1 //===- DeadStoreElimination.cpp - MemorySSA Backed Dead Store Elimination -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The code below implements dead store elimination using MemorySSA. It uses 10 // the following general approach: given a MemoryDef, walk upwards to find 11 // clobbering MemoryDefs that may be killed by the starting def. Then check 12 // that there are no uses that may read the location of the original MemoryDef 13 // in between both MemoryDefs. A bit more concretely: 14 // 15 // For all MemoryDefs StartDef: 16 // 1. Get the next dominating clobbering MemoryDef (MaybeDeadAccess) by walking 17 // upwards. 18 // 2. Check that there are no reads between MaybeDeadAccess and the StartDef by 19 // checking all uses starting at MaybeDeadAccess and walking until we see 20 // StartDef. 21 // 3. For each found CurrentDef, check that: 22 // 1. There are no barrier instructions between CurrentDef and StartDef (like 23 // throws or stores with ordering constraints). 24 // 2. StartDef is executed whenever CurrentDef is executed. 25 // 3. StartDef completely overwrites CurrentDef. 26 // 4. Erase CurrentDef from the function and MemorySSA. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/Scalar/DeadStoreElimination.h" 31 #include "llvm/ADT/APInt.h" 32 #include "llvm/ADT/DenseMap.h" 33 #include "llvm/ADT/MapVector.h" 34 #include "llvm/ADT/PostOrderIterator.h" 35 #include "llvm/ADT/SetVector.h" 36 #include "llvm/ADT/SmallPtrSet.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/ADT/Statistic.h" 39 #include "llvm/ADT/StringRef.h" 40 #include "llvm/Analysis/AliasAnalysis.h" 41 #include "llvm/Analysis/CaptureTracking.h" 42 #include "llvm/Analysis/GlobalsModRef.h" 43 #include "llvm/Analysis/LoopInfo.h" 44 #include "llvm/Analysis/MemoryBuiltins.h" 45 #include "llvm/Analysis/MemoryLocation.h" 46 #include "llvm/Analysis/MemorySSA.h" 47 #include "llvm/Analysis/MemorySSAUpdater.h" 48 #include "llvm/Analysis/MustExecute.h" 49 #include "llvm/Analysis/PostDominators.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/Analysis/ValueTracking.h" 52 #include "llvm/IR/Argument.h" 53 #include "llvm/IR/BasicBlock.h" 54 #include "llvm/IR/Constant.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstIterator.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/LLVMContext.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/InitializePasses.h" 72 #include "llvm/Pass.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/DebugCounter.h" 77 #include "llvm/Support/ErrorHandling.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Transforms/Scalar.h" 81 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 82 #include "llvm/Transforms/Utils/BuildLibCalls.h" 83 #include "llvm/Transforms/Utils/Local.h" 84 #include <algorithm> 85 #include <cassert> 86 #include <cstddef> 87 #include <cstdint> 88 #include <iterator> 89 #include <map> 90 #include <utility> 91 92 using namespace llvm; 93 using namespace PatternMatch; 94 95 #define DEBUG_TYPE "dse" 96 97 STATISTIC(NumRemainingStores, "Number of stores remaining after DSE"); 98 STATISTIC(NumRedundantStores, "Number of redundant stores deleted"); 99 STATISTIC(NumFastStores, "Number of stores deleted"); 100 STATISTIC(NumFastOther, "Number of other instrs removed"); 101 STATISTIC(NumCompletePartials, "Number of stores dead by later partials"); 102 STATISTIC(NumModifiedStores, "Number of stores modified"); 103 STATISTIC(NumCFGChecks, "Number of stores modified"); 104 STATISTIC(NumCFGTries, "Number of stores modified"); 105 STATISTIC(NumCFGSuccess, "Number of stores modified"); 106 STATISTIC(NumGetDomMemoryDefPassed, 107 "Number of times a valid candidate is returned from getDomMemoryDef"); 108 STATISTIC(NumDomMemDefChecks, 109 "Number iterations check for reads in getDomMemoryDef"); 110 111 DEBUG_COUNTER(MemorySSACounter, "dse-memoryssa", 112 "Controls which MemoryDefs are eliminated."); 113 114 static cl::opt<bool> 115 EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking", 116 cl::init(true), cl::Hidden, 117 cl::desc("Enable partial-overwrite tracking in DSE")); 118 119 static cl::opt<bool> 120 EnablePartialStoreMerging("enable-dse-partial-store-merging", 121 cl::init(true), cl::Hidden, 122 cl::desc("Enable partial store merging in DSE")); 123 124 static cl::opt<unsigned> 125 MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(150), cl::Hidden, 126 cl::desc("The number of memory instructions to scan for " 127 "dead store elimination (default = 150)")); 128 static cl::opt<unsigned> MemorySSAUpwardsStepLimit( 129 "dse-memoryssa-walklimit", cl::init(90), cl::Hidden, 130 cl::desc("The maximum number of steps while walking upwards to find " 131 "MemoryDefs that may be killed (default = 90)")); 132 133 static cl::opt<unsigned> MemorySSAPartialStoreLimit( 134 "dse-memoryssa-partial-store-limit", cl::init(5), cl::Hidden, 135 cl::desc("The maximum number candidates that only partially overwrite the " 136 "killing MemoryDef to consider" 137 " (default = 5)")); 138 139 static cl::opt<unsigned> MemorySSADefsPerBlockLimit( 140 "dse-memoryssa-defs-per-block-limit", cl::init(5000), cl::Hidden, 141 cl::desc("The number of MemoryDefs we consider as candidates to eliminated " 142 "other stores per basic block (default = 5000)")); 143 144 static cl::opt<unsigned> MemorySSASameBBStepCost( 145 "dse-memoryssa-samebb-cost", cl::init(1), cl::Hidden, 146 cl::desc( 147 "The cost of a step in the same basic block as the killing MemoryDef" 148 "(default = 1)")); 149 150 static cl::opt<unsigned> 151 MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(5), 152 cl::Hidden, 153 cl::desc("The cost of a step in a different basic " 154 "block than the killing MemoryDef" 155 "(default = 5)")); 156 157 static cl::opt<unsigned> MemorySSAPathCheckLimit( 158 "dse-memoryssa-path-check-limit", cl::init(50), cl::Hidden, 159 cl::desc("The maximum number of blocks to check when trying to prove that " 160 "all paths to an exit go through a killing block (default = 50)")); 161 162 // This flags allows or disallows DSE to optimize MemorySSA during its 163 // traversal. Note that DSE optimizing MemorySSA may impact other passes 164 // downstream of the DSE invocation and can lead to issues not being 165 // reproducible in isolation (i.e. when MemorySSA is built from scratch). In 166 // those cases, the flag can be used to check if DSE's MemorySSA optimizations 167 // impact follow-up passes. 168 static cl::opt<bool> 169 OptimizeMemorySSA("dse-optimize-memoryssa", cl::init(true), cl::Hidden, 170 cl::desc("Allow DSE to optimize memory accesses.")); 171 172 //===----------------------------------------------------------------------===// 173 // Helper functions 174 //===----------------------------------------------------------------------===// 175 using OverlapIntervalsTy = std::map<int64_t, int64_t>; 176 using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>; 177 178 /// Returns true if the end of this instruction can be safely shortened in 179 /// length. 180 static bool isShortenableAtTheEnd(Instruction *I) { 181 // Don't shorten stores for now 182 if (isa<StoreInst>(I)) 183 return false; 184 185 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 186 switch (II->getIntrinsicID()) { 187 default: return false; 188 case Intrinsic::memset: 189 case Intrinsic::memcpy: 190 case Intrinsic::memcpy_element_unordered_atomic: 191 case Intrinsic::memset_element_unordered_atomic: 192 // Do shorten memory intrinsics. 193 // FIXME: Add memmove if it's also safe to transform. 194 return true; 195 } 196 } 197 198 // Don't shorten libcalls calls for now. 199 200 return false; 201 } 202 203 /// Returns true if the beginning of this instruction can be safely shortened 204 /// in length. 205 static bool isShortenableAtTheBeginning(Instruction *I) { 206 // FIXME: Handle only memset for now. Supporting memcpy/memmove should be 207 // easily done by offsetting the source address. 208 return isa<AnyMemSetInst>(I); 209 } 210 211 static uint64_t getPointerSize(const Value *V, const DataLayout &DL, 212 const TargetLibraryInfo &TLI, 213 const Function *F) { 214 uint64_t Size; 215 ObjectSizeOpts Opts; 216 Opts.NullIsUnknownSize = NullPointerIsDefined(F); 217 218 if (getObjectSize(V, Size, DL, &TLI, Opts)) 219 return Size; 220 return MemoryLocation::UnknownSize; 221 } 222 223 namespace { 224 225 enum OverwriteResult { 226 OW_Begin, 227 OW_Complete, 228 OW_End, 229 OW_PartialEarlierWithFullLater, 230 OW_MaybePartial, 231 OW_None, 232 OW_Unknown 233 }; 234 235 } // end anonymous namespace 236 237 /// Check if two instruction are masked stores that completely 238 /// overwrite one another. More specifically, \p KillingI has to 239 /// overwrite \p DeadI. 240 static OverwriteResult isMaskedStoreOverwrite(const Instruction *KillingI, 241 const Instruction *DeadI, 242 BatchAAResults &AA) { 243 const auto *KillingII = dyn_cast<IntrinsicInst>(KillingI); 244 const auto *DeadII = dyn_cast<IntrinsicInst>(DeadI); 245 if (KillingII == nullptr || DeadII == nullptr) 246 return OW_Unknown; 247 if (KillingII->getIntrinsicID() != Intrinsic::masked_store || 248 DeadII->getIntrinsicID() != Intrinsic::masked_store) 249 return OW_Unknown; 250 // Pointers. 251 Value *KillingPtr = KillingII->getArgOperand(1)->stripPointerCasts(); 252 Value *DeadPtr = DeadII->getArgOperand(1)->stripPointerCasts(); 253 if (KillingPtr != DeadPtr && !AA.isMustAlias(KillingPtr, DeadPtr)) 254 return OW_Unknown; 255 // Masks. 256 // TODO: check that KillingII's mask is a superset of the DeadII's mask. 257 if (KillingII->getArgOperand(3) != DeadII->getArgOperand(3)) 258 return OW_Unknown; 259 return OW_Complete; 260 } 261 262 /// Return 'OW_Complete' if a store to the 'KillingLoc' location completely 263 /// overwrites a store to the 'DeadLoc' location, 'OW_End' if the end of the 264 /// 'DeadLoc' location is completely overwritten by 'KillingLoc', 'OW_Begin' 265 /// if the beginning of the 'DeadLoc' location is overwritten by 'KillingLoc'. 266 /// 'OW_PartialEarlierWithFullLater' means that a dead (big) store was 267 /// overwritten by a killing (smaller) store which doesn't write outside the big 268 /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined. 269 /// NOTE: This function must only be called if both \p KillingLoc and \p 270 /// DeadLoc belong to the same underlying object with valid \p KillingOff and 271 /// \p DeadOff. 272 static OverwriteResult isPartialOverwrite(const MemoryLocation &KillingLoc, 273 const MemoryLocation &DeadLoc, 274 int64_t KillingOff, int64_t DeadOff, 275 Instruction *DeadI, 276 InstOverlapIntervalsTy &IOL) { 277 const uint64_t KillingSize = KillingLoc.Size.getValue(); 278 const uint64_t DeadSize = DeadLoc.Size.getValue(); 279 // We may now overlap, although the overlap is not complete. There might also 280 // be other incomplete overlaps, and together, they might cover the complete 281 // dead store. 