1 //===- DeadStoreElimination.cpp - MemorySSA Backed Dead Store Elimination -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The code below implements dead store elimination using MemorySSA. It uses
10 // the following general approach: given a MemoryDef, walk upwards to find
11 // clobbering MemoryDefs that may be killed by the starting def. Then check
12 // that there are no uses that may read the location of the original MemoryDef
13 // in between both MemoryDefs. A bit more concretely:
14 //
15 // For all MemoryDefs StartDef:
16 // 1. Get the next dominating clobbering MemoryDef (MaybeDeadAccess) by walking
17 //    upwards.
18 // 2. Check that there are no reads between MaybeDeadAccess and the StartDef by
19 //    checking all uses starting at MaybeDeadAccess and walking until we see
20 //    StartDef.
21 // 3. For each found CurrentDef, check that:
22 //   1. There are no barrier instructions between CurrentDef and StartDef (like
23 //       throws or stores with ordering constraints).
24 //   2. StartDef is executed whenever CurrentDef is executed.
25 //   3. StartDef completely overwrites CurrentDef.
26 // 4. Erase CurrentDef from the function and MemorySSA.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/Transforms/Scalar/DeadStoreElimination.h"
31 #include "llvm/ADT/APInt.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/MapVector.h"
34 #include "llvm/ADT/PostOrderIterator.h"
35 #include "llvm/ADT/SetVector.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/StringRef.h"
40 #include "llvm/Analysis/AliasAnalysis.h"
41 #include "llvm/Analysis/CaptureTracking.h"
42 #include "llvm/Analysis/GlobalsModRef.h"
43 #include "llvm/Analysis/LoopInfo.h"
44 #include "llvm/Analysis/MemoryBuiltins.h"
45 #include "llvm/Analysis/MemoryLocation.h"
46 #include "llvm/Analysis/MemorySSA.h"
47 #include "llvm/Analysis/MemorySSAUpdater.h"
48 #include "llvm/Analysis/MustExecute.h"
49 #include "llvm/Analysis/PostDominators.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Analysis/ValueTracking.h"
52 #include "llvm/IR/Argument.h"
53 #include "llvm/IR/BasicBlock.h"
54 #include "llvm/IR/Constant.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/Dominators.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstIterator.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/Intrinsics.h"
66 #include "llvm/IR/LLVMContext.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/PassManager.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/InitializePasses.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/CommandLine.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/DebugCounter.h"
77 #include "llvm/Support/ErrorHandling.h"
78 #include "llvm/Support/MathExtras.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
82 #include "llvm/Transforms/Utils/BuildLibCalls.h"
83 #include "llvm/Transforms/Utils/Local.h"
84 #include <algorithm>
85 #include <cassert>
86 #include <cstddef>
87 #include <cstdint>
88 #include <iterator>
89 #include <map>
90 #include <utility>
91 
92 using namespace llvm;
93 using namespace PatternMatch;
94 
95 #define DEBUG_TYPE "dse"
96 
97 STATISTIC(NumRemainingStores, "Number of stores remaining after DSE");
98 STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
99 STATISTIC(NumFastStores, "Number of stores deleted");
100 STATISTIC(NumFastOther, "Number of other instrs removed");
101 STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
102 STATISTIC(NumModifiedStores, "Number of stores modified");
103 STATISTIC(NumCFGChecks, "Number of stores modified");
104 STATISTIC(NumCFGTries, "Number of stores modified");
105 STATISTIC(NumCFGSuccess, "Number of stores modified");
106 STATISTIC(NumGetDomMemoryDefPassed,
107           "Number of times a valid candidate is returned from getDomMemoryDef");
108 STATISTIC(NumDomMemDefChecks,
109           "Number iterations check for reads in getDomMemoryDef");
110 
111 DEBUG_COUNTER(MemorySSACounter, "dse-memoryssa",
112               "Controls which MemoryDefs are eliminated.");
113 
114 static cl::opt<bool>
115 EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
116   cl::init(true), cl::Hidden,
117   cl::desc("Enable partial-overwrite tracking in DSE"));
118 
119 static cl::opt<bool>
120 EnablePartialStoreMerging("enable-dse-partial-store-merging",
121   cl::init(true), cl::Hidden,
122   cl::desc("Enable partial store merging in DSE"));
123 
124 static cl::opt<unsigned>
125     MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(150), cl::Hidden,
126                        cl::desc("The number of memory instructions to scan for "
127                                 "dead store elimination (default = 150)"));
128 static cl::opt<unsigned> MemorySSAUpwardsStepLimit(
129     "dse-memoryssa-walklimit", cl::init(90), cl::Hidden,
130     cl::desc("The maximum number of steps while walking upwards to find "
131              "MemoryDefs that may be killed (default = 90)"));
132 
133 static cl::opt<unsigned> MemorySSAPartialStoreLimit(
134     "dse-memoryssa-partial-store-limit", cl::init(5), cl::Hidden,
135     cl::desc("The maximum number candidates that only partially overwrite the "
136              "killing MemoryDef to consider"
137              " (default = 5)"));
138 
139 static cl::opt<unsigned> MemorySSADefsPerBlockLimit(
140     "dse-memoryssa-defs-per-block-limit", cl::init(5000), cl::Hidden,
141     cl::desc("The number of MemoryDefs we consider as candidates to eliminated "
142              "other stores per basic block (default = 5000)"));
143 
144 static cl::opt<unsigned> MemorySSASameBBStepCost(
145     "dse-memoryssa-samebb-cost", cl::init(1), cl::Hidden,
146     cl::desc(
147         "The cost of a step in the same basic block as the killing MemoryDef"
148         "(default = 1)"));
149 
150 static cl::opt<unsigned>
151     MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(5),
152                              cl::Hidden,
153                              cl::desc("The cost of a step in a different basic "
154                                       "block than the killing MemoryDef"
155                                       "(default = 5)"));
156 
157 static cl::opt<unsigned> MemorySSAPathCheckLimit(
158     "dse-memoryssa-path-check-limit", cl::init(50), cl::Hidden,
159     cl::desc("The maximum number of blocks to check when trying to prove that "
160              "all paths to an exit go through a killing block (default = 50)"));
161 
162 // This flags allows or disallows DSE to optimize MemorySSA during its
163 // traversal. Note that DSE optimizing MemorySSA may impact other passes
164 // downstream of the DSE invocation and can lead to issues not being
165 // reproducible in isolation (i.e. when MemorySSA is built from scratch). In
166 // those cases, the flag can be used to check if DSE's MemorySSA optimizations
167 // impact follow-up passes.
168 static cl::opt<bool>
169     OptimizeMemorySSA("dse-optimize-memoryssa", cl::init(true), cl::Hidden,
170                       cl::desc("Allow DSE to optimize memory accesses."));
171 
172 //===----------------------------------------------------------------------===//
173 // Helper functions
174 //===----------------------------------------------------------------------===//
175 using OverlapIntervalsTy = std::map<int64_t, int64_t>;
176 using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>;
177 
178 /// Returns true if the end of this instruction can be safely shortened in
179 /// length.
180 static bool isShortenableAtTheEnd(Instruction *I) {
181   // Don't shorten stores for now
182   if (isa<StoreInst>(I))
183     return false;
184 
185   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
186     switch (II->getIntrinsicID()) {
187       default: return false;
188       case Intrinsic::memset:
189       case Intrinsic::memcpy:
190       case Intrinsic::memcpy_element_unordered_atomic:
191       case Intrinsic::memset_element_unordered_atomic:
192         // Do shorten memory intrinsics.
193         // FIXME: Add memmove if it's also safe to transform.
194         return true;
195     }
196   }
197 
198   // Don't shorten libcalls calls for now.
199 
200   return false;
201 }
202 
203 /// Returns true if the beginning of this instruction can be safely shortened
204 /// in length.
205 static bool isShortenableAtTheBeginning(Instruction *I) {
206   // FIXME: Handle only memset for now. Supporting memcpy/memmove should be
207   // easily done by offsetting the source address.
208   return isa<AnyMemSetInst>(I);
209 }
210 
211 static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
212                                const TargetLibraryInfo &TLI,
213                                const Function *F) {
214   uint64_t Size;
215   ObjectSizeOpts Opts;
216   Opts.NullIsUnknownSize = NullPointerIsDefined(F);
217 
218   if (getObjectSize(V, Size, DL, &TLI, Opts))
219     return Size;
220   return MemoryLocation::UnknownSize;
221 }
222 
223 namespace {
224 
225 enum OverwriteResult {
226   OW_Begin,
227   OW_Complete,
228   OW_End,
229   OW_PartialEarlierWithFullLater,
230   OW_MaybePartial,
231   OW_None,
232   OW_Unknown
233 };
234 
235 } // end anonymous namespace
236 
237 /// Check if two instruction are masked stores that completely
238 /// overwrite one another. More specifically, \p KillingI has to
239 /// overwrite \p DeadI.
240 static OverwriteResult isMaskedStoreOverwrite(const Instruction *KillingI,
241                                               const Instruction *DeadI,
242                                               BatchAAResults &AA) {
243   const auto *KillingII = dyn_cast<IntrinsicInst>(KillingI);
244   const auto *DeadII = dyn_cast<IntrinsicInst>(DeadI);
245   if (KillingII == nullptr || DeadII == nullptr)
246     return OW_Unknown;
247   if (KillingII->getIntrinsicID() != Intrinsic::masked_store ||
248       DeadII->getIntrinsicID() != Intrinsic::masked_store)
249     return OW_Unknown;
250   // Pointers.
251   Value *KillingPtr = KillingII->getArgOperand(1)->stripPointerCasts();
252   Value *DeadPtr = DeadII->getArgOperand(1)->stripPointerCasts();
253   if (KillingPtr != DeadPtr && !AA.isMustAlias(KillingPtr, DeadPtr))
254     return OW_Unknown;
255   // Masks.
256   // TODO: check that KillingII's mask is a superset of the DeadII's mask.
257   if (KillingII->getArgOperand(3) != DeadII->getArgOperand(3))
258     return OW_Unknown;
259   return OW_Complete;
260 }
261 
262 /// Return 'OW_Complete' if a store to the 'KillingLoc' location completely
263 /// overwrites a store to the 'DeadLoc' location, 'OW_End' if the end of the
264 /// 'DeadLoc' location is completely overwritten by 'KillingLoc', 'OW_Begin'
265 /// if the beginning of the 'DeadLoc' location is overwritten by 'KillingLoc'.
266 /// 'OW_PartialEarlierWithFullLater' means that a dead (big) store was
267 /// overwritten by a killing (smaller) store which doesn't write outside the big
268 /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined.
269 /// NOTE: This function must only be called if both \p KillingLoc and \p
270 /// DeadLoc belong to the same underlying object with valid \p KillingOff and
271 /// \p DeadOff.
272 static OverwriteResult isPartialOverwrite(const MemoryLocation &KillingLoc,
273                                           const MemoryLocation &DeadLoc,
274                                           int64_t KillingOff, int64_t DeadOff,
275                                           Instruction *DeadI,
276                                           InstOverlapIntervalsTy &IOL) {
277   const uint64_t KillingSize = KillingLoc.Size.getValue();
278   const uint64_t DeadSize = DeadLoc.Size.getValue();
279   // We may now overlap, although the overlap is not complete. There might also
280   // be other incomplete overlaps, and together, they might cover the complete
281   // dead store.
282   // Note: The correctness of this logic depends on the fact that this function
283   // is not even called providing DepWrite when there are any intervening reads.
284   if (EnablePartialOverwriteTracking &&
285       KillingOff < int64_t(DeadOff + DeadSize) &&
286       int64_t(KillingOff + KillingSize) >= DeadOff) {
287 
288     // Insert our part of the overlap into the map.
289     auto &IM = IOL[DeadI];
290     LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: DeadLoc [" << DeadOff << ", "
291                       << int64_t(DeadOff + DeadSize) << ") KillingLoc ["
292                       << KillingOff << ", " << int64_t(KillingOff + KillingSize)
293                       << ")\n");
294 
295     // Make sure that we only insert non-overlapping intervals and combine
296     // adjacent intervals. The intervals are stored in the map with the ending
297     // offset as the key (in the half-open sense) and the starting offset as
298     // the value.
