1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Float2Int pass, which aims to demote floating 11 // point operations to work on integers, where that is losslessly possible. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "float2int" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/EquivalenceClasses.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/IR/ConstantRange.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstIterator.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Scalar.h" 34 #include <deque> 35 #include <functional> // For std::function 36 using namespace llvm; 37 38 // The algorithm is simple. Start at instructions that convert from the 39 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use 40 // graph, using an equivalence datastructure to unify graphs that interfere. 41 // 42 // Mappable instructions are those with an integer corrollary that, given 43 // integer domain inputs, produce an integer output; fadd, for example. 44 // 45 // If a non-mappable instruction is seen, this entire def-use graph is marked 46 // as non-transformable. If we see an instruction that converts from the 47 // integer domain to FP domain (uitofp,sitofp), we terminate our walk. 48 49 /// The largest integer type worth dealing with. 50 static cl::opt<unsigned> 51 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden, 52 cl::desc("Max integer bitwidth to consider in float2int" 53 "(default=64)")); 54 55 namespace { 56 struct Float2Int : public FunctionPass { 57 static char ID; // Pass identification, replacement for typeid 58 Float2Int() : FunctionPass(ID) { 59 initializeFloat2IntPass(*PassRegistry::getPassRegistry()); 60 } 61 62 bool runOnFunction(Function &F) override; 63 void getAnalysisUsage(AnalysisUsage &AU) const override { 64 AU.setPreservesCFG(); 65 AU.addPreserved<GlobalsAAWrapperPass>(); 66 } 67 68 void findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots); 69 ConstantRange seen(Instruction *I, ConstantRange R); 70 ConstantRange badRange(); 71 ConstantRange unknownRange(); 72 ConstantRange validateRange(ConstantRange R); 73 void walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots); 74 void walkForwards(); 75 bool validateAndTransform(); 76 Value *convert(Instruction *I, Type *ToTy); 77 void cleanup(); 78 79 MapVector<Instruction*, ConstantRange > SeenInsts; 80 SmallPtrSet<Instruction*,8> Roots; 81 EquivalenceClasses<Instruction*> ECs; 82 MapVector<Instruction*, Value*> ConvertedInsts; 83 LLVMContext *Ctx; 84 }; 85 } 86 87 char Float2Int::ID = 0; 88 INITIALIZE_PASS_BEGIN(Float2Int, "float2int", "Float to int", false, false) 89 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 90 INITIALIZE_PASS_END(Float2Int, "float2int", "Float to int", false, false) 91 92 // Given a FCmp predicate, return a matching ICmp predicate if one 93 // exists, otherwise return BAD_ICMP_PREDICATE. 94 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) { 95 switch (P) { 96 case CmpInst::FCMP_OEQ: 97 case CmpInst::FCMP_UEQ: 98 return CmpInst::ICMP_EQ; 99 case CmpInst::FCMP_OGT: 100 case CmpInst::FCMP_UGT: 101 return CmpInst::ICMP_SGT; 102 case CmpInst::FCMP_OGE: 103 case CmpInst::FCMP_UGE: 104 return CmpInst::ICMP_SGE; 105 case CmpInst::FCMP_OLT: 106 case CmpInst::FCMP_ULT: 107 return CmpInst::ICMP_SLT; 108 case CmpInst::FCMP_OLE: 109 case CmpInst::FCMP_ULE: 110 return CmpInst::ICMP_SLE; 111 case CmpInst::FCMP_ONE: 112 case CmpInst::FCMP_UNE: 113 return CmpInst::ICMP_NE; 114 default: 115 return CmpInst::BAD_ICMP_PREDICATE; 116 } 117 } 118 119 // Given a floating point binary operator, return the matching 120 // integer version. 121 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) { 122 switch (Opcode) { 123 default: llvm_unreachable("Unhandled opcode!"); 124 case Instruction::FAdd: return Instruction::Add; 125 case Instruction::FSub: return Instruction::Sub; 126 case Instruction::FMul: return Instruction::Mul; 127 } 128 } 129 130 // Find the roots - instructions that convert from the FP domain to 131 // integer domain. 