282 // Note: The correctness of this logic depends on the fact that this function 283 // is not even called providing DepWrite when there are any intervening reads. 284 if (EnablePartialOverwriteTracking && 285 KillingOff < int64_t(DeadOff + DeadSize) && 286 int64_t(KillingOff + KillingSize) >= DeadOff) { 287 288 // Insert our part of the overlap into the map. 289 auto &IM = IOL[DeadI]; 290 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: DeadLoc [" << DeadOff << ", " 291 << int64_t(DeadOff + DeadSize) << ") KillingLoc [" 292 << KillingOff << ", " << int64_t(KillingOff + KillingSize) 293 << ")\n"); 294 295 // Make sure that we only insert non-overlapping intervals and combine 296 // adjacent intervals. The intervals are stored in the map with the ending 297 // offset as the key (in the half-open sense) and the starting offset as 298 // the value. 299 int64_t KillingIntStart = KillingOff; 300 int64_t KillingIntEnd = KillingOff + KillingSize; 301 302 // Find any intervals ending at, or after, KillingIntStart which start 303 // before KillingIntEnd. 304 auto ILI = IM.lower_bound(KillingIntStart); 305 if (ILI != IM.end() && ILI->second <= KillingIntEnd) { 306 // This existing interval is overlapped with the current store somewhere 307 // in [KillingIntStart, KillingIntEnd]. Merge them by erasing the existing 308 // intervals and adjusting our start and end. 309 KillingIntStart = std::min(KillingIntStart, ILI->second); 310 KillingIntEnd = std::max(KillingIntEnd, ILI->first); 311 ILI = IM.erase(ILI); 312 313 // Continue erasing and adjusting our end in case other previous 314 // intervals are also overlapped with the current store. 315 // 316 // |--- dead 1 ---| |--- dead 2 ---| 317 // |------- killing---------| 318 // 319 while (ILI != IM.end() && ILI->second <= KillingIntEnd) { 320 assert(ILI->second > KillingIntStart && "Unexpected interval"); 321 KillingIntEnd = std::max(KillingIntEnd, ILI->first); 322 ILI = IM.erase(ILI); 323 } 324 } 325 326 IM[KillingIntEnd] = KillingIntStart; 327 328 ILI = IM.begin(); 329 if (ILI->second <= DeadOff && ILI->first >= int64_t(DeadOff + DeadSize)) { 330 LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: DeadLoc [" 331 << DeadOff << ", " << int64_t(DeadOff + DeadSize) 332 << ") Composite KillingLoc [" << ILI->second << ", " 333 << ILI->first << ")\n"); 334 ++NumCompletePartials; 335 return OW_Complete; 336 } 337 } 338 339 // Check for a dead store which writes to all the memory locations that 340 // the killing store writes to. 341 if (EnablePartialStoreMerging && KillingOff >= DeadOff && 342 int64_t(DeadOff + DeadSize) > KillingOff && 343 uint64_t(KillingOff - DeadOff) + KillingSize <= DeadSize) { 344 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite a dead load [" << DeadOff 345 << ", " << int64_t(DeadOff + DeadSize) 346 << ") by a killing store [" << KillingOff << ", " 347 << int64_t(KillingOff + KillingSize) << ")\n"); 348 // TODO: Maybe come up with a better name? 349 return OW_PartialEarlierWithFullLater; 350 } 351 352 // Another interesting case is if the killing store overwrites the end of the 353 // dead store. 354 // 355 // |--dead--| 356 // |-- killing --| 357 // 358 // In this case we may want to trim the size of dead store to avoid 359 // generating stores to addresses which will definitely be overwritten killing 360 // store. 361 if (!EnablePartialOverwriteTracking && 362 (KillingOff > DeadOff && KillingOff < int64_t(DeadOff + DeadSize) && 363 int64_t(KillingOff + KillingSize) >= int64_t(DeadOff + DeadSize))) 364 return OW_End; 365 366 // Finally, we also need to check if the killing store overwrites the 367 // beginning of the dead store. 368 // 369 // |--dead--| 370 // |-- killing --| 371 // 372 // In this case we may want to move the destination address and trim the size 373 // of dead store to avoid generating stores to addresses which will definitely 374 // be overwritten killing store. 375 if (!EnablePartialOverwriteTracking && 376 (KillingOff <= DeadOff && int64_t(KillingOff + KillingSize) > DeadOff)) { 377 assert(int64_t(KillingOff + KillingSize) < int64_t(DeadOff + DeadSize) && 378 "Expect to be handled as OW_Complete"); 379 return OW_Begin; 380 } 381 // Otherwise, they don't completely overlap. 382 return OW_Unknown; 383 } 384 385 /// Returns true if the memory which is accessed by the second instruction is not 386 /// modified between the first and the second instruction. 387 /// Precondition: Second instruction must be dominated by the first 388 /// instruction. 389 static bool 390 memoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI, 391 BatchAAResults &AA, const DataLayout &DL, 392 DominatorTree *DT) { 393 // Do a backwards scan through the CFG from SecondI to FirstI. Look for 394 // instructions which can modify the memory location accessed by SecondI. 395 // 396 // While doing the walk keep track of the address to check. It might be 397 // different in different basic blocks due to PHI translation. 398 using BlockAddressPair = std::pair<BasicBlock *, PHITransAddr>; 399 SmallVector<BlockAddressPair, 16> WorkList; 400 // Keep track of the address we visited each block with. Bail out if we 401 // visit a block with different addresses. 402 DenseMap<BasicBlock *, Value *> Visited; 403 404 BasicBlock::iterator FirstBBI(FirstI); 405 ++FirstBBI; 406 BasicBlock::iterator SecondBBI(SecondI); 407 BasicBlock *FirstBB = FirstI->getParent(); 408 BasicBlock *SecondBB = SecondI->getParent(); 409 MemoryLocation MemLoc; 410 if (auto *MemSet = dyn_cast<MemSetInst>(SecondI)) 411 MemLoc = MemoryLocation::getForDest(MemSet); 412 else 413 MemLoc = MemoryLocation::get(SecondI); 414 415 auto *MemLocPtr = const_cast<Value *>(MemLoc.Ptr); 416 417 // Start checking the SecondBB. 418 WorkList.push_back( 419 std::make_pair(SecondBB, PHITransAddr(MemLocPtr, DL, nullptr))); 420 bool isFirstBlock = true; 421 422 // Check all blocks going backward until we reach the FirstBB. 423 while (!WorkList.empty()) { 424 BlockAddressPair Current = WorkList.pop_back_val(); 425 BasicBlock *B = Current.first; 426 PHITransAddr &Addr = Current.second; 427 Value *Ptr = Addr.getAddr(); 428 429 // Ignore instructions before FirstI if this is the FirstBB. 430 BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin()); 431 432 BasicBlock::iterator EI; 433 if (isFirstBlock) { 434 // Ignore instructions after SecondI if this is the first visit of SecondBB. 435 assert(B == SecondBB && "first block is not the store block"); 436 EI = SecondBBI; 437 isFirstBlock = false; 438 } else { 439 // It's not SecondBB or (in case of a loop) the second visit of SecondBB. 440 // In this case we also have to look at instructions after SecondI. 441 EI = B->end(); 442 } 443 for (; BI != EI; ++BI) { 444 Instruction *I = &*BI; 445 if (I->mayWriteToMemory() && I != SecondI) 446 if (isModSet(AA.getModRefInfo(I, MemLoc.getWithNewPtr(Ptr)))) 447 return false; 448 } 449 if (B != FirstBB) { 450 assert(B != &FirstBB->getParent()->getEntryBlock() && 451 "Should not hit the entry block because SI must be dominated by LI"); 452 for (BasicBlock *Pred : predecessors(B)) { 453 PHITransAddr PredAddr = Addr; 454 if (PredAddr.NeedsPHITranslationFromBlock(B)) { 455 if (!PredAddr.IsPotentiallyPHITranslatable()) 456 return false; 457 if (PredAddr.PHITranslateValue(B, Pred, DT, false)) 458 return false; 459 } 460 Value *TranslatedPtr = PredAddr.getAddr(); 461 auto Inserted = Visited.insert(std::make_pair(Pred, TranslatedPtr)); 462 if (!Inserted.second) { 463 // We already visited this block before. If it was with a different 464 // address - bail out! 465 if (TranslatedPtr != Inserted.first->second) 466 return false; 467 // ... otherwise just skip it. 468 continue; 469 } 470 WorkList.push_back(std::make_pair(Pred, PredAddr)); 471 } 472 } 473 } 474 return true; 475 } 476 477 static bool tryToShorten(Instruction *DeadI, int64_t &DeadStart, 478 uint64_t &DeadSize, int64_t KillingStart, 479 uint64_t KillingSize, bool IsOverwriteEnd) { 480 auto *DeadIntrinsic = cast<AnyMemIntrinsic>(DeadI); 481 Align PrefAlign = DeadIntrinsic->getDestAlign().valueOrOne(); 482 483 // We assume that memet/memcpy operates in chunks of the "largest" native 484 // type size and aligned on the same value. That means optimal start and size 485 // of memset/memcpy should be modulo of preferred alignment of that type. That 486 // is it there is no any sense in trying to reduce store size any further 487 // since any "extra" stores comes for free anyway. 488 // On the other hand, maximum alignment we can achieve is limited by alignment 489 // of initial store. 490 491 // TODO: Limit maximum alignment by preferred (or abi?) alignment of the 492 // "largest" native type. 493 // Note: What is the proper way to get that value? 494 // Should TargetTransformInfo::getRegisterBitWidth be used or anything else? 495 // PrefAlign = std::min(DL.getPrefTypeAlign(LargestType), PrefAlign); 496 497 int64_t ToRemoveStart = 0; 498 uint64_t ToRemoveSize = 0; 499 // Compute start and size of the region to remove. Make sure 'PrefAlign' is 500 // maintained on the remaining store. 501 if (IsOverwriteEnd) { 502 // Calculate required adjustment for 'KillingStart' in order to keep 503 // remaining store size aligned on 'PerfAlign'. 504 uint64_t Off = 505 offsetToAlignment(uint64_t(KillingStart - DeadStart), PrefAlign); 506 ToRemoveStart = KillingStart + Off; 507 if (DeadSize <= uint64_t(ToRemoveStart - DeadStart)) 508 return false; 509 ToRemoveSize = DeadSize - uint64_t(ToRemoveStart - DeadStart); 510 } else { 511 ToRemoveStart = DeadStart; 512 assert(KillingSize >= uint64_t(DeadStart - KillingStart) && 513 "Not overlapping accesses?"); 514 ToRemoveSize = KillingSize - uint64_t(DeadStart - KillingStart); 515 // Calculate required adjustment for 'ToRemoveSize'in order to keep 516 // start of the remaining store aligned on 'PerfAlign'. 