1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Float2Int pass, which aims to demote floating 11 // point operations to work on integers, where that is losslessly possible. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "float2int" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/GlobalsModRef.h" 23 #include "llvm/IR/ConstantRange.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/InstIterator.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Transforms/Scalar.h" 33 #include <deque> 34 #include <functional> // For std::function 35 using namespace llvm; 36 37 // The algorithm is simple. Start at instructions that convert from the 38 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use 39 // graph, using an equivalence datastructure to unify graphs that interfere. 40 // 41 // Mappable instructions are those with an integer corrollary that, given 42 // integer domain inputs, produce an integer output; fadd, for example. 43 // 44 // If a non-mappable instruction is seen, this entire def-use graph is marked 45 // as non-transformable. If we see an instruction that converts from the 46 // integer domain to FP domain (uitofp,sitofp), we terminate our walk. 47 48 /// The largest integer type worth dealing with. 49 static cl::opt<unsigned> 50 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden, 51 cl::desc("Max integer bitwidth to consider in float2int" 52 "(default=64)")); 53 54 namespace { 55 struct Float2Int : public FunctionPass { 56 static char ID; // Pass identification, replacement for typeid 57 Float2Int() : FunctionPass(ID) { 58 initializeFloat2IntPass(*PassRegistry::getPassRegistry()); 59 } 60 61 bool runOnFunction(Function &F) override; 62 void getAnalysisUsage(AnalysisUsage &AU) const override { 63 AU.setPreservesCFG(); 64 AU.addPreserved<GlobalsAAWrapperPass>(); 65 } 66 67 void findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots); 68 ConstantRange seen(Instruction *I, ConstantRange R); 69 ConstantRange badRange(); 70 ConstantRange unknownRange(); 71 ConstantRange validateRange(ConstantRange R); 72 void walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots); 73 void walkForwards(); 74 bool validateAndTransform(); 75 Value *convert(Instruction *I, Type *ToTy); 76 void cleanup(); 77 78 MapVector<Instruction*, ConstantRange > SeenInsts; 79 SmallPtrSet<Instruction*,8> Roots; 80 EquivalenceClasses<Instruction*> ECs; 81 MapVector<Instruction*, Value*> ConvertedInsts; 82 LLVMContext *Ctx; 83 }; 84 } 85 86 char Float2Int::ID = 0; 87 INITIALIZE_PASS_BEGIN(Float2Int, "float2int", "Float to int", false, false) 88 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 89 INITIALIZE_PASS_END(Float2Int, "float2int", "Float to int", false, false) 90 91 // Given a FCmp predicate, return a matching ICmp predicate if one 92 // exists, otherwise return BAD_ICMP_PREDICATE. 93 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) { 94 switch (P) { 95 case CmpInst::FCMP_OEQ: 96 case CmpInst::FCMP_UEQ: 97 return CmpInst::ICMP_EQ; 98 case CmpInst::FCMP_OGT: 99 case CmpInst::FCMP_UGT: 100 return CmpInst::ICMP_SGT; 101 case CmpInst::FCMP_OGE: 102 case CmpInst::FCMP_UGE: 103 return CmpInst::ICMP_SGE; 104 case CmpInst::FCMP_OLT: 105 case CmpInst::FCMP_ULT: 106 return CmpInst::ICMP_SLT; 107 case CmpInst::FCMP_OLE: 108 case CmpInst::FCMP_ULE: 109 return CmpInst::ICMP_SLE; 110 case CmpInst::FCMP_ONE: 111 case CmpInst::FCMP_UNE: 112 return CmpInst::ICMP_NE; 113 default: 114 return CmpInst::BAD_ICMP_PREDICATE; 115 } 116 } 117 118 // Given a floating point binary operator, return the matching 119 // integer version. 120 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) { 121 switch (Opcode) { 122 default: llvm_unreachable("Unhandled opcode!"); 123 case Instruction::FAdd: return Instruction::Add; 124 case Instruction::FSub: return Instruction::Sub; 125 case Instruction::FMul: return Instruction::Mul; 126 } 127 } 128 129 // Find the roots - instructions that convert from the FP domain to 130 // integer domain. 