299     int64_t KillingIntStart = KillingOff;
300     int64_t KillingIntEnd = KillingOff + KillingSize;
301 
302     // Find any intervals ending at, or after, KillingIntStart which start
303     // before KillingIntEnd.
304     auto ILI = IM.lower_bound(KillingIntStart);
305     if (ILI != IM.end() && ILI->second <= KillingIntEnd) {
306       // This existing interval is overlapped with the current store somewhere
307       // in [KillingIntStart, KillingIntEnd]. Merge them by erasing the existing
308       // intervals and adjusting our start and end.
309       KillingIntStart = std::min(KillingIntStart, ILI->second);
310       KillingIntEnd = std::max(KillingIntEnd, ILI->first);
311       ILI = IM.erase(ILI);
312 
313       // Continue erasing and adjusting our end in case other previous
314       // intervals are also overlapped with the current store.
315       //
316       // |--- dead 1 ---|  |--- dead 2 ---|
317       //     |------- killing---------|
318       //
319       while (ILI != IM.end() && ILI->second <= KillingIntEnd) {
320         assert(ILI->second > KillingIntStart && "Unexpected interval");
321         KillingIntEnd = std::max(KillingIntEnd, ILI->first);
322         ILI = IM.erase(ILI);
323       }
324     }
325 
326     IM[KillingIntEnd] = KillingIntStart;
327 
328     ILI = IM.begin();
329     if (ILI->second <= DeadOff && ILI->first >= int64_t(DeadOff + DeadSize)) {
330       LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: DeadLoc ["
331                         << DeadOff << ", " << int64_t(DeadOff + DeadSize)
332                         << ") Composite KillingLoc [" << ILI->second << ", "
333                         << ILI->first << ")\n");
334       ++NumCompletePartials;
335       return OW_Complete;
336     }
337   }
338 
339   // Check for a dead store which writes to all the memory locations that
340   // the killing store writes to.
341   if (EnablePartialStoreMerging && KillingOff >= DeadOff &&
342       int64_t(DeadOff + DeadSize) > KillingOff &&
343       uint64_t(KillingOff - DeadOff) + KillingSize <= DeadSize) {
344     LLVM_DEBUG(dbgs() << "DSE: Partial overwrite a dead load [" << DeadOff
345                       << ", " << int64_t(DeadOff + DeadSize)
346                       << ") by a killing store [" << KillingOff << ", "
347                       << int64_t(KillingOff + KillingSize) << ")\n");
348     // TODO: Maybe come up with a better name?
349     return OW_PartialEarlierWithFullLater;
350   }
351 
352   // Another interesting case is if the killing store overwrites the end of the
353   // dead store.
354   //
355   //      |--dead--|
356   //                |--   killing   --|
357   //
358   // In this case we may want to trim the size of dead store to avoid
359   // generating stores to addresses which will definitely be overwritten killing
360   // store.
361   if (!EnablePartialOverwriteTracking &&
362       (KillingOff > DeadOff && KillingOff < int64_t(DeadOff + DeadSize) &&
363        int64_t(KillingOff + KillingSize) >= int64_t(DeadOff + DeadSize)))
364     return OW_End;
365 
366   // Finally, we also need to check if the killing store overwrites the
367   // beginning of the dead store.
368   //
369   //                |--dead--|
370   //      |--  killing  --|
371   //
372   // In this case we may want to move the destination address and trim the size
373   // of dead store to avoid generating stores to addresses which will definitely
374   // be overwritten killing store.
375   if (!EnablePartialOverwriteTracking &&
376       (KillingOff <= DeadOff && int64_t(KillingOff + KillingSize) > DeadOff)) {
377     assert(int64_t(KillingOff + KillingSize) < int64_t(DeadOff + DeadSize) &&
378            "Expect to be handled as OW_Complete");
379     return OW_Begin;
380   }
381   // Otherwise, they don't completely overlap.
382   return OW_Unknown;
383 }
384 
385 /// Returns true if the memory which is accessed by the second instruction is not
386 /// modified between the first and the second instruction.
387 /// Precondition: Second instruction must be dominated by the first
388 /// instruction.
389 static bool
390 memoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI,
391                            BatchAAResults &AA, const DataLayout &DL,
392                            DominatorTree *DT) {
393   // Do a backwards scan through the CFG from SecondI to FirstI. Look for
394   // instructions which can modify the memory location accessed by SecondI.
395   //
396   // While doing the walk keep track of the address to check. It might be
397   // different in different basic blocks due to PHI translation.
398   using BlockAddressPair = std::pair<BasicBlock *, PHITransAddr>;
399   SmallVector<BlockAddressPair, 16> WorkList;
400   // Keep track of the address we visited each block with. Bail out if we
401   // visit a block with different addresses.
402   DenseMap<BasicBlock *, Value *> Visited;
403 
404   BasicBlock::iterator FirstBBI(FirstI);
405   ++FirstBBI;
406   BasicBlock::iterator SecondBBI(SecondI);
407   BasicBlock *FirstBB = FirstI->getParent();
408   BasicBlock *SecondBB = SecondI->getParent();
409   MemoryLocation MemLoc;
410   if (auto *MemSet = dyn_cast<MemSetInst>(SecondI))
411     MemLoc = MemoryLocation::getForDest(MemSet);
412   else
413     MemLoc = MemoryLocation::get(SecondI);
414 
415   auto *MemLocPtr = const_cast<Value *>(MemLoc.Ptr);
416 
417   // Start checking the SecondBB.
418   WorkList.push_back(
419       std::make_pair(SecondBB, PHITransAddr(MemLocPtr, DL, nullptr)));
420   bool isFirstBlock = true;
421 
422   // Check all blocks going backward until we reach the FirstBB.
423   while (!WorkList.empty()) {
424     BlockAddressPair Current = WorkList.pop_back_val();
425     BasicBlock *B = Current.first;
426     PHITransAddr &Addr = Current.second;
427     Value *Ptr = Addr.getAddr();
428 
429     // Ignore instructions before FirstI if this is the FirstBB.
430     BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
431 
432     BasicBlock::iterator EI;
433     if (isFirstBlock) {
434       // Ignore instructions after SecondI if this is the first visit of SecondBB.
435       assert(B == SecondBB && "first block is not the store block");
436       EI = SecondBBI;
437       isFirstBlock = false;
438     } else {
439       // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
440       // In this case we also have to look at instructions after SecondI.
441       EI = B->end();
442     }
443     for (; BI != EI; ++BI) {
444       Instruction *I = &*BI;
445       if (I->mayWriteToMemory() && I != SecondI)
446         if (isModSet(AA.getModRefInfo(I, MemLoc.getWithNewPtr(Ptr))))
447           return false;
448     }
449     if (B != FirstBB) {
450       assert(B != &FirstBB->getParent()->getEntryBlock() &&
451           "Should not hit the entry block because SI must be dominated by LI");
452       for (BasicBlock *Pred : predecessors(B)) {
453         PHITransAddr PredAddr = Addr;
454         if (PredAddr.NeedsPHITranslationFromBlock(B)) {
455           if (!PredAddr.IsPotentiallyPHITranslatable())
456             return false;
457           if (PredAddr.PHITranslateValue(B, Pred, DT, false))
458             return false;
459         }
460         Value *TranslatedPtr = PredAddr.getAddr();
461         auto Inserted = Visited.insert(std::make_pair(Pred, TranslatedPtr));
462         if (!Inserted.second) {
463           // We already visited this block before. If it was with a different
464           // address - bail out!
465           if (TranslatedPtr != Inserted.first->second)
466             return false;
467           // ... otherwise just skip it.
468           continue;
469         }
470         WorkList.push_back(std::make_pair(Pred, PredAddr));
471       }
472     }
473   }
474   return true;
475 }
476 
477 static bool tryToShorten(Instruction *DeadI, int64_t &DeadStart,
478                          uint64_t &DeadSize, int64_t KillingStart,
479                          uint64_t KillingSize, bool IsOverwriteEnd) {
480   auto *DeadIntrinsic = cast<AnyMemIntrinsic>(DeadI);
481   Align PrefAlign = DeadIntrinsic->getDestAlign().valueOrOne();
482 
483   // We assume that memet/memcpy operates in chunks of the "largest" native
484   // type size and aligned on the same value. That means optimal start and size
485   // of memset/memcpy should be modulo of preferred alignment of that type. That
486   // is it there is no any sense in trying to reduce store size any further
487   // since any "extra" stores comes for free anyway.
488   // On the other hand, maximum alignment we can achieve is limited by alignment
489   // of initial store.
490 
491   // TODO: Limit maximum alignment by preferred (or abi?) alignment of the
492   // "largest" native type.
493   // Note: What is the proper way to get that value?
494   // Should TargetTransformInfo::getRegisterBitWidth be used or anything else?
495   // PrefAlign = std::min(DL.getPrefTypeAlign(LargestType), PrefAlign);
496 
497   int64_t ToRemoveStart = 0;
498   uint64_t ToRemoveSize = 0;
499   // Compute start and size of the region to remove. Make sure 'PrefAlign' is
500   // maintained on the remaining store.
501   if (IsOverwriteEnd) {
502     // Calculate required adjustment for 'KillingStart' in order to keep
503     // remaining store size aligned on 'PerfAlign'.
504     uint64_t Off =
505         offsetToAlignment(uint64_t(KillingStart - DeadStart), PrefAlign);
506     ToRemoveStart = KillingStart + Off;
507     if (DeadSize <= uint64_t(ToRemoveStart - DeadStart))
508       return false;
509     ToRemoveSize = DeadSize - uint64_t(ToRemoveStart - DeadStart);
510   } else {
511     ToRemoveStart = DeadStart;
512     assert(KillingSize >= uint64_t(DeadStart - KillingStart) &&
513            "Not overlapping accesses?");
514     ToRemoveSize = KillingSize - uint64_t(DeadStart - KillingStart);
515     // Calculate required adjustment for 'ToRemoveSize'in order to keep
516     // start of the remaining store aligned on 'PerfAlign'.
517     uint64_t Off = offsetToAlignment(ToRemoveSize, PrefAlign);
518     if (Off != 0) {
519       if (ToRemoveSize <= (PrefAlign.value() - Off))
520         return false;
521       ToRemoveSize -= PrefAlign.value() - Off;
522     }
523     assert(isAligned(PrefAlign, ToRemoveSize) &&
524            "Should preserve selected alignment");
525   }
526 
527   assert(ToRemoveSize > 0 && "Shouldn't reach here if nothing to remove");
528   assert(DeadSize > ToRemoveSize && "Can't remove more than original size");
529 
530   uint64_t NewSize = DeadSize - ToRemoveSize;
531   if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(DeadI)) {
532     // When shortening an atomic memory intrinsic, the newly shortened
533     // length must remain an integer multiple of the element size.
534     const uint32_t ElementSize = AMI->getElementSizeInBytes();
535     if (0 != NewSize % ElementSize)
536       return false;
537   }
538 
539   LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW "
540                     << (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *DeadI
541                     << "\n  KILLER [" << ToRemoveStart << ", "
542                     << int64_t(ToRemoveStart + ToRemoveSize) << ")\n");
543 
544   Value *DeadWriteLength = DeadIntrinsic->getLength();
545   Value *TrimmedLength = ConstantInt::get(DeadWriteLength->getType(), NewSize);
546   DeadIntrinsic->setLength(TrimmedLength);
547   DeadIntrinsic->setDestAlignment(PrefAlign);
548 
549   if (!IsOverwriteEnd) {
550     Value *OrigDest = DeadIntrinsic->getRawDest();
551     Type *Int8PtrTy =
552         Type::getInt8PtrTy(DeadIntrinsic->getContext(),
553                            OrigDest->getType()->getPointerAddressSpace());
554     Value *Dest = OrigDest;
555     if (OrigDest->getType() != Int8PtrTy)
556       Dest = CastInst::CreatePointerCast(OrigDest, Int8PtrTy, "", DeadI);
557     Value *Indices[1] = {
558         ConstantInt::get(DeadWriteLength->getType(), ToRemoveSize)};
559     Instruction *NewDestGEP = GetElementPtrInst::CreateInBounds(
560         Type::getInt8Ty(DeadIntrinsic->getContext()), Dest, Indices, "", DeadI);
561     NewDestGEP->setDebugLoc(DeadIntrinsic->getDebugLoc());
562     if (NewDestGEP->getType() != OrigDest->getType())
563       NewDestGEP = CastInst::CreatePointerCast(NewDestGEP, OrigDest->getType(),
564                                                "", DeadI);
565     DeadIntrinsic->setDest(NewDestGEP);
566   }
567 
568   // Finally update start and size of dead access.