517 uint64_t Off = offsetToAlignment(ToRemoveSize, PrefAlign); 518 if (Off != 0) { 519 if (ToRemoveSize <= (PrefAlign.value() - Off)) 520 return false; 521 ToRemoveSize -= PrefAlign.value() - Off; 522 } 523 assert(isAligned(PrefAlign, ToRemoveSize) && 524 "Should preserve selected alignment"); 525 } 526 527 assert(ToRemoveSize > 0 && "Shouldn't reach here if nothing to remove"); 528 assert(DeadSize > ToRemoveSize && "Can't remove more than original size"); 529 530 uint64_t NewSize = DeadSize - ToRemoveSize; 531 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(DeadI)) { 532 // When shortening an atomic memory intrinsic, the newly shortened 533 // length must remain an integer multiple of the element size. 534 const uint32_t ElementSize = AMI->getElementSizeInBytes(); 535 if (0 != NewSize % ElementSize) 536 return false; 537 } 538 539 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW " 540 << (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *DeadI 541 << "\n KILLER [" << ToRemoveStart << ", " 542 << int64_t(ToRemoveStart + ToRemoveSize) << ")\n"); 543 544 Value *DeadWriteLength = DeadIntrinsic->getLength(); 545 Value *TrimmedLength = ConstantInt::get(DeadWriteLength->getType(), NewSize); 546 DeadIntrinsic->setLength(TrimmedLength); 547 DeadIntrinsic->setDestAlignment(PrefAlign); 548 549 if (!IsOverwriteEnd) { 550 Value *OrigDest = DeadIntrinsic->getRawDest(); 551 Type *Int8PtrTy = 552 Type::getInt8PtrTy(DeadIntrinsic->getContext(), 553 OrigDest->getType()->getPointerAddressSpace()); 554 Value *Dest = OrigDest; 555 if (OrigDest->getType() != Int8PtrTy) 556 Dest = CastInst::CreatePointerCast(OrigDest, Int8PtrTy, "", DeadI); 557 Value *Indices[1] = { 558 ConstantInt::get(DeadWriteLength->getType(), ToRemoveSize)}; 559 Instruction *NewDestGEP = GetElementPtrInst::CreateInBounds( 560 Type::getInt8Ty(DeadIntrinsic->getContext()), Dest, Indices, "", DeadI); 561 NewDestGEP->setDebugLoc(DeadIntrinsic->getDebugLoc()); 562 if (NewDestGEP->getType() != OrigDest->getType()) 563 NewDestGEP = CastInst::CreatePointerCast(NewDestGEP, OrigDest->getType(), 564 "", DeadI); 565 DeadIntrinsic->setDest(NewDestGEP); 566 } 567 568 // Finally update start and size of dead access. 569 if (!IsOverwriteEnd) 570 DeadStart += ToRemoveSize; 571 DeadSize = NewSize; 572 573 return true; 574 } 575 576 static bool tryToShortenEnd(Instruction *DeadI, OverlapIntervalsTy &IntervalMap, 577 int64_t &DeadStart, uint64_t &DeadSize) { 578 if (IntervalMap.empty() || !isShortenableAtTheEnd(DeadI)) 579 return false; 580 581 OverlapIntervalsTy::iterator OII = --IntervalMap.end(); 582 int64_t KillingStart = OII->second; 583 uint64_t KillingSize = OII->first - KillingStart; 584 585 assert(OII->first - KillingStart >= 0 && "Size expected to be positive"); 586 587 if (KillingStart > DeadStart && 588 // Note: "KillingStart - KillingStart" is known to be positive due to 589 // preceding check. 590 (uint64_t)(KillingStart - DeadStart) < DeadSize && 591 // Note: "DeadSize - (uint64_t)(KillingStart - DeadStart)" is known to 592 // be non negative due to preceding checks. 593 KillingSize >= DeadSize - (uint64_t)(KillingStart - DeadStart)) { 594 if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize, 595 true)) { 596 IntervalMap.erase(OII); 597 return true; 598 } 599 } 600 return false; 601 } 602 603 static bool tryToShortenBegin(Instruction *DeadI, 604 OverlapIntervalsTy &IntervalMap, 605 int64_t &DeadStart, uint64_t &DeadSize) { 606 if (IntervalMap.empty() || !isShortenableAtTheBeginning(DeadI)) 607 return false; 608 609 OverlapIntervalsTy::iterator OII = IntervalMap.begin(); 610 int64_t KillingStart = OII->second; 611 uint64_t KillingSize = OII->first - KillingStart; 612 613 assert(OII->first - KillingStart >= 0 && "Size expected to be positive"); 614 615 if (KillingStart <= DeadStart && 616 // Note: "DeadStart - KillingStart" is known to be non negative due to 617 // preceding check. 618 KillingSize > (uint64_t)(DeadStart - KillingStart)) { 619 // Note: "KillingSize - (uint64_t)(DeadStart - DeadStart)" is known to 620 // be positive due to preceding checks. 621 assert(KillingSize - (uint64_t)(DeadStart - KillingStart) < DeadSize && 622 "Should have been handled as OW_Complete"); 623 if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize, 624 false)) { 625 IntervalMap.erase(OII); 626 return true; 627 } 628 } 629 return false; 630 } 631 632 static Constant * 633 tryToMergePartialOverlappingStores(StoreInst *KillingI, StoreInst *DeadI, 634 int64_t KillingOffset, int64_t DeadOffset, 635 const DataLayout &DL, BatchAAResults &AA, 636 DominatorTree *DT) { 637 638 if (DeadI && isa<ConstantInt>(DeadI->getValueOperand()) && 639 DL.typeSizeEqualsStoreSize(DeadI->getValueOperand()->getType()) && 640 KillingI && isa<ConstantInt>(KillingI->getValueOperand()) && 641 DL.typeSizeEqualsStoreSize(KillingI->getValueOperand()->getType()) && 642 memoryIsNotModifiedBetween(DeadI, KillingI, AA, DL, DT)) { 643 // If the store we find is: 644 // a) partially overwritten by the store to 'Loc' 645 // b) the killing store is fully contained in the dead one and 646 // c) they both have a constant value 647 // d) none of the two stores need padding 648 // Merge the two stores, replacing the dead store's value with a 649 // merge of both values. 650 // TODO: Deal with other constant types (vectors, etc), and probably 651 // some mem intrinsics (if needed) 652 653 APInt DeadValue = cast<ConstantInt>(DeadI->getValueOperand())->getValue(); 654 APInt KillingValue = 655 cast<ConstantInt>(KillingI->getValueOperand())->getValue(); 656 unsigned KillingBits = KillingValue.getBitWidth(); 657 assert(DeadValue.getBitWidth() > KillingValue.getBitWidth()); 658 KillingValue = KillingValue.zext(DeadValue.getBitWidth()); 659 660 // Offset of the smaller store inside the larger store 661 unsigned BitOffsetDiff = (KillingOffset - DeadOffset) * 8; 662 unsigned LShiftAmount = 663 DL.isBigEndian() ? DeadValue.getBitWidth() - BitOffsetDiff - KillingBits 664 : BitOffsetDiff; 665 APInt Mask = APInt::getBitsSet(DeadValue.getBitWidth(), LShiftAmount, 666 LShiftAmount + KillingBits); 667 // Clear the bits we'll be replacing, then OR with the smaller 668 // store, shifted appropriately. 669 APInt Merged = (DeadValue & ~Mask) | (KillingValue << LShiftAmount); 670 LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n Dead: " << *DeadI 671 << "\n Killing: " << *KillingI 672 << "\n Merged Value: " << Merged << '\n'); 673 return ConstantInt::get(DeadI->getValueOperand()->getType(), Merged); 674 } 675 return nullptr; 676 } 677 678 namespace { 679 // Returns true if \p I is an intrisnic that does not read or write memory. 680 bool isNoopIntrinsic(Instruction *I) { 681 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 682 switch (II->getIntrinsicID()) { 683 case Intrinsic::lifetime_start: 684 case Intrinsic::lifetime_end: 685 case Intrinsic::invariant_end: 686 case Intrinsic::launder_invariant_group: 687 case Intrinsic::assume: 688 return true; 689 case Intrinsic::dbg_addr: 690 case Intrinsic::dbg_declare: 691 case Intrinsic::dbg_label: 692 case Intrinsic::dbg_value: 693 llvm_unreachable("Intrinsic should not be modeled in MemorySSA"); 694 default: 695 return false; 696 } 697 } 698 return false; 699 } 700 701 // Check if we can ignore \p D for DSE. 702 bool canSkipDef(MemoryDef *D, bool DefVisibleToCaller) { 703 Instruction *DI = D->getMemoryInst(); 704 // Calls that only access inaccessible memory cannot read or write any memory 705 // locations we consider for elimination. 706 if (auto *CB = dyn_cast<CallBase>(DI)) 707 if (CB->onlyAccessesInaccessibleMemory()) 708 return true; 709 710 // We can eliminate stores to locations not visible to the caller across 711 // throwing instructions. 712 if (DI->mayThrow() && !DefVisibleToCaller) 713 return true; 714 715 // We can remove the dead stores, irrespective of the fence and its ordering 716 // (release/acquire/seq_cst). Fences only constraints the ordering of 717 // already visible stores, it does not make a store visible to other 718 // threads. So, skipping over a fence does not change a store from being 719 // dead. 720 if (isa<FenceInst>(DI)) 721 return true; 722 723 // Skip intrinsics that do not really read or modify memory. 724 if (isNoopIntrinsic(DI)) 725 return true; 726 727 return false; 728 } 729 730 struct DSEState { 731 Function &F; 732 AliasAnalysis &AA; 733 EarliestEscapeInfo EI; 734 735 /// The single BatchAA instance that is used to cache AA queries. It will 736 /// not be invalidated over the whole run. This is safe, because: 737 /// 1. Only memory writes are removed, so the alias cache for memory 738 /// locations remains valid. 739 /// 2. No new instructions are added (only instructions removed), so cached 740 /// information for a deleted value cannot be accessed by a re-used new 741 /// value pointer. 742 BatchAAResults BatchAA; 743 744 MemorySSA &MSSA; 745 DominatorTree &DT; 746 PostDominatorTree &PDT; 747 const TargetLibraryInfo &TLI; 748 const DataLayout &DL; 749 const LoopInfo &LI; 750 751 // Whether the function contains any irreducible control flow, useful for 752 // being accurately able to detect loops. 753 bool ContainsIrreducibleLoops; 754 755 // All MemoryDefs that potentially could kill other MemDefs. 756 SmallVector<MemoryDef *, 64> MemDefs; 757 // Any that should be skipped as they are already deleted 758 SmallPtrSet<MemoryAccess *, 4> SkipStores; 759 // Keep track whether a given object is captured before return or not. 760 DenseMap<const Value *, bool> CapturedBeforeReturn; 761 // Keep track of all of the objects that are invisible to the caller after 762 // the function returns. 763 DenseMap<const Value *, bool> InvisibleToCallerAfterRet; 764 // Keep track of blocks with throwing instructions not modeled in MemorySSA. 765 SmallPtrSet<BasicBlock *, 16> ThrowingBlocks; 766 // Post-order numbers for each basic block. Used to figure out if memory 767 // accesses are executed before another access. 768 DenseMap<BasicBlock *, unsigned> PostOrderNumbers; 769 770 /// Keep track of instructions (partly) overlapping with killing MemoryDefs per 771 /// basic block. 772 MapVector<BasicBlock *, InstOverlapIntervalsTy> IOLs; 773 774 // Class contains self-reference, make sure it's not copied/moved. 775 DSEState(const DSEState &) = delete; 776 DSEState &operator=(const DSEState &) = delete; 777 778 DSEState(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, DominatorTree &DT, 779 PostDominatorTree &PDT, const TargetLibraryInfo &TLI, 780 const LoopInfo &LI) 781 : F(F), AA(AA), EI(DT, LI), BatchAA(AA, &EI), MSSA(MSSA), DT(DT), 782 PDT(PDT), TLI(TLI), DL(F.getParent()->getDataLayout()), LI(LI) { 783 // Collect blocks with throwing instructions not modeled in MemorySSA and 784 // alloc-like objects. 785 unsigned PO = 0; 786 for (BasicBlock *BB : post_order(&F)) { 787 PostOrderNumbers[BB] = PO++; 788 for (Instruction &I : *BB) { 789 MemoryAccess *MA = MSSA.getMemoryAccess(&I); 790 if (I.mayThrow() && !MA) 791 ThrowingBlocks.insert(I.getParent()); 792 793 auto *MD = dyn_cast_or_null<MemoryDef>(MA); 794 if (MD && MemDefs.size() < MemorySSADefsPerBlockLimit && 795 (getLocForWrite(&I) || isMemTerminatorInst(&I))) 796 MemDefs.push_back(MD); 797 } 798 } 799 800 // Treat byval or inalloca arguments the same as Allocas, stores to them are 801 // dead at the end of the function. 