132 void Float2Int::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) { 133 for (auto &I : instructions(F)) { 134 switch (I.getOpcode()) { 135 default: break; 136 case Instruction::FPToUI: 137 case Instruction::FPToSI: 138 Roots.insert(&I); 139 break; 140 case Instruction::FCmp: 141 if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) != 142 CmpInst::BAD_ICMP_PREDICATE) 143 Roots.insert(&I); 144 break; 145 } 146 } 147 } 148 149 // Helper - mark I as having been traversed, having range R. 150 ConstantRange Float2Int::seen(Instruction *I, ConstantRange R) { 151 DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n"); 152 if (SeenInsts.find(I) != SeenInsts.end()) 153 SeenInsts.find(I)->second = R; 154 else 155 SeenInsts.insert(std::make_pair(I, R)); 156 return R; 157 } 158 159 // Helper - get a range representing a poison value. 160 ConstantRange Float2Int::badRange() { 161 return ConstantRange(MaxIntegerBW + 1, true); 162 } 163 ConstantRange Float2Int::unknownRange() { 164 return ConstantRange(MaxIntegerBW + 1, false); 165 } 166 ConstantRange Float2Int::validateRange(ConstantRange R) { 167 if (R.getBitWidth() > MaxIntegerBW + 1) 168 return badRange(); 169 return R; 170 } 171 172 // The most obvious way to structure the search is a depth-first, eager 173 // search from each root. However, that require direct recursion and so 174 // can only handle small instruction sequences. Instead, we split the search 175 // up into two phases: 176 // - walkBackwards: A breadth-first walk of the use-def graph starting from 177 // the roots. Populate "SeenInsts" with interesting 178 // instructions and poison values if they're obvious and 179 // cheap to compute. Calculate the equivalance set structure 180 // while we're here too. 181 // - walkForwards: Iterate over SeenInsts in reverse order, so we visit 182 // defs before their uses. Calculate the real range info. 183 184 // Breadth-first walk of the use-def graph; determine the set of nodes 185 // we care about and eagerly determine if some of them are poisonous. 186 void Float2Int::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) { 187 std::deque<Instruction*> Worklist(Roots.begin(), Roots.end()); 188 while (!Worklist.empty()) { 189 Instruction *I = Worklist.back(); 190 Worklist.pop_back(); 191 192 if (SeenInsts.find(I) != SeenInsts.end()) 193 // Seen already. 194 continue; 195 196 switch (I->getOpcode()) { 197 // FIXME: Handle select and phi nodes. 198 default: 199 // Path terminated uncleanly. 200 seen(I, badRange()); 201 break; 202 203 case Instruction::UIToFP: { 204 // Path terminated cleanly. 205 unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); 206 APInt Min = APInt::getMinValue(BW).zextOrSelf(MaxIntegerBW+1); 207 APInt Max = APInt::getMaxValue(BW).zextOrSelf(MaxIntegerBW+1); 208 seen(I, validateRange(ConstantRange(Min, Max))); 209 continue; 210 } 211 212 case Instruction::SIToFP: { 213 // Path terminated cleanly. 214 unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); 215 APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(MaxIntegerBW+1); 216 APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(MaxIntegerBW+1); 217 seen(I, validateRange(ConstantRange(SMin, SMax))); 218 continue; 219 } 220 221 case Instruction::FAdd: 222 case Instruction::FSub: 223 case Instruction::FMul: 224 case Instruction::FPToUI: 225 case Instruction::FPToSI: 226 case Instruction::FCmp: 227 seen(I, unknownRange()); 228 break; 229 } 230 231 for (Value *O : I->operands()) { 232 if (Instruction *OI = dyn_cast<Instruction>(O)) { 233 // Unify def-use chains if they interfere. 234 ECs.unionSets(I, OI); 235 if (SeenInsts.find(I)->second != badRange()) 236 Worklist.push_back(OI); 237 } else if (!isa<ConstantFP>(O)) { 238 // Not an instruction or ConstantFP? we can't do anything. 239 seen(I, badRange()); 240 } 241 } 242 } 243 } 244 245 // Walk forwards down the list of seen instructions, so we visit defs before 246 // uses. 247 void Float2Int::walkForwards() { 248 for (auto &It : make_range(SeenInsts.rbegin(), SeenInsts.rend())) { 249 if (It.second != unknownRange()) 250 continue; 251 252 Instruction *I = It.first; 253 std::function<ConstantRange(ArrayRef<ConstantRange>)> Op; 254 switch (I->getOpcode()) { 255 // FIXME: Handle select and phi nodes. 