569   if (!IsOverwriteEnd)
570     DeadStart += ToRemoveSize;
571   DeadSize = NewSize;
572 
573   return true;
574 }
575 
576 static bool tryToShortenEnd(Instruction *DeadI, OverlapIntervalsTy &IntervalMap,
577                             int64_t &DeadStart, uint64_t &DeadSize) {
578   if (IntervalMap.empty() || !isShortenableAtTheEnd(DeadI))
579     return false;
580 
581   OverlapIntervalsTy::iterator OII = --IntervalMap.end();
582   int64_t KillingStart = OII->second;
583   uint64_t KillingSize = OII->first - KillingStart;
584 
585   assert(OII->first - KillingStart >= 0 && "Size expected to be positive");
586 
587   if (KillingStart > DeadStart &&
588       // Note: "KillingStart - KillingStart" is known to be positive due to
589       // preceding check.
590       (uint64_t)(KillingStart - DeadStart) < DeadSize &&
591       // Note: "DeadSize - (uint64_t)(KillingStart - DeadStart)" is known to
592       // be non negative due to preceding checks.
593       KillingSize >= DeadSize - (uint64_t)(KillingStart - DeadStart)) {
594     if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize,
595                      true)) {
596       IntervalMap.erase(OII);
597       return true;
598     }
599   }
600   return false;
601 }
602 
603 static bool tryToShortenBegin(Instruction *DeadI,
604                               OverlapIntervalsTy &IntervalMap,
605                               int64_t &DeadStart, uint64_t &DeadSize) {
606   if (IntervalMap.empty() || !isShortenableAtTheBeginning(DeadI))
607     return false;
608 
609   OverlapIntervalsTy::iterator OII = IntervalMap.begin();
610   int64_t KillingStart = OII->second;
611   uint64_t KillingSize = OII->first - KillingStart;
612 
613   assert(OII->first - KillingStart >= 0 && "Size expected to be positive");
614 
615   if (KillingStart <= DeadStart &&
616       // Note: "DeadStart - KillingStart" is known to be non negative due to
617       // preceding check.
618       KillingSize > (uint64_t)(DeadStart - KillingStart)) {
619     // Note: "KillingSize - (uint64_t)(DeadStart - DeadStart)" is known to
620     // be positive due to preceding checks.
621     assert(KillingSize - (uint64_t)(DeadStart - KillingStart) < DeadSize &&
622            "Should have been handled as OW_Complete");
623     if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize,
624                      false)) {
625       IntervalMap.erase(OII);
626       return true;
627     }
628   }
629   return false;
630 }
631 
632 static Constant *
633 tryToMergePartialOverlappingStores(StoreInst *KillingI, StoreInst *DeadI,
634                                    int64_t KillingOffset, int64_t DeadOffset,
635                                    const DataLayout &DL, BatchAAResults &AA,
636                                    DominatorTree *DT) {
637 
638   if (DeadI && isa<ConstantInt>(DeadI->getValueOperand()) &&
639       DL.typeSizeEqualsStoreSize(DeadI->getValueOperand()->getType()) &&
640       KillingI && isa<ConstantInt>(KillingI->getValueOperand()) &&
641       DL.typeSizeEqualsStoreSize(KillingI->getValueOperand()->getType()) &&
642       memoryIsNotModifiedBetween(DeadI, KillingI, AA, DL, DT)) {
643     // If the store we find is:
644     //   a) partially overwritten by the store to 'Loc'
645     //   b) the killing store is fully contained in the dead one and
646     //   c) they both have a constant value
647     //   d) none of the two stores need padding
648     // Merge the two stores, replacing the dead store's value with a
649     // merge of both values.
650     // TODO: Deal with other constant types (vectors, etc), and probably
651     // some mem intrinsics (if needed)
652 
653     APInt DeadValue = cast<ConstantInt>(DeadI->getValueOperand())->getValue();
654     APInt KillingValue =
655         cast<ConstantInt>(KillingI->getValueOperand())->getValue();
656     unsigned KillingBits = KillingValue.getBitWidth();
657     assert(DeadValue.getBitWidth() > KillingValue.getBitWidth());
658     KillingValue = KillingValue.zext(DeadValue.getBitWidth());
659 
660     // Offset of the smaller store inside the larger store
661     unsigned BitOffsetDiff = (KillingOffset - DeadOffset) * 8;
662     unsigned LShiftAmount =
663         DL.isBigEndian() ? DeadValue.getBitWidth() - BitOffsetDiff - KillingBits
664                          : BitOffsetDiff;
665     APInt Mask = APInt::getBitsSet(DeadValue.getBitWidth(), LShiftAmount,
666                                    LShiftAmount + KillingBits);
667     // Clear the bits we'll be replacing, then OR with the smaller
668     // store, shifted appropriately.
669     APInt Merged = (DeadValue & ~Mask) | (KillingValue << LShiftAmount);
670     LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n  Dead: " << *DeadI
671                       << "\n  Killing: " << *KillingI
672                       << "\n  Merged Value: " << Merged << '\n');
673     return ConstantInt::get(DeadI->getValueOperand()->getType(), Merged);
674   }
675   return nullptr;
676 }
677 
678 namespace {
679 // Returns true if \p I is an intrisnic that does not read or write memory.
680 bool isNoopIntrinsic(Instruction *I) {
681   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
682     switch (II->getIntrinsicID()) {
683     case Intrinsic::lifetime_start:
684     case Intrinsic::lifetime_end:
685     case Intrinsic::invariant_end:
686     case Intrinsic::launder_invariant_group:
687     case Intrinsic::assume:
688       return true;
689     case Intrinsic::dbg_addr:
690     case Intrinsic::dbg_declare:
691     case Intrinsic::dbg_label:
692     case Intrinsic::dbg_value:
693       llvm_unreachable("Intrinsic should not be modeled in MemorySSA");
694     default:
695       return false;
696     }
697   }
698   return false;
699 }
700 
701 // Check if we can ignore \p D for DSE.
702 bool canSkipDef(MemoryDef *D, bool DefVisibleToCaller) {
703   Instruction *DI = D->getMemoryInst();
704   // Calls that only access inaccessible memory cannot read or write any memory
705   // locations we consider for elimination.
706   if (auto *CB = dyn_cast<CallBase>(DI))
707     if (CB->onlyAccessesInaccessibleMemory())
708       return true;
709 
710   // We can eliminate stores to locations not visible to the caller across
711   // throwing instructions.
712   if (DI->mayThrow() && !DefVisibleToCaller)
713     return true;
714 
715   // We can remove the dead stores, irrespective of the fence and its ordering
716   // (release/acquire/seq_cst). Fences only constraints the ordering of
717   // already visible stores, it does not make a store visible to other
718   // threads. So, skipping over a fence does not change a store from being
719   // dead.
720   if (isa<FenceInst>(DI))
721     return true;
722 
723   // Skip intrinsics that do not really read or modify memory.
724   if (isNoopIntrinsic(DI))
725     return true;
726 
727   return false;
728 }
729 
730 struct DSEState {
731   Function &F;
732   AliasAnalysis &AA;
733   EarliestEscapeInfo EI;
734 
735   /// The single BatchAA instance that is used to cache AA queries. It will
736   /// not be invalidated over the whole run. This is safe, because:
737   /// 1. Only memory writes are removed, so the alias cache for memory
738   ///    locations remains valid.
739   /// 2. No new instructions are added (only instructions removed), so cached
740   ///    information for a deleted value cannot be accessed by a re-used new
741   ///    value pointer.
742   BatchAAResults BatchAA;
743 
744   MemorySSA &MSSA;
745   DominatorTree &DT;
746   PostDominatorTree &PDT;
747   const TargetLibraryInfo &TLI;
748   const DataLayout &DL;
749   const LoopInfo &LI;
750 
751   // Whether the function contains any irreducible control flow, useful for
752   // being accurately able to detect loops.
753   bool ContainsIrreducibleLoops;
754 
755   // All MemoryDefs that potentially could kill other MemDefs.
756   SmallVector<MemoryDef *, 64> MemDefs;
757   // Any that should be skipped as they are already deleted
758   SmallPtrSet<MemoryAccess *, 4> SkipStores;
759   // Keep track of all of the objects that are invisible to the caller before
760   // the function returns.
761   DenseMap<const Value *, bool> InvisibleToCallerBeforeRet;
762   // Keep track of all of the objects that are invisible to the caller after
763   // the function returns.
764   DenseMap<const Value *, bool> InvisibleToCallerAfterRet;
765   // Keep track of blocks with throwing instructions not modeled in MemorySSA.
766   SmallPtrSet<BasicBlock *, 16> ThrowingBlocks;
767   // Post-order numbers for each basic block. Used to figure out if memory
768   // accesses are executed before another access.
769   DenseMap<BasicBlock *, unsigned> PostOrderNumbers;
770 
771   /// Keep track of instructions (partly) overlapping with killing MemoryDefs per
772   /// basic block.
773   MapVector<BasicBlock *, InstOverlapIntervalsTy> IOLs;
774 
775   // Class contains self-reference, make sure it's not copied/moved.
776   DSEState(const DSEState &) = delete;
777   DSEState &operator=(const DSEState &) = delete;
778 
779   DSEState(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, DominatorTree &DT,
780            PostDominatorTree &PDT, const TargetLibraryInfo &TLI,
781            const LoopInfo &LI)
782       : F(F), AA(AA), EI(DT, LI), BatchAA(AA, &EI), MSSA(MSSA), DT(DT),
783         PDT(PDT), TLI(TLI), DL(F.getParent()->getDataLayout()), LI(LI) {
784     // Collect blocks with throwing instructions not modeled in MemorySSA and
785     // alloc-like objects.
786     unsigned PO = 0;
787     for (BasicBlock *BB : post_order(&F)) {
788       PostOrderNumbers[BB] = PO++;
789       for (Instruction &I : *BB) {
790         MemoryAccess *MA = MSSA.getMemoryAccess(&I);
791         if (I.mayThrow() && !MA)
792           ThrowingBlocks.insert(I.getParent());
793 
794         auto *MD = dyn_cast_or_null<MemoryDef>(MA);
795         if (MD && MemDefs.size() < MemorySSADefsPerBlockLimit &&
796             (getLocForWrite(&I) || isMemTerminatorInst(&I)))
797           MemDefs.push_back(MD);
798       }
799     }
800 
801     // Treat byval or inalloca arguments the same as Allocas, stores to them are
802     // dead at the end of the function.
803     for (Argument &AI : F.args())
804       if (AI.hasPassPointeeByValueCopyAttr()) {
805         // For byval, the caller doesn't know the address of the allocation.
806         if (AI.hasByValAttr())
807           InvisibleToCallerBeforeRet.insert({&AI, true});
808         InvisibleToCallerAfterRet.insert({&AI, true});
809       }
810 
811     // Collect whether there is any irreducible control flow in the function.
812     ContainsIrreducibleLoops = mayContainIrreducibleControl(F, &LI);
813   }
814 
815   /// Return 'OW_Complete' if a store to the 'KillingLoc' location (by \p
816   /// KillingI instruction) completely overwrites a store to the 'DeadLoc'
817   /// location (by \p DeadI instruction).
818   /// Return OW_MaybePartial if \p KillingI does not completely overwrite
819   /// \p DeadI, but they both write to the same underlying object. In that
820   /// case, use isPartialOverwrite to check if \p KillingI partially overwrites
821   /// \p DeadI. Returns 'OR_None' if \p KillingI is known to not overwrite the
822   /// \p DeadI. Returns 'OW_Unknown' if nothing can be determined.
823   OverwriteResult isOverwrite(const Instruction *KillingI,
824                               const Instruction *DeadI,
825                               const MemoryLocation &KillingLoc,
826                               const MemoryLocation &DeadLoc,
827                               int64_t &KillingOff, int64_t &DeadOff) {
828     // AliasAnalysis does not always account for loops. Limit overwrite checks
829     // to dependencies for which we can guarantee they are independent of any
830     // loops they are in.