802 for (Argument &AI : F.args()) 803 if (AI.hasPassPointeeByValueCopyAttr()) 804 InvisibleToCallerAfterRet.insert({&AI, true}); 805 806 // Collect whether there is any irreducible control flow in the function. 807 ContainsIrreducibleLoops = mayContainIrreducibleControl(F, &LI); 808 } 809 810 /// Return 'OW_Complete' if a store to the 'KillingLoc' location (by \p 811 /// KillingI instruction) completely overwrites a store to the 'DeadLoc' 812 /// location (by \p DeadI instruction). 813 /// Return OW_MaybePartial if \p KillingI does not completely overwrite 814 /// \p DeadI, but they both write to the same underlying object. In that 815 /// case, use isPartialOverwrite to check if \p KillingI partially overwrites 816 /// \p DeadI. Returns 'OR_None' if \p KillingI is known to not overwrite the 817 /// \p DeadI. Returns 'OW_Unknown' if nothing can be determined. 818 OverwriteResult isOverwrite(const Instruction *KillingI, 819 const Instruction *DeadI, 820 const MemoryLocation &KillingLoc, 821 const MemoryLocation &DeadLoc, 822 int64_t &KillingOff, int64_t &DeadOff) { 823 // AliasAnalysis does not always account for loops. Limit overwrite checks 824 // to dependencies for which we can guarantee they are independent of any 825 // loops they are in. 826 if (!isGuaranteedLoopIndependent(DeadI, KillingI, DeadLoc)) 827 return OW_Unknown; 828 829 const Value *DeadPtr = DeadLoc.Ptr->stripPointerCasts(); 830 const Value *KillingPtr = KillingLoc.Ptr->stripPointerCasts(); 831 const Value *DeadUndObj = getUnderlyingObject(DeadPtr); 832 const Value *KillingUndObj = getUnderlyingObject(KillingPtr); 833 834 // Check whether the killing store overwrites the whole object, in which 835 // case the size/offset of the dead store does not matter. 836 if (DeadUndObj == KillingUndObj && KillingLoc.Size.isPrecise()) { 837 uint64_t KillingUndObjSize = getPointerSize(KillingUndObj, DL, TLI, &F); 838 if (KillingUndObjSize != MemoryLocation::UnknownSize && 839 KillingUndObjSize == KillingLoc.Size.getValue()) 840 return OW_Complete; 841 } 842 843 // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll 844 // get imprecise values here, though (except for unknown sizes). 845 if (!KillingLoc.Size.isPrecise() || !DeadLoc.Size.isPrecise()) { 846 // In case no constant size is known, try to an IR values for the number 847 // of bytes written and check if they match. 848 const auto *KillingMemI = dyn_cast<MemIntrinsic>(KillingI); 849 const auto *DeadMemI = dyn_cast<MemIntrinsic>(DeadI); 850 if (KillingMemI && DeadMemI) { 851 const Value *KillingV = KillingMemI->getLength(); 852 const Value *DeadV = DeadMemI->getLength(); 853 if (KillingV == DeadV && BatchAA.isMustAlias(DeadLoc, KillingLoc)) 854 return OW_Complete; 855 } 856 857 // Masked stores have imprecise locations, but we can reason about them 858 // to some extent. 859 return isMaskedStoreOverwrite(KillingI, DeadI, BatchAA); 860 } 861 862 const uint64_t KillingSize = KillingLoc.Size.getValue(); 863 const uint64_t DeadSize = DeadLoc.Size.getValue(); 864 865 // Query the alias information 866 AliasResult AAR = BatchAA.alias(KillingLoc, DeadLoc); 867 868 // If the start pointers are the same, we just have to compare sizes to see if 869 // the killing store was larger than the dead store. 870 if (AAR == AliasResult::MustAlias) { 871 // Make sure that the KillingSize size is >= the DeadSize size. 872 if (KillingSize >= DeadSize) 873 return OW_Complete; 874 } 875 876 // If we hit a partial alias we may have a full overwrite 877 if (AAR == AliasResult::PartialAlias && AAR.hasOffset()) { 878 int32_t Off = AAR.getOffset(); 879 if (Off >= 0 && (uint64_t)Off + DeadSize <= KillingSize) 880 return OW_Complete; 881 } 882 883 // If we can't resolve the same pointers to the same object, then we can't 884 // analyze them at all. 885 if (DeadUndObj != KillingUndObj) { 886 // Non aliasing stores to different objects don't overlap. Note that 887 // if the killing store is known to overwrite whole object (out of 888 // bounds access overwrites whole object as well) then it is assumed to 889 // completely overwrite any store to the same object even if they don't 890 // actually alias (see next check). 891 if (AAR == AliasResult::NoAlias) 892 return OW_None; 893 return OW_Unknown; 894 } 895 896 // Okay, we have stores to two completely different pointers. Try to 897 // decompose the pointer into a "base + constant_offset" form. If the base 898 // pointers are equal, then we can reason about the two stores. 899 DeadOff = 0; 900 KillingOff = 0; 901 const Value *DeadBasePtr = 902 GetPointerBaseWithConstantOffset(DeadPtr, DeadOff, DL); 903 const Value *KillingBasePtr = 904 GetPointerBaseWithConstantOffset(KillingPtr, KillingOff, DL); 905 906 // If the base pointers still differ, we have two completely different 907 // stores. 908 if (DeadBasePtr != KillingBasePtr) 909 return OW_Unknown; 910 911 // The killing access completely overlaps the dead store if and only if 912 // both start and end of the dead one is "inside" the killing one: 913 // |<->|--dead--|<->| 914 // |-----killing------| 915 // Accesses may overlap if and only if start of one of them is "inside" 916 // another one: 917 // |<->|--dead--|<-------->| 918 // |-------killing--------| 919 // OR 920 // |-------dead-------| 921 // |<->|---killing---|<----->| 922 // 923 // We have to be careful here as *Off is signed while *.Size is unsigned. 924 925 // Check if the dead access starts "not before" the killing one. 926 if (DeadOff >= KillingOff) { 927 // If the dead access ends "not after" the killing access then the 928 // dead one is completely overwritten by the killing one. 929 if (uint64_t(DeadOff - KillingOff) + DeadSize <= KillingSize) 930 return OW_Complete; 931 // If start of the dead access is "before" end of the killing access 932 // then accesses overlap. 933 else if ((uint64_t)(DeadOff - KillingOff) < KillingSize) 934 return OW_MaybePartial; 935 } 936 // If start of the killing access is "before" end of the dead access then 937 // accesses overlap. 938 else if ((uint64_t)(KillingOff - DeadOff) < DeadSize) { 939 return OW_MaybePartial; 940 } 941 942 // Can reach here only if accesses are known not to overlap. 943 return OW_None; 944 } 945 946 bool isInvisibleToCallerAfterRet(const Value *V) { 947 if (isa<AllocaInst>(V)) 948 return true; 949 auto I = InvisibleToCallerAfterRet.insert({V, false}); 950 if (I.second) { 951 if (!isInvisibleToCallerOnUnwind(V)) { 952 I.first->second = false; 953 } else if (isNoAliasCall(V)) { 954 I.first->second = !PointerMayBeCaptured(V, true, false); 955 } 956 } 957 return I.first->second; 958 } 959 960 bool isInvisibleToCallerOnUnwind(const Value *V) { 961 bool RequiresNoCaptureBeforeUnwind; 962 if (!isNotVisibleOnUnwind(V, RequiresNoCaptureBeforeUnwind)) 963 return false; 964 if (!RequiresNoCaptureBeforeUnwind) 965 return true; 966 967 auto I = CapturedBeforeReturn.insert({V, true}); 968 if (I.second) 969 // NOTE: This could be made more precise by PointerMayBeCapturedBefore 970 // with the killing MemoryDef. But we refrain from doing so for now to 971 // limit compile-time and this does not cause any changes to the number 972 // of stores removed on a large test set in practice. 973 I.first->second = PointerMayBeCaptured(V, false, true); 974 return !I.first->second; 975 } 976 977 Optional<MemoryLocation> getLocForWrite(Instruction *I) const { 978 if (!I->mayWriteToMemory()) 979 return None; 980 981 if (auto *CB = dyn_cast<CallBase>(I)) 982 return MemoryLocation::getForDest(CB, TLI); 983 984 return MemoryLocation::getOrNone(I); 985 } 986 987 /// Assuming this instruction has a dead analyzable write, can we delete 988 /// this instruction? 989 bool isRemovable(Instruction *I) { 990 assert(getLocForWrite(I) && "Must have analyzable write"); 991 992 // Don't remove volatile/atomic stores. 993 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 994 return SI->isUnordered(); 995 996 if (auto *CB = dyn_cast<CallBase>(I)) { 997 // Don't remove volatile memory intrinsics. 998 if (auto *MI = dyn_cast<MemIntrinsic>(CB)) 999 return !MI->isVolatile(); 1000 1001 // Never remove dead lifetime intrinsics, e.g. because they are followed 1002 // by a free. 1003 if (CB->isLifetimeStartOrEnd()) 1004 return false; 1005 1006 return CB->use_empty() && CB->willReturn() && CB->doesNotThrow(); 1007 } 1008 1009 return false; 1010 } 1011 1012 /// Returns true if \p UseInst completely overwrites \p DefLoc 1013 /// (stored by \p DefInst). 1014 bool isCompleteOverwrite(const MemoryLocation &DefLoc, Instruction *DefInst, 1015 Instruction *UseInst) { 1016 // UseInst has a MemoryDef associated in MemorySSA. It's possible for a 1017 // MemoryDef to not write to memory, e.g. a volatile load is modeled as a 1018 // MemoryDef. 1019 if (!UseInst->mayWriteToMemory()) 1020 return false; 1021 1022 if (auto *CB = dyn_cast<CallBase>(UseInst)) 1023 if (CB->onlyAccessesInaccessibleMemory()) 1024 return false; 1025 1026 int64_t InstWriteOffset, DepWriteOffset; 1027 if (auto CC = getLocForWrite(UseInst)) 1028 return isOverwrite(UseInst, DefInst, *CC, DefLoc, InstWriteOffset, 1029 DepWriteOffset) == OW_Complete; 1030 return false; 1031 } 1032 1033 /// Returns true if \p Def is not read before returning from the function. 1034 bool isWriteAtEndOfFunction(MemoryDef *Def) { 1035 LLVM_DEBUG(dbgs() << " Check if def " << *Def << " (" 1036 << *Def->getMemoryInst() 1037 << ") is at the end the function \n"); 1038 1039 auto MaybeLoc = getLocForWrite(Def->getMemoryInst()); 1040 if (!MaybeLoc) { 1041 LLVM_DEBUG(dbgs() << " ... could not get location for write.\n"); 1042 return false; 1043 } 1044 1045 SmallVector<MemoryAccess *, 4> WorkList; 1046 SmallPtrSet<MemoryAccess *, 8> Visited; 1047 auto PushMemUses = [&WorkList, &Visited](MemoryAccess *Acc) { 1048 if (!Visited.insert(Acc).second) 1049 return; 1050 for (Use &U : Acc->uses()) 1051 WorkList.push_back(cast<MemoryAccess>(U.getUser())); 1052 }; 1053 PushMemUses(Def); 1054 for (unsigned I = 0; I < WorkList.size(); I++) { 1055 if (WorkList.size() >= MemorySSAScanLimit) { 1056 LLVM_DEBUG(dbgs() << " ... hit exploration limit.\n"); 1057 return false; 1058 } 1059 1060 MemoryAccess *UseAccess = WorkList[I]; 1061 // Simply adding the users of MemoryPhi to the worklist is not enough, 1062 // because we might miss read clobbers in different iterations of a loop, 1063 // for example. 1064 // TODO: Add support for phi translation to handle the loop case. 1065 if (isa<MemoryPhi>(UseAccess)) 1066 return false; 1067 1068 // TODO: Checking for aliasing is expensive. Consider reducing the amount 1069 // of times this is called and/or caching it. 1070 Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst(); 1071 if (isReadClobber(*MaybeLoc, UseInst)) { 1072 LLVM_DEBUG(dbgs() << " ... hit read clobber " << *UseInst << ".