131 void Float2Int::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) { 132 for (auto &I : instructions(F)) { 133 if (isa<VectorType>(I.getType())) 134 continue; 135 switch (I.getOpcode()) { 136 default: break; 137 case Instruction::FPToUI: 138 case Instruction::FPToSI: 139 Roots.insert(&I); 140 break; 141 case Instruction::FCmp: 142 if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) != 143 CmpInst::BAD_ICMP_PREDICATE) 144 Roots.insert(&I); 145 break; 146 } 147 } 148 } 149 150 // Helper - mark I as having been traversed, having range R. 151 ConstantRange Float2Int::seen(Instruction *I, ConstantRange R) { 152 DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n"); 153 if (SeenInsts.find(I) != SeenInsts.end()) 154 SeenInsts.find(I)->second = R; 155 else 156 SeenInsts.insert(std::make_pair(I, R)); 157 return R; 158 } 159 160 // Helper - get a range representing a poison value. 161 ConstantRange Float2Int::badRange() { 162 return ConstantRange(MaxIntegerBW + 1, true); 163 } 164 ConstantRange Float2Int::unknownRange() { 165 return ConstantRange(MaxIntegerBW + 1, false); 166 } 167 ConstantRange Float2Int::validateRange(ConstantRange R) { 168 if (R.getBitWidth() > MaxIntegerBW + 1) 169 return badRange(); 170 return R; 171 } 172 173 // The most obvious way to structure the search is a depth-first, eager 174 // search from each root. However, that require direct recursion and so 175 // can only handle small instruction sequences. Instead, we split the search 176 // up into two phases: 177 // - walkBackwards: A breadth-first walk of the use-def graph starting from 178 // the roots. Populate "SeenInsts" with interesting 179 // instructions and poison values if they're obvious and 180 // cheap to compute. Calculate the equivalance set structure 181 // while we're here too. 182 // - walkForwards: Iterate over SeenInsts in reverse order, so we visit 183 // defs before their uses. Calculate the real range info. 184 185 // Breadth-first walk of the use-def graph; determine the set of nodes 186 // we care about and eagerly determine if some of them are poisonous. 187 void Float2Int::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) { 188 std::deque<Instruction*> Worklist(Roots.begin(), Roots.end()); 189 while (!Worklist.empty()) { 190 Instruction *I = Worklist.back(); 191 Worklist.pop_back(); 192 193 if (SeenInsts.find(I) != SeenInsts.end()) 194 // Seen already. 195 continue; 196 197 switch (I->getOpcode()) { 198 // FIXME: Handle select and phi nodes. 199 default: 200 // Path terminated uncleanly. 201 seen(I, badRange()); 202 break; 203 204 case Instruction::UIToFP: { 205 // Path terminated cleanly. 206 unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); 207 APInt Min = APInt::getMinValue(BW).zextOrSelf(MaxIntegerBW+1); 208 APInt Max = APInt::getMaxValue(BW).zextOrSelf(MaxIntegerBW+1); 209 seen(I, validateRange(ConstantRange(Min, Max))); 210 continue; 211 } 212 213 case Instruction::SIToFP: { 214 // Path terminated cleanly. 215 unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); 216 APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(MaxIntegerBW+1); 217 APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(MaxIntegerBW+1); 218 seen(I, validateRange(ConstantRange(SMin, SMax))); 219 continue; 220 } 221 222 case Instruction::FAdd: 223 case Instruction::FSub: 224 case Instruction::FMul: 225 case Instruction::FPToUI: 226 case Instruction::FPToSI: 227 case Instruction::FCmp: 228 seen(I, unknownRange()); 229 break; 230 } 231 232 for (Value *O : I->operands()) { 233 if (Instruction *OI = dyn_cast<Instruction>(O)) { 234 // Unify def-use chains if they interfere. 235 ECs.unionSets(I, OI); 236 if (SeenInsts.find(I)->second != badRange()) 237 Worklist.push_back(OI); 238 } else if (!isa<ConstantFP>(O)) { 239 // Not an instruction or ConstantFP? we can't do anything. 240 seen(I, badRange()); 241 } 242 } 243 } 244 } 245 246 // Walk forwards down the list of seen instructions, so we visit defs before 247 // uses. 248 void Float2Int::walkForwards() { 249 for (auto &It : make_range(SeenInsts.rbegin(), SeenInsts.rend())) { 250 if (It.second != unknownRange()) 251 continue; 252 253 Instruction *I = It.first; 254 std::function<ConstantRange(ArrayRef<ConstantRange>)> Op; 255 switch (I->getOpcode()) { 256 // FIXME: Handle select and phi nodes. 