1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Float2Int pass, which aims to demote floating
11 // point operations to work on integers, where that is losslessly possible.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "float2int"
16 
17 #include "llvm/Transforms/Scalar/Float2Int.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/APSInt.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/GlobalsModRef.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/InstIterator.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Transforms/Scalar.h"
32 #include <deque>
33 #include <functional> // For std::function
34 using namespace llvm;
35 
36 // The algorithm is simple. Start at instructions that convert from the
37 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
38 // graph, using an equivalence datastructure to unify graphs that interfere.
39 //
40 // Mappable instructions are those with an integer corrollary that, given
41 // integer domain inputs, produce an integer output; fadd, for example.
42 //
43 // If a non-mappable instruction is seen, this entire def-use graph is marked
44 // as non-transformable. If we see an instruction that converts from the
45 // integer domain to FP domain (uitofp,sitofp), we terminate our walk.
46 
47 /// The largest integer type worth dealing with.
48 static cl::opt<unsigned>
49 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
50              cl::desc("Max integer bitwidth to consider in float2int"
51                       "(default=64)"));
52 
53 namespace {
54   struct Float2IntLegacyPass : public FunctionPass {
55     static char ID; // Pass identification, replacement for typeid
56     Float2IntLegacyPass() : FunctionPass(ID) {
57       initializeFloat2IntLegacyPassPass(*PassRegistry::getPassRegistry());
58     }
59 
60     bool runOnFunction(Function &F) override {
61       if (skipFunction(F))
62         return false;
63 
64       return Impl.runImpl(F);
65     }
66 
67     void getAnalysisUsage(AnalysisUsage &AU) const override {
68       AU.setPreservesCFG();
69       AU.addPreserved<GlobalsAAWrapperPass>();
70     }
71 
72   private:
73     Float2IntPass Impl;
74   };
75 }
76 
77 char Float2IntLegacyPass::ID = 0;
78 INITIALIZE_PASS(Float2IntLegacyPass, "float2int", "Float to int", false, false)
79 
80 // Given a FCmp predicate, return a matching ICmp predicate if one
81 // exists, otherwise return BAD_ICMP_PREDICATE.
82 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
83   switch (P) {
84   case CmpInst::FCMP_OEQ:
85   case CmpInst::FCMP_UEQ:
86     return CmpInst::ICMP_EQ;
87   case CmpInst::FCMP_OGT:
88   case CmpInst::FCMP_UGT:
89     return CmpInst::ICMP_SGT;
90   case CmpInst::FCMP_OGE:
91   case CmpInst::FCMP_UGE:
92     return CmpInst::ICMP_SGE;
93   case CmpInst::FCMP_OLT:
94   case CmpInst::FCMP_ULT:
95     return CmpInst::ICMP_SLT;
96   case CmpInst::FCMP_OLE:
97   case CmpInst::FCMP_ULE:
98     return CmpInst::ICMP_SLE;
99   case CmpInst::FCMP_ONE:
100   case CmpInst::FCMP_UNE:
101     return CmpInst::ICMP_NE;
102   default:
103     return CmpInst::BAD_ICMP_PREDICATE;
104   }
105 }
106 
107 // Given a floating point binary operator, return the matching
108 // integer version.
109 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
110   switch (Opcode) {
111   default: llvm_unreachable("Unhandled opcode!");
112   case Instruction::FAdd: return Instruction::Add;
113   case Instruction::FSub: return Instruction::Sub;
114   case Instruction::FMul: return Instruction::Mul;
115   }
116 }
117 
118 // Find the roots - instructions that convert from the FP domain to
119 // integer domain.
120 void Float2IntPass::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) {
121   for (auto &I : instructions(F)) {
122     if (isa<VectorType>(I.getType()))
123       continue;
124     switch (I.getOpcode()) {
125     default: break;
126     case Instruction::FPToUI:
127     case Instruction::FPToSI:
128       Roots.insert(&I);
129       break;
130     case Instruction::FCmp:
131       if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) !=
132           CmpInst::BAD_ICMP_PREDICATE)
133         Roots.insert(&I);
134       break;
135     }
136   }
137 }
138 
139 // Helper - mark I as having been traversed, having range R.