\n"); 1073 return false; 1074 } 1075 1076 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) 1077 PushMemUses(UseDef); 1078 } 1079 return true; 1080 } 1081 1082 /// If \p I is a memory terminator like llvm.lifetime.end or free, return a 1083 /// pair with the MemoryLocation terminated by \p I and a boolean flag 1084 /// indicating whether \p I is a free-like call. 1085 Optional<std::pair<MemoryLocation, bool>> 1086 getLocForTerminator(Instruction *I) const { 1087 uint64_t Len; 1088 Value *Ptr; 1089 if (match(I, m_Intrinsic<Intrinsic::lifetime_end>(m_ConstantInt(Len), 1090 m_Value(Ptr)))) 1091 return {std::make_pair(MemoryLocation(Ptr, Len), false)}; 1092 1093 if (auto *CB = dyn_cast<CallBase>(I)) { 1094 if (isFreeCall(I, &TLI)) 1095 return {std::make_pair(MemoryLocation::getAfter(CB->getArgOperand(0)), 1096 true)}; 1097 } 1098 1099 return None; 1100 } 1101 1102 /// Returns true if \p I is a memory terminator instruction like 1103 /// llvm.lifetime.end or free. 1104 bool isMemTerminatorInst(Instruction *I) const { 1105 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1106 return (II && II->getIntrinsicID() == Intrinsic::lifetime_end) || 1107 isFreeCall(I, &TLI); 1108 } 1109 1110 /// Returns true if \p MaybeTerm is a memory terminator for \p Loc from 1111 /// instruction \p AccessI. 1112 bool isMemTerminator(const MemoryLocation &Loc, Instruction *AccessI, 1113 Instruction *MaybeTerm) { 1114 Optional<std::pair<MemoryLocation, bool>> MaybeTermLoc = 1115 getLocForTerminator(MaybeTerm); 1116 1117 if (!MaybeTermLoc) 1118 return false; 1119 1120 // If the terminator is a free-like call, all accesses to the underlying 1121 // object can be considered terminated. 1122 if (getUnderlyingObject(Loc.Ptr) != 1123 getUnderlyingObject(MaybeTermLoc->first.Ptr)) 1124 return false; 1125 1126 auto TermLoc = MaybeTermLoc->first; 1127 if (MaybeTermLoc->second) { 1128 const Value *LocUO = getUnderlyingObject(Loc.Ptr); 1129 return BatchAA.isMustAlias(TermLoc.Ptr, LocUO); 1130 } 1131 int64_t InstWriteOffset = 0; 1132 int64_t DepWriteOffset = 0; 1133 return isOverwrite(MaybeTerm, AccessI, TermLoc, Loc, InstWriteOffset, 1134 DepWriteOffset) == OW_Complete; 1135 } 1136 1137 // Returns true if \p Use may read from \p DefLoc. 1138 bool isReadClobber(const MemoryLocation &DefLoc, Instruction *UseInst) { 1139 if (isNoopIntrinsic(UseInst)) 1140 return false; 1141 1142 // Monotonic or weaker atomic stores can be re-ordered and do not need to be 1143 // treated as read clobber. 1144 if (auto SI = dyn_cast<StoreInst>(UseInst)) 1145 return isStrongerThan(SI->getOrdering(), AtomicOrdering::Monotonic); 1146 1147 if (!UseInst->mayReadFromMemory()) 1148 return false; 1149 1150 if (auto *CB = dyn_cast<CallBase>(UseInst)) 1151 if (CB->onlyAccessesInaccessibleMemory()) 1152 return false; 1153 1154 return isRefSet(BatchAA.getModRefInfo(UseInst, DefLoc)); 1155 } 1156 1157 /// Returns true if a dependency between \p Current and \p KillingDef is 1158 /// guaranteed to be loop invariant for the loops that they are in. Either 1159 /// because they are known to be in the same block, in the same loop level or 1160 /// by guaranteeing that \p CurrentLoc only references a single MemoryLocation 1161 /// during execution of the containing function. 1162 bool isGuaranteedLoopIndependent(const Instruction *Current, 1163 const Instruction *KillingDef, 1164 const MemoryLocation &CurrentLoc) { 1165 // If the dependency is within the same block or loop level (being careful 1166 // of irreducible loops), we know that AA will return a valid result for the 1167 // memory dependency. (Both at the function level, outside of any loop, 1168 // would also be valid but we currently disable that to limit compile time). 1169 if (Current->getParent() == KillingDef->getParent()) 1170 return true; 1171 const Loop *CurrentLI = LI.getLoopFor(Current->getParent()); 1172 if (!ContainsIrreducibleLoops && CurrentLI && 1173 CurrentLI == LI.getLoopFor(KillingDef->getParent())) 1174 return true; 1175 // Otherwise check the memory location is invariant to any loops. 1176 return isGuaranteedLoopInvariant(CurrentLoc.Ptr); 1177 } 1178 1179 /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible 1180 /// loop. In particular, this guarantees that it only references a single 1181 /// MemoryLocation during execution of the containing function. 1182 bool isGuaranteedLoopInvariant(const Value *Ptr) { 1183 Ptr = Ptr->stripPointerCasts(); 1184 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) 1185 if (GEP->hasAllConstantIndices()) 1186 Ptr = GEP->getPointerOperand()->stripPointerCasts(); 1187 1188 if (auto *I = dyn_cast<Instruction>(Ptr)) 1189 return I->getParent()->isEntryBlock(); 1190 return true; 1191 } 1192 1193 // Find a MemoryDef writing to \p KillingLoc and dominating \p StartAccess, 1194 // with no read access between them or on any other path to a function exit 1195 // block if \p KillingLoc is not accessible after the function returns. If 1196 // there is no such MemoryDef, return None. The returned value may not 1197 // (completely) overwrite \p KillingLoc. Currently we bail out when we 1198 // encounter an aliasing MemoryUse (read). 1199 Optional<MemoryAccess *> 1200 getDomMemoryDef(MemoryDef *KillingDef, MemoryAccess *StartAccess, 1201 const MemoryLocation &KillingLoc, const Value *KillingUndObj, 1202 unsigned &ScanLimit, unsigned &WalkerStepLimit, 1203 bool IsMemTerm, unsigned &PartialLimit) { 1204 if (ScanLimit == 0 || WalkerStepLimit == 0) { 1205 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n"); 1206 return None; 1207 } 1208 1209 MemoryAccess *Current = StartAccess; 1210 Instruction *KillingI = KillingDef->getMemoryInst(); 1211 LLVM_DEBUG(dbgs() << " trying to get dominating access\n"); 1212 1213 // Only optimize defining access of KillingDef when directly starting at its 1214 // defining access. The defining access also must only access KillingLoc. At 1215 // the moment we only support instructions with a single write location, so 1216 // it should be sufficient to disable optimizations for instructions that 1217 // also read from memory. 1218 bool CanOptimize = OptimizeMemorySSA && 1219 KillingDef->getDefiningAccess() == StartAccess && 1220 !KillingI->mayReadFromMemory(); 1221 1222 // Find the next clobbering Mod access for DefLoc, starting at StartAccess. 1223 Optional<MemoryLocation> CurrentLoc; 1224 for (;; Current = cast<MemoryDef>(Current)->getDefiningAccess()) { 1225 LLVM_DEBUG({ 1226 dbgs() << " visiting " << *Current; 1227 if (!MSSA.isLiveOnEntryDef(Current) && isa<MemoryUseOrDef>(Current)) 1228 dbgs() << " (" << *cast<MemoryUseOrDef>(Current)->getMemoryInst() 1229 << ")"; 1230 dbgs() << "\n"; 1231 }); 1232 1233 // Reached TOP. 1234 if (MSSA.isLiveOnEntryDef(Current)) { 1235 LLVM_DEBUG(dbgs() << " ... found LiveOnEntryDef\n"); 1236 return None; 1237 } 1238 1239 // Cost of a step. Accesses in the same block are more likely to be valid 1240 // candidates for elimination, hence consider them cheaper. 1241 unsigned StepCost = KillingDef->getBlock() == Current->getBlock() 1242 ? MemorySSASameBBStepCost 1243 : MemorySSAOtherBBStepCost; 1244 if (WalkerStepLimit <= StepCost) { 1245 LLVM_DEBUG(dbgs() << " ... hit walker step limit\n"); 1246 return None; 1247 } 1248 WalkerStepLimit -= StepCost; 1249 1250 // Return for MemoryPhis. They cannot be eliminated directly and the 1251 // caller is responsible for traversing them. 1252 if (isa<MemoryPhi>(Current)) { 1253 LLVM_DEBUG(dbgs() << " ... found MemoryPhi\n"); 1254 return Current; 1255 } 1256 1257 // Below, check if CurrentDef is a valid candidate to be eliminated by 1258 // KillingDef. If it is not, check the next candidate. 1259 MemoryDef *CurrentDef = cast<MemoryDef>(Current); 1260 Instruction *CurrentI = CurrentDef->getMemoryInst(); 1261 1262 if (canSkipDef(CurrentDef, !isInvisibleToCallerOnUnwind(KillingUndObj))) { 1263 CanOptimize = false; 1264 continue; 1265 } 1266 1267 // Before we try to remove anything, check for any extra throwing 1268 // instructions that block us from DSEing 1269 if (mayThrowBetween(KillingI, CurrentI, KillingUndObj)) { 1270 LLVM_DEBUG(dbgs() << " ... skip, may throw!\n"); 1271 return None; 1272 } 1273 1274 // Check for anything that looks like it will be a barrier to further 1275 // removal 1276 if (isDSEBarrier(KillingUndObj, CurrentI)) { 1277 LLVM_DEBUG(dbgs() << " ... skip, barrier\n"); 1278 return None; 1279 } 1280 1281 // If Current is known to be on path that reads DefLoc or is a read 1282 // clobber, bail out, as the path is not profitable. We skip this check 1283 // for intrinsic calls, because the code knows how to handle memcpy 1284 // intrinsics. 1285 if (!isa<IntrinsicInst>(CurrentI) && isReadClobber(KillingLoc, CurrentI)) 1286 return None; 1287 1288 // Quick check if there are direct uses that are read-clobbers. 1289 if (any_of(Current->uses(), [this, &KillingLoc, StartAccess](Use &U) { 1290 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(U.getUser())) 1291 return !MSSA.dominates(StartAccess, UseOrDef) && 1292 isReadClobber(KillingLoc, UseOrDef->getMemoryInst()); 1293 return false; 1294 })) { 1295 LLVM_DEBUG(dbgs() << " ... found a read clobber\n"); 1296 return None; 1297 } 1298 1299 // If Current does not have an analyzable write location or is not 1300 // removable, skip it. 1301 CurrentLoc = getLocForWrite(CurrentI); 1302 if (!CurrentLoc || !isRemovable(CurrentI)) { 1303 CanOptimize = false; 1304 continue; 1305 } 1306 1307 // AliasAnalysis does not account for loops. Limit elimination to 1308 // candidates for which we can guarantee they always store to the same 1309 // memory location and not located in different loops. 1310 if (!isGuaranteedLoopIndependent(CurrentI, KillingI, *CurrentLoc)) { 1311 LLVM_DEBUG(dbgs() << " ... not guaranteed loop independent\n"); 1312 WalkerStepLimit -= 1; 1313 CanOptimize = false; 1314 continue; 1315 } 1316 1317 if (IsMemTerm) { 1318 // If the killing def is a memory terminator (e.g. lifetime.end), check 1319 // the next candidate if the current Current does not write the same 1320 // underlying object as the terminator. 1321 if (!isMemTerminator(*CurrentLoc, CurrentI, KillingI)) { 1322 CanOptimize = false; 1323 continue; 1324 } 1325 } else { 1326 int64_t KillingOffset = 0; 1327 int64_t DeadOffset = 0; 1328 auto OR = isOverwrite(KillingI, CurrentI, KillingLoc, *CurrentLoc, 1329 KillingOffset, DeadOffset); 1330 if (CanOptimize) { 1331 // CurrentDef is the earliest write clobber of KillingDef. Use it as 1332 // optimized access. Do not optimize if CurrentDef is already the 1333 // defining access of KillingDef. 1334 if (CurrentDef != KillingDef->getDefiningAccess() && 1335 (OR == OW_Complete || OR == OW_MaybePartial)) 1336 KillingDef->setOptimized(CurrentDef); 1337 1338 // Once a may-aliasing def is encountered do not set an optimized 1339 // access. 