257 default: 258 case Instruction::UIToFP: 259 case Instruction::SIToFP: 260 llvm_unreachable("Should have been handled in walkForwards!"); 261 262 case Instruction::FAdd: 263 Op = [](ArrayRef<ConstantRange> Ops) { 264 assert(Ops.size() == 2 && "FAdd is a binary operator!"); 265 return Ops[0].add(Ops[1]); 266 }; 267 break; 268 269 case Instruction::FSub: 270 Op = [](ArrayRef<ConstantRange> Ops) { 271 assert(Ops.size() == 2 && "FSub is a binary operator!"); 272 return Ops[0].sub(Ops[1]); 273 }; 274 break; 275 276 case Instruction::FMul: 277 Op = [](ArrayRef<ConstantRange> Ops) { 278 assert(Ops.size() == 2 && "FMul is a binary operator!"); 279 return Ops[0].multiply(Ops[1]); 280 }; 281 break; 282 283 // 284 // Root-only instructions - we'll only see these if they're the 285 // first node in a walk. 286 // 287 case Instruction::FPToUI: 288 case Instruction::FPToSI: 289 Op = [](ArrayRef<ConstantRange> Ops) { 290 assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!"); 291 return Ops[0]; 292 }; 293 break; 294 295 case Instruction::FCmp: 296 Op = [](ArrayRef<ConstantRange> Ops) { 297 assert(Ops.size() == 2 && "FCmp is a binary operator!"); 298 return Ops[0].unionWith(Ops[1]); 299 }; 300 break; 301 } 302 303 bool Abort = false; 304 SmallVector<ConstantRange,4> OpRanges; 305 for (Value *O : I->operands()) { 306 if (Instruction *OI = dyn_cast<Instruction>(O)) { 307 assert(SeenInsts.find(OI) != SeenInsts.end() && 308 "def not seen before use!"); 309 OpRanges.push_back(SeenInsts.find(OI)->second); 310 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) { 311 // Work out if the floating point number can be losslessly represented 312 // as an integer. 313 // APFloat::convertToInteger(&Exact) purports to do what we want, but 314 // the exactness can be too precise. For example, negative zero can 315 // never be exactly converted to an integer. 316 // 317 // Instead, we ask APFloat to round itself to an integral value - this 318 // preserves sign-of-zero - then compare the result with the original. 319 // 320 APFloat F = CF->getValueAPF(); 321 322 // First, weed out obviously incorrect values. Non-finite numbers 323 // can't be represented and neither can negative zero, unless 324 // we're in fast math mode. 325 if (!F.isFinite() || 326 (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) && 327 !I->hasNoSignedZeros())) { 328 seen(I, badRange()); 329 Abort = true; 330 break; 331 } 332 333 APFloat NewF = F; 334 auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven); 335 if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) { 336 seen(I, badRange()); 337 Abort = true; 338 break; 339 } 340 // OK, it's representable. Now get it. 341 APSInt Int(MaxIntegerBW+1, false); 342 bool Exact; 343 CF->getValueAPF().convertToInteger(Int, 344 APFloat::rmNearestTiesToEven, 345 &Exact); 346 OpRanges.push_back(ConstantRange(Int)); 347 } else { 348 llvm_unreachable("Should have already marked this as badRange!"); 349 } 350 } 351 352 // Reduce the operands' ranges to a single range and return. 353 if (!Abort) 354 seen(I, Op(OpRanges)); 355 } 356 } 357 358 // If there is a valid transform to be done, do it. 359 bool Float2Int::validateAndTransform() { 360 bool MadeChange = false; 361 362 // Iterate over every disjoint partition of the def-use graph. 363 for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) { 364 ConstantRange R(MaxIntegerBW + 1, false); 365 bool Fail = false; 366 Type *ConvertedToTy = nullptr; 367 368 // For every member of the partition, union all the ranges together. 369 for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); 370 MI != ME; ++MI) { 371 Instruction *I = *MI; 372 auto SeenI = SeenInsts.find(I); 373 if (SeenI == SeenInsts.end()) 374 continue; 375 376 R = R.unionWith(SeenI->second); 377 // We need to ensure I has no users that have not been seen. 378 // If it does, transformation would be illegal. 379 // 380 // Don't count the roots, as they terminate the graphs. 381 if (Roots.count(I) == 0) { 382 // Set the type of the conversion while we're here. 383 if (!ConvertedToTy) 384 ConvertedToTy = I->getType(); 385 for (User *U : I->users()) { 386 Instruction *UI = dyn_cast<Instruction>(U); 387 if (!UI || SeenInsts.find(UI) == SeenInsts.end()) { 388 DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n"); 389 Fail = true; 390 break; 391 } 392 } 393 } 394 if (Fail) 395 break; 396 } 397 398 // If the set was empty, or we failed, or the range is poisonous, 399 // bail out. 400 if (ECs.member_begin(It) == ECs.member_end() || Fail || 401 R.isFullSet() || R.isSignWrappedSet()) 402 continue; 403 assert(ConvertedToTy && "Must have set the convertedtoty by this point!"); 404 405 // The number of bits required is the maximum of the upper and 406 // lower limits, plus one so it can be signed. 