1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Float2Int pass, which aims to demote floating 10 // point operations to work on integers, where that is losslessly possible. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/Float2Int.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Dominators.h" 21 #include "llvm/IR/IRBuilder.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/InitializePasses.h" 24 #include "llvm/Pass.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Transforms/Scalar.h" 29 #include <deque> 30 #include <functional> // For std::function 31 32 #define DEBUG_TYPE "float2int" 33 34 using namespace llvm; 35 36 // The algorithm is simple. Start at instructions that convert from the 37 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use 38 // graph, using an equivalence datastructure to unify graphs that interfere. 39 // 40 // Mappable instructions are those with an integer corrollary that, given 41 // integer domain inputs, produce an integer output; fadd, for example. 42 // 43 // If a non-mappable instruction is seen, this entire def-use graph is marked 44 // as non-transformable. If we see an instruction that converts from the 45 // integer domain to FP domain (uitofp,sitofp), we terminate our walk. 46 47 /// The largest integer type worth dealing with. 48 static cl::opt<unsigned> 49 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden, 50 cl::desc("Max integer bitwidth to consider in float2int" 51 "(default=64)")); 52 53 namespace { 54 struct Float2IntLegacyPass : public FunctionPass { 55 static char ID; // Pass identification, replacement for typeid 56 Float2IntLegacyPass() : FunctionPass(ID) { 57 initializeFloat2IntLegacyPassPass(*PassRegistry::getPassRegistry()); 58 } 59 60 bool runOnFunction(Function &F) override { 61 if (skipFunction(F)) 62 return false; 63 64 const DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 65 return Impl.runImpl(F, DT); 66 } 67 68 void getAnalysisUsage(AnalysisUsage &AU) const override { 69 AU.setPreservesCFG(); 70 AU.addRequired<DominatorTreeWrapperPass>(); 71 AU.addPreserved<GlobalsAAWrapperPass>(); 72 } 73 74 private: 75 Float2IntPass Impl; 76 }; 77 } 78 79 char Float2IntLegacyPass::ID = 0; 80 INITIALIZE_PASS(Float2IntLegacyPass, "float2int", "Float to int", false, false) 81 82 // Given a FCmp predicate, return a matching ICmp predicate if one 83 // exists, otherwise return BAD_ICMP_PREDICATE. 84 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) { 85 switch (P) { 86 case CmpInst::FCMP_OEQ: 87 case CmpInst::FCMP_UEQ: 88 return CmpInst::ICMP_EQ; 89 case CmpInst::FCMP_OGT: 90 case CmpInst::FCMP_UGT: 91 return CmpInst::ICMP_SGT; 92 case CmpInst::FCMP_OGE: 93 case CmpInst::FCMP_UGE: 94 return CmpInst::ICMP_SGE; 95 case CmpInst::FCMP_OLT: 96 case CmpInst::FCMP_ULT: 97 return CmpInst::ICMP_SLT; 98 case CmpInst::FCMP_OLE: 99 case CmpInst::FCMP_ULE: 100 return CmpInst::ICMP_SLE; 101 case CmpInst::FCMP_ONE: 102 case CmpInst::FCMP_UNE: 103 return CmpInst::ICMP_NE; 104 default: 105 return CmpInst::BAD_ICMP_PREDICATE; 106 } 107 } 108 109 // Given a floating point binary operator, return the matching 110 // integer version. 111 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) { 112 switch (Opcode) { 113 default: llvm_unreachable("Unhandled opcode!"); 114 case Instruction::FAdd: return Instruction::Add; 115 case Instruction::FSub: return Instruction::Sub; 116 case Instruction::FMul: return Instruction::Mul; 117 } 118 } 119 120 // Find the roots - instructions that convert from the FP domain to 121 // integer domain. 122 void Float2IntPass::findRoots(Function &F, const DominatorTree &DT) { 123 for (BasicBlock &BB : F) { 124 // Unreachable code can take on strange forms that we are not prepared to 125 // handle. For example, an instruction may have itself as an operand. 126 if (!DT.isReachableFromEntry(&BB)) 127 continue; 128 129 for (Instruction &I : BB) { 130 if (isa<VectorType>(I.getType())) 131 continue; 132 switch (I.getOpcode()) { 133 default: break; 134 case Instruction::FPToUI: 135 case Instruction::FPToSI: 136 Roots.insert(&I); 137 break; 138 case Instruction::FCmp: 139 if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) != 140 CmpInst::BAD_ICMP_PREDICATE) 141 Roots.insert(&I); 142 break; 143 } 144 } 145 } 146 } 147 148 // Helper - mark I as having been traversed, having range R. 149 void Float2IntPass::seen(Instruction *I, ConstantRange R) { 150 LLVM_DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n"); 151 auto IT = SeenInsts.find(I); 152 if (IT != SeenInsts.end()) 153 IT->second = std::move(R); 154 else 155 SeenInsts.insert(std::make_pair(I, std::move(R))); 156 } 157 158 // Helper - get a range representing a poison value. 