140 void Float2IntPass::seen(Instruction *I, ConstantRange R) {
141   DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
142   if (SeenInsts.find(I) != SeenInsts.end())
143     SeenInsts.find(I)->second = R;
144   else
145     SeenInsts.insert(std::make_pair(I, R));
146 }
147 
148 // Helper - get a range representing a poison value.
149 ConstantRange Float2IntPass::badRange() {
150   return ConstantRange(MaxIntegerBW + 1, true);
151 }
152 ConstantRange Float2IntPass::unknownRange() {
153   return ConstantRange(MaxIntegerBW + 1, false);
154 }
155 ConstantRange Float2IntPass::validateRange(ConstantRange R) {
156   if (R.getBitWidth() > MaxIntegerBW + 1)
157     return badRange();
158   return R;
159 }
160 
161 // The most obvious way to structure the search is a depth-first, eager
162 // search from each root. However, that require direct recursion and so
163 // can only handle small instruction sequences. Instead, we split the search
164 // up into two phases:
165 //   - walkBackwards:  A breadth-first walk of the use-def graph starting from
166 //                     the roots. Populate "SeenInsts" with interesting
167 //                     instructions and poison values if they're obvious and
168 //                     cheap to compute. Calculate the equivalance set structure
169 //                     while we're here too.
170 //   - walkForwards:  Iterate over SeenInsts in reverse order, so we visit
171 //                     defs before their uses. Calculate the real range info.
172 
173 // Breadth-first walk of the use-def graph; determine the set of nodes
174 // we care about and eagerly determine if some of them are poisonous.
175 void Float2IntPass::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) {
176   std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
177   while (!Worklist.empty()) {
178     Instruction *I = Worklist.back();
179     Worklist.pop_back();
180 
181     if (SeenInsts.find(I) != SeenInsts.end())
182       // Seen already.
183       continue;
184 
185     switch (I->getOpcode()) {
186       // FIXME: Handle select and phi nodes.
187     default:
188       // Path terminated uncleanly.
189       seen(I, badRange());
190       break;
191 
192     case Instruction::UIToFP:
193     case Instruction::SIToFP: {
194       // Path terminated cleanly - use the type of the integer input to seed
195       // the analysis.
196       unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
197       auto Input = ConstantRange(BW, true);
198       auto CastOp = (Instruction::CastOps)I->getOpcode();
199       seen(I, validateRange(Input.castOp(CastOp, MaxIntegerBW+1)));
200       continue;
201     }
202 
203     case Instruction::FAdd:
204     case Instruction::FSub:
205     case Instruction::FMul:
206     case Instruction::FPToUI:
207     case Instruction::FPToSI:
208     case Instruction::FCmp:
209       seen(I, unknownRange());
210       break;
211     }
212 
213     for (Value *O : I->operands()) {
214       if (Instruction *OI = dyn_cast<Instruction>(O)) {
215         // Unify def-use chains if they interfere.
216         ECs.unionSets(I, OI);
217         if (SeenInsts.find(I)->second != badRange())
218           Worklist.push_back(OI);
219       } else if (!isa<ConstantFP>(O)) {
220         // Not an instruction or ConstantFP? we can't do anything.
221         seen(I, badRange());
222       }
223     }
224   }
225 }
226 
227 // Walk forwards down the list of seen instructions, so we visit defs before
228 // uses.
229 void Float2IntPass::walkForwards() {
230   for (auto &It : reverse(SeenInsts)) {
231     if (It.second != unknownRange())
232       continue;
233 
234     Instruction *I = It.first;
235     std::function<ConstantRange(ArrayRef<ConstantRange>)> Op;
236     switch (I->getOpcode()) {
237       // FIXME: Handle select and phi nodes.
238     default:
239     case Instruction::UIToFP:
240     case Instruction::SIToFP:
241       llvm_unreachable("Should have been handled in walkForwards!");
242 
243     case Instruction::FAdd:
244     case Instruction::FSub:
245     case Instruction::FMul:
246       Op = [I](ArrayRef<ConstantRange> Ops) {
247         assert(Ops.size() == 2 && "its a binary operator!");
248         auto BinOp = (Instruction::BinaryOps) I->getOpcode();
249         return Ops[0].binaryOp(BinOp, Ops[1]);
250       };
251       break;
252 
253     //
254     // Root-only instructions - we'll only see these if they're the
255     //                          first node in a walk.
256     //
257     case Instruction::FPToUI:
258     case Instruction::FPToSI:
259       Op = [I](ArrayRef<ConstantRange> Ops) {
260         assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!");
261         // Note: We're ignoring the casts output size here as that's what the
262         // caller expects.
