1 //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a trivial dead store elimination that only considers
11 // basic-block local redundant stores.
12 //
13 // FIXME: This should eventually be extended to be a post-dominator tree
14 // traversal.  Doing so would be pretty trivial.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Transforms/Scalar/DeadStoreElimination.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CallSite.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/PassManager.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Scalar.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstddef>
63 #include <cstdint>
64 #include <iterator>
65 #include <map>
66 #include <utility>
67 
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "dse"
71 
72 STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
73 STATISTIC(NumFastStores, "Number of stores deleted");
74 STATISTIC(NumFastOther , "Number of other instrs removed");
75 STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
76 STATISTIC(NumModifiedStores, "Number of stores modified");
77 
78 static cl::opt<bool>
79 EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
80   cl::init(true), cl::Hidden,
81   cl::desc("Enable partial-overwrite tracking in DSE"));
82 
83 static cl::opt<bool>
84 EnablePartialStoreMerging("enable-dse-partial-store-merging",
85   cl::init(true), cl::Hidden,
86   cl::desc("Enable partial store merging in DSE"));
87 
88 //===----------------------------------------------------------------------===//
89 // Helper functions
90 //===----------------------------------------------------------------------===//
91 using OverlapIntervalsTy = std::map<int64_t, int64_t>;
92 using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>;
93 
94 /// Delete this instruction.  Before we do, go through and zero out all the
95 /// operands of this instruction.  If any of them become dead, delete them and
96 /// the computation tree that feeds them.
97 /// If ValueSet is non-null, remove any deleted instructions from it as well.
98 static void
99 deleteDeadInstruction(Instruction *I, BasicBlock::iterator *BBI,
100                       MemoryDependenceResults &MD, const TargetLibraryInfo &TLI,
101                       InstOverlapIntervalsTy &IOL,
102                       DenseMap<Instruction*, size_t> *InstrOrdering,
103                       SmallSetVector<Value *, 16> *ValueSet = nullptr) {
104   SmallVector<Instruction*, 32> NowDeadInsts;
105 
106   NowDeadInsts.push_back(I);
107   --NumFastOther;
108 
109   // Keeping the iterator straight is a pain, so we let this routine tell the
110   // caller what the next instruction is after we're done mucking about.
111   BasicBlock::iterator NewIter = *BBI;
112 
113   // Before we touch this instruction, remove it from memdep!
114   do {
115     Instruction *DeadInst = NowDeadInsts.pop_back_val();
116     ++NumFastOther;
117 
118     // Try to preserve debug information attached to the dead instruction.
119     salvageDebugInfo(*DeadInst);
120 
121     // This instruction is dead, zap it, in stages.  Start by removing it from
122     // MemDep, which needs to know the operands and needs it to be in the
123     // function.
124     MD.removeInstruction(DeadInst);
125 
126     for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
127       Value *Op = DeadInst->getOperand(op);
128       DeadInst->setOperand(op, nullptr);
129 
130       // If this operand just became dead, add it to the NowDeadInsts list.
131       if (!Op->use_empty()) continue;
132 
133       if (Instruction *OpI = dyn_cast<Instruction>(Op))
134         if (isInstructionTriviallyDead(OpI, &TLI))
135           NowDeadInsts.push_back(OpI);
136     }
137 
138     if (ValueSet) ValueSet->remove(DeadInst);
139     InstrOrdering->erase(DeadInst);
140     IOL.erase(DeadInst);
141 
142     if (NewIter == DeadInst->getIterator())
143       NewIter = DeadInst->eraseFromParent();
144     else
145       DeadInst->eraseFromParent();
146   } while (!NowDeadInsts.empty());
147   *BBI = NewIter;
148 }
149 
150 /// Does this instruction write some memory?  This only returns true for things
151 /// that we can analyze with other helpers below.