831     if (!isGuaranteedLoopIndependent(DeadI, KillingI, DeadLoc))
832       return OW_Unknown;
833 
834     const Value *DeadPtr = DeadLoc.Ptr->stripPointerCasts();
835     const Value *KillingPtr = KillingLoc.Ptr->stripPointerCasts();
836     const Value *DeadUndObj = getUnderlyingObject(DeadPtr);
837     const Value *KillingUndObj = getUnderlyingObject(KillingPtr);
838 
839     // Check whether the killing store overwrites the whole object, in which
840     // case the size/offset of the dead store does not matter.
841     if (DeadUndObj == KillingUndObj && KillingLoc.Size.isPrecise()) {
842       uint64_t KillingUndObjSize = getPointerSize(KillingUndObj, DL, TLI, &F);
843       if (KillingUndObjSize != MemoryLocation::UnknownSize &&
844           KillingUndObjSize == KillingLoc.Size.getValue())
845         return OW_Complete;
846     }
847 
848     // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll
849     // get imprecise values here, though (except for unknown sizes).
850     if (!KillingLoc.Size.isPrecise() || !DeadLoc.Size.isPrecise()) {
851       // In case no constant size is known, try to an IR values for the number
852       // of bytes written and check if they match.
853       const auto *KillingMemI = dyn_cast<MemIntrinsic>(KillingI);
854       const auto *DeadMemI = dyn_cast<MemIntrinsic>(DeadI);
855       if (KillingMemI && DeadMemI) {
856         const Value *KillingV = KillingMemI->getLength();
857         const Value *DeadV = DeadMemI->getLength();
858         if (KillingV == DeadV && BatchAA.isMustAlias(DeadLoc, KillingLoc))
859           return OW_Complete;
860       }
861 
862       // Masked stores have imprecise locations, but we can reason about them
863       // to some extent.
864       return isMaskedStoreOverwrite(KillingI, DeadI, BatchAA);
865     }
866 
867     const uint64_t KillingSize = KillingLoc.Size.getValue();
868     const uint64_t DeadSize = DeadLoc.Size.getValue();
869 
870     // Query the alias information
871     AliasResult AAR = BatchAA.alias(KillingLoc, DeadLoc);
872 
873     // If the start pointers are the same, we just have to compare sizes to see if
874     // the killing store was larger than the dead store.
875     if (AAR == AliasResult::MustAlias) {
876       // Make sure that the KillingSize size is >= the DeadSize size.
877       if (KillingSize >= DeadSize)
878         return OW_Complete;
879     }
880 
881     // If we hit a partial alias we may have a full overwrite
882     if (AAR == AliasResult::PartialAlias && AAR.hasOffset()) {
883       int32_t Off = AAR.getOffset();
884       if (Off >= 0 && (uint64_t)Off + DeadSize <= KillingSize)
885         return OW_Complete;
886     }
887 
888     // If we can't resolve the same pointers to the same object, then we can't
889     // analyze them at all.
890     if (DeadUndObj != KillingUndObj) {
891       // Non aliasing stores to different objects don't overlap. Note that
892       // if the killing store is known to overwrite whole object (out of
893       // bounds access overwrites whole object as well) then it is assumed to
894       // completely overwrite any store to the same object even if they don't
895       // actually alias (see next check).
896       if (AAR == AliasResult::NoAlias)
897         return OW_None;
898       return OW_Unknown;
899     }
900 
901     // Okay, we have stores to two completely different pointers.  Try to
902     // decompose the pointer into a "base + constant_offset" form.  If the base
903     // pointers are equal, then we can reason about the two stores.
904     DeadOff = 0;
905     KillingOff = 0;
906     const Value *DeadBasePtr =
907         GetPointerBaseWithConstantOffset(DeadPtr, DeadOff, DL);
908     const Value *KillingBasePtr =
909         GetPointerBaseWithConstantOffset(KillingPtr, KillingOff, DL);
910 
911     // If the base pointers still differ, we have two completely different
912     // stores.
913     if (DeadBasePtr != KillingBasePtr)
914       return OW_Unknown;
915 
916     // The killing access completely overlaps the dead store if and only if
917     // both start and end of the dead one is "inside" the killing one:
918     //    |<->|--dead--|<->|
919     //    |-----killing------|
920     // Accesses may overlap if and only if start of one of them is "inside"
921     // another one:
922     //    |<->|--dead--|<-------->|
923     //    |-------killing--------|
924     //           OR
925     //    |-------dead-------|
926     //    |<->|---killing---|<----->|
927     //
928     // We have to be careful here as *Off is signed while *.Size is unsigned.
929 
930     // Check if the dead access starts "not before" the killing one.
931     if (DeadOff >= KillingOff) {
932       // If the dead access ends "not after" the killing access then the
933       // dead one is completely overwritten by the killing one.
934       if (uint64_t(DeadOff - KillingOff) + DeadSize <= KillingSize)
935         return OW_Complete;
936       // If start of the dead access is "before" end of the killing access
937       // then accesses overlap.
938       else if ((uint64_t)(DeadOff - KillingOff) < KillingSize)
939         return OW_MaybePartial;
940     }
941     // If start of the killing access is "before" end of the dead access then
942     // accesses overlap.
943     else if ((uint64_t)(KillingOff - DeadOff) < DeadSize) {
944       return OW_MaybePartial;
945     }
946 
947     // Can reach here only if accesses are known not to overlap.
948     return OW_None;
949   }
950 
951   bool isInvisibleToCallerAfterRet(const Value *V) {
952     if (isa<AllocaInst>(V))
953       return true;
954     auto I = InvisibleToCallerAfterRet.insert({V, false});
955     if (I.second) {
956       if (!isInvisibleToCallerBeforeRet(V)) {
957         I.first->second = false;
958       } else if (isNoAliasCall(V)) {
959         I.first->second = !PointerMayBeCaptured(V, true, false);
960       }
961     }
962     return I.first->second;
963   }
964 
965   bool isInvisibleToCallerBeforeRet(const Value *V) {
966     if (isa<AllocaInst>(V))
967       return true;
968     auto I = InvisibleToCallerBeforeRet.insert({V, false});
969     if (I.second && isNoAliasCall(V))
970       // NOTE: This could be made more precise by PointerMayBeCapturedBefore
971       // with the killing MemoryDef. But we refrain from doing so for now to
972       // limit compile-time and this does not cause any changes to the number
973       // of stores removed on a large test set in practice.
974       I.first->second = !PointerMayBeCaptured(V, false, true);
975     return I.first->second;
976   }
977 
978   Optional<MemoryLocation> getLocForWrite(Instruction *I) const {
979     if (!I->mayWriteToMemory())
980       return None;
981 
982     if (auto *CB = dyn_cast<CallBase>(I))
983       return MemoryLocation::getForDest(CB, TLI);
984 
985     return MemoryLocation::getOrNone(I);
986   }
987 
988   /// Assuming this instruction has a dead analyzable write, can we delete
989   /// this instruction?
990   bool isRemovable(Instruction *I) {
991     assert(getLocForWrite(I) && "Must have analyzable write");
992 
993     // Don't remove volatile/atomic stores.
994     if (StoreInst *SI = dyn_cast<StoreInst>(I))
995       return SI->isUnordered();
996 
997     if (auto *CB = dyn_cast<CallBase>(I)) {
998       // Don't remove volatile memory intrinsics.
999       if (auto *MI = dyn_cast<MemIntrinsic>(CB))
1000         return !MI->isVolatile();
1001 
1002       // Never remove dead lifetime intrinsics, e.g. because they are followed
1003       // by a free.
1004       if (CB->isLifetimeStartOrEnd())
1005         return false;
1006 
1007       return CB->use_empty() && CB->willReturn() && CB->doesNotThrow();
1008     }
1009 
1010     return false;
1011   }
1012 
1013   /// Returns true if \p UseInst completely overwrites \p DefLoc
1014   /// (stored by \p DefInst).
1015   bool isCompleteOverwrite(const MemoryLocation &DefLoc, Instruction *DefInst,
1016                            Instruction *UseInst) {
1017     // UseInst has a MemoryDef associated in MemorySSA. It's possible for a
1018     // MemoryDef to not write to memory, e.g. a volatile load is modeled as a
1019     // MemoryDef.
1020     if (!UseInst->mayWriteToMemory())
1021       return false;
1022 
1023     if (auto *CB = dyn_cast<CallBase>(UseInst))
1024       if (CB->onlyAccessesInaccessibleMemory())
1025         return false;
1026 
1027     int64_t InstWriteOffset, DepWriteOffset;
1028     if (auto CC = getLocForWrite(UseInst))
1029       return isOverwrite(UseInst, DefInst, *CC, DefLoc, InstWriteOffset,
1030                          DepWriteOffset) == OW_Complete;
1031     return false;
1032   }
1033 
1034   /// Returns true if \p Def is not read before returning from the function.
1035   bool isWriteAtEndOfFunction(MemoryDef *Def) {
1036     LLVM_DEBUG(dbgs() << "  Check if def " << *Def << " ("
1037                       << *Def->getMemoryInst()
1038                       << ") is at the end the function \n");
1039 
1040     auto MaybeLoc = getLocForWrite(Def->getMemoryInst());
1041     if (!MaybeLoc) {
1042       LLVM_DEBUG(dbgs() << "  ... could not get location for write.\n");
1043       return false;
1044     }
1045 
1046     SmallVector<MemoryAccess *, 4> WorkList;
1047     SmallPtrSet<MemoryAccess *, 8> Visited;
1048     auto PushMemUses = [&WorkList, &Visited](MemoryAccess *Acc) {
1049       if (!Visited.insert(Acc).second)
1050         return;
1051       for (Use &U : Acc->uses())
1052         WorkList.push_back(cast<MemoryAccess>(U.getUser()));
1053     };
1054     PushMemUses(Def);
1055     for (unsigned I = 0; I < WorkList.size(); I++) {
1056       if (WorkList.size() >= MemorySSAScanLimit) {
1057         LLVM_DEBUG(dbgs() << "  ... hit exploration limit.\n");
1058         return false;
1059       }
1060 
1061       MemoryAccess *UseAccess = WorkList[I];
1062       // Simply adding the users of MemoryPhi to the worklist is not enough,
1063       // because we might miss read clobbers in different iterations of a loop,
1064       // for example.
1065       // TODO: Add support for phi translation to handle the loop case.
1066       if (isa<MemoryPhi>(UseAccess))
1067         return false;
1068 
1069       // TODO: Checking for aliasing is expensive. Consider reducing the amount
1070       // of times this is called and/or caching it.
1071       Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst();
1072       if (isReadClobber(*MaybeLoc, UseInst)) {
1073         LLVM_DEBUG(dbgs() << "  ... hit read clobber " << *UseInst << ".\n");
1074         return false;
1075       }
1076 
1077       if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess))
1078         PushMemUses(UseDef);
1079     }
1080     return true;
1081   }
1082 
1083   /// If \p I is a memory  terminator like llvm.lifetime.end or free, return a
1084   /// pair with the MemoryLocation terminated by \p I and a boolean flag
1085   /// indicating whether \p I is a free-like call.
1086   Optional<std::pair<MemoryLocation, bool>>
1087   getLocForTerminator(Instruction *I) const {
1088     uint64_t Len;
1089     Value *Ptr;
1090     if (match(I, m_Intrinsic<Intrinsic::lifetime_end>(m_ConstantInt(Len),
1091                                                       m_Value(Ptr))))
1092       return {std::make_pair(MemoryLocation(Ptr, Len), false)};
1093 
1094     if (auto *CB = dyn_cast<CallBase>(I)) {
1095       if (isFreeCall(I, &TLI))
1096         return {std::make_pair(MemoryLocation::getAfter(CB->getArgOperand(0)),
1097                                true)};
1098     }
1099 
1100     return None;
1101   }
1102 
1103   /// Returns true if \p I is a memory terminator instruction like
1104   /// llvm.lifetime.end or free.
1105   bool isMemTerminatorInst(Instruction *I) const {
1106     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1107     return (II && II->getIntrinsicID() == Intrinsic::lifetime_end) ||
1108            isFreeCall(I, &TLI);
1109   }
1110 
1111   /// Returns true if \p MaybeTerm is a memory terminator for \p Loc from
1112   /// instruction \p AccessI.