407 unsigned MinBW = std::max(R.getLower().getMinSignedBits(), 408 R.getUpper().getMinSignedBits()) + 1; 409 DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n"); 410 411 // If we've run off the realms of the exactly representable integers, 412 // the floating point result will differ from an integer approximation. 413 414 // Do we need more bits than are in the mantissa of the type we converted 415 // to? semanticsPrecision returns the number of mantissa bits plus one 416 // for the sign bit. 417 unsigned MaxRepresentableBits 418 = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1; 419 if (MinBW > MaxRepresentableBits) { 420 DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n"); 421 continue; 422 } 423 if (MinBW > 64) { 424 DEBUG(dbgs() << "F2I: Value requires more than 64 bits to represent!\n"); 425 continue; 426 } 427 428 // OK, R is known to be representable. Now pick a type for it. 429 // FIXME: Pick the smallest legal type that will fit. 430 Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx); 431 432 for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); 433 MI != ME; ++MI) 434 convert(*MI, Ty); 435 MadeChange = true; 436 } 437 438 return MadeChange; 439 } 440 441 Value *Float2Int::convert(Instruction *I, Type *ToTy) { 442 if (ConvertedInsts.find(I) != ConvertedInsts.end()) 443 // Already converted this instruction. 444 return ConvertedInsts[I]; 445 446 SmallVector<Value*,4> NewOperands; 447 for (Value *V : I->operands()) { 448 // Don't recurse if we're an instruction that terminates the path. 449 if (I->getOpcode() == Instruction::UIToFP || 450 I->getOpcode() == Instruction::SIToFP) { 451 NewOperands.push_back(V); 452 } else if (Instruction *VI = dyn_cast<Instruction>(V)) { 453 NewOperands.push_back(convert(VI, ToTy)); 454 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 455 APSInt Val(ToTy->getPrimitiveSizeInBits(), /*IsUnsigned=*/false); 456 bool Exact; 457 CF->getValueAPF().convertToInteger(Val, 458 APFloat::rmNearestTiesToEven, 459 &Exact); 460 NewOperands.push_back(ConstantInt::get(ToTy, Val)); 461 } else { 462 llvm_unreachable("Unhandled operand type?"); 463 } 464 } 465 466 // Now create a new instruction. 467 IRBuilder<> IRB(I); 468 Value *NewV = nullptr; 469 switch (I->getOpcode()) { 470 default: llvm_unreachable("Unhandled instruction!"); 471 472 case Instruction::FPToUI: 473 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType()); 474 break; 475 476 case Instruction::FPToSI: 477 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType()); 478 break; 479 480 case Instruction::FCmp: { 481 CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate()); 482 assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!"); 483 NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName()); 484 break; 485 } 486 487 case Instruction::UIToFP: 488 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy); 489 break; 490 491 case Instruction::SIToFP: 492 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy); 493 break; 494 495 case Instruction::FAdd: 496 case Instruction::FSub: 497 case Instruction::FMul: 498 NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()), 499 NewOperands[0], NewOperands[1], 500 I->getName()); 501 break; 502 } 503 504 // If we're a root instruction, RAUW. 505 if (Roots.count(I)) 506 I->replaceAllUsesWith(NewV); 507 508 ConvertedInsts[I] = NewV; 509 return NewV; 510 } 511 512 // Perform dead code elimination on the instructions we just modified. 513 void Float2Int::cleanup() { 514 for (auto &I : make_range(ConvertedInsts.rbegin(), ConvertedInsts.rend())) 515 I.first->eraseFromParent(); 516 } 517 518 bool Float2Int::runOnFunction(Function &F) { 519 if (skipFunction(F)) 520 return false; 521 522 DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n"); 523 // Clear out all state. 524 ECs = EquivalenceClasses<Instruction*>(); 525 SeenInsts.clear(); 526 ConvertedInsts.clear(); 527 Roots.clear(); 528 529 Ctx = &F.getParent()->getContext(); 530 531 findRoots(F, Roots); 532 533 walkBackwards(Roots); 534 walkForwards(); 535 536 bool Modified = validateAndTransform(); 537 if (Modified) 538 cleanup(); 539 return Modified; 540 } 541 542 FunctionPass *llvm::createFloat2IntPass() { return new Float2Int(); } 543