1340 if (OR != OW_None) 1341 CanOptimize = false; 1342 } 1343 1344 // If Current does not write to the same object as KillingDef, check 1345 // the next candidate. 1346 if (OR == OW_Unknown || OR == OW_None) 1347 continue; 1348 else if (OR == OW_MaybePartial) { 1349 // If KillingDef only partially overwrites Current, check the next 1350 // candidate if the partial step limit is exceeded. This aggressively 1351 // limits the number of candidates for partial store elimination, 1352 // which are less likely to be removable in the end. 1353 if (PartialLimit <= 1) { 1354 WalkerStepLimit -= 1; 1355 LLVM_DEBUG(dbgs() << " ... reached partial limit ... continue with next access\n"); 1356 continue; 1357 } 1358 PartialLimit -= 1; 1359 } 1360 } 1361 break; 1362 }; 1363 1364 // Accesses to objects accessible after the function returns can only be 1365 // eliminated if the access is dead along all paths to the exit. Collect 1366 // the blocks with killing (=completely overwriting MemoryDefs) and check if 1367 // they cover all paths from MaybeDeadAccess to any function exit. 1368 SmallPtrSet<Instruction *, 16> KillingDefs; 1369 KillingDefs.insert(KillingDef->getMemoryInst()); 1370 MemoryAccess *MaybeDeadAccess = Current; 1371 MemoryLocation MaybeDeadLoc = *CurrentLoc; 1372 Instruction *MaybeDeadI = cast<MemoryDef>(MaybeDeadAccess)->getMemoryInst(); 1373 LLVM_DEBUG(dbgs() << " Checking for reads of " << *MaybeDeadAccess << " (" 1374 << *MaybeDeadI << ")\n"); 1375 1376 SmallSetVector<MemoryAccess *, 32> WorkList; 1377 auto PushMemUses = [&WorkList](MemoryAccess *Acc) { 1378 for (Use &U : Acc->uses()) 1379 WorkList.insert(cast<MemoryAccess>(U.getUser())); 1380 }; 1381 PushMemUses(MaybeDeadAccess); 1382 1383 // Check if DeadDef may be read. 1384 for (unsigned I = 0; I < WorkList.size(); I++) { 1385 MemoryAccess *UseAccess = WorkList[I]; 1386 1387 LLVM_DEBUG(dbgs() << " " << *UseAccess); 1388 // Bail out if the number of accesses to check exceeds the scan limit. 1389 if (ScanLimit < (WorkList.size() - I)) { 1390 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n"); 1391 return None; 1392 } 1393 --ScanLimit; 1394 NumDomMemDefChecks++; 1395 1396 if (isa<MemoryPhi>(UseAccess)) { 1397 if (any_of(KillingDefs, [this, UseAccess](Instruction *KI) { 1398 return DT.properlyDominates(KI->getParent(), 1399 UseAccess->getBlock()); 1400 })) { 1401 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n"); 1402 continue; 1403 } 1404 LLVM_DEBUG(dbgs() << "\n ... adding PHI uses\n"); 1405 PushMemUses(UseAccess); 1406 continue; 1407 } 1408 1409 Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst(); 1410 LLVM_DEBUG(dbgs() << " (" << *UseInst << ")\n"); 1411 1412 if (any_of(KillingDefs, [this, UseInst](Instruction *KI) { 1413 return DT.dominates(KI, UseInst); 1414 })) { 1415 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n"); 1416 continue; 1417 } 1418 1419 // A memory terminator kills all preceeding MemoryDefs and all succeeding 1420 // MemoryAccesses. We do not have to check it's users. 1421 if (isMemTerminator(MaybeDeadLoc, MaybeDeadI, UseInst)) { 1422 LLVM_DEBUG( 1423 dbgs() 1424 << " ... skipping, memterminator invalidates following accesses\n"); 1425 continue; 1426 } 1427 1428 if (isNoopIntrinsic(cast<MemoryUseOrDef>(UseAccess)->getMemoryInst())) { 1429 LLVM_DEBUG(dbgs() << " ... adding uses of intrinsic\n"); 1430 PushMemUses(UseAccess); 1431 continue; 1432 } 1433 1434 if (UseInst->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj)) { 1435 LLVM_DEBUG(dbgs() << " ... found throwing instruction\n"); 1436 return None; 1437 } 1438 1439 // Uses which may read the original MemoryDef mean we cannot eliminate the 1440 // original MD. Stop walk. 1441 if (isReadClobber(MaybeDeadLoc, UseInst)) { 1442 LLVM_DEBUG(dbgs() << " ... found read clobber\n"); 1443 return None; 1444 } 1445 1446 // If this worklist walks back to the original memory access (and the 1447 // pointer is not guarenteed loop invariant) then we cannot assume that a 1448 // store kills itself. 1449 if (MaybeDeadAccess == UseAccess && 1450 !isGuaranteedLoopInvariant(MaybeDeadLoc.Ptr)) { 1451 LLVM_DEBUG(dbgs() << " ... found not loop invariant self access\n"); 1452 return None; 1453 } 1454 // Otherwise, for the KillingDef and MaybeDeadAccess we only have to check 1455 // if it reads the memory location. 1456 // TODO: It would probably be better to check for self-reads before 1457 // calling the function. 1458 if (KillingDef == UseAccess || MaybeDeadAccess == UseAccess) { 1459 LLVM_DEBUG(dbgs() << " ... skipping killing def/dom access\n"); 1460 continue; 1461 } 1462 1463 // Check all uses for MemoryDefs, except for defs completely overwriting 1464 // the original location. Otherwise we have to check uses of *all* 1465 // MemoryDefs we discover, including non-aliasing ones. Otherwise we might 1466 // miss cases like the following 1467 // 1 = Def(LoE) ; <----- DeadDef stores [0,1] 1468 // 2 = Def(1) ; (2, 1) = NoAlias, stores [2,3] 1469 // Use(2) ; MayAlias 2 *and* 1, loads [0, 3]. 1470 // (The Use points to the *first* Def it may alias) 1471 // 3 = Def(1) ; <---- Current (3, 2) = NoAlias, (3,1) = MayAlias, 1472 // stores [0,1] 1473 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) { 1474 if (isCompleteOverwrite(MaybeDeadLoc, MaybeDeadI, UseInst)) { 1475 BasicBlock *MaybeKillingBlock = UseInst->getParent(); 1476 if (PostOrderNumbers.find(MaybeKillingBlock)->second < 1477 PostOrderNumbers.find(MaybeDeadAccess->getBlock())->second) { 1478 if (!isInvisibleToCallerAfterRet(KillingUndObj)) { 1479 LLVM_DEBUG(dbgs() 1480 << " ... found killing def " << *UseInst << "\n"); 1481 KillingDefs.insert(UseInst); 1482 } 1483 } else { 1484 LLVM_DEBUG(dbgs() 1485 << " ... found preceeding def " << *UseInst << "\n"); 1486 return None; 1487 } 1488 } else 1489 PushMemUses(UseDef); 1490 } 1491 } 1492 1493 // For accesses to locations visible after the function returns, make sure 1494 // that the location is dead (=overwritten) along all paths from 1495 // MaybeDeadAccess to the exit. 1496 if (!isInvisibleToCallerAfterRet(KillingUndObj)) { 1497 SmallPtrSet<BasicBlock *, 16> KillingBlocks; 1498 for (Instruction *KD : KillingDefs) 1499 KillingBlocks.insert(KD->getParent()); 1500 assert(!KillingBlocks.empty() && 1501 "Expected at least a single killing block"); 1502 1503 // Find the common post-dominator of all killing blocks. 1504 BasicBlock *CommonPred = *KillingBlocks.begin(); 1505 for (BasicBlock *BB : llvm::drop_begin(KillingBlocks)) { 1506 if (!CommonPred) 1507 break; 1508 CommonPred = PDT.findNearestCommonDominator(CommonPred, BB); 1509 } 1510 1511 // If the common post-dominator does not post-dominate MaybeDeadAccess, 1512 // there is a path from MaybeDeadAccess to an exit not going through a 1513 // killing block. 1514 if (!PDT.dominates(CommonPred, MaybeDeadAccess->getBlock())) 1515 return None; 1516 1517 // If CommonPred itself is in the set of killing blocks, we're done. 1518 if (KillingBlocks.count(CommonPred)) 1519 return {MaybeDeadAccess}; 1520 1521 SetVector<BasicBlock *> WorkList; 1522 1523 // If CommonPred is null, there are multiple exits from the function. 1524 // They all have to be added to the worklist. 1525 if (CommonPred) 1526 WorkList.insert(CommonPred); 1527 else 1528 for (BasicBlock *R : PDT.roots()) 1529 WorkList.insert(R); 1530 1531 NumCFGTries++; 1532 // Check if all paths starting from an exit node go through one of the 1533 // killing blocks before reaching MaybeDeadAccess. 1534 for (unsigned I = 0; I < WorkList.size(); I++) { 1535 NumCFGChecks++; 1536 BasicBlock *Current = WorkList[I]; 1537 if (KillingBlocks.count(Current)) 1538 continue; 1539 if (Current == MaybeDeadAccess->getBlock()) 1540 return None; 1541 1542 // MaybeDeadAccess is reachable from the entry, so we don't have to 1543 // explore unreachable blocks further. 1544 if (!DT.isReachableFromEntry(Current)) 1545 continue; 1546 1547 for (BasicBlock *Pred : predecessors(Current)) 1548 WorkList.insert(Pred); 1549 1550 if (WorkList.size() >= MemorySSAPathCheckLimit) 1551 return None; 1552 } 1553 NumCFGSuccess++; 1554 } 1555 1556 // No aliasing MemoryUses of MaybeDeadAccess found, MaybeDeadAccess is 1557 // potentially dead. 1558 return {MaybeDeadAccess}; 1559 } 1560 1561 // Delete dead memory defs 1562 void deleteDeadInstruction(Instruction *SI) { 1563 MemorySSAUpdater Updater(&MSSA); 1564 SmallVector<Instruction *, 32> NowDeadInsts; 1565 NowDeadInsts.push_back(SI); 1566 --NumFastOther; 1567 1568 while (!NowDeadInsts.empty()) { 1569 Instruction *DeadInst = NowDeadInsts.pop_back_val(); 1570 ++NumFastOther; 1571 1572 // Try to preserve debug information attached to the dead instruction. 1573 salvageDebugInfo(*DeadInst); 1574 salvageKnowledge(DeadInst); 1575 1576 // Remove the Instruction from MSSA. 1577 if (MemoryAccess *MA = MSSA.getMemoryAccess(DeadInst)) { 1578 if (MemoryDef *MD = dyn_cast<MemoryDef>(MA)) { 1579 SkipStores.insert(MD); 1580 } 1581 1582 Updater.removeMemoryAccess(MA); 1583 } 1584 1585 auto I = IOLs.find(DeadInst->getParent()); 1586 if (I != IOLs.end()) 1587 I->second.erase(DeadInst); 1588 // Remove its operands 1589 for (Use &O : DeadInst->operands()) 1590 if (Instruction *OpI = dyn_cast<Instruction>(O)) { 1591 O = nullptr; 1592 if (isInstructionTriviallyDead(OpI, &TLI)) 1593 NowDeadInsts.push_back(OpI); 1594 } 1595 1596 EI.removeInstruction(DeadInst); 1597 DeadInst->eraseFromParent(); 1598 } 1599 } 1600 1601 // Check for any extra throws between \p KillingI and \p DeadI that block 1602 // DSE. This only checks extra maythrows (those that aren't MemoryDef's). 1603 // MemoryDef that may throw are handled during the walk from one def to the 1604 // next. 1605 bool mayThrowBetween(Instruction *KillingI, Instruction *DeadI, 1606 const Value *KillingUndObj) { 1607 // First see if we can ignore it by using the fact that KillingI is an 1608 // alloca/alloca like object that is not visible to the caller during 1609 // execution of the function. 1610 if (KillingUndObj && isInvisibleToCallerOnUnwind(KillingUndObj)) 1611 return false; 1612 1613 if (KillingI->getParent() == DeadI->getParent()) 1614 return ThrowingBlocks.count(KillingI->getParent()); 1615 return !ThrowingBlocks.empty(); 1616 } 1617 1618 // Check if \p DeadI acts as a DSE barrier for \p KillingI. The following 1619 // instructions act as barriers: 1620 // * A memory instruction that may throw and \p KillingI accesses a non-stack 1621 // object. 1622 // * Atomic stores stronger that monotonic. 1623 bool isDSEBarrier(const Value *KillingUndObj, Instruction *DeadI) { 1624 // If DeadI may throw it acts as a barrier, unless we are to an 1625 // alloca/alloca like object that does not escape. 