1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Float2Int pass, which aims to demote floating 10 // point operations to work on integers, where that is losslessly possible. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/Float2Int.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Dominators.h" 21 #include "llvm/IR/IRBuilder.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/InitializePasses.h" 24 #include "llvm/Pass.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Transforms/Scalar.h" 29 #include <deque> 30 #include <functional> // For std::function 31 32 #define DEBUG_TYPE "float2int" 33 34 using namespace llvm; 35 36 // The algorithm is simple. Start at instructions that convert from the 37 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use 38 // graph, using an equivalence datastructure to unify graphs that interfere. 39 // 40 // Mappable instructions are those with an integer corrollary that, given 41 // integer domain inputs, produce an integer output; fadd, for example. 42 // 43 // If a non-mappable instruction is seen, this entire def-use graph is marked 44 // as non-transformable. If we see an instruction that converts from the 45 // integer domain to FP domain (uitofp,sitofp), we terminate our walk. 46 47 /// The largest integer type worth dealing with. 48 static cl::opt<unsigned> 49 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden, 50 cl::desc("Max integer bitwidth to consider in float2int" 51 "(default=64)")); 52 53 namespace { 54 struct Float2IntLegacyPass : public FunctionPass { 55 static char ID; // Pass identification, replacement for typeid 56 Float2IntLegacyPass() : FunctionPass(ID) { 57 initializeFloat2IntLegacyPassPass(*PassRegistry::getPassRegistry()); 58 } 59 60 bool runOnFunction(Function &F) override { 61 if (skipFunction(F)) 62 return false; 63 64 const DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 65 return Impl.runImpl(F, DT); 66 } 67 68 void getAnalysisUsage(AnalysisUsage &AU) const override { 69 AU.setPreservesCFG(); 70 AU.addRequired<DominatorTreeWrapperPass>(); 71 AU.addPreserved<GlobalsAAWrapperPass>(); 72 } 73 74 private: 75 Float2IntPass Impl; 76 }; 77 } 78 79 char Float2IntLegacyPass::ID = 0; 80 INITIALIZE_PASS(Float2IntLegacyPass, "float2int", "Float to int", false, false) 81 82 // Given a FCmp predicate, return a matching ICmp predicate if one 83 // exists, otherwise return BAD_ICMP_PREDICATE. 84 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) { 85 switch (P) { 86 case CmpInst::FCMP_OEQ: 87 case CmpInst::FCMP_UEQ: 88 return CmpInst::ICMP_EQ; 89 case CmpInst::FCMP_OGT: 90 case CmpInst::FCMP_UGT: 91 return CmpInst::ICMP_SGT; 92 case CmpInst::FCMP_OGE: 93 case CmpInst::FCMP_UGE: 94 return CmpInst::ICMP_SGE; 95 case CmpInst::FCMP_OLT: 96 case CmpInst::FCMP_ULT: 97 return CmpInst::ICMP_SLT; 98 case CmpInst::FCMP_OLE: 99 case CmpInst::FCMP_ULE: 100 return CmpInst::ICMP_SLE; 101 case CmpInst::FCMP_ONE: 102 case CmpInst::FCMP_UNE: 103 return CmpInst::ICMP_NE; 104 default: 105 return CmpInst::BAD_ICMP_PREDICATE; 106 } 107 } 108 109 // Given a floating point binary operator, return the matching 110 // integer version. 111 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) { 112 switch (Opcode) { 113 default: llvm_unreachable("Unhandled opcode!"); 114 case Instruction::FAdd: return Instruction::Add; 115 case Instruction::FSub: return Instruction::Sub; 116 case Instruction::FMul: return Instruction::Mul; 117 } 118 } 119 120 // Find the roots - instructions that convert from the FP domain to 121 // integer domain. 122 void Float2IntPass::findRoots(Function &F, const DominatorTree &DT) { 123 for (BasicBlock &BB : F) { 124 // Unreachable code can take on strange forms that we are not prepared to 125 // handle. For example, an instruction may have itself as an operand. 126 if (!DT.isReachableFromEntry(&BB)) 127 continue; 128 129 for (Instruction &I : BB) { 130 if (isa<VectorType>(I.getType())) 131 continue; 132 switch (I.getOpcode()) { 133 default: break; 134 case Instruction::FPToUI: 135 case Instruction::FPToSI: 136 Roots.insert(&I); 137 break; 138 case Instruction::FCmp: 139 if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) != 140 CmpInst::BAD_ICMP_PREDICATE) 141 Roots.insert(&I); 142 break; 143 } 144 } 145 } 146 } 147 148 // Helper - mark I as having been traversed, having range R. 149 void Float2IntPass::seen(Instruction *I, ConstantRange R) { 150 LLVM_DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n"); 151 auto IT = SeenInsts.find(I); 152 if (IT != SeenInsts.end()) 153 IT->second = std::move(R); 154 else 155 SeenInsts.insert(std::make_pair(I, std::move(R))); 156 } 157 158 // Helper - get a range representing a poison value. 