159 ConstantRange Float2IntPass::badRange() { 160 return ConstantRange::getFull(MaxIntegerBW + 1); 161 } 162 ConstantRange Float2IntPass::unknownRange() { 163 return ConstantRange::getEmpty(MaxIntegerBW + 1); 164 } 165 ConstantRange Float2IntPass::validateRange(ConstantRange R) { 166 if (R.getBitWidth() > MaxIntegerBW + 1) 167 return badRange(); 168 return R; 169 } 170 171 // The most obvious way to structure the search is a depth-first, eager 172 // search from each root. However, that require direct recursion and so 173 // can only handle small instruction sequences. Instead, we split the search 174 // up into two phases: 175 // - walkBackwards: A breadth-first walk of the use-def graph starting from 176 // the roots. Populate "SeenInsts" with interesting 177 // instructions and poison values if they're obvious and 178 // cheap to compute. Calculate the equivalance set structure 179 // while we're here too. 180 // - walkForwards: Iterate over SeenInsts in reverse order, so we visit 181 // defs before their uses. Calculate the real range info. 182 183 // Breadth-first walk of the use-def graph; determine the set of nodes 184 // we care about and eagerly determine if some of them are poisonous. 185 void Float2IntPass::walkBackwards() { 186 std::deque<Instruction*> Worklist(Roots.begin(), Roots.end()); 187 while (!Worklist.empty()) { 188 Instruction *I = Worklist.back(); 189 Worklist.pop_back(); 190 191 if (SeenInsts.find(I) != SeenInsts.end()) 192 // Seen already. 193 continue; 194 195 switch (I->getOpcode()) { 196 // FIXME: Handle select and phi nodes. 197 default: 198 // Path terminated uncleanly. 199 seen(I, badRange()); 200 break; 201 202 case Instruction::UIToFP: 203 case Instruction::SIToFP: { 204 // Path terminated cleanly - use the type of the integer input to seed 205 // the analysis. 206 unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); 207 auto Input = ConstantRange::getFull(BW); 208 auto CastOp = (Instruction::CastOps)I->getOpcode(); 209 seen(I, validateRange(Input.castOp(CastOp, MaxIntegerBW+1))); 210 continue; 211 } 212 213 case Instruction::FNeg: 214 case Instruction::FAdd: 215 case Instruction::FSub: 216 case Instruction::FMul: 217 case Instruction::FPToUI: 218 case Instruction::FPToSI: 219 case Instruction::FCmp: 220 seen(I, unknownRange()); 221 break; 222 } 223 224 for (Value *O : I->operands()) { 225 if (Instruction *OI = dyn_cast<Instruction>(O)) { 226 // Unify def-use chains if they interfere. 227 ECs.unionSets(I, OI); 228 if (SeenInsts.find(I)->second != badRange()) 229 Worklist.push_back(OI); 230 } else if (!isa<ConstantFP>(O)) { 231 // Not an instruction or ConstantFP? we can't do anything. 232 seen(I, badRange()); 233 } 234 } 235 } 236 } 237 238 // Calculate result range from operand ranges. 239 // Return None if the range cannot be calculated yet. 240 Optional<ConstantRange> Float2IntPass::calcRange(Instruction *I) { 241 SmallVector<ConstantRange, 4> OpRanges; 242 for (Value *O : I->operands()) { 243 if (Instruction *OI = dyn_cast<Instruction>(O)) { 244 auto OpIt = SeenInsts.find(OI); 245 assert(OpIt != SeenInsts.end() && "def not seen before use!"); 246 if (OpIt->second == unknownRange()) 247 return None; // Wait until operand range has been calculated. 248 OpRanges.push_back(OpIt->second); 249 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) { 250 // Work out if the floating point number can be losslessly represented 251 // as an integer. 252 // APFloat::convertToInteger(&Exact) purports to do what we want, but 253 // the exactness can be too precise. For example, negative zero can 254 // never be exactly converted to an integer. 255 // 256 // Instead, we ask APFloat to round itself to an integral value - this 257 // preserves sign-of-zero - then compare the result with the original. 