152 static bool hasAnalyzableMemoryWrite(Instruction *I,
153                                      const TargetLibraryInfo &TLI) {
154   if (isa<StoreInst>(I))
155     return true;
156   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
157     switch (II->getIntrinsicID()) {
158     default:
159       return false;
160     case Intrinsic::memset:
161     case Intrinsic::memmove:
162     case Intrinsic::memcpy:
163     case Intrinsic::init_trampoline:
164     case Intrinsic::lifetime_end:
165       return true;
166     }
167   }
168   if (auto CS = CallSite(I)) {
169     if (Function *F = CS.getCalledFunction()) {
170       StringRef FnName = F->getName();
171       if (TLI.has(LibFunc_strcpy) && FnName == TLI.getName(LibFunc_strcpy))
172         return true;
173       if (TLI.has(LibFunc_strncpy) && FnName == TLI.getName(LibFunc_strncpy))
174         return true;
175       if (TLI.has(LibFunc_strcat) && FnName == TLI.getName(LibFunc_strcat))
176         return true;
177       if (TLI.has(LibFunc_strncat) && FnName == TLI.getName(LibFunc_strncat))
178         return true;
179     }
180   }
181   return false;
182 }
183 
184 /// Return a Location stored to by the specified instruction. If isRemovable
185 /// returns true, this function and getLocForRead completely describe the memory
186 /// operations for this instruction.
187 static MemoryLocation getLocForWrite(Instruction *Inst) {
188 
189   if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
190     return MemoryLocation::get(SI);
191 
192   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
193     // memcpy/memmove/memset.
194     MemoryLocation Loc = MemoryLocation::getForDest(MI);
195     return Loc;
196   }
197 
198   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
199     switch (II->getIntrinsicID()) {
200     default:
201       return MemoryLocation(); // Unhandled intrinsic.
202     case Intrinsic::init_trampoline:
203       return MemoryLocation(II->getArgOperand(0));
204     case Intrinsic::lifetime_end: {
205       uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
206       return MemoryLocation(II->getArgOperand(1), Len);
207     }
208     }
209   }
210   if (auto CS = CallSite(Inst))
211     // All the supported TLI functions so far happen to have dest as their
212     // first argument.
213     return MemoryLocation(CS.getArgument(0));
214   return MemoryLocation();
215 }
216 
217 /// Return the location read by the specified "hasAnalyzableMemoryWrite"
218 /// instruction if any.
219 static MemoryLocation getLocForRead(Instruction *Inst,
220                                     const TargetLibraryInfo &TLI) {
221   assert(hasAnalyzableMemoryWrite(Inst, TLI) && "Unknown instruction case");
222 
223   // The only instructions that both read and write are the mem transfer
224   // instructions (memcpy/memmove).
225   if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
226     return MemoryLocation::getForSource(MTI);
227   return MemoryLocation();
228 }
229 
230 /// If the value of this instruction and the memory it writes to is unused, may
231 /// we delete this instruction?
232 static bool isRemovable(Instruction *I) {
233   // Don't remove volatile/atomic stores.
234   if (StoreInst *SI = dyn_cast<StoreInst>(I))
235     return SI->isUnordered();
236 
237   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
238     switch (II->getIntrinsicID()) {
239     default: llvm_unreachable("doesn't pass 'hasAnalyzableMemoryWrite' predicate");
240     case Intrinsic::lifetime_end:
241       // Never remove dead lifetime_end's, e.g. because it is followed by a
242       // free.
243       return false;
244     case Intrinsic::init_trampoline:
245       // Always safe to remove init_trampoline.
246       return true;
247     case Intrinsic::memset:
248     case Intrinsic::memmove:
249     case Intrinsic::memcpy:
250       // Don't remove volatile memory intrinsics.
251       return !cast<MemIntrinsic>(II)->isVolatile();
252     }
253   }
254 
255   // note: only get here for calls with analyzable writes - i.e. libcalls
256   if (auto CS = CallSite(I))
257     return CS.getInstruction()->use_empty();
258 
259   return false;
260 }
261 
262 /// Returns true if the end of this instruction can be safely shortened in
263 /// length.
264 static bool isShortenableAtTheEnd(Instruction *I) {
265   // Don't shorten stores for now
266   if (isa<StoreInst>(I))
267     return false;
268 
269   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
270     switch (II->getIntrinsicID()) {
271       default: return false;
272       case Intrinsic::memset:
273       case Intrinsic::memcpy:
274         // Do shorten memory intrinsics.
275         // FIXME: Add memmove if it's also safe to transform.
276         return true;
277     }
278   }
279 
280   // Don't shorten libcalls calls for now.
281 
282   return false;
283 }
284 
285 /// Returns true if the beginning of this instruction can be safely shortened
286 /// in length.
287 static bool isShortenableAtTheBeginning(Instruction *I) {
288   // FIXME: Handle only memset for now. Supporting memcpy/memmove should be
289   // easily done by offsetting the source address.
290   IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
291   return II && II->getIntrinsicID() == Intrinsic::memset;
292 }
293 
294 /// Return the pointer that is being written to.