159 ConstantRange Float2IntPass::badRange() { 160 return ConstantRange::getFull(MaxIntegerBW + 1); 161 } 162 ConstantRange Float2IntPass::unknownRange() { 163 return ConstantRange::getEmpty(MaxIntegerBW + 1); 164 } 165 ConstantRange Float2IntPass::validateRange(ConstantRange R) { 166 if (R.getBitWidth() > MaxIntegerBW + 1) 167 return badRange(); 168 return R; 169 } 170 171 // The most obvious way to structure the search is a depth-first, eager 172 // search from each root. However, that require direct recursion and so 173 // can only handle small instruction sequences. Instead, we split the search 174 // up into two phases: 175 // - walkBackwards: A breadth-first walk of the use-def graph starting from 176 // the roots. Populate "SeenInsts" with interesting 177 // instructions and poison values if they're obvious and 178 // cheap to compute. Calculate the equivalance set structure 179 // while we're here too. 180 // - walkForwards: Iterate over SeenInsts in reverse order, so we visit 181 // defs before their uses. Calculate the real range info. 182 183 // Breadth-first walk of the use-def graph; determine the set of nodes 184 // we care about and eagerly determine if some of them are poisonous. 185 void Float2IntPass::walkBackwards() { 186 std::deque<Instruction*> Worklist(Roots.begin(), Roots.end()); 187 while (!Worklist.empty()) { 188 Instruction *I = Worklist.back(); 189 Worklist.pop_back(); 190 191 if (SeenInsts.find(I) != SeenInsts.end()) 192 // Seen already. 193 continue; 194 195 switch (I->getOpcode()) { 196 // FIXME: Handle select and phi nodes. 197 default: 198 // Path terminated uncleanly. 199 seen(I, badRange()); 200 break; 201 202 case Instruction::UIToFP: 203 case Instruction::SIToFP: { 204 // Path terminated cleanly - use the type of the integer input to seed 205 // the analysis. 206 unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); 207 auto Input = ConstantRange::getFull(BW); 208 auto CastOp = (Instruction::CastOps)I->getOpcode(); 209 seen(I, validateRange(Input.castOp(CastOp, MaxIntegerBW+1))); 210 continue; 211 } 212 213 case Instruction::FNeg: 214 case Instruction::FAdd: 215 case Instruction::FSub: 216 case Instruction::FMul: 217 case Instruction::FPToUI: 218 case Instruction::FPToSI: 219 case Instruction::FCmp: 220 seen(I, unknownRange()); 221 break; 222 } 223 224 for (Value *O : I->operands()) { 225 if (Instruction *OI = dyn_cast<Instruction>(O)) { 226 // Unify def-use chains if they interfere. 227 ECs.unionSets(I, OI); 228 if (SeenInsts.find(I)->second != badRange()) 229 Worklist.push_back(OI); 230 } else if (!isa<ConstantFP>(O)) { 231 // Not an instruction or ConstantFP? we can't do anything. 232 seen(I, badRange()); 233 } 234 } 235 } 236 } 237 238 // Calculate result range from operand ranges 239 ConstantRange Float2IntPass::calcRange(Instruction *I) { 240 SmallVector<ConstantRange, 4> OpRanges; 241 for (Value *O : I->operands()) { 242 if (Instruction *OI = dyn_cast<Instruction>(O)) { 243 assert(SeenInsts.find(OI) != SeenInsts.end() && 244 "def not seen before use!"); 245 OpRanges.push_back(SeenInsts.find(OI)->second); 246 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) { 247 // Work out if the floating point number can be losslessly represented 248 // as an integer. 249 // APFloat::convertToInteger(&Exact) purports to do what we want, but 250 // the exactness can be too precise. For example, negative zero can 251 // never be exactly converted to an integer. 252 // 253 // Instead, we ask APFloat to round itself to an integral value - this 254 // preserves sign-of-zero - then compare the result with the original. 