258 // 259 const APFloat &F = CF->getValueAPF(); 260 261 // First, weed out obviously incorrect values. Non-finite numbers 262 // can't be represented and neither can negative zero, unless 263 // we're in fast math mode. 264 if (!F.isFinite() || 265 (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) && 266 !I->hasNoSignedZeros())) 267 return badRange(); 268 269 APFloat NewF = F; 270 auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven); 271 if (Res != APFloat::opOK || NewF != F) 272 return badRange(); 273 274 // OK, it's representable. Now get it. 275 APSInt Int(MaxIntegerBW+1, false); 276 bool Exact; 277 CF->getValueAPF().convertToInteger(Int, 278 APFloat::rmNearestTiesToEven, 279 &Exact); 280 OpRanges.push_back(ConstantRange(Int)); 281 } else { 282 llvm_unreachable("Should have already marked this as badRange!"); 283 } 284 } 285 286 switch (I->getOpcode()) { 287 // FIXME: Handle select and phi nodes. 288 default: 289 case Instruction::UIToFP: 290 case Instruction::SIToFP: 291 llvm_unreachable("Should have been handled in walkForwards!"); 292 293 case Instruction::FNeg: { 294 assert(OpRanges.size() == 1 && "FNeg is a unary operator!"); 295 unsigned Size = OpRanges[0].getBitWidth(); 296 auto Zero = ConstantRange(APInt::getZero(Size)); 297 return Zero.sub(OpRanges[0]); 298 } 299 300 case Instruction::FAdd: 301 case Instruction::FSub: 302 case Instruction::FMul: { 303 assert(OpRanges.size() == 2 && "its a binary operator!"); 304 auto BinOp = (Instruction::BinaryOps) I->getOpcode(); 305 return OpRanges[0].binaryOp(BinOp, OpRanges[1]); 306 } 307 308 // 309 // Root-only instructions - we'll only see these if they're the 310 // first node in a walk. 311 // 312 case Instruction::FPToUI: 313 case Instruction::FPToSI: { 314 assert(OpRanges.size() == 1 && "FPTo[US]I is a unary operator!"); 315 // Note: We're ignoring the casts output size here as that's what the 316 // caller expects. 317 auto CastOp = (Instruction::CastOps)I->getOpcode(); 318 return OpRanges[0].castOp(CastOp, MaxIntegerBW+1); 319 } 320 321 case Instruction::FCmp: 322 assert(OpRanges.size() == 2 && "FCmp is a binary operator!"); 323 return OpRanges[0].unionWith(OpRanges[1]); 324 } 325 } 326 327 // Walk forwards down the list of seen instructions, so we visit defs before 328 // uses. 329 void Float2IntPass::walkForwards() { 330 std::deque<Instruction *> Worklist; 331 for (const auto &Pair : SeenInsts) 332 if (Pair.second == unknownRange()) 333 Worklist.push_back(Pair.first); 334 335 while (!Worklist.empty()) { 336 Instruction *I = Worklist.back(); 337 Worklist.pop_back(); 338 339 if (Optional<ConstantRange> Range = calcRange(I)) 340 seen(I, *Range); 341 else 342 Worklist.push_front(I); // Reprocess later. 343 } 344 } 345 346 // If there is a valid transform to be done, do it. 347 bool Float2IntPass::validateAndTransform() { 348 bool MadeChange = false; 349 350 // Iterate over every disjoint partition of the def-use graph. 351 for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) { 352 ConstantRange R(MaxIntegerBW + 1, false); 353 bool Fail = false; 354 Type *ConvertedToTy = nullptr; 355 356 // For every member of the partition, union all the ranges together. 357 for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); 358 MI != ME; ++MI) { 359 Instruction *I = *MI; 360 auto SeenI = SeenInsts.find(I); 361 if (SeenI == SeenInsts.end()) 362 continue; 363 364 R = R.unionWith(SeenI->second); 365 // We need to ensure I has no users that have not been seen. 366 // If it does, transformation would be illegal. 367 // 368 // Don't count the roots, as they terminate the graphs. 369 if (!Roots.contains(I)) { 370 // Set the type of the conversion while we're here. 371 if (!ConvertedToTy) 372 ConvertedToTy = I->getType(); 373 for (User *U : I->users()) { 374 Instruction *UI = dyn_cast<Instruction>(U); 375 if (!UI || SeenInsts.find(UI) == SeenInsts.end()) { 376 LLVM_DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n"); 377 Fail = true; 378 break; 379 } 380 } 381 } 382 if (Fail) 383 break; 384 } 385 386 // If the set was empty, or we failed, or the range is poisonous, 387 // bail out. 388 if (ECs.member_begin(It) == ECs.member_end() || Fail || 389 R.isFullSet() || R.isSignWrappedSet()) 390 continue; 391 assert(ConvertedToTy && "Must have set the convertedtoty by this point!"); 392 393 // The number of bits required is the maximum of the upper and 394 // lower limits, plus one so it can be signed. 395 unsigned MinBW = std::max(R.getLower().getMinSignedBits(), 396 R.getUpper().getMinSignedBits()) + 1; 397 LLVM_DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n"); 398 399 // If we've run off the realms of the exactly representable integers, 400 // the floating point result will differ from an integer approximation. 