1626 if (DeadI->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj)) 1627 return true; 1628 1629 // If DeadI is an atomic load/store stronger than monotonic, do not try to 1630 // eliminate/reorder it. 1631 if (DeadI->isAtomic()) { 1632 if (auto *LI = dyn_cast<LoadInst>(DeadI)) 1633 return isStrongerThanMonotonic(LI->getOrdering()); 1634 if (auto *SI = dyn_cast<StoreInst>(DeadI)) 1635 return isStrongerThanMonotonic(SI->getOrdering()); 1636 if (auto *ARMW = dyn_cast<AtomicRMWInst>(DeadI)) 1637 return isStrongerThanMonotonic(ARMW->getOrdering()); 1638 if (auto *CmpXchg = dyn_cast<AtomicCmpXchgInst>(DeadI)) 1639 return isStrongerThanMonotonic(CmpXchg->getSuccessOrdering()) || 1640 isStrongerThanMonotonic(CmpXchg->getFailureOrdering()); 1641 llvm_unreachable("other instructions should be skipped in MemorySSA"); 1642 } 1643 return false; 1644 } 1645 1646 /// Eliminate writes to objects that are not visible in the caller and are not 1647 /// accessed before returning from the function. 1648 bool eliminateDeadWritesAtEndOfFunction() { 1649 bool MadeChange = false; 1650 LLVM_DEBUG( 1651 dbgs() 1652 << "Trying to eliminate MemoryDefs at the end of the function\n"); 1653 for (MemoryDef *Def : llvm::reverse(MemDefs)) { 1654 if (SkipStores.contains(Def)) 1655 continue; 1656 1657 Instruction *DefI = Def->getMemoryInst(); 1658 auto DefLoc = getLocForWrite(DefI); 1659 if (!DefLoc || !isRemovable(DefI)) 1660 continue; 1661 1662 // NOTE: Currently eliminating writes at the end of a function is limited 1663 // to MemoryDefs with a single underlying object, to save compile-time. In 1664 // practice it appears the case with multiple underlying objects is very 1665 // uncommon. If it turns out to be important, we can use 1666 // getUnderlyingObjects here instead. 1667 const Value *UO = getUnderlyingObject(DefLoc->Ptr); 1668 if (!isInvisibleToCallerAfterRet(UO)) 1669 continue; 1670 1671 if (isWriteAtEndOfFunction(Def)) { 1672 // See through pointer-to-pointer bitcasts 1673 LLVM_DEBUG(dbgs() << " ... MemoryDef is not accessed until the end " 1674 "of the function\n"); 1675 deleteDeadInstruction(DefI); 1676 ++NumFastStores; 1677 MadeChange = true; 1678 } 1679 } 1680 return MadeChange; 1681 } 1682 1683 /// If we have a zero initializing memset following a call to malloc, 1684 /// try folding it into a call to calloc. 1685 bool tryFoldIntoCalloc(MemoryDef *Def, const Value *DefUO) { 1686 Instruction *DefI = Def->getMemoryInst(); 1687 MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI); 1688 if (!MemSet) 1689 // TODO: Could handle zero store to small allocation as well. 1690 return false; 1691 Constant *StoredConstant = dyn_cast<Constant>(MemSet->getValue()); 1692 if (!StoredConstant || !StoredConstant->isNullValue()) 1693 return false; 1694 1695 if (!isRemovable(DefI)) 1696 // The memset might be volatile.. 1697 return false; 1698 1699 if (F.hasFnAttribute(Attribute::SanitizeMemory) || 1700 F.hasFnAttribute(Attribute::SanitizeAddress) || 1701 F.hasFnAttribute(Attribute::SanitizeHWAddress) || 1702 F.getName() == "calloc") 1703 return false; 1704 auto *Malloc = const_cast<CallInst *>(dyn_cast<CallInst>(DefUO)); 1705 if (!Malloc) 1706 return false; 1707 auto *InnerCallee = Malloc->getCalledFunction(); 1708 if (!InnerCallee) 1709 return false; 1710 LibFunc Func; 1711 if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) || 1712 Func != LibFunc_malloc) 1713 return false; 1714 1715 auto shouldCreateCalloc = [](CallInst *Malloc, CallInst *Memset) { 1716 // Check for br(icmp ptr, null), truebb, falsebb) pattern at the end 1717 // of malloc block 1718 auto *MallocBB = Malloc->getParent(), 1719 *MemsetBB = Memset->getParent(); 1720 if (MallocBB == MemsetBB) 1721 return true; 1722 auto *Ptr = Memset->getArgOperand(0); 1723 auto *TI = MallocBB->getTerminator(); 1724 ICmpInst::Predicate Pred; 1725 BasicBlock *TrueBB, *FalseBB; 1726 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Ptr), m_Zero()), TrueBB, 1727 FalseBB))) 1728 return false; 1729 if (Pred != ICmpInst::ICMP_EQ || MemsetBB != FalseBB) 1730 return false; 1731 return true; 1732 }; 1733 1734 if (Malloc->getOperand(0) != MemSet->getLength()) 1735 return false; 1736 if (!shouldCreateCalloc(Malloc, MemSet) || 1737 !DT.dominates(Malloc, MemSet) || 1738 !memoryIsNotModifiedBetween(Malloc, MemSet, BatchAA, DL, &DT)) 1739 return false; 1740 IRBuilder<> IRB(Malloc); 1741 const auto &DL = Malloc->getModule()->getDataLayout(); 1742 auto *Calloc = 1743 emitCalloc(ConstantInt::get(IRB.getIntPtrTy(DL), 1), 1744 Malloc->getArgOperand(0), IRB, TLI); 1745 if (!Calloc) 1746 return false; 1747 MemorySSAUpdater Updater(&MSSA); 1748 auto *LastDef = 1749 cast<MemoryDef>(Updater.getMemorySSA()->getMemoryAccess(Malloc)); 1750 auto *NewAccess = 1751 Updater.createMemoryAccessAfter(cast<Instruction>(Calloc), LastDef, 1752 LastDef); 1753 auto *NewAccessMD = cast<MemoryDef>(NewAccess); 1754 Updater.insertDef(NewAccessMD, /*RenameUses=*/true); 1755 Updater.removeMemoryAccess(Malloc); 1756 Malloc->replaceAllUsesWith(Calloc); 1757 Malloc->eraseFromParent(); 1758 return true; 1759 } 1760 1761 /// \returns true if \p Def is a no-op store, either because it 1762 /// directly stores back a loaded value or stores zero to a calloced object. 1763 bool storeIsNoop(MemoryDef *Def, const Value *DefUO) { 1764 Instruction *DefI = Def->getMemoryInst(); 1765 StoreInst *Store = dyn_cast<StoreInst>(DefI); 1766 MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI); 1767 Constant *StoredConstant = nullptr; 1768 if (Store) 1769 StoredConstant = dyn_cast<Constant>(Store->getOperand(0)); 1770 else if (MemSet) 1771 StoredConstant = dyn_cast<Constant>(MemSet->getValue()); 1772 else 1773 return false; 1774 1775 if (!isRemovable(DefI)) 1776 return false; 1777 1778 if (StoredConstant && isAllocationFn(DefUO, &TLI)) { 1779 auto *CB = cast<CallBase>(DefUO); 1780 auto *InitC = getInitialValueOfAllocation(CB, &TLI, 1781 StoredConstant->getType()); 1782 // If the clobbering access is LiveOnEntry, no instructions between them 1783 // can modify the memory location. 1784 if (InitC && InitC == StoredConstant) 1785 return MSSA.isLiveOnEntryDef( 1786 MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def)); 1787 } 1788 1789 if (!Store) 1790 return false; 1791 1792 if (auto *LoadI = dyn_cast<LoadInst>(Store->getOperand(0))) { 1793 if (LoadI->getPointerOperand() == Store->getOperand(1)) { 1794 // Get the defining access for the load. 1795 auto *LoadAccess = MSSA.getMemoryAccess(LoadI)->getDefiningAccess(); 1796 // Fast path: the defining accesses are the same. 1797 if (LoadAccess == Def->getDefiningAccess()) 1798 return true; 1799 1800 // Look through phi accesses. Recursively scan all phi accesses by 1801 // adding them to a worklist. Bail when we run into a memory def that 1802 // does not match LoadAccess. 1803 SetVector<MemoryAccess *> ToCheck; 1804 MemoryAccess *Current = 1805 MSSA.getWalker()->getClobberingMemoryAccess(Def); 1806 // We don't want to bail when we run into the store memory def. But, 1807 // the phi access may point to it. So, pretend like we've already 1808 // checked it. 1809 ToCheck.insert(Def); 1810 ToCheck.insert(Current); 1811 // Start at current (1) to simulate already having checked Def. 1812 for (unsigned I = 1; I < ToCheck.size(); ++I) { 1813 Current = ToCheck[I]; 1814 if (auto PhiAccess = dyn_cast<MemoryPhi>(Current)) { 1815 // Check all the operands. 1816 for (auto &Use : PhiAccess->incoming_values()) 1817 ToCheck.insert(cast<MemoryAccess>(&Use)); 1818 continue; 1819 } 1820 1821 // If we found a memory def, bail. This happens when we have an 1822 // unrelated write in between an otherwise noop store. 1823 assert(isa<MemoryDef>(Current) && 1824 "Only MemoryDefs should reach here."); 1825 // TODO: Skip no alias MemoryDefs that have no aliasing reads. 1826 // We are searching for the definition of the store's destination. 1827 // So, if that is the same definition as the load, then this is a 1828 // noop. Otherwise, fail. 1829 if (LoadAccess != Current) 1830 return false; 1831 } 1832 return true; 1833 } 1834 } 1835 1836 return false; 1837 } 1838 1839 bool removePartiallyOverlappedStores(InstOverlapIntervalsTy &IOL) { 1840 bool Changed = false; 1841 for (auto OI : IOL) { 1842 Instruction *DeadI = OI.first; 1843 MemoryLocation Loc = *getLocForWrite(DeadI); 1844 assert(isRemovable(DeadI) && "Expect only removable instruction"); 1845 1846 const Value *Ptr = Loc.Ptr->stripPointerCasts(); 1847 int64_t DeadStart = 0; 1848 uint64_t DeadSize = Loc.Size.getValue(); 1849 GetPointerBaseWithConstantOffset(Ptr, DeadStart, DL); 1850 OverlapIntervalsTy &IntervalMap = OI.second; 1851 Changed |= tryToShortenEnd(DeadI, IntervalMap, DeadStart, DeadSize); 1852 if (IntervalMap.empty()) 1853 continue; 1854 Changed |= tryToShortenBegin(DeadI, IntervalMap, DeadStart, DeadSize); 1855 } 1856 return Changed; 1857 } 1858 1859 /// Eliminates writes to locations where the value that is being written 1860 /// is already stored at the same location. 1861 bool eliminateRedundantStoresOfExistingValues() { 1862 bool MadeChange = false; 1863 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs that write the " 1864 "already existing value\n"); 1865 for (auto *Def : MemDefs) { 1866 if (SkipStores.contains(Def) || MSSA.isLiveOnEntryDef(Def)) 1867 continue; 1868 1869 Instruction *DefInst = Def->getMemoryInst(); 1870 auto MaybeDefLoc = getLocForWrite(DefInst); 1871 if (!MaybeDefLoc || !isRemovable(DefInst)) 1872 continue; 1873 1874 MemoryDef *UpperDef; 1875 // To conserve compile-time, we avoid walking to the next clobbering def. 1876 // Instead, we just try to get the optimized access, if it exists. DSE 1877 // will try to optimize defs during the earlier traversal. 1878 if (Def->isOptimized()) 1879 UpperDef = dyn_cast<MemoryDef>(Def->getOptimized()); 1880 else 1881 UpperDef = dyn_cast<MemoryDef>(Def->getDefiningAccess()); 1882 if (!UpperDef || MSSA.isLiveOnEntryDef(UpperDef)) 1883 continue; 1884 1885 Instruction *UpperInst = UpperDef->getMemoryInst(); 1886 auto IsRedundantStore = [&]() { 1887 if (DefInst->isIdenticalTo(UpperInst)) 1888 return true; 1889 if (auto *MemSetI = dyn_cast<MemSetInst>(UpperInst)) { 1890 if (auto *SI = dyn_cast<StoreInst>(DefInst)) { 1891 // MemSetInst must have a write location. 