1113   bool isMemTerminator(const MemoryLocation &Loc, Instruction *AccessI,
1114                        Instruction *MaybeTerm) {
1115     Optional<std::pair<MemoryLocation, bool>> MaybeTermLoc =
1116         getLocForTerminator(MaybeTerm);
1117 
1118     if (!MaybeTermLoc)
1119       return false;
1120 
1121     // If the terminator is a free-like call, all accesses to the underlying
1122     // object can be considered terminated.
1123     if (getUnderlyingObject(Loc.Ptr) !=
1124         getUnderlyingObject(MaybeTermLoc->first.Ptr))
1125       return false;
1126 
1127     auto TermLoc = MaybeTermLoc->first;
1128     if (MaybeTermLoc->second) {
1129       const Value *LocUO = getUnderlyingObject(Loc.Ptr);
1130       return BatchAA.isMustAlias(TermLoc.Ptr, LocUO);
1131     }
1132     int64_t InstWriteOffset = 0;
1133     int64_t DepWriteOffset = 0;
1134     return isOverwrite(MaybeTerm, AccessI, TermLoc, Loc, InstWriteOffset,
1135                        DepWriteOffset) == OW_Complete;
1136   }
1137 
1138   // Returns true if \p Use may read from \p DefLoc.
1139   bool isReadClobber(const MemoryLocation &DefLoc, Instruction *UseInst) {
1140     if (isNoopIntrinsic(UseInst))
1141       return false;
1142 
1143     // Monotonic or weaker atomic stores can be re-ordered and do not need to be
1144     // treated as read clobber.
1145     if (auto SI = dyn_cast<StoreInst>(UseInst))
1146       return isStrongerThan(SI->getOrdering(), AtomicOrdering::Monotonic);
1147 
1148     if (!UseInst->mayReadFromMemory())
1149       return false;
1150 
1151     if (auto *CB = dyn_cast<CallBase>(UseInst))
1152       if (CB->onlyAccessesInaccessibleMemory())
1153         return false;
1154 
1155     return isRefSet(BatchAA.getModRefInfo(UseInst, DefLoc));
1156   }
1157 
1158   /// Returns true if a dependency between \p Current and \p KillingDef is
1159   /// guaranteed to be loop invariant for the loops that they are in. Either
1160   /// because they are known to be in the same block, in the same loop level or
1161   /// by guaranteeing that \p CurrentLoc only references a single MemoryLocation
1162   /// during execution of the containing function.
1163   bool isGuaranteedLoopIndependent(const Instruction *Current,
1164                                    const Instruction *KillingDef,
1165                                    const MemoryLocation &CurrentLoc) {
1166     // If the dependency is within the same block or loop level (being careful
1167     // of irreducible loops), we know that AA will return a valid result for the
1168     // memory dependency. (Both at the function level, outside of any loop,
1169     // would also be valid but we currently disable that to limit compile time).
1170     if (Current->getParent() == KillingDef->getParent())
1171       return true;
1172     const Loop *CurrentLI = LI.getLoopFor(Current->getParent());
1173     if (!ContainsIrreducibleLoops && CurrentLI &&
1174         CurrentLI == LI.getLoopFor(KillingDef->getParent()))
1175       return true;
1176     // Otherwise check the memory location is invariant to any loops.
1177     return isGuaranteedLoopInvariant(CurrentLoc.Ptr);
1178   }
1179 
1180   /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible
1181   /// loop. In particular, this guarantees that it only references a single
1182   /// MemoryLocation during execution of the containing function.
1183   bool isGuaranteedLoopInvariant(const Value *Ptr) {
1184     Ptr = Ptr->stripPointerCasts();
1185     if (auto *GEP = dyn_cast<GEPOperator>(Ptr))
1186       if (GEP->hasAllConstantIndices())
1187         Ptr = GEP->getPointerOperand()->stripPointerCasts();
1188 
1189     if (auto *I = dyn_cast<Instruction>(Ptr))
1190       return I->getParent()->isEntryBlock();
1191     return true;
1192   }
1193 
1194   // Find a MemoryDef writing to \p KillingLoc and dominating \p StartAccess,
1195   // with no read access between them or on any other path to a function exit
1196   // block if \p KillingLoc is not accessible after the function returns. If
1197   // there is no such MemoryDef, return None. The returned value may not
1198   // (completely) overwrite \p KillingLoc. Currently we bail out when we
1199   // encounter an aliasing MemoryUse (read).
1200   Optional<MemoryAccess *>
1201   getDomMemoryDef(MemoryDef *KillingDef, MemoryAccess *StartAccess,
1202                   const MemoryLocation &KillingLoc, const Value *KillingUndObj,
1203                   unsigned &ScanLimit, unsigned &WalkerStepLimit,
1204                   bool IsMemTerm, unsigned &PartialLimit) {
1205     if (ScanLimit == 0 || WalkerStepLimit == 0) {
1206       LLVM_DEBUG(dbgs() << "\n    ...  hit scan limit\n");
1207       return None;
1208     }
1209 
1210     MemoryAccess *Current = StartAccess;
1211     Instruction *KillingI = KillingDef->getMemoryInst();
1212     LLVM_DEBUG(dbgs() << "  trying to get dominating access\n");
1213 
1214     // Only optimize defining access of KillingDef when directly starting at its
1215     // defining access. The defining access also must only access KillingLoc. At
1216     // the moment we only support instructions with a single write location, so
1217     // it should be sufficient to disable optimizations for instructions that
1218     // also read from memory.
1219     bool CanOptimize = OptimizeMemorySSA &&
1220                        KillingDef->getDefiningAccess() == StartAccess &&
1221                        !KillingI->mayReadFromMemory();
1222 
1223     // Find the next clobbering Mod access for DefLoc, starting at StartAccess.
1224     Optional<MemoryLocation> CurrentLoc;
1225     for (;; Current = cast<MemoryDef>(Current)->getDefiningAccess()) {
1226       LLVM_DEBUG({
1227         dbgs() << "   visiting " << *Current;
1228         if (!MSSA.isLiveOnEntryDef(Current) && isa<MemoryUseOrDef>(Current))
1229           dbgs() << " (" << *cast<MemoryUseOrDef>(Current)->getMemoryInst()
1230                  << ")";
1231         dbgs() << "\n";
1232       });
1233 
1234       // Reached TOP.
1235       if (MSSA.isLiveOnEntryDef(Current)) {
1236         LLVM_DEBUG(dbgs() << "   ...  found LiveOnEntryDef\n");
1237         return None;
1238       }
1239 
1240       // Cost of a step. Accesses in the same block are more likely to be valid
1241       // candidates for elimination, hence consider them cheaper.
1242       unsigned StepCost = KillingDef->getBlock() == Current->getBlock()
1243                               ? MemorySSASameBBStepCost
1244                               : MemorySSAOtherBBStepCost;
1245       if (WalkerStepLimit <= StepCost) {
1246         LLVM_DEBUG(dbgs() << "   ...  hit walker step limit\n");
1247         return None;
1248       }
1249       WalkerStepLimit -= StepCost;
1250 
1251       // Return for MemoryPhis. They cannot be eliminated directly and the
1252       // caller is responsible for traversing them.
1253       if (isa<MemoryPhi>(Current)) {
1254         LLVM_DEBUG(dbgs() << "   ...  found MemoryPhi\n");
1255         return Current;
1256       }
1257 
1258       // Below, check if CurrentDef is a valid candidate to be eliminated by
1259       // KillingDef. If it is not, check the next candidate.
1260       MemoryDef *CurrentDef = cast<MemoryDef>(Current);
1261       Instruction *CurrentI = CurrentDef->getMemoryInst();
1262 
1263       if (canSkipDef(CurrentDef,
1264                      !isInvisibleToCallerBeforeRet(KillingUndObj))) {
1265         CanOptimize = false;
1266         continue;
1267       }
1268 
1269       // Before we try to remove anything, check for any extra throwing
1270       // instructions that block us from DSEing
1271       if (mayThrowBetween(KillingI, CurrentI, KillingUndObj)) {
1272         LLVM_DEBUG(dbgs() << "  ... skip, may throw!\n");
1273         return None;
1274       }
1275 
1276       // Check for anything that looks like it will be a barrier to further
1277       // removal
1278       if (isDSEBarrier(KillingUndObj, CurrentI)) {
1279         LLVM_DEBUG(dbgs() << "  ... skip, barrier\n");
1280         return None;
1281       }
1282 
1283       // If Current is known to be on path that reads DefLoc or is a read
1284       // clobber, bail out, as the path is not profitable. We skip this check
1285       // for intrinsic calls, because the code knows how to handle memcpy
1286       // intrinsics.
1287       if (!isa<IntrinsicInst>(CurrentI) && isReadClobber(KillingLoc, CurrentI))
1288         return None;
1289 
1290       // Quick check if there are direct uses that are read-clobbers.
1291       if (any_of(Current->uses(), [this, &KillingLoc, StartAccess](Use &U) {
1292             if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(U.getUser()))
1293               return !MSSA.dominates(StartAccess, UseOrDef) &&
1294                      isReadClobber(KillingLoc, UseOrDef->getMemoryInst());
1295             return false;
1296           })) {
1297         LLVM_DEBUG(dbgs() << "   ...  found a read clobber\n");
1298         return None;
1299       }
1300 
1301       // If Current does not have an analyzable write location or is not
1302       // removable, skip it.
1303       CurrentLoc = getLocForWrite(CurrentI);
1304       if (!CurrentLoc || !isRemovable(CurrentI)) {
1305         CanOptimize = false;
1306         continue;
1307       }
1308 
1309       // AliasAnalysis does not account for loops. Limit elimination to
1310       // candidates for which we can guarantee they always store to the same
1311       // memory location and not located in different loops.
1312       if (!isGuaranteedLoopIndependent(CurrentI, KillingI, *CurrentLoc)) {
1313         LLVM_DEBUG(dbgs() << "  ... not guaranteed loop independent\n");
1314         WalkerStepLimit -= 1;
1315         CanOptimize = false;
1316         continue;
1317       }
1318 
1319       if (IsMemTerm) {
1320         // If the killing def is a memory terminator (e.g. lifetime.end), check
1321         // the next candidate if the current Current does not write the same
1322         // underlying object as the terminator.
1323         if (!isMemTerminator(*CurrentLoc, CurrentI, KillingI)) {
1324           CanOptimize = false;
1325           continue;
1326         }
1327       } else {
1328         int64_t KillingOffset = 0;
1329         int64_t DeadOffset = 0;
1330         auto OR = isOverwrite(KillingI, CurrentI, KillingLoc, *CurrentLoc,
1331                               KillingOffset, DeadOffset);
1332         if (CanOptimize) {
1333           // CurrentDef is the earliest write clobber of KillingDef. Use it as
1334           // optimized access. Do not optimize if CurrentDef is already the
1335           // defining access of KillingDef.
1336           if (CurrentDef != KillingDef->getDefiningAccess() &&
1337               (OR == OW_Complete || OR == OW_MaybePartial))
1338             KillingDef->setOptimized(CurrentDef);
1339 
1340           // Once a may-aliasing def is encountered do not set an optimized
1341           // access.
1342           if (OR != OW_None)
1343             CanOptimize = false;
1344         }
1345 
1346         // If Current does not write to the same object as KillingDef, check
1347         // the next candidate.
1348         if (OR == OW_Unknown || OR == OW_None)
1349           continue;
1350         else if (OR == OW_MaybePartial) {
1351           // If KillingDef only partially overwrites Current, check the next
1352           // candidate if the partial step limit is exceeded. This aggressively
1353           // limits the number of candidates for partial store elimination,
1354           // which are less likely to be removable in the end.
1355           if (PartialLimit <= 1) {
1356             WalkerStepLimit -= 1;
1357             LLVM_DEBUG(dbgs() << "   ... reached partial limit ... continue with next access\n");
1358             continue;
1359           }
1360           PartialLimit -= 1;
1361         }
1362       }
1363       break;
1364     };
1365 
1366     // Accesses to objects accessible after the function returns can only be
1367     // eliminated if the access is dead along all paths to the exit. Collect
1368     // the blocks with killing (=completely overwriting MemoryDefs) and check if
1369     // they cover all paths from MaybeDeadAccess to any function exit.