256 default: 257 case Instruction::UIToFP: 258 case Instruction::SIToFP: 259 llvm_unreachable("Should have been handled in walkForwards!"); 260 261 case Instruction::FAdd: 262 Op = [](ArrayRef<ConstantRange> Ops) { 263 assert(Ops.size() == 2 && "FAdd is a binary operator!"); 264 return Ops[0].add(Ops[1]); 265 }; 266 break; 267 268 case Instruction::FSub: 269 Op = [](ArrayRef<ConstantRange> Ops) { 270 assert(Ops.size() == 2 && "FSub is a binary operator!"); 271 return Ops[0].sub(Ops[1]); 272 }; 273 break; 274 275 case Instruction::FMul: 276 Op = [](ArrayRef<ConstantRange> Ops) { 277 assert(Ops.size() == 2 && "FMul is a binary operator!"); 278 return Ops[0].multiply(Ops[1]); 279 }; 280 break; 281 282 // 283 // Root-only instructions - we'll only see these if they're the 284 // first node in a walk. 285 // 286 case Instruction::FPToUI: 287 case Instruction::FPToSI: 288 Op = [](ArrayRef<ConstantRange> Ops) { 289 assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!"); 290 return Ops[0]; 291 }; 292 break; 293 294 case Instruction::FCmp: 295 Op = [](ArrayRef<ConstantRange> Ops) { 296 assert(Ops.size() == 2 && "FCmp is a binary operator!"); 297 return Ops[0].unionWith(Ops[1]); 298 }; 299 break; 300 } 301 302 bool Abort = false; 303 SmallVector<ConstantRange,4> OpRanges; 304 for (Value *O : I->operands()) { 305 if (Instruction *OI = dyn_cast<Instruction>(O)) { 306 assert(SeenInsts.find(OI) != SeenInsts.end() && 307 "def not seen before use!"); 308 OpRanges.push_back(SeenInsts.find(OI)->second); 309 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) { 310 // Work out if the floating point number can be losslessly represented 311 // as an integer. 312 // APFloat::convertToInteger(&Exact) purports to do what we want, but 313 // the exactness can be too precise. For example, negative zero can 314 // never be exactly converted to an integer. 315 // 316 // Instead, we ask APFloat to round itself to an integral value - this 317 // preserves sign-of-zero - then compare the result with the original. 318 // 319 APFloat F = CF->getValueAPF(); 320 321 // First, weed out obviously incorrect values. Non-finite numbers 322 // can't be represented and neither can negative zero, unless 323 // we're in fast math mode. 324 if (!F.isFinite() || 325 (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) && 326 !I->hasNoSignedZeros())) { 327 seen(I, badRange()); 328 Abort = true; 329 break; 330 } 331 332 APFloat NewF = F; 333 auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven); 334 if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) { 335 seen(I, badRange()); 336 Abort = true; 337 break; 338 } 339 // OK, it's representable. Now get it. 340 APSInt Int(MaxIntegerBW+1, false); 341 bool Exact; 342 CF->getValueAPF().convertToInteger(Int, 343 APFloat::rmNearestTiesToEven, 344 &Exact); 345 OpRanges.push_back(ConstantRange(Int)); 346 } else { 347 llvm_unreachable("Should have already marked this as badRange!"); 348 } 349 } 350 351 // Reduce the operands' ranges to a single range and return. 352 if (!Abort) 353 seen(I, Op(OpRanges)); 354 } 355 } 356 357 // If there is a valid transform to be done, do it. 358 bool Float2Int::validateAndTransform() { 359 bool MadeChange = false; 360 361 // Iterate over every disjoint partition of the def-use graph. 362 for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) { 363 ConstantRange R(MaxIntegerBW + 1, false); 364 bool Fail = false; 365 Type *ConvertedToTy = nullptr; 366 367 // For every member of the partition, union all the ranges together. 368 for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); 369 MI != ME; ++MI) { 370 Instruction *I = *MI; 371 auto SeenI = SeenInsts.find(I); 372 if (SeenI == SeenInsts.end()) 373 continue; 374 375 R = R.unionWith(SeenI->second); 376 // We need to ensure I has no users that have not been seen. 377 // If it does, transformation would be illegal. 378 // 379 // Don't count the roots, as they terminate the graphs. 380 if (Roots.count(I) == 0) { 381 // Set the type of the conversion while we're here. 382 if (!ConvertedToTy) 383 ConvertedToTy = I->getType(); 384 for (User *U : I->users()) { 385 Instruction *UI = dyn_cast<Instruction>(U); 386 if (!UI || SeenInsts.find(UI) == SeenInsts.end()) { 387 DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n"); 388 Fail = true; 389 break; 390 } 391 } 392 } 393 if (Fail) 394 break; 395 } 396 397 // If the set was empty, or we failed, or the range is poisonous, 398 // bail out. 399 if (ECs.member_begin(It) == ECs.member_end() || Fail || 400 R.isFullSet() || R.isSignWrappedSet()) 401 continue; 402 assert(ConvertedToTy && "Must have set the convertedtoty by this point!"); 403 404 // The number of bits required is the maximum of the upper and 405 // lower limits, plus one so it can be signed. 