295 static Value *getStoredPointerOperand(Instruction *I) {
296   //TODO: factor this to reuse getLocForWrite
297   MemoryLocation Loc = getLocForWrite(I);
298   assert(Loc.Ptr &&
299          "unable to find pointer writen for analyzable instruction?");
300   // TODO: most APIs don't expect const Value *
301   return const_cast<Value*>(Loc.Ptr);
302 }
303 
304 static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
305                                const TargetLibraryInfo &TLI) {
306   uint64_t Size;
307   if (getObjectSize(V, Size, DL, &TLI))
308     return Size;
309   return MemoryLocation::UnknownSize;
310 }
311 
312 namespace {
313 
314 enum OverwriteResult {
315   OW_Begin,
316   OW_Complete,
317   OW_End,
318   OW_PartialEarlierWithFullLater,
319   OW_Unknown
320 };
321 
322 } // end anonymous namespace
323 
324 /// Return 'OW_Complete' if a store to the 'Later' location completely
325 /// overwrites a store to the 'Earlier' location, 'OW_End' if the end of the
326 /// 'Earlier' location is completely overwritten by 'Later', 'OW_Begin' if the
327 /// beginning of the 'Earlier' location is overwritten by 'Later'.
328 /// 'OW_PartialEarlierWithFullLater' means that an earlier (big) store was
329 /// overwritten by a latter (smaller) store which doesn't write outside the big
330 /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined.
331 static OverwriteResult isOverwrite(const MemoryLocation &Later,
332                                    const MemoryLocation &Earlier,
333                                    const DataLayout &DL,
334                                    const TargetLibraryInfo &TLI,
335                                    int64_t &EarlierOff, int64_t &LaterOff,
336                                    Instruction *DepWrite,
337                                    InstOverlapIntervalsTy &IOL) {
338   // If we don't know the sizes of either access, then we can't do a comparison.
339   if (Later.Size == MemoryLocation::UnknownSize ||
340       Earlier.Size == MemoryLocation::UnknownSize)
341     return OW_Unknown;
342 
343   const Value *P1 = Earlier.Ptr->stripPointerCasts();
344   const Value *P2 = Later.Ptr->stripPointerCasts();
345 
346   // If the start pointers are the same, we just have to compare sizes to see if
347   // the later store was larger than the earlier store.
348   if (P1 == P2) {
349     // Make sure that the Later size is >= the Earlier size.
350     if (Later.Size >= Earlier.Size)
351       return OW_Complete;
352   }
353 
354   // Check to see if the later store is to the entire object (either a global,
355   // an alloca, or a byval/inalloca argument).  If so, then it clearly
356   // overwrites any other store to the same object.
357   const Value *UO1 = GetUnderlyingObject(P1, DL),
358               *UO2 = GetUnderlyingObject(P2, DL);
359 
360   // If we can't resolve the same pointers to the same object, then we can't
361   // analyze them at all.
362   if (UO1 != UO2)
363     return OW_Unknown;
364 
365   // If the "Later" store is to a recognizable object, get its size.
366   uint64_t ObjectSize = getPointerSize(UO2, DL, TLI);
367   if (ObjectSize != MemoryLocation::UnknownSize)
368     if (ObjectSize == Later.Size && ObjectSize >= Earlier.Size)
369       return OW_Complete;
370 
371   // Okay, we have stores to two completely different pointers.  Try to
372   // decompose the pointer into a "base + constant_offset" form.  If the base
373   // pointers are equal, then we can reason about the two stores.
374   EarlierOff = 0;
375   LaterOff = 0;
376   const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL);
377   const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL);
378 
379   // If the base pointers still differ, we have two completely different stores.
380   if (BP1 != BP2)
381     return OW_Unknown;
382 
383   // The later store completely overlaps the earlier store if:
384   //
385   // 1. Both start at the same offset and the later one's size is greater than
386   //    or equal to the earlier one's, or
387   //
388   //      |--earlier--|
389   //      |--   later   --|
390   //
391   // 2. The earlier store has an offset greater than the later offset, but which
392   //    still lies completely within the later store.
393   //
394   //        |--earlier--|
395   //    |-----  later  ------|
396   //
397   // We have to be careful here as *Off is signed while *.Size is unsigned.
398   if (EarlierOff >= LaterOff &&
399       Later.Size >= Earlier.Size &&
400       uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size)
401     return OW_Complete;
402 
403   // We may now overlap, although the overlap is not complete. There might also
404   // be other incomplete overlaps, and together, they might cover the complete
405   // earlier write.