255 // 256 const APFloat &F = CF->getValueAPF(); 257 258 // First, weed out obviously incorrect values. Non-finite numbers 259 // can't be represented and neither can negative zero, unless 260 // we're in fast math mode. 261 if (!F.isFinite() || 262 (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) && 263 !I->hasNoSignedZeros())) 264 return badRange(); 265 266 APFloat NewF = F; 267 auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven); 268 if (Res != APFloat::opOK || NewF != F) 269 return badRange(); 270 271 // OK, it's representable. Now get it. 272 APSInt Int(MaxIntegerBW+1, false); 273 bool Exact; 274 CF->getValueAPF().convertToInteger(Int, 275 APFloat::rmNearestTiesToEven, 276 &Exact); 277 OpRanges.push_back(ConstantRange(Int)); 278 } else { 279 llvm_unreachable("Should have already marked this as badRange!"); 280 } 281 } 282 283 switch (I->getOpcode()) { 284 // FIXME: Handle select and phi nodes. 285 default: 286 case Instruction::UIToFP: 287 case Instruction::SIToFP: 288 llvm_unreachable("Should have been handled in walkForwards!"); 289 290 case Instruction::FNeg: { 291 assert(OpRanges.size() == 1 && "FNeg is a unary operator!"); 292 unsigned Size = OpRanges[0].getBitWidth(); 293 auto Zero = ConstantRange(APInt::getZero(Size)); 294 return Zero.sub(OpRanges[0]); 295 } 296 297 case Instruction::FAdd: 298 case Instruction::FSub: 299 case Instruction::FMul: { 300 assert(OpRanges.size() == 2 && "its a binary operator!"); 301 auto BinOp = (Instruction::BinaryOps) I->getOpcode(); 302 return OpRanges[0].binaryOp(BinOp, OpRanges[1]); 303 } 304 305 // 306 // Root-only instructions - we'll only see these if they're the 307 // first node in a walk. 308 // 309 case Instruction::FPToUI: 310 case Instruction::FPToSI: { 311 assert(OpRanges.size() == 1 && "FPTo[US]I is a unary operator!"); 312 // Note: We're ignoring the casts output size here as that's what the 313 // caller expects. 314 auto CastOp = (Instruction::CastOps)I->getOpcode(); 315 return OpRanges[0].castOp(CastOp, MaxIntegerBW+1); 316 } 317 318 case Instruction::FCmp: 319 assert(OpRanges.size() == 2 && "FCmp is a binary operator!"); 320 return OpRanges[0].unionWith(OpRanges[1]); 321 } 322 } 323 324 // Walk forwards down the list of seen instructions, so we visit defs before 325 // uses. 326 void Float2IntPass::walkForwards() { 327 for (auto &It : reverse(SeenInsts)) { 328 if (It.second != unknownRange()) 329 continue; 330 331 Instruction *I = It.first; 332 seen(I, calcRange(I)); 333 } 334 } 335 336 // If there is a valid transform to be done, do it. 337 bool Float2IntPass::validateAndTransform() { 338 bool MadeChange = false; 339 340 // Iterate over every disjoint partition of the def-use graph. 341 for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) { 342 ConstantRange R(MaxIntegerBW + 1, false); 343 bool Fail = false; 344 Type *ConvertedToTy = nullptr; 345 346 // For every member of the partition, union all the ranges together. 347 for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); 348 MI != ME; ++MI) { 349 Instruction *I = *MI; 350 auto SeenI = SeenInsts.find(I); 351 if (SeenI == SeenInsts.end()) 352 continue; 353 354 R = R.unionWith(SeenI->second); 355 // We need to ensure I has no users that have not been seen. 356 // If it does, transformation would be illegal. 357 // 358 // Don't count the roots, as they terminate the graphs. 359 if (!Roots.contains(I)) { 360 // Set the type of the conversion while we're here. 361 if (!ConvertedToTy) 362 ConvertedToTy = I->getType(); 363 for (User *U : I->users()) { 364 Instruction *UI = dyn_cast<Instruction>(U); 365 if (!UI || SeenInsts.find(UI) == SeenInsts.end()) { 366 LLVM_DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n"); 367 Fail = true; 368 break; 369 } 370 } 371 } 372 if (Fail) 373 break; 374 } 375 376 // If the set was empty, or we failed, or the range is poisonous, 377 // bail out. 378 if (ECs.member_begin(It) == ECs.member_end() || Fail || 379 R.isFullSet() || R.isSignWrappedSet()) 380 continue; 381 assert(ConvertedToTy && "Must have set the convertedtoty by this point!"); 382 383 // The number of bits required is the maximum of the upper and 384 // lower limits, plus one so it can be signed. 385 unsigned MinBW = std::max(R.getLower().getMinSignedBits(), 386 R.getUpper().getMinSignedBits()) + 1; 387 LLVM_DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n"); 388 389 // If we've run off the realms of the exactly representable integers, 390 // the floating point result will differ from an integer approximation. 