401 402 // Do we need more bits than are in the mantissa of the type we converted 403 // to? semanticsPrecision returns the number of mantissa bits plus one 404 // for the sign bit. 405 unsigned MaxRepresentableBits 406 = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1; 407 if (MinBW > MaxRepresentableBits) { 408 LLVM_DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n"); 409 continue; 410 } 411 if (MinBW > 64) { 412 LLVM_DEBUG( 413 dbgs() << "F2I: Value requires more than 64 bits to represent!\n"); 414 continue; 415 } 416 417 // OK, R is known to be representable. Now pick a type for it. 418 // FIXME: Pick the smallest legal type that will fit. 419 Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx); 420 421 for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); 422 MI != ME; ++MI) 423 convert(*MI, Ty); 424 MadeChange = true; 425 } 426 427 return MadeChange; 428 } 429 430 Value *Float2IntPass::convert(Instruction *I, Type *ToTy) { 431 if (ConvertedInsts.find(I) != ConvertedInsts.end()) 432 // Already converted this instruction. 433 return ConvertedInsts[I]; 434 435 SmallVector<Value*,4> NewOperands; 436 for (Value *V : I->operands()) { 437 // Don't recurse if we're an instruction that terminates the path. 438 if (I->getOpcode() == Instruction::UIToFP || 439 I->getOpcode() == Instruction::SIToFP) { 440 NewOperands.push_back(V); 441 } else if (Instruction *VI = dyn_cast<Instruction>(V)) { 442 NewOperands.push_back(convert(VI, ToTy)); 443 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 444 APSInt Val(ToTy->getPrimitiveSizeInBits(), /*isUnsigned=*/false); 445 bool Exact; 446 CF->getValueAPF().convertToInteger(Val, 447 APFloat::rmNearestTiesToEven, 448 &Exact); 449 NewOperands.push_back(ConstantInt::get(ToTy, Val)); 450 } else { 451 llvm_unreachable("Unhandled operand type?"); 452 } 453 } 454 455 // Now create a new instruction. 456 IRBuilder<> IRB(I); 457 Value *NewV = nullptr; 458 switch (I->getOpcode()) { 459 default: llvm_unreachable("Unhandled instruction!"); 460 461 case Instruction::FPToUI: 462 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType()); 463 break; 464 465 case Instruction::FPToSI: 466 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType()); 467 break; 468 469 case Instruction::FCmp: { 470 CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate()); 471 assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!"); 472 NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName()); 473 break; 474 } 475 476 case Instruction::UIToFP: 477 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy); 478 break; 479 480 case Instruction::SIToFP: 481 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy); 482 break; 483 484 case Instruction::FNeg: 485 NewV = IRB.CreateNeg(NewOperands[0], I->getName()); 486 break; 487 488 case Instruction::FAdd: 489 case Instruction::FSub: 490 case Instruction::FMul: 491 NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()), 492 NewOperands[0], NewOperands[1], 493 I->getName()); 494 break; 495 } 496 497 // If we're a root instruction, RAUW. 498 if (Roots.count(I)) 499 I->replaceAllUsesWith(NewV); 500 501 ConvertedInsts[I] = NewV; 502 return NewV; 503 } 504 505 // Perform dead code elimination on the instructions we just modified. 506 void Float2IntPass::cleanup() { 507 for (auto &I : reverse(ConvertedInsts)) 508 I.first->eraseFromParent(); 509 } 510 511 bool Float2IntPass::runImpl(Function &F, const DominatorTree &DT) { 512 LLVM_DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n"); 513 // Clear out all state. 514 ECs = EquivalenceClasses<Instruction*>(); 515 SeenInsts.clear(); 516 ConvertedInsts.clear(); 517 Roots.clear(); 518 519 Ctx = &F.getParent()->getContext(); 520 521 findRoots(F, DT); 522 523 walkBackwards(); 524 walkForwards(); 525 526 bool Modified = validateAndTransform(); 527 if (Modified) 528 cleanup(); 529 return Modified; 530 } 531 532 namespace llvm { 533 FunctionPass *createFloat2IntPass() { return new Float2IntLegacyPass(); } 534 535 PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &AM) { 536 const DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 537 if (!runImpl(F, DT)) 538 return PreservedAnalyses::all(); 539 540 PreservedAnalyses PA; 541 PA.preserveSet<CFGAnalyses>(); 542 return PA; 543 } 544 } // End namespace llvm 545