1 //===- DivRemPairs.cpp - Hoist/decompose division and remainder -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass hoists and/or decomposes integer division and remainder 11 // instructions to enable CFG improvements and better codegen. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/DivRemPairs.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/Pass.h" 24 #include "llvm/Transforms/Scalar.h" 25 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 26 using namespace llvm; 27 28 #define DEBUG_TYPE "div-rem-pairs" 29 STATISTIC(NumPairs, "Number of div/rem pairs"); 30 STATISTIC(NumHoisted, "Number of instructions hoisted"); 31 STATISTIC(NumDecomposed, "Number of instructions decomposed"); 32 33 /// Find matching pairs of integer div/rem ops (they have the same numerator, 34 /// denominator, and signedness). If they exist in different basic blocks, bring 35 /// them together by hoisting or replace the common division operation that is 36 /// implicit in the remainder: 37 /// X % Y <--> X - ((X / Y) * Y). 38 /// 39 /// We can largely ignore the normal safety and cost constraints on speculation 40 /// of these ops when we find a matching pair. This is because we are already 41 /// guaranteed that any exceptions and most cost are already incurred by the 42 /// first member of the pair. 43 /// 44 /// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or 45 /// SimplifyCFG, but it's split off on its own because it's different enough 46 /// that it doesn't quite match the stated objectives of those passes. 47 static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI, 48 const DominatorTree &DT) { 49 bool Changed = false; 50 51 // Insert all divide and remainder instructions into maps keyed by their 52 // operands and opcode (signed or unsigned). 53 DenseMap<DivRemMapKey, Instruction *> DivMap; 54 // Use a MapVector for RemMap so that instructions are moved/inserted in a 55 // deterministic order. 56 MapVector<DivRemMapKey, Instruction *> RemMap; 57 for (auto &BB : F) { 58 for (auto &I : BB) { 59 if (I.getOpcode() == Instruction::SDiv) 60 DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; 61 else if (I.getOpcode() == Instruction::UDiv) 62 DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; 63 else if (I.getOpcode() == Instruction::SRem) 64 RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; 65 else if (I.getOpcode() == Instruction::URem) 66 RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; 67 } 68 } 69 70 // We can iterate over either map because we are only looking for matched 71 // pairs. Choose remainders for efficiency because they are usually even more 72 // rare than division. 73 for (auto &RemPair : RemMap) { 74 // Find the matching division instruction from the division map. 75 Instruction *DivInst = DivMap[RemPair.first]; 76 if (!DivInst) 77 continue; 78 79 // We have a matching pair of div/rem instructions. If one dominates the 80 // other, hoist and/or replace one. 81 NumPairs++; 82 Instruction *RemInst = RemPair.second; 83 bool IsSigned = DivInst->getOpcode() == Instruction::SDiv; 84 bool HasDivRemOp = TTI.hasDivRemOp(DivInst->getType(), IsSigned); 85 86 // If the target supports div+rem and the instructions are in the same block 87 // already, there's nothing to do. The backend should handle this. If the 88 // target does not support div+rem, then we will decompose the rem. 89 if (HasDivRemOp && RemInst->getParent() == DivInst->getParent()) 90 continue; 91 92 bool DivDominates = DT.dominates(DivInst, RemInst); 93 if (!DivDominates && !DT.dominates(RemInst, DivInst)) 94 continue; 95 96 if (HasDivRemOp) { 97 // The target has a single div/rem operation. Hoist the lower instruction 98 // to make the matched pair visible to the backend. 99 if (DivDominates) 100 RemInst->moveAfter(DivInst); 101 else 102 DivInst->moveAfter(RemInst); 103 NumHoisted++; 104 } else { 105 // The target does not have a single div/rem operation. Decompose the 106 // remainder calculation as: 107 // X % Y --> X - ((X / Y) * Y). 108 Value *X = RemInst->getOperand(0); 109 Value *Y = RemInst->getOperand(1); 110 Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y); 111 Instruction *Sub = BinaryOperator::CreateSub(X, Mul); 112 113 // If the remainder dominates, then hoist the division up to that block: 114 // 115 // bb1: 116 // %rem = srem %x, %y 117 // bb2: 118 // %div = sdiv %x, %y 119 // --> 120 // bb1: 121 // %div = sdiv %x, %y 122 // %mul = mul %div, %y 123 // %rem = sub %x, %mul 124 // 125 // If the division dominates, it's already in the right place. The mul+sub 126 // will be in a different block because we don't assume that they are 127 // cheap to speculatively execute: 128 // 129 // bb1: 130 // %div = sdiv %x, %y 131 // bb2: 132 // %rem = srem %x, %y 133 // --> 134 // bb1: 135 // %div = sdiv %x, %y 136 // bb2: 137 // %mul = mul %div, %y 138 // %rem = sub %x, %mul 139 // 140 // If the div and rem are in the same block, we do the same transform, 141 // but any code movement would be within the same block. 142 143 if (!DivDominates) 144 DivInst->moveBefore(RemInst); 145 Mul->insertAfter(RemInst); 146 Sub->insertAfter(Mul); 147 148 // Now kill the explicit remainder. We have replaced it with: 149 // (sub X, (mul (div X, Y), Y) 150 RemInst->replaceAllUsesWith(Sub); 151 RemInst->eraseFromParent(); 152 NumDecomposed++; 153 } 154 Changed = true; 155 } 156 157 return Changed; 158 } 159 160 // Pass manager boilerplate below here. 161 162 namespace { 163 struct DivRemPairsLegacyPass : public FunctionPass { 164 static char ID; 165 DivRemPairsLegacyPass() : FunctionPass(ID) { 166 initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry()); 167 } 168 169 void getAnalysisUsage(AnalysisUsage &AU) const override { 170 AU.addRequired<DominatorTreeWrapperPass>(); 171 AU.addRequired<TargetTransformInfoWrapperPass>(); 172 AU.setPreservesCFG(); 173 AU.addPreserved<DominatorTreeWrapperPass>(); 174 AU.addPreserved<GlobalsAAWrapperPass>(); 175 FunctionPass::getAnalysisUsage(AU); 176 } 177 178 bool runOnFunction(Function &F) override { 179 if (skipFunction(F)) 180 return false; 181 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 182 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 183 return optimizeDivRem(F, TTI, DT); 184 } 185 }; 186 } 187 188 char DivRemPairsLegacyPass::ID = 0; 189 INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs", 190 "Hoist/decompose integer division and remainder", false, 191 false) 192 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 193 INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs", 194 "Hoist/decompose integer division and remainder", false, 195 false) 196 FunctionPass *llvm::createDivRemPairsPass() { 197 return new DivRemPairsLegacyPass(); 198 } 199 200 PreservedAnalyses DivRemPairsPass::run(Function &F, 201 FunctionAnalysisManager &FAM) { 202 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 203 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 204 if (!optimizeDivRem(F, TTI, DT)) 205 return PreservedAnalyses::all(); 206 // TODO: This pass just hoists/replaces math ops - all analyses are preserved? 207 PreservedAnalyses PA; 208 PA.preserveSet<CFGAnalyses>(); 209 PA.preserve<GlobalsAA>(); 210 return PA; 211 } 212