1370     SmallPtrSet<Instruction *, 16> KillingDefs;
1371     KillingDefs.insert(KillingDef->getMemoryInst());
1372     MemoryAccess *MaybeDeadAccess = Current;
1373     MemoryLocation MaybeDeadLoc = *CurrentLoc;
1374     Instruction *MaybeDeadI = cast<MemoryDef>(MaybeDeadAccess)->getMemoryInst();
1375     LLVM_DEBUG(dbgs() << "  Checking for reads of " << *MaybeDeadAccess << " ("
1376                       << *MaybeDeadI << ")\n");
1377 
1378     SmallSetVector<MemoryAccess *, 32> WorkList;
1379     auto PushMemUses = [&WorkList](MemoryAccess *Acc) {
1380       for (Use &U : Acc->uses())
1381         WorkList.insert(cast<MemoryAccess>(U.getUser()));
1382     };
1383     PushMemUses(MaybeDeadAccess);
1384 
1385     // Check if DeadDef may be read.
1386     for (unsigned I = 0; I < WorkList.size(); I++) {
1387       MemoryAccess *UseAccess = WorkList[I];
1388 
1389       LLVM_DEBUG(dbgs() << "   " << *UseAccess);
1390       // Bail out if the number of accesses to check exceeds the scan limit.
1391       if (ScanLimit < (WorkList.size() - I)) {
1392         LLVM_DEBUG(dbgs() << "\n    ...  hit scan limit\n");
1393         return None;
1394       }
1395       --ScanLimit;
1396       NumDomMemDefChecks++;
1397 
1398       if (isa<MemoryPhi>(UseAccess)) {
1399         if (any_of(KillingDefs, [this, UseAccess](Instruction *KI) {
1400               return DT.properlyDominates(KI->getParent(),
1401                                           UseAccess->getBlock());
1402             })) {
1403           LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n");
1404           continue;
1405         }
1406         LLVM_DEBUG(dbgs() << "\n    ... adding PHI uses\n");
1407         PushMemUses(UseAccess);
1408         continue;
1409       }
1410 
1411       Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst();
1412       LLVM_DEBUG(dbgs() << " (" << *UseInst << ")\n");
1413 
1414       if (any_of(KillingDefs, [this, UseInst](Instruction *KI) {
1415             return DT.dominates(KI, UseInst);
1416           })) {
1417         LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n");
1418         continue;
1419       }
1420 
1421       // A memory terminator kills all preceeding MemoryDefs and all succeeding
1422       // MemoryAccesses. We do not have to check it's users.
1423       if (isMemTerminator(MaybeDeadLoc, MaybeDeadI, UseInst)) {
1424         LLVM_DEBUG(
1425             dbgs()
1426             << " ... skipping, memterminator invalidates following accesses\n");
1427         continue;
1428       }
1429 
1430       if (isNoopIntrinsic(cast<MemoryUseOrDef>(UseAccess)->getMemoryInst())) {
1431         LLVM_DEBUG(dbgs() << "    ... adding uses of intrinsic\n");
1432         PushMemUses(UseAccess);
1433         continue;
1434       }
1435 
1436       if (UseInst->mayThrow() && !isInvisibleToCallerBeforeRet(KillingUndObj)) {
1437         LLVM_DEBUG(dbgs() << "  ... found throwing instruction\n");
1438         return None;
1439       }
1440 
1441       // Uses which may read the original MemoryDef mean we cannot eliminate the
1442       // original MD. Stop walk.
1443       if (isReadClobber(MaybeDeadLoc, UseInst)) {
1444         LLVM_DEBUG(dbgs() << "    ... found read clobber\n");
1445         return None;
1446       }
1447 
1448       // If this worklist walks back to the original memory access (and the
1449       // pointer is not guarenteed loop invariant) then we cannot assume that a
1450       // store kills itself.
1451       if (MaybeDeadAccess == UseAccess &&
1452           !isGuaranteedLoopInvariant(MaybeDeadLoc.Ptr)) {
1453         LLVM_DEBUG(dbgs() << "    ... found not loop invariant self access\n");
1454         return None;
1455       }
1456       // Otherwise, for the KillingDef and MaybeDeadAccess we only have to check
1457       // if it reads the memory location.
1458       // TODO: It would probably be better to check for self-reads before
1459       // calling the function.
1460       if (KillingDef == UseAccess || MaybeDeadAccess == UseAccess) {
1461         LLVM_DEBUG(dbgs() << "    ... skipping killing def/dom access\n");
1462         continue;
1463       }
1464 
1465       // Check all uses for MemoryDefs, except for defs completely overwriting
1466       // the original location. Otherwise we have to check uses of *all*
1467       // MemoryDefs we discover, including non-aliasing ones. Otherwise we might
1468       // miss cases like the following
1469       //   1 = Def(LoE) ; <----- DeadDef stores [0,1]
1470       //   2 = Def(1)   ; (2, 1) = NoAlias,   stores [2,3]
1471       //   Use(2)       ; MayAlias 2 *and* 1, loads [0, 3].
1472       //                  (The Use points to the *first* Def it may alias)
1473       //   3 = Def(1)   ; <---- Current  (3, 2) = NoAlias, (3,1) = MayAlias,
1474       //                  stores [0,1]
1475       if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) {
1476         if (isCompleteOverwrite(MaybeDeadLoc, MaybeDeadI, UseInst)) {
1477           BasicBlock *MaybeKillingBlock = UseInst->getParent();
1478           if (PostOrderNumbers.find(MaybeKillingBlock)->second <
1479               PostOrderNumbers.find(MaybeDeadAccess->getBlock())->second) {
1480             if (!isInvisibleToCallerAfterRet(KillingUndObj)) {
1481               LLVM_DEBUG(dbgs()
1482                          << "    ... found killing def " << *UseInst << "\n");
1483               KillingDefs.insert(UseInst);
1484             }
1485           } else {
1486             LLVM_DEBUG(dbgs()
1487                        << "    ... found preceeding def " << *UseInst << "\n");
1488             return None;
1489           }
1490         } else
1491           PushMemUses(UseDef);
1492       }
1493     }
1494 
1495     // For accesses to locations visible after the function returns, make sure
1496     // that the location is dead (=overwritten) along all paths from
1497     // MaybeDeadAccess to the exit.
1498     if (!isInvisibleToCallerAfterRet(KillingUndObj)) {
1499       SmallPtrSet<BasicBlock *, 16> KillingBlocks;
1500       for (Instruction *KD : KillingDefs)
1501         KillingBlocks.insert(KD->getParent());
1502       assert(!KillingBlocks.empty() &&
1503              "Expected at least a single killing block");
1504 
1505       // Find the common post-dominator of all killing blocks.
1506       BasicBlock *CommonPred = *KillingBlocks.begin();
1507       for (BasicBlock *BB : llvm::drop_begin(KillingBlocks)) {
1508         if (!CommonPred)
1509           break;
1510         CommonPred = PDT.findNearestCommonDominator(CommonPred, BB);
1511       }
1512 
1513       // If CommonPred is in the set of killing blocks, just check if it
1514       // post-dominates MaybeDeadAccess.
1515       if (KillingBlocks.count(CommonPred)) {
1516         if (PDT.dominates(CommonPred, MaybeDeadAccess->getBlock()))
1517           return {MaybeDeadAccess};
1518         return None;
1519       }
1520 
1521       // If the common post-dominator does not post-dominate MaybeDeadAccess,
1522       // there is a path from MaybeDeadAccess to an exit not going through a
1523       // killing block.
1524       if (PDT.dominates(CommonPred, MaybeDeadAccess->getBlock())) {
1525         SetVector<BasicBlock *> WorkList;
1526 
1527         // If CommonPred is null, there are multiple exits from the function.
1528         // They all have to be added to the worklist.
1529         if (CommonPred)
1530           WorkList.insert(CommonPred);
1531         else
1532           for (BasicBlock *R : PDT.roots())
1533             WorkList.insert(R);
1534 
1535         NumCFGTries++;
1536         // Check if all paths starting from an exit node go through one of the
1537         // killing blocks before reaching MaybeDeadAccess.
1538         for (unsigned I = 0; I < WorkList.size(); I++) {
1539           NumCFGChecks++;
1540           BasicBlock *Current = WorkList[I];
1541           if (KillingBlocks.count(Current))
1542             continue;
1543           if (Current == MaybeDeadAccess->getBlock())
1544             return None;
1545 
1546           // MaybeDeadAccess is reachable from the entry, so we don't have to
1547           // explore unreachable blocks further.
1548           if (!DT.isReachableFromEntry(Current))
1549             continue;
1550 
1551           for (BasicBlock *Pred : predecessors(Current))
1552             WorkList.insert(Pred);
1553 
1554           if (WorkList.size() >= MemorySSAPathCheckLimit)
1555             return None;
1556         }
1557         NumCFGSuccess++;
1558         return {MaybeDeadAccess};
1559       }
1560       return None;
1561     }
1562 
1563     // No aliasing MemoryUses of MaybeDeadAccess found, MaybeDeadAccess is
1564     // potentially dead.
1565     return {MaybeDeadAccess};
1566   }
1567 
1568   // Delete dead memory defs
1569   void deleteDeadInstruction(Instruction *SI) {
1570     MemorySSAUpdater Updater(&MSSA);
1571     SmallVector<Instruction *, 32> NowDeadInsts;
1572     NowDeadInsts.push_back(SI);
1573     --NumFastOther;
1574 
1575     while (!NowDeadInsts.empty()) {
1576       Instruction *DeadInst = NowDeadInsts.pop_back_val();
1577       ++NumFastOther;
1578 
1579       // Try to preserve debug information attached to the dead instruction.
1580       salvageDebugInfo(*DeadInst);
1581       salvageKnowledge(DeadInst);
1582 
1583       // Remove the Instruction from MSSA.
1584       if (MemoryAccess *MA = MSSA.getMemoryAccess(DeadInst)) {
1585         if (MemoryDef *MD = dyn_cast<MemoryDef>(MA)) {
1586           SkipStores.insert(MD);
1587         }
1588 
1589         Updater.removeMemoryAccess(MA);
1590       }
1591 
1592       auto I = IOLs.find(DeadInst->getParent());
1593       if (I != IOLs.end())
1594         I->second.erase(DeadInst);
1595       // Remove its operands
1596       for (Use &O : DeadInst->operands())
1597         if (Instruction *OpI = dyn_cast<Instruction>(O)) {
1598           O = nullptr;
1599           if (isInstructionTriviallyDead(OpI, &TLI))
1600             NowDeadInsts.push_back(OpI);
1601         }
1602 
1603       EI.removeInstruction(DeadInst);
1604       DeadInst->eraseFromParent();
1605     }
1606   }
1607 
1608   // Check for any extra throws between \p KillingI and \p DeadI that block
1609   // DSE.  This only checks extra maythrows (those that aren't MemoryDef's).
1610   // MemoryDef that may throw are handled during the walk from one def to the
1611   // next.
1612   bool mayThrowBetween(Instruction *KillingI, Instruction *DeadI,
1613                        const Value *KillingUndObj) {
1614     // First see if we can ignore it by using the fact that KillingI is an
1615     // alloca/alloca like object that is not visible to the caller during
1616     // execution of the function.
1617     if (KillingUndObj && isInvisibleToCallerBeforeRet(KillingUndObj))
1618       return false;
1619 
1620     if (KillingI->getParent() == DeadI->getParent())
1621       return ThrowingBlocks.count(KillingI->getParent());
1622     return !ThrowingBlocks.empty();
1623   }
1624 
1625   // Check if \p DeadI acts as a DSE barrier for \p KillingI. The following
1626   // instructions act as barriers:
1627   //  * A memory instruction that may throw and \p KillingI accesses a non-stack
1628   //  object.
1629   //  * Atomic stores stronger that monotonic.
1630   bool isDSEBarrier(const Value *KillingUndObj, Instruction *DeadI) {
1631     // If DeadI may throw it acts as a barrier, unless we are to an
1632     // alloca/alloca like object that does not escape.
1633     if (DeadI->mayThrow() && !isInvisibleToCallerBeforeRet(KillingUndObj))
1634       return true;
1635 
1636     // If DeadI is an atomic load/store stronger than monotonic, do not try to
1637     // eliminate/reorder it.
