394 assert(ConvertedToTy && "Must have set the convertedtoty by this point!"); 395 396 // The number of bits required is the maximum of the upper and 397 // lower limits, plus one so it can be signed. 398 unsigned MinBW = std::max(R.getLower().getMinSignedBits(), 399 R.getUpper().getMinSignedBits()) + 1; 400 LLVM_DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n"); 401 402 // If we've run off the realms of the exactly representable integers, 403 // the floating point result will differ from an integer approximation. 404 405 // Do we need more bits than are in the mantissa of the type we converted 406 // to? semanticsPrecision returns the number of mantissa bits plus one 407 // for the sign bit. 408 unsigned MaxRepresentableBits 409 = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1; 410 if (MinBW > MaxRepresentableBits) { 411 LLVM_DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n"); 412 continue; 413 } 414 if (MinBW > 64) { 415 LLVM_DEBUG( 416 dbgs() << "F2I: Value requires more than 64 bits to represent!\n"); 417 continue; 418 } 419 420 // OK, R is known to be representable. Now pick a type for it. 421 // FIXME: Pick the smallest legal type that will fit. 422 Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx); 423 424 for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); 425 MI != ME; ++MI) 426 convert(*MI, Ty); 427 MadeChange = true; 428 } 429 430 return MadeChange; 431 } 432 433 Value *Float2IntPass::convert(Instruction *I, Type *ToTy) { 434 if (ConvertedInsts.find(I) != ConvertedInsts.end()) 435 // Already converted this instruction. 436 return ConvertedInsts[I]; 437 438 SmallVector<Value*,4> NewOperands; 439 for (Value *V : I->operands()) { 440 // Don't recurse if we're an instruction that terminates the path. 441 if (I->getOpcode() == Instruction::UIToFP || 442 I->getOpcode() == Instruction::SIToFP) { 443 NewOperands.push_back(V); 444 } else if (Instruction *VI = dyn_cast<Instruction>(V)) { 445 NewOperands.push_back(convert(VI, ToTy)); 446 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 447 APSInt Val(ToTy->getPrimitiveSizeInBits(), /*isUnsigned=*/false); 448 bool Exact; 449 CF->getValueAPF().convertToInteger(Val, 450 APFloat::rmNearestTiesToEven, 451 &Exact); 452 NewOperands.push_back(ConstantInt::get(ToTy, Val)); 453 } else { 454 llvm_unreachable("Unhandled operand type?"); 455 } 456 } 457 458 // Now create a new instruction. 459 IRBuilder<> IRB(I); 460 Value *NewV = nullptr; 461 switch (I->getOpcode()) { 462 default: llvm_unreachable("Unhandled instruction!"); 463 464 case Instruction::FPToUI: 465 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType()); 466 break; 467 468 case Instruction::FPToSI: 469 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType()); 470 break; 471 472 case Instruction::FCmp: { 473 CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate()); 474 assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!"); 475 NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName()); 476 break; 477 } 478 479 case Instruction::UIToFP: 480 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy); 481 break; 482 483 case Instruction::SIToFP: 484 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy); 485 break; 486 487 case Instruction::FNeg: 488 NewV = IRB.CreateNeg(NewOperands[0], I->getName()); 489 break; 490 491 case Instruction::FAdd: 492 case Instruction::FSub: 493 case Instruction::FMul: 494 NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()), 495 NewOperands[0], NewOperands[1], 496 I->getName()); 497 break; 498 } 499 500 // If we're a root instruction, RAUW. 501 if (Roots.count(I)) 502 I->replaceAllUsesWith(NewV); 503 504 ConvertedInsts[I] = NewV; 505 return NewV; 506 } 507 508 // Perform dead code elimination on the instructions we just modified. 509 void Float2IntPass::cleanup() { 510 for (auto &I : reverse(ConvertedInsts)) 511 I.first->eraseFromParent(); 512 } 513 514 bool Float2IntPass::runImpl(Function &F, const DominatorTree &DT) { 515 LLVM_DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n"); 516 // Clear out all state. 517 ECs = EquivalenceClasses<Instruction*>(); 518 SeenInsts.clear(); 519 ConvertedInsts.clear(); 520 Roots.clear(); 521 522 Ctx = &F.getParent()->getContext(); 523 524 findRoots(F, DT); 525 526 walkBackwards(); 527 walkForwards(); 528 529 bool Modified = validateAndTransform(); 530 if (Modified) 531 cleanup(); 532 return Modified; 533 } 534 535 namespace llvm { 536 FunctionPass *createFloat2IntPass() { return new Float2IntLegacyPass(); } 537 538 PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &AM) { 539 const DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 540 if (!runImpl(F, DT)) 541 return PreservedAnalyses::all(); 542 543 PreservedAnalyses PA; 544 PA.preserveSet<CFGAnalyses>(); 545 return PA; 546 } 547 } // End namespace llvm 548