1892 MemoryLocation UpperLoc = *getLocForWrite(UpperInst); 1893 int64_t InstWriteOffset = 0; 1894 int64_t DepWriteOffset = 0; 1895 auto OR = isOverwrite(UpperInst, DefInst, UpperLoc, *MaybeDefLoc, 1896 InstWriteOffset, DepWriteOffset); 1897 Value *StoredByte = isBytewiseValue(SI->getValueOperand(), DL); 1898 return StoredByte && StoredByte == MemSetI->getOperand(1) && 1899 OR == OW_Complete; 1900 } 1901 } 1902 return false; 1903 }; 1904 1905 if (!IsRedundantStore() || isReadClobber(*MaybeDefLoc, DefInst)) 1906 continue; 1907 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *DefInst 1908 << '\n'); 1909 deleteDeadInstruction(DefInst); 1910 NumRedundantStores++; 1911 MadeChange = true; 1912 } 1913 return MadeChange; 1914 } 1915 }; 1916 1917 static bool eliminateDeadStores(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, 1918 DominatorTree &DT, PostDominatorTree &PDT, 1919 const TargetLibraryInfo &TLI, 1920 const LoopInfo &LI) { 1921 bool MadeChange = false; 1922 1923 DSEState State(F, AA, MSSA, DT, PDT, TLI, LI); 1924 // For each store: 1925 for (unsigned I = 0; I < State.MemDefs.size(); I++) { 1926 MemoryDef *KillingDef = State.MemDefs[I]; 1927 if (State.SkipStores.count(KillingDef)) 1928 continue; 1929 Instruction *KillingI = KillingDef->getMemoryInst(); 1930 1931 Optional<MemoryLocation> MaybeKillingLoc; 1932 if (State.isMemTerminatorInst(KillingI)) 1933 MaybeKillingLoc = State.getLocForTerminator(KillingI).map( 1934 [](const std::pair<MemoryLocation, bool> &P) { return P.first; }); 1935 else 1936 MaybeKillingLoc = State.getLocForWrite(KillingI); 1937 1938 if (!MaybeKillingLoc) { 1939 LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for " 1940 << *KillingI << "\n"); 1941 continue; 1942 } 1943 MemoryLocation KillingLoc = *MaybeKillingLoc; 1944 assert(KillingLoc.Ptr && "KillingLoc should not be null"); 1945 const Value *KillingUndObj = getUnderlyingObject(KillingLoc.Ptr); 1946 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by " 1947 << *KillingDef << " (" << *KillingI << ")\n"); 1948 1949 unsigned ScanLimit = MemorySSAScanLimit; 1950 unsigned WalkerStepLimit = MemorySSAUpwardsStepLimit; 1951 unsigned PartialLimit = MemorySSAPartialStoreLimit; 1952 // Worklist of MemoryAccesses that may be killed by KillingDef. 1953 SetVector<MemoryAccess *> ToCheck; 1954 ToCheck.insert(KillingDef->getDefiningAccess()); 1955 1956 bool Shortend = false; 1957 bool IsMemTerm = State.isMemTerminatorInst(KillingI); 1958 // Check if MemoryAccesses in the worklist are killed by KillingDef. 1959 for (unsigned I = 0; I < ToCheck.size(); I++) { 1960 MemoryAccess *Current = ToCheck[I]; 1961 if (State.SkipStores.count(Current)) 1962 continue; 1963 1964 Optional<MemoryAccess *> MaybeDeadAccess = State.getDomMemoryDef( 1965 KillingDef, Current, KillingLoc, KillingUndObj, ScanLimit, 1966 WalkerStepLimit, IsMemTerm, PartialLimit); 1967 1968 if (!MaybeDeadAccess) { 1969 LLVM_DEBUG(dbgs() << " finished walk\n"); 1970 continue; 1971 } 1972 1973 MemoryAccess *DeadAccess = *MaybeDeadAccess; 1974 LLVM_DEBUG(dbgs() << " Checking if we can kill " << *DeadAccess); 1975 if (isa<MemoryPhi>(DeadAccess)) { 1976 LLVM_DEBUG(dbgs() << "\n ... adding incoming values to worklist\n"); 1977 for (Value *V : cast<MemoryPhi>(DeadAccess)->incoming_values()) { 1978 MemoryAccess *IncomingAccess = cast<MemoryAccess>(V); 1979 BasicBlock *IncomingBlock = IncomingAccess->getBlock(); 1980 BasicBlock *PhiBlock = DeadAccess->getBlock(); 1981 1982 // We only consider incoming MemoryAccesses that come before the 1983 // MemoryPhi. Otherwise we could discover candidates that do not 1984 // strictly dominate our starting def. 1985 if (State.PostOrderNumbers[IncomingBlock] > 1986 State.PostOrderNumbers[PhiBlock]) 1987 ToCheck.insert(IncomingAccess); 1988 } 1989 continue; 1990 } 1991 auto *DeadDefAccess = cast<MemoryDef>(DeadAccess); 1992 Instruction *DeadI = DeadDefAccess->getMemoryInst(); 1993 LLVM_DEBUG(dbgs() << " (" << *DeadI << ")\n"); 1994 ToCheck.insert(DeadDefAccess->getDefiningAccess()); 1995 NumGetDomMemoryDefPassed++; 1996 1997 if (!DebugCounter::shouldExecute(MemorySSACounter)) 1998 continue; 1999 2000 MemoryLocation DeadLoc = *State.getLocForWrite(DeadI); 2001 2002 if (IsMemTerm) { 2003 const Value *DeadUndObj = getUnderlyingObject(DeadLoc.Ptr); 2004 if (KillingUndObj != DeadUndObj) 2005 continue; 2006 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DeadI 2007 << "\n KILLER: " << *KillingI << '\n'); 2008 State.deleteDeadInstruction(DeadI); 2009 ++NumFastStores; 2010 MadeChange = true; 2011 } else { 2012 // Check if DeadI overwrites KillingI. 2013 int64_t KillingOffset = 0; 2014 int64_t DeadOffset = 0; 2015 OverwriteResult OR = State.isOverwrite( 2016 KillingI, DeadI, KillingLoc, DeadLoc, KillingOffset, DeadOffset); 2017 if (OR == OW_MaybePartial) { 2018 auto Iter = State.IOLs.insert( 2019 std::make_pair<BasicBlock *, InstOverlapIntervalsTy>( 2020 DeadI->getParent(), InstOverlapIntervalsTy())); 2021 auto &IOL = Iter.first->second; 2022 OR = isPartialOverwrite(KillingLoc, DeadLoc, KillingOffset, 2023 DeadOffset, DeadI, IOL); 2024 } 2025 2026 if (EnablePartialStoreMerging && OR == OW_PartialEarlierWithFullLater) { 2027 auto *DeadSI = dyn_cast<StoreInst>(DeadI); 2028 auto *KillingSI = dyn_cast<StoreInst>(KillingI); 2029 // We are re-using tryToMergePartialOverlappingStores, which requires 2030 // DeadSI to dominate DeadSI. 2031 // TODO: implement tryToMergeParialOverlappingStores using MemorySSA. 2032 if (DeadSI && KillingSI && DT.dominates(DeadSI, KillingSI)) { 2033 if (Constant *Merged = tryToMergePartialOverlappingStores( 2034 KillingSI, DeadSI, KillingOffset, DeadOffset, State.DL, 2035 State.BatchAA, &DT)) { 2036 2037 // Update stored value of earlier store to merged constant. 2038 DeadSI->setOperand(0, Merged); 2039 ++NumModifiedStores; 2040 MadeChange = true; 2041 2042 Shortend = true; 2043 // Remove killing store and remove any outstanding overlap 2044 // intervals for the updated store. 2045 State.deleteDeadInstruction(KillingSI); 2046 auto I = State.IOLs.find(DeadSI->getParent()); 2047 if (I != State.IOLs.end()) 2048 I->second.erase(DeadSI); 2049 break; 2050 } 2051 } 2052 } 2053 2054 if (OR == OW_Complete) { 2055 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DeadI 2056 << "\n KILLER: " << *KillingI << '\n'); 2057 State.deleteDeadInstruction(DeadI); 2058 ++NumFastStores; 2059 MadeChange = true; 2060 } 2061 } 2062 } 2063 2064 // Check if the store is a no-op. 2065 if (!Shortend && State.storeIsNoop(KillingDef, KillingUndObj)) { 2066 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *KillingI 2067 << '\n'); 2068 State.deleteDeadInstruction(KillingI); 2069 NumRedundantStores++; 2070 MadeChange = true; 2071 continue; 2072 } 2073 2074 // Can we form a calloc from a memset/malloc pair? 2075 if (!Shortend && State.tryFoldIntoCalloc(KillingDef, KillingUndObj)) { 2076 LLVM_DEBUG(dbgs() << "DSE: Remove memset after forming calloc:\n" 2077 << " DEAD: " << *KillingI << '\n'); 2078 State.deleteDeadInstruction(KillingI); 2079 MadeChange = true; 2080 continue; 2081 } 2082 } 2083 2084 if (EnablePartialOverwriteTracking) 2085 for (auto &KV : State.IOLs) 2086 MadeChange |= State.removePartiallyOverlappedStores(KV.second); 2087 2088 MadeChange |= State.eliminateRedundantStoresOfExistingValues(); 2089 MadeChange |= State.eliminateDeadWritesAtEndOfFunction(); 2090 return MadeChange; 2091 } 2092 } // end anonymous namespace 2093 2094 //===----------------------------------------------------------------------===// 2095 // DSE Pass 2096 //===----------------------------------------------------------------------===// 2097 PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) { 2098 AliasAnalysis &AA = AM.getResult<AAManager>(F); 2099 const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F); 2100 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 2101 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2102 PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 2103 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 2104 2105 bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, TLI, LI); 2106 2107 #ifdef LLVM_ENABLE_STATS 2108 if (AreStatisticsEnabled()) 2109 for (auto &I : instructions(F)) 2110 NumRemainingStores += isa<StoreInst>(&I); 2111 #endif 2112 2113 if (!Changed) 2114 return PreservedAnalyses::all(); 2115 2116 PreservedAnalyses PA; 2117 PA.preserveSet<CFGAnalyses>(); 2118 PA.preserve<MemorySSAAnalysis>(); 2119 PA.preserve<LoopAnalysis>(); 2120 return PA; 2121 } 2122 2123 namespace { 2124 2125 /// A legacy pass for the legacy pass manager that wraps \c DSEPass. 2126 class DSELegacyPass : public FunctionPass { 2127 public: 2128 static char ID; // Pass identification, replacement for typeid 2129 2130 DSELegacyPass() : FunctionPass(ID) { 2131 initializeDSELegacyPassPass(*PassRegistry::getPassRegistry()); 2132 } 2133 2134 bool runOnFunction(Function &F) override { 2135 if (skipFunction(F)) 2136 return false; 2137 2138 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2139 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2140 const TargetLibraryInfo &TLI = 2141 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2142 MemorySSA &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2143 PostDominatorTree &PDT = 2144 getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 2145 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2146 2147 bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, TLI, LI); 2148 2149 #ifdef LLVM_ENABLE_STATS 2150 if (AreStatisticsEnabled()) 2151 for (auto &I : instructions(F)) 2152 NumRemainingStores += isa<StoreInst>(&I); 2153 #endif 2154 2155 return Changed; 2156 } 2157 2158 void getAnalysisUsage(AnalysisUsage &AU) const override { 2159 AU.setPreservesCFG(); 2160 AU.addRequired<AAResultsWrapperPass>(); 2161 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2162 AU.addPreserved<GlobalsAAWrapperPass>(); 2163 AU.addRequired<DominatorTreeWrapperPass>(); 2164 AU.addPreserved<DominatorTreeWrapperPass>(); 2165 AU.addRequired<PostDominatorTreeWrapperPass>(); 2166 AU.addRequired<MemorySSAWrapperPass>(); 2167 AU.addPreserved<PostDominatorTreeWrapperPass>(); 2168 AU.addPreserved<MemorySSAWrapperPass>(); 2169 AU.addRequired<LoopInfoWrapperPass>(); 2170 AU.addPreserved<LoopInfoWrapperPass>(); 2171 } 2172 }; 2173 2174 } // end anonymous namespace 2175 2176 char DSELegacyPass::ID = 0; 2177 2178 INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false, 2179 false) 2180 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2181 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 2182 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2183 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 2184 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 2185 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 2186 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2187 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2188 INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false, 2189 false) 2190 2191 FunctionPass *llvm::createDeadStoreEliminationPass() { 2192 return new DSELegacyPass(); 2193 } 2194