263         auto CastOp = (Instruction::CastOps)I->getOpcode();
264         return Ops[0].castOp(CastOp, MaxIntegerBW+1);
265       };
266       break;
267 
268     case Instruction::FCmp:
269       Op = [](ArrayRef<ConstantRange> Ops) {
270         assert(Ops.size() == 2 && "FCmp is a binary operator!");
271         return Ops[0].unionWith(Ops[1]);
272       };
273       break;
274     }
275 
276     bool Abort = false;
277     SmallVector<ConstantRange,4> OpRanges;
278     for (Value *O : I->operands()) {
279       if (Instruction *OI = dyn_cast<Instruction>(O)) {
280         assert(SeenInsts.find(OI) != SeenInsts.end() &&
281                "def not seen before use!");
282         OpRanges.push_back(SeenInsts.find(OI)->second);
283       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
284         // Work out if the floating point number can be losslessly represented
285         // as an integer.
286         // APFloat::convertToInteger(&Exact) purports to do what we want, but
287         // the exactness can be too precise. For example, negative zero can
288         // never be exactly converted to an integer.
289         //
290         // Instead, we ask APFloat to round itself to an integral value - this
291         // preserves sign-of-zero - then compare the result with the original.
292         //
293         const APFloat &F = CF->getValueAPF();
294 
295         // First, weed out obviously incorrect values. Non-finite numbers
296         // can't be represented and neither can negative zero, unless
297         // we're in fast math mode.
298         if (!F.isFinite() ||
299             (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
300              !I->hasNoSignedZeros())) {
301           seen(I, badRange());
302           Abort = true;
303           break;
304         }
305 
306         APFloat NewF = F;
307         auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
308         if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) {
309           seen(I, badRange());
310           Abort = true;
311           break;
312         }
313         // OK, it's representable. Now get it.
314         APSInt Int(MaxIntegerBW+1, false);
315         bool Exact;
316         CF->getValueAPF().convertToInteger(Int,
317                                            APFloat::rmNearestTiesToEven,
318                                            &Exact);
319         OpRanges.push_back(ConstantRange(Int));
320       } else {
321         llvm_unreachable("Should have already marked this as badRange!");
322       }
323     }
324 
325     // Reduce the operands' ranges to a single range and return.
326     if (!Abort)
327       seen(I, Op(OpRanges));
328   }
329 }
330 
331 // If there is a valid transform to be done, do it.
332 bool Float2IntPass::validateAndTransform() {
333   bool MadeChange = false;
334 
335   // Iterate over every disjoint partition of the def-use graph.
336   for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
337     ConstantRange R(MaxIntegerBW + 1, false);
338     bool Fail = false;
339     Type *ConvertedToTy = nullptr;
340 
341     // For every member of the partition, union all the ranges together.
342     for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
343          MI != ME; ++MI) {
344       Instruction *I = *MI;
345       auto SeenI = SeenInsts.find(I);
346       if (SeenI == SeenInsts.end())
347         continue;
348 
349       R = R.unionWith(SeenI->second);
350       // We need to ensure I has no users that have not been seen.
351       // If it does, transformation would be illegal.
352       //
353       // Don't count the roots, as they terminate the graphs.
354       if (Roots.count(I) == 0) {
355         // Set the type of the conversion while we're here.
356         if (!ConvertedToTy)
357           ConvertedToTy = I->getType();
358         for (User *U : I->users()) {
359           Instruction *UI = dyn_cast<Instruction>(U);
360           if (!UI || SeenInsts.find(UI) == SeenInsts.end()) {
361             DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
362             Fail = true;
363             break;
364           }
365         }
366       }
367       if (Fail)
368         break;
369     }
370 
371     // If the set was empty, or we failed, or the range is poisonous,
372     // bail out.
373     if (ECs.member_begin(It) == ECs.member_end() || Fail ||
374         R.isFullSet() || R.isSignWrappedSet())
375       continue;
376     assert(ConvertedToTy && "Must have set the convertedtoty by this point!");
377 
378     // The number of bits required is the maximum of the upper and
379     // lower limits, plus one so it can be signed.