406   // Note: The correctness of this logic depends on the fact that this function
407   // is not even called providing DepWrite when there are any intervening reads.
408   if (EnablePartialOverwriteTracking &&
409       LaterOff < int64_t(EarlierOff + Earlier.Size) &&
410       int64_t(LaterOff + Later.Size) >= EarlierOff) {
411 
412     // Insert our part of the overlap into the map.
413     auto &IM = IOL[DepWrite];
414     DEBUG(dbgs() << "DSE: Partial overwrite: Earlier [" << EarlierOff << ", " <<
415                     int64_t(EarlierOff + Earlier.Size) << ") Later [" <<
416                     LaterOff << ", " << int64_t(LaterOff + Later.Size) << ")\n");
417 
418     // Make sure that we only insert non-overlapping intervals and combine
419     // adjacent intervals. The intervals are stored in the map with the ending
420     // offset as the key (in the half-open sense) and the starting offset as
421     // the value.
422     int64_t LaterIntStart = LaterOff, LaterIntEnd = LaterOff + Later.Size;
423 
424     // Find any intervals ending at, or after, LaterIntStart which start
425     // before LaterIntEnd.
426     auto ILI = IM.lower_bound(LaterIntStart);
427     if (ILI != IM.end() && ILI->second <= LaterIntEnd) {
428       // This existing interval is overlapped with the current store somewhere
429       // in [LaterIntStart, LaterIntEnd]. Merge them by erasing the existing
430       // intervals and adjusting our start and end.
431       LaterIntStart = std::min(LaterIntStart, ILI->second);
432       LaterIntEnd = std::max(LaterIntEnd, ILI->first);
433       ILI = IM.erase(ILI);
434 
435       // Continue erasing and adjusting our end in case other previous
436       // intervals are also overlapped with the current store.
437       //
438       // |--- ealier 1 ---|  |--- ealier 2 ---|
439       //     |------- later---------|
440       //
441       while (ILI != IM.end() && ILI->second <= LaterIntEnd) {
442         assert(ILI->second > LaterIntStart && "Unexpected interval");
443         LaterIntEnd = std::max(LaterIntEnd, ILI->first);
444         ILI = IM.erase(ILI);
445       }
446     }
447 
448     IM[LaterIntEnd] = LaterIntStart;
449 
450     ILI = IM.begin();
451     if (ILI->second <= EarlierOff &&
452         ILI->first >= int64_t(EarlierOff + Earlier.Size)) {
453       DEBUG(dbgs() << "DSE: Full overwrite from partials: Earlier [" <<
454                       EarlierOff << ", " <<
455                       int64_t(EarlierOff + Earlier.Size) <<
456                       ") Composite Later [" <<
457                       ILI->second << ", " << ILI->first << ")\n");
458       ++NumCompletePartials;
459       return OW_Complete;
460     }
461   }
462 
463   // Check for an earlier store which writes to all the memory locations that
464   // the later store writes to.
465   if (EnablePartialStoreMerging && LaterOff >= EarlierOff &&
466       int64_t(EarlierOff + Earlier.Size) > LaterOff &&
467       uint64_t(LaterOff - EarlierOff) + Later.Size <= Earlier.Size) {
468     DEBUG(dbgs() << "DSE: Partial overwrite an earlier load [" << EarlierOff
469                  << ", " << int64_t(EarlierOff + Earlier.Size)
470                  << ") by a later store [" << LaterOff << ", "
471                  << int64_t(LaterOff + Later.Size) << ")\n");
472     // TODO: Maybe come up with a better name?
473     return OW_PartialEarlierWithFullLater;
474   }
475 
476   // Another interesting case is if the later store overwrites the end of the
477   // earlier store.
478   //
479   //      |--earlier--|
480   //                |--   later   --|
481   //
482   // In this case we may want to trim the size of earlier to avoid generating
483   // writes to addresses which will definitely be overwritten later
484   if (!EnablePartialOverwriteTracking &&
485       (LaterOff > EarlierOff && LaterOff < int64_t(EarlierOff + Earlier.Size) &&
486        int64_t(LaterOff + Later.Size) >= int64_t(EarlierOff + Earlier.Size)))
487     return OW_End;
488 
489   // Finally, we also need to check if the later store overwrites the beginning
490   // of the earlier store.