1638     if (DeadI->isAtomic()) {
1639       if (auto *LI = dyn_cast<LoadInst>(DeadI))
1640         return isStrongerThanMonotonic(LI->getOrdering());
1641       if (auto *SI = dyn_cast<StoreInst>(DeadI))
1642         return isStrongerThanMonotonic(SI->getOrdering());
1643       if (auto *ARMW = dyn_cast<AtomicRMWInst>(DeadI))
1644         return isStrongerThanMonotonic(ARMW->getOrdering());
1645       if (auto *CmpXchg = dyn_cast<AtomicCmpXchgInst>(DeadI))
1646         return isStrongerThanMonotonic(CmpXchg->getSuccessOrdering()) ||
1647                isStrongerThanMonotonic(CmpXchg->getFailureOrdering());
1648       llvm_unreachable("other instructions should be skipped in MemorySSA");
1649     }
1650     return false;
1651   }
1652 
1653   /// Eliminate writes to objects that are not visible in the caller and are not
1654   /// accessed before returning from the function.
1655   bool eliminateDeadWritesAtEndOfFunction() {
1656     bool MadeChange = false;
1657     LLVM_DEBUG(
1658         dbgs()
1659         << "Trying to eliminate MemoryDefs at the end of the function\n");
1660     for (MemoryDef *Def : llvm::reverse(MemDefs)) {
1661       if (SkipStores.contains(Def))
1662         continue;
1663 
1664       Instruction *DefI = Def->getMemoryInst();
1665       auto DefLoc = getLocForWrite(DefI);
1666       if (!DefLoc || !isRemovable(DefI))
1667         continue;
1668 
1669       // NOTE: Currently eliminating writes at the end of a function is limited
1670       // to MemoryDefs with a single underlying object, to save compile-time. In
1671       // practice it appears the case with multiple underlying objects is very
1672       // uncommon. If it turns out to be important, we can use
1673       // getUnderlyingObjects here instead.
1674       const Value *UO = getUnderlyingObject(DefLoc->Ptr);
1675       if (!isInvisibleToCallerAfterRet(UO))
1676         continue;
1677 
1678       if (isWriteAtEndOfFunction(Def)) {
1679         // See through pointer-to-pointer bitcasts
1680         LLVM_DEBUG(dbgs() << "   ... MemoryDef is not accessed until the end "
1681                              "of the function\n");
1682         deleteDeadInstruction(DefI);
1683         ++NumFastStores;
1684         MadeChange = true;
1685       }
1686     }
1687     return MadeChange;
1688   }
1689 
1690   /// If we have a zero initializing memset following a call to malloc,
1691   /// try folding it into a call to calloc.
1692   bool tryFoldIntoCalloc(MemoryDef *Def, const Value *DefUO) {
1693     Instruction *DefI = Def->getMemoryInst();
1694     MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI);
1695     if (!MemSet)
1696       // TODO: Could handle zero store to small allocation as well.
1697       return false;
1698     Constant *StoredConstant = dyn_cast<Constant>(MemSet->getValue());
1699     if (!StoredConstant || !StoredConstant->isNullValue())
1700       return false;
1701 
1702     if (!isRemovable(DefI))
1703       // The memset might be volatile..
1704       return false;
1705 
1706     if (F.hasFnAttribute(Attribute::SanitizeMemory) ||
1707         F.hasFnAttribute(Attribute::SanitizeAddress) ||
1708         F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
1709         F.getName() == "calloc")
1710       return false;
1711     auto *Malloc = const_cast<CallInst *>(dyn_cast<CallInst>(DefUO));
1712     if (!Malloc)
1713       return false;
1714     auto *InnerCallee = Malloc->getCalledFunction();
1715     if (!InnerCallee)
1716       return false;
1717     LibFunc Func;
1718     if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
1719         Func != LibFunc_malloc)
1720       return false;
1721 
1722     auto shouldCreateCalloc = [](CallInst *Malloc, CallInst *Memset) {
1723       // Check for br(icmp ptr, null), truebb, falsebb) pattern at the end
1724       // of malloc block
1725       auto *MallocBB = Malloc->getParent(),
1726         *MemsetBB = Memset->getParent();
1727       if (MallocBB == MemsetBB)
1728         return true;
1729       auto *Ptr = Memset->getArgOperand(0);
1730       auto *TI = MallocBB->getTerminator();
1731       ICmpInst::Predicate Pred;
1732       BasicBlock *TrueBB, *FalseBB;
1733       if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Ptr), m_Zero()), TrueBB,
1734                           FalseBB)))
1735         return false;
1736       if (Pred != ICmpInst::ICMP_EQ || MemsetBB != FalseBB)
1737         return false;
1738       return true;
1739     };
1740 
1741     if (Malloc->getOperand(0) != MemSet->getLength())
1742       return false;
1743     if (!shouldCreateCalloc(Malloc, MemSet) ||
1744         !DT.dominates(Malloc, MemSet) ||
1745         !memoryIsNotModifiedBetween(Malloc, MemSet, BatchAA, DL, &DT))
1746       return false;
1747     IRBuilder<> IRB(Malloc);
1748     const auto &DL = Malloc->getModule()->getDataLayout();
1749     auto *Calloc =
1750       emitCalloc(ConstantInt::get(IRB.getIntPtrTy(DL), 1),
1751                  Malloc->getArgOperand(0), IRB, TLI);
1752     if (!Calloc)
1753       return false;
1754     MemorySSAUpdater Updater(&MSSA);
1755     auto *LastDef =
1756       cast<MemoryDef>(Updater.getMemorySSA()->getMemoryAccess(Malloc));
1757     auto *NewAccess =
1758       Updater.createMemoryAccessAfter(cast<Instruction>(Calloc), LastDef,
1759                                       LastDef);
1760     auto *NewAccessMD = cast<MemoryDef>(NewAccess);
1761     Updater.insertDef(NewAccessMD, /*RenameUses=*/true);
1762     Updater.removeMemoryAccess(Malloc);
1763     Malloc->replaceAllUsesWith(Calloc);
1764     Malloc->eraseFromParent();
1765     return true;
1766   }
1767 
1768   /// \returns true if \p Def is a no-op store, either because it
1769   /// directly stores back a loaded value or stores zero to a calloced object.
1770   bool storeIsNoop(MemoryDef *Def, const Value *DefUO) {
1771     Instruction *DefI = Def->getMemoryInst();
1772     StoreInst *Store = dyn_cast<StoreInst>(DefI);
1773     MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI);
1774     Constant *StoredConstant = nullptr;
1775     if (Store)
1776       StoredConstant = dyn_cast<Constant>(Store->getOperand(0));
1777     else if (MemSet)
1778       StoredConstant = dyn_cast<Constant>(MemSet->getValue());
1779     else
1780       return false;
1781 
1782     if (!isRemovable(DefI))
1783       return false;
1784 
1785     if (StoredConstant && isAllocationFn(DefUO, &TLI)) {
1786       auto *CB = cast<CallBase>(DefUO);
1787       auto *InitC = getInitialValueOfAllocation(CB, &TLI,
1788                                                 StoredConstant->getType());
1789       // If the clobbering access is LiveOnEntry, no instructions between them
1790       // can modify the memory location.
1791       if (InitC && InitC == StoredConstant)
1792         return MSSA.isLiveOnEntryDef(
1793             MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def));
1794     }
1795 
1796     if (!Store)
1797       return false;
1798 
1799     if (auto *LoadI = dyn_cast<LoadInst>(Store->getOperand(0))) {
1800       if (LoadI->getPointerOperand() == Store->getOperand(1)) {
1801         // Get the defining access for the load.
1802         auto *LoadAccess = MSSA.getMemoryAccess(LoadI)->getDefiningAccess();
1803         // Fast path: the defining accesses are the same.
1804         if (LoadAccess == Def->getDefiningAccess())
1805           return true;
1806 
1807         // Look through phi accesses. Recursively scan all phi accesses by
1808         // adding them to a worklist. Bail when we run into a memory def that
1809         // does not match LoadAccess.
1810         SetVector<MemoryAccess *> ToCheck;
1811         MemoryAccess *Current =
1812             MSSA.getWalker()->getClobberingMemoryAccess(Def);
1813         // We don't want to bail when we run into the store memory def. But,
1814         // the phi access may point to it. So, pretend like we've already
1815         // checked it.
1816         ToCheck.insert(Def);
1817         ToCheck.insert(Current);
1818         // Start at current (1) to simulate already having checked Def.
1819         for (unsigned I = 1; I < ToCheck.size(); ++I) {
1820           Current = ToCheck[I];
1821           if (auto PhiAccess = dyn_cast<MemoryPhi>(Current)) {
1822             // Check all the operands.
1823             for (auto &Use : PhiAccess->incoming_values())
1824               ToCheck.insert(cast<MemoryAccess>(&Use));
1825             continue;
1826           }
1827 
1828           // If we found a memory def, bail. This happens when we have an
1829           // unrelated write in between an otherwise noop store.
1830           assert(isa<MemoryDef>(Current) &&
1831                  "Only MemoryDefs should reach here.");
1832           // TODO: Skip no alias MemoryDefs that have no aliasing reads.
1833           // We are searching for the definition of the store's destination.
1834           // So, if that is the same definition as the load, then this is a
1835           // noop. Otherwise, fail.
1836           if (LoadAccess != Current)
1837             return false;
1838         }
1839         return true;
1840       }
1841     }
1842 
1843     return false;
1844   }
1845 
1846   bool removePartiallyOverlappedStores(InstOverlapIntervalsTy &IOL) {
1847     bool Changed = false;
1848     for (auto OI : IOL) {
1849       Instruction *DeadI = OI.first;
1850       MemoryLocation Loc = *getLocForWrite(DeadI);
1851       assert(isRemovable(DeadI) && "Expect only removable instruction");
1852 
1853       const Value *Ptr = Loc.Ptr->stripPointerCasts();
1854       int64_t DeadStart = 0;
1855       uint64_t DeadSize = Loc.Size.getValue();
1856       GetPointerBaseWithConstantOffset(Ptr, DeadStart, DL);
1857       OverlapIntervalsTy &IntervalMap = OI.second;
1858       Changed |= tryToShortenEnd(DeadI, IntervalMap, DeadStart, DeadSize);
1859       if (IntervalMap.empty())
1860         continue;
1861       Changed |= tryToShortenBegin(DeadI, IntervalMap, DeadStart, DeadSize);
1862     }
1863     return Changed;
1864   }
1865 
1866   /// Eliminates writes to locations where the value that is being written
1867   /// is already stored at the same location.
1868   bool eliminateRedundantStoresOfExistingValues() {
1869     bool MadeChange = false;
1870     LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs that write the "
1871                          "already existing value\n");
1872     for (auto *Def : MemDefs) {
1873       if (SkipStores.contains(Def) || MSSA.isLiveOnEntryDef(Def))
1874         continue;
1875 
1876       Instruction *DefInst = Def->getMemoryInst();
1877       auto MaybeDefLoc = getLocForWrite(DefInst);
1878       if (!MaybeDefLoc || !isRemovable(DefInst))
1879         continue;
1880 
1881       MemoryDef *UpperDef;
1882       // To conserve compile-time, we avoid walking to the next clobbering def.
1883       // Instead, we just try to get the optimized access, if it exists. DSE
1884       // will try to optimize defs during the earlier traversal.
1885       if (Def->isOptimized())
1886         UpperDef = dyn_cast<MemoryDef>(Def->getOptimized());
1887       else
1888         UpperDef = dyn_cast<MemoryDef>(Def->getDefiningAccess());
1889       if (!UpperDef || MSSA.isLiveOnEntryDef(UpperDef))
1890         continue;
1891 
1892       Instruction *UpperInst = UpperDef->getMemoryInst();
1893       auto IsRedundantStore = [&]() {
1894         if (DefInst->isIdenticalTo(UpperInst))
1895           return true;
1896         if (auto *MemSetI = dyn_cast<MemSetInst>(UpperInst)) {
1897           if (auto *SI = dyn_cast<StoreInst>(DefInst)) {
1898             // MemSetInst must have a write location.