380     unsigned MinBW = std::max(R.getLower().getMinSignedBits(),
381                               R.getUpper().getMinSignedBits()) + 1;
382     DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");
383 
384     // If we've run off the realms of the exactly representable integers,
385     // the floating point result will differ from an integer approximation.
386 
387     // Do we need more bits than are in the mantissa of the type we converted
388     // to? semanticsPrecision returns the number of mantissa bits plus one
389     // for the sign bit.
390     unsigned MaxRepresentableBits
391       = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
392     if (MinBW > MaxRepresentableBits) {
393       DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
394       continue;
395     }
396     if (MinBW > 64) {
397       DEBUG(dbgs() << "F2I: Value requires more than 64 bits to represent!\n");
398       continue;
399     }
400 
401     // OK, R is known to be representable. Now pick a type for it.
402     // FIXME: Pick the smallest legal type that will fit.
403     Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx);
404 
405     for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
406          MI != ME; ++MI)
407       convert(*MI, Ty);
408     MadeChange = true;
409   }
410 
411   return MadeChange;
412 }
413 
414 Value *Float2IntPass::convert(Instruction *I, Type *ToTy) {
415   if (ConvertedInsts.find(I) != ConvertedInsts.end())
416     // Already converted this instruction.
417     return ConvertedInsts[I];
418 
419   SmallVector<Value*,4> NewOperands;
420   for (Value *V : I->operands()) {
421     // Don't recurse if we're an instruction that terminates the path.
422     if (I->getOpcode() == Instruction::UIToFP ||
423         I->getOpcode() == Instruction::SIToFP) {
424       NewOperands.push_back(V);
425     } else if (Instruction *VI = dyn_cast<Instruction>(V)) {
426       NewOperands.push_back(convert(VI, ToTy));
427     } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
428       APSInt Val(ToTy->getPrimitiveSizeInBits(), /*IsUnsigned=*/false);
429       bool Exact;
430       CF->getValueAPF().convertToInteger(Val,
431                                          APFloat::rmNearestTiesToEven,
432                                          &Exact);
433       NewOperands.push_back(ConstantInt::get(ToTy, Val));
434     } else {
435       llvm_unreachable("Unhandled operand type?");
436     }
437   }
438 
439   // Now create a new instruction.
440   IRBuilder<> IRB(I);
441   Value *NewV = nullptr;
442   switch (I->getOpcode()) {
443   default: llvm_unreachable("Unhandled instruction!");
444 
445   case Instruction::FPToUI:
446     NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
447     break;
448 
449   case Instruction::FPToSI:
450     NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
451     break;
452 
453   case Instruction::FCmp: {
454     CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
455     assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
456     NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
457     break;
458   }
459 
460   case Instruction::UIToFP:
461     NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
462     break;
463 
464   case Instruction::SIToFP:
465     NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
466     break;
467 
468   case Instruction::FAdd:
469   case Instruction::FSub:
470   case Instruction::FMul:
471     NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
472                            NewOperands[0], NewOperands[1],
473                            I->getName());
474     break;
475   }
476 
477   // If we're a root instruction, RAUW.
478   if (Roots.count(I))
479     I->replaceAllUsesWith(NewV);
480 
481   ConvertedInsts[I] = NewV;
482   return NewV;
483 }
484 
485 // Perform dead code elimination on the instructions we just modified.
486 void Float2IntPass::cleanup() {
487   for (auto &I : reverse(ConvertedInsts))
488     I.first->eraseFromParent();
489 }
490 
491 bool Float2IntPass::runImpl(Function &F) {
492   DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
493   // Clear out all state.
494   ECs = EquivalenceClasses<Instruction*>();
495   SeenInsts.clear();
496   ConvertedInsts.clear();
497   Roots.clear();
498 
499   Ctx = &F.getParent()->getContext();
500 
501   findRoots(F, Roots);
502 
503   walkBackwards(Roots);
504   walkForwards();
505 
506   bool Modified = validateAndTransform();
507   if (Modified)
508     cleanup();
509   return Modified;
510 }
511 
512 namespace llvm {
513 FunctionPass *createFloat2IntPass() { return new Float2IntLegacyPass(); }
514 
515 PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &) {
516   if (!runImpl(F))
517     return PreservedAnalyses::all();
518 
519   PreservedAnalyses PA;
520   PA.preserveSet<CFGAnalyses>();
521   PA.preserve<GlobalsAA>();
522   return PA;
523 }
524 } // End namespace llvm
525