406 unsigned MinBW = std::max(R.getLower().getMinSignedBits(), 407 R.getUpper().getMinSignedBits()) + 1; 408 DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n"); 409 410 // If we've run off the realms of the exactly representable integers, 411 // the floating point result will differ from an integer approximation. 412 413 // Do we need more bits than are in the mantissa of the type we converted 414 // to? semanticsPrecision returns the number of mantissa bits plus one 415 // for the sign bit. 416 unsigned MaxRepresentableBits 417 = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1; 418 if (MinBW > MaxRepresentableBits) { 419 DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n"); 420 continue; 421 } 422 if (MinBW > 64) { 423 DEBUG(dbgs() << "F2I: Value requires more than 64 bits to represent!\n"); 424 continue; 425 } 426 427 // OK, R is known to be representable. Now pick a type for it. 428 // FIXME: Pick the smallest legal type that will fit. 429 Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx); 430 431 for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); 432 MI != ME; ++MI) 433 convert(*MI, Ty); 434 MadeChange = true; 435 } 436 437 return MadeChange; 438 } 439 440 Value *Float2Int::convert(Instruction *I, Type *ToTy) { 441 if (ConvertedInsts.find(I) != ConvertedInsts.end()) 442 // Already converted this instruction. 443 return ConvertedInsts[I]; 444 445 SmallVector<Value*,4> NewOperands; 446 for (Value *V : I->operands()) { 447 // Don't recurse if we're an instruction that terminates the path. 448 if (I->getOpcode() == Instruction::UIToFP || 449 I->getOpcode() == Instruction::SIToFP) { 450 NewOperands.push_back(V); 451 } else if (Instruction *VI = dyn_cast<Instruction>(V)) { 452 NewOperands.push_back(convert(VI, ToTy)); 453 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 454 APSInt Val(ToTy->getPrimitiveSizeInBits(), /*IsUnsigned=*/false); 455 bool Exact; 456 CF->getValueAPF().convertToInteger(Val, 457 APFloat::rmNearestTiesToEven, 458 &Exact); 459 NewOperands.push_back(ConstantInt::get(ToTy, Val)); 460 } else { 461 llvm_unreachable("Unhandled operand type?"); 462 } 463 } 464 465 // Now create a new instruction. 466 IRBuilder<> IRB(I); 467 Value *NewV = nullptr; 468 switch (I->getOpcode()) { 469 default: llvm_unreachable("Unhandled instruction!"); 470 471 case Instruction::FPToUI: 472 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType()); 473 break; 474 475 case Instruction::FPToSI: 476 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType()); 477 break; 478 479 case Instruction::FCmp: { 480 CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate()); 481 assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!"); 482 NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName()); 483 break; 484 } 485 486 case Instruction::UIToFP: 487 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy); 488 break; 489 490 case Instruction::SIToFP: 491 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy); 492 break; 493 494 case Instruction::FAdd: 495 case Instruction::FSub: 496 case Instruction::FMul: 497 NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()), 498 NewOperands[0], NewOperands[1], 499 I->getName()); 500 break; 501 } 502 503 // If we're a root instruction, RAUW. 504 if (Roots.count(I)) 505 I->replaceAllUsesWith(NewV); 506 507 ConvertedInsts[I] = NewV; 508 return NewV; 509 } 510 511 // Perform dead code elimination on the instructions we just modified. 512 void Float2Int::cleanup() { 513 for (auto &I : make_range(ConvertedInsts.rbegin(), ConvertedInsts.rend())) 514 I.first->eraseFromParent(); 515 } 516 517 bool Float2Int::runOnFunction(Function &F) { 518 if (skipOptnoneFunction(F)) 519 return false; 520 521 DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n"); 522 // Clear out all state. 523 ECs = EquivalenceClasses<Instruction*>(); 524 SeenInsts.clear(); 525 ConvertedInsts.clear(); 526 Roots.clear(); 527 528 Ctx = &F.getParent()->getContext(); 529 530 findRoots(F, Roots); 531 532 walkBackwards(Roots); 533 walkForwards(); 534 535 bool Modified = validateAndTransform(); 536 if (Modified) 537 cleanup(); 538 return Modified; 539 } 540 541 FunctionPass *llvm::createFloat2IntPass() { return new Float2Int(); } 542