1899             MemoryLocation UpperLoc = *getLocForWrite(UpperInst);
1900             int64_t InstWriteOffset = 0;
1901             int64_t DepWriteOffset = 0;
1902             auto OR = isOverwrite(UpperInst, DefInst, UpperLoc, *MaybeDefLoc,
1903                                   InstWriteOffset, DepWriteOffset);
1904             Value *StoredByte = isBytewiseValue(SI->getValueOperand(), DL);
1905             return StoredByte && StoredByte == MemSetI->getOperand(1) &&
1906                    OR == OW_Complete;
1907           }
1908         }
1909         return false;
1910       };
1911 
1912       if (!IsRedundantStore() || isReadClobber(*MaybeDefLoc, DefInst))
1913         continue;
1914       LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n  DEAD: " << *DefInst
1915                         << '\n');
1916       deleteDeadInstruction(DefInst);
1917       NumRedundantStores++;
1918       MadeChange = true;
1919     }
1920     return MadeChange;
1921   }
1922 };
1923 
1924 static bool eliminateDeadStores(Function &F, AliasAnalysis &AA, MemorySSA &MSSA,
1925                                 DominatorTree &DT, PostDominatorTree &PDT,
1926                                 const TargetLibraryInfo &TLI,
1927                                 const LoopInfo &LI) {
1928   bool MadeChange = false;
1929 
1930   DSEState State(F, AA, MSSA, DT, PDT, TLI, LI);
1931   // For each store:
1932   for (unsigned I = 0; I < State.MemDefs.size(); I++) {
1933     MemoryDef *KillingDef = State.MemDefs[I];
1934     if (State.SkipStores.count(KillingDef))
1935       continue;
1936     Instruction *KillingI = KillingDef->getMemoryInst();
1937 
1938     Optional<MemoryLocation> MaybeKillingLoc;
1939     if (State.isMemTerminatorInst(KillingI))
1940       MaybeKillingLoc = State.getLocForTerminator(KillingI).map(
1941           [](const std::pair<MemoryLocation, bool> &P) { return P.first; });
1942     else
1943       MaybeKillingLoc = State.getLocForWrite(KillingI);
1944 
1945     if (!MaybeKillingLoc) {
1946       LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for "
1947                         << *KillingI << "\n");
1948       continue;
1949     }
1950     MemoryLocation KillingLoc = *MaybeKillingLoc;
1951     assert(KillingLoc.Ptr && "KillingLoc should not be null");
1952     const Value *KillingUndObj = getUnderlyingObject(KillingLoc.Ptr);
1953     LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by "
1954                       << *KillingDef << " (" << *KillingI << ")\n");
1955 
1956     unsigned ScanLimit = MemorySSAScanLimit;
1957     unsigned WalkerStepLimit = MemorySSAUpwardsStepLimit;
1958     unsigned PartialLimit = MemorySSAPartialStoreLimit;
1959     // Worklist of MemoryAccesses that may be killed by KillingDef.
1960     SetVector<MemoryAccess *> ToCheck;
1961     ToCheck.insert(KillingDef->getDefiningAccess());
1962 
1963     bool Shortend = false;
1964     bool IsMemTerm = State.isMemTerminatorInst(KillingI);
1965     // Check if MemoryAccesses in the worklist are killed by KillingDef.
1966     for (unsigned I = 0; I < ToCheck.size(); I++) {
1967       MemoryAccess *Current = ToCheck[I];
1968       if (State.SkipStores.count(Current))
1969         continue;
1970 
1971       Optional<MemoryAccess *> MaybeDeadAccess = State.getDomMemoryDef(
1972           KillingDef, Current, KillingLoc, KillingUndObj, ScanLimit,
1973           WalkerStepLimit, IsMemTerm, PartialLimit);
1974 
1975       if (!MaybeDeadAccess) {
1976         LLVM_DEBUG(dbgs() << "  finished walk\n");
1977         continue;
1978       }
1979 
1980       MemoryAccess *DeadAccess = *MaybeDeadAccess;
1981       LLVM_DEBUG(dbgs() << " Checking if we can kill " << *DeadAccess);
1982       if (isa<MemoryPhi>(DeadAccess)) {
1983         LLVM_DEBUG(dbgs() << "\n  ... adding incoming values to worklist\n");
1984         for (Value *V : cast<MemoryPhi>(DeadAccess)->incoming_values()) {
1985           MemoryAccess *IncomingAccess = cast<MemoryAccess>(V);
1986           BasicBlock *IncomingBlock = IncomingAccess->getBlock();
1987           BasicBlock *PhiBlock = DeadAccess->getBlock();
1988 
1989           // We only consider incoming MemoryAccesses that come before the
1990           // MemoryPhi. Otherwise we could discover candidates that do not
1991           // strictly dominate our starting def.
1992           if (State.PostOrderNumbers[IncomingBlock] >
1993               State.PostOrderNumbers[PhiBlock])
1994             ToCheck.insert(IncomingAccess);
1995         }
1996         continue;
1997       }
1998       auto *DeadDefAccess = cast<MemoryDef>(DeadAccess);
1999       Instruction *DeadI = DeadDefAccess->getMemoryInst();
2000       LLVM_DEBUG(dbgs() << " (" << *DeadI << ")\n");
2001       ToCheck.insert(DeadDefAccess->getDefiningAccess());
2002       NumGetDomMemoryDefPassed++;
2003 
2004       if (!DebugCounter::shouldExecute(MemorySSACounter))
2005         continue;
2006 
2007       MemoryLocation DeadLoc = *State.getLocForWrite(DeadI);
2008 
2009       if (IsMemTerm) {
2010         const Value *DeadUndObj = getUnderlyingObject(DeadLoc.Ptr);
2011         if (KillingUndObj != DeadUndObj)
2012           continue;
2013         LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: " << *DeadI
2014                           << "\n  KILLER: " << *KillingI << '\n');
2015         State.deleteDeadInstruction(DeadI);
2016         ++NumFastStores;
2017         MadeChange = true;
2018       } else {
2019         // Check if DeadI overwrites KillingI.
2020         int64_t KillingOffset = 0;
2021         int64_t DeadOffset = 0;
2022         OverwriteResult OR = State.isOverwrite(
2023             KillingI, DeadI, KillingLoc, DeadLoc, KillingOffset, DeadOffset);
2024         if (OR == OW_MaybePartial) {
2025           auto Iter = State.IOLs.insert(
2026               std::make_pair<BasicBlock *, InstOverlapIntervalsTy>(
2027                   DeadI->getParent(), InstOverlapIntervalsTy()));
2028           auto &IOL = Iter.first->second;
2029           OR = isPartialOverwrite(KillingLoc, DeadLoc, KillingOffset,
2030                                   DeadOffset, DeadI, IOL);
2031         }
2032 
2033         if (EnablePartialStoreMerging && OR == OW_PartialEarlierWithFullLater) {
2034           auto *DeadSI = dyn_cast<StoreInst>(DeadI);
2035           auto *KillingSI = dyn_cast<StoreInst>(KillingI);
2036           // We are re-using tryToMergePartialOverlappingStores, which requires
2037           // DeadSI to dominate DeadSI.
2038           // TODO: implement tryToMergeParialOverlappingStores using MemorySSA.
2039           if (DeadSI && KillingSI && DT.dominates(DeadSI, KillingSI)) {
2040             if (Constant *Merged = tryToMergePartialOverlappingStores(
2041                     KillingSI, DeadSI, KillingOffset, DeadOffset, State.DL,
2042                     State.BatchAA, &DT)) {
2043 
2044               // Update stored value of earlier store to merged constant.
2045               DeadSI->setOperand(0, Merged);
2046               ++NumModifiedStores;
2047               MadeChange = true;
2048 
2049               Shortend = true;
2050               // Remove killing store and remove any outstanding overlap
2051               // intervals for the updated store.
2052               State.deleteDeadInstruction(KillingSI);
2053               auto I = State.IOLs.find(DeadSI->getParent());
2054               if (I != State.IOLs.end())
2055                 I->second.erase(DeadSI);
2056               break;
2057             }
2058           }
2059         }
2060 
2061         if (OR == OW_Complete) {
2062           LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: " << *DeadI
2063                             << "\n  KILLER: " << *KillingI << '\n');
2064           State.deleteDeadInstruction(DeadI);
2065           ++NumFastStores;
2066           MadeChange = true;
2067         }
2068       }
2069     }
2070 
2071     // Check if the store is a no-op.
2072     if (!Shortend && State.storeIsNoop(KillingDef, KillingUndObj)) {
2073       LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n  DEAD: " << *KillingI
2074                         << '\n');
2075       State.deleteDeadInstruction(KillingI);
2076       NumRedundantStores++;
2077       MadeChange = true;
2078       continue;
2079     }
2080 
2081     // Can we form a calloc from a memset/malloc pair?
2082     if (!Shortend && State.tryFoldIntoCalloc(KillingDef, KillingUndObj)) {
2083       LLVM_DEBUG(dbgs() << "DSE: Remove memset after forming calloc:\n"
2084                         << "  DEAD: " << *KillingI << '\n');
2085       State.deleteDeadInstruction(KillingI);
2086       MadeChange = true;
2087       continue;
2088     }
2089   }
2090 
2091   if (EnablePartialOverwriteTracking)
2092     for (auto &KV : State.IOLs)
2093       MadeChange |= State.removePartiallyOverlappedStores(KV.second);
2094 
2095   MadeChange |= State.eliminateRedundantStoresOfExistingValues();
2096   MadeChange |= State.eliminateDeadWritesAtEndOfFunction();
2097   return MadeChange;
2098 }
2099 } // end anonymous namespace
2100 
2101 //===----------------------------------------------------------------------===//
2102 // DSE Pass
2103 //===----------------------------------------------------------------------===//
2104 PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
2105   AliasAnalysis &AA = AM.getResult<AAManager>(F);
2106   const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F);
2107   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
2108   MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
2109   PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
2110   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
2111 
2112   bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, TLI, LI);
2113 
2114 #ifdef LLVM_ENABLE_STATS
2115   if (AreStatisticsEnabled())
2116     for (auto &I : instructions(F))
2117       NumRemainingStores += isa<StoreInst>(&I);
2118 #endif
2119 
2120   if (!Changed)
2121     return PreservedAnalyses::all();
2122 
2123   PreservedAnalyses PA;
2124   PA.preserveSet<CFGAnalyses>();
2125   PA.preserve<MemorySSAAnalysis>();
2126   PA.preserve<LoopAnalysis>();
2127   return PA;
2128 }
2129 
2130 namespace {
2131 
2132 /// A legacy pass for the legacy pass manager that wraps \c DSEPass.
2133 class DSELegacyPass : public FunctionPass {
2134 public:
2135   static char ID; // Pass identification, replacement for typeid
2136 
2137   DSELegacyPass() : FunctionPass(ID) {
2138     initializeDSELegacyPassPass(*PassRegistry::getPassRegistry());
2139   }
2140 
2141   bool runOnFunction(Function &F) override {
2142     if (skipFunction(F))
2143       return false;
2144 
2145     AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2146     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2147     const TargetLibraryInfo &TLI =
2148         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2149     MemorySSA &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2150     PostDominatorTree &PDT =
2151         getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
2152     LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2153 
2154     bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, TLI, LI);
2155 
2156 #ifdef LLVM_ENABLE_STATS
2157     if (AreStatisticsEnabled())
2158       for (auto &I : instructions(F))
2159         NumRemainingStores += isa<StoreInst>(&I);
2160 #endif
2161 
2162     return Changed;
2163   }
2164 
2165   void getAnalysisUsage(AnalysisUsage &AU) const override {
2166     AU.setPreservesCFG();
2167     AU.addRequired<AAResultsWrapperPass>();
2168     AU.addRequired<TargetLibraryInfoWrapperPass>();
2169     AU.addPreserved<GlobalsAAWrapperPass>();
2170     AU.addRequired<DominatorTreeWrapperPass>();
2171     AU.addPreserved<DominatorTreeWrapperPass>();
2172     AU.addRequired<PostDominatorTreeWrapperPass>();
2173     AU.addRequired<MemorySSAWrapperPass>();
2174     AU.addPreserved<PostDominatorTreeWrapperPass>();
2175     AU.addPreserved<MemorySSAWrapperPass>();
2176     AU.addRequired<LoopInfoWrapperPass>();
2177     AU.addPreserved<LoopInfoWrapperPass>();
2178   }
2179 };
2180 
2181 } // end anonymous namespace
2182 
2183 char DSELegacyPass::ID = 0;
2184 
2185 INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false,
2186                       false)
2187 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2188 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
2189 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2190 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
2191 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
2192 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
2193 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2194 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2195 INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false,
2196                     false)
2197 
2198 FunctionPass *llvm::createDeadStoreEliminationPass() {
2199   return new DSELegacyPass();
2200 }
2201