391 392 // Do we need more bits than are in the mantissa of the type we converted 393 // to? semanticsPrecision returns the number of mantissa bits plus one 394 // for the sign bit. 395 unsigned MaxRepresentableBits 396 = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1; 397 if (MinBW > MaxRepresentableBits) { 398 LLVM_DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n"); 399 continue; 400 } 401 if (MinBW > 64) { 402 LLVM_DEBUG( 403 dbgs() << "F2I: Value requires more than 64 bits to represent!\n"); 404 continue; 405 } 406 407 // OK, R is known to be representable. Now pick a type for it. 408 // FIXME: Pick the smallest legal type that will fit. 409 Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx); 410 411 for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); 412 MI != ME; ++MI) 413 convert(*MI, Ty); 414 MadeChange = true; 415 } 416 417 return MadeChange; 418 } 419 420 Value *Float2IntPass::convert(Instruction *I, Type *ToTy) { 421 if (ConvertedInsts.find(I) != ConvertedInsts.end()) 422 // Already converted this instruction. 423 return ConvertedInsts[I]; 424 425 SmallVector<Value*,4> NewOperands; 426 for (Value *V : I->operands()) { 427 // Don't recurse if we're an instruction that terminates the path. 428 if (I->getOpcode() == Instruction::UIToFP || 429 I->getOpcode() == Instruction::SIToFP) { 430 NewOperands.push_back(V); 431 } else if (Instruction *VI = dyn_cast<Instruction>(V)) { 432 NewOperands.push_back(convert(VI, ToTy)); 433 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 434 APSInt Val(ToTy->getPrimitiveSizeInBits(), /*isUnsigned=*/false); 435 bool Exact; 436 CF->getValueAPF().convertToInteger(Val, 437 APFloat::rmNearestTiesToEven, 438 &Exact); 439 NewOperands.push_back(ConstantInt::get(ToTy, Val)); 440 } else { 441 llvm_unreachable("Unhandled operand type?"); 442 } 443 } 444 445 // Now create a new instruction. 446 IRBuilder<> IRB(I); 447 Value *NewV = nullptr; 448 switch (I->getOpcode()) { 449 default: llvm_unreachable("Unhandled instruction!"); 450 451 case Instruction::FPToUI: 452 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType()); 453 break; 454 455 case Instruction::FPToSI: 456 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType()); 457 break; 458 459 case Instruction::FCmp: { 460 CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate()); 461 assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!"); 462 NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName()); 463 break; 464 } 465 466 case Instruction::UIToFP: 467 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy); 468 break; 469 470 case Instruction::SIToFP: 471 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy); 472 break; 473 474 case Instruction::FNeg: 475 NewV = IRB.CreateNeg(NewOperands[0], I->getName()); 476 break; 477 478 case Instruction::FAdd: 479 case Instruction::FSub: 480 case Instruction::FMul: 481 NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()), 482 NewOperands[0], NewOperands[1], 483 I->getName()); 484 break; 485 } 486 487 // If we're a root instruction, RAUW. 488 if (Roots.count(I)) 489 I->replaceAllUsesWith(NewV); 490 491 ConvertedInsts[I] = NewV; 492 return NewV; 493 } 494 495 // Perform dead code elimination on the instructions we just modified. 496 void Float2IntPass::cleanup() { 497 for (auto &I : reverse(ConvertedInsts)) 498 I.first->eraseFromParent(); 499 } 500 501 bool Float2IntPass::runImpl(Function &F, const DominatorTree &DT) { 502 LLVM_DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n"); 503 // Clear out all state. 504 ECs = EquivalenceClasses<Instruction*>(); 505 SeenInsts.clear(); 506 ConvertedInsts.clear(); 507 Roots.clear(); 508 509 Ctx = &F.getParent()->getContext(); 510 511 findRoots(F, DT); 512 513 walkBackwards(); 514 walkForwards(); 515 516 bool Modified = validateAndTransform(); 517 if (Modified) 518 cleanup(); 519 return Modified; 520 } 521 522 namespace llvm { 523 FunctionPass *createFloat2IntPass() { return new Float2IntLegacyPass(); } 524 525 PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &AM) { 526 const DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 527 if (!runImpl(F, DT)) 528 return PreservedAnalyses::all(); 529 530 PreservedAnalyses PA; 531 PA.preserveSet<CFGAnalyses>(); 532 return PA; 533 } 534 } // End namespace llvm 535