491   //
492   //                |--earlier--|
493   //      |--   later   --|
494   //
495   // In this case we may want to move the destination address and trim the size
496   // of earlier to avoid generating writes to addresses which will definitely
497   // be overwritten later.
498   if (!EnablePartialOverwriteTracking &&
499       (LaterOff <= EarlierOff && int64_t(LaterOff + Later.Size) > EarlierOff)) {
500     assert(int64_t(LaterOff + Later.Size) <
501                int64_t(EarlierOff + Earlier.Size) &&
502            "Expect to be handled as OW_Complete");
503     return OW_Begin;
504   }
505   // Otherwise, they don't completely overlap.
506   return OW_Unknown;
507 }
508 
509 /// If 'Inst' might be a self read (i.e. a noop copy of a
510 /// memory region into an identical pointer) then it doesn't actually make its
511 /// input dead in the traditional sense.  Consider this case:
512 ///
513 ///   memmove(A <- B)
514 ///   memmove(A <- A)
515 ///
516 /// In this case, the second store to A does not make the first store to A dead.
517 /// The usual situation isn't an explicit A<-A store like this (which can be
518 /// trivially removed) but a case where two pointers may alias.
519 ///
520 /// This function detects when it is unsafe to remove a dependent instruction
521 /// because the DSE inducing instruction may be a self-read.
522 static bool isPossibleSelfRead(Instruction *Inst,
523                                const MemoryLocation &InstStoreLoc,
524                                Instruction *DepWrite,
525                                const TargetLibraryInfo &TLI,
526                                AliasAnalysis &AA) {
527   // Self reads can only happen for instructions that read memory.  Get the
528   // location read.
529   MemoryLocation InstReadLoc = getLocForRead(Inst, TLI);
530   if (!InstReadLoc.Ptr)
531     return false; // Not a reading instruction.
532 
533   // If the read and written loc obviously don't alias, it isn't a read.
534   if (AA.isNoAlias(InstReadLoc, InstStoreLoc))
535     return false;
536 
537   if (isa<MemCpyInst>(Inst)) {
538     // LLVM's memcpy overlap semantics are not fully fleshed out (see PR11763)
539     // but in practice memcpy(A <- B) either means that A and B are disjoint or
540     // are equal (i.e. there are not partial overlaps).  Given that, if we have:
541     //
542     //   memcpy/memmove(A <- B)  // DepWrite
543     //   memcpy(A <- B)  // Inst
544     //
545     // with Inst reading/writing a >= size than DepWrite, we can reason as
546     // follows:
547     //
548     //   - If A == B then both the copies are no-ops, so the DepWrite can be
549     //     removed.
550     //   - If A != B then A and B are disjoint locations in Inst.  Since
551     //     Inst.size >= DepWrite.size A and B are disjoint in DepWrite too.
552     //     Therefore DepWrite can be removed.
553     MemoryLocation DepReadLoc = getLocForRead(DepWrite, TLI);
554 
555     if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
556       return false;
557   }
558 
559   // If DepWrite doesn't read memory or if we can't prove it is a must alias,
560   // then it can't be considered dead.
561   return true;
562 }
563 
564 /// Returns true if the memory which is accessed by the second instruction is not
565 /// modified between the first and the second instruction.
566 /// Precondition: Second instruction must be dominated by the first
567 /// instruction.
568 static bool memoryIsNotModifiedBetween(Instruction *FirstI,
569                                        Instruction *SecondI,
570                                        AliasAnalysis *AA) {
571   SmallVector<BasicBlock *, 16> WorkList;
572   SmallPtrSet<BasicBlock *, 8> Visited;
573   BasicBlock::iterator FirstBBI(FirstI);
574   ++FirstBBI;
575   BasicBlock::iterator SecondBBI(SecondI);
576   BasicBlock *FirstBB = FirstI->getParent();
577   BasicBlock *SecondBB = SecondI->getParent();
578   MemoryLocation MemLoc = MemoryLocation::get(SecondI);
579 
580   // Start checking the store-block.
581   WorkList.push_back(SecondBB);
582   bool isFirstBlock = true;
583 
584   // Check all blocks going backward until we reach the load-block.
585   while (!WorkList.empty()) {
586     BasicBlock *B = WorkList.pop_back_val();
587 
588     // Ignore instructions before LI if this is the FirstBB.
589     BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
590 
591     BasicBlock::iterator EI;
592     if (isFirstBlock) {
593       // Ignore instructions after SI if this is the first visit of SecondBB.
594       assert(B == SecondBB && "first block is not the store block");
595       EI = SecondBBI;
596       isFirstBlock = false;
597     } else {
598       // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
599       // In this case we also have to look at instructions after SI.
600       EI = B->end();
601     }
602     for (; BI != EI; ++BI) {
603       Instruction *I = &*BI;
604       if (I->mayWriteToMemory() && I != SecondI)
605         if (isModSet(AA->getModRefInfo(I, MemLoc)))
606           return false;
607     }
608     if (B != FirstBB) {
609       assert(B != &FirstBB->getParent()->getEntryBlock() &&
610           "Should not hit the entry block because SI must be dominated by LI");
611       for (auto PredI = pred_begin(B), PE = pred_end(B); PredI != PE; ++PredI) {
612         if (!Visited.insert(*PredI).second)
613           continue;
614         WorkList.push_back(*PredI);
615       }
616     }
617   }
618   return true;
619 }
620 
621 /// Find all blocks that will unconditionally lead to the block BB and append
622 /// them to F.
623 static void findUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
624                                    BasicBlock *BB, DominatorTree *DT) {
625   for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
626     BasicBlock *Pred = *I;
627     if (Pred == BB) continue;
628     TerminatorInst *PredTI = Pred->getTerminator();
629     if (PredTI->getNumSuccessors() != 1)
630       continue;
631 
632     if (DT->isReachableFromEntry(Pred))
633       Blocks.push_back(Pred);
634   }
635 }
636 
637 /// Handle frees of entire structures whose dependency is a store
638 /// to a field of that structure.
639 static bool handleFree(CallInst *F, AliasAnalysis *AA,
640                        MemoryDependenceResults *MD, DominatorTree *DT,
641                        const TargetLibraryInfo *TLI,
642                        InstOverlapIntervalsTy &IOL,
643                        DenseMap<Instruction*, size_t> *InstrOrdering) {
644   bool MadeChange = false;
645 
646   MemoryLocation Loc = MemoryLocation(F->getOperand(0));
647   SmallVector<BasicBlock *, 16> Blocks;
648   Blocks.push_back(F->getParent());
649   const DataLayout &DL = F->getModule()->getDataLayout();
650 
651   while (!Blocks.empty()) {
652     BasicBlock *BB = Blocks.pop_back_val();
653     Instruction *InstPt = BB->getTerminator();
654     if (BB == F->getParent()) InstPt = F;
655 
656     MemDepResult Dep =
657         MD->getPointerDependencyFrom(Loc, false, InstPt->getIterator(), BB);
658     while (Dep.isDef() || Dep.isClobber()) {
659       Instruction *Dependency = Dep.getInst();
660       if (!hasAnalyzableMemoryWrite(Dependency, *TLI) ||
661           !isRemovable(Dependency))
662         break;
663 
664       Value *DepPointer =
665           GetUnderlyingObject(getStoredPointerOperand(Dependency), DL);
666 
667       // Check for aliasing.
668       if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
669         break;
670 
671       DEBUG(dbgs() << "DSE: Dead Store to soon to be freed memory:\n  DEAD: "
672                    << *Dependency << '\n');
673 
674       // DCE instructions only used to calculate that store.
675       BasicBlock::iterator BBI(Dependency);
676       deleteDeadInstruction(Dependency, &BBI, *MD, *TLI, IOL, InstrOrdering);
677       ++NumFastStores;
678       MadeChange = true;
679 
680       // Inst's old Dependency is now deleted. Compute the next dependency,
681       // which may also be dead, as in
682       //    s[0] = 0;
683       //    s[1] = 0; // This has just been deleted.
684       //    free(s);
685       Dep = MD->getPointerDependencyFrom(Loc, false, BBI, BB);
686     }
687 
688     if (Dep.isNonLocal())
689       findUnconditionalPreds(Blocks, BB, DT);
690   }
691 
692   return MadeChange;
693 }
694 
695 /// Check to see if the specified location may alias any of the stack objects in
696 /// the DeadStackObjects set. If so, they become live because the location is
697 /// being loaded.
698 static void removeAccessedObjects(const MemoryLocation &LoadedLoc,
699                                   SmallSetVector<Value *, 16> &DeadStackObjects,
700                                   const DataLayout &DL, AliasAnalysis *AA,
701                                   const TargetLibraryInfo *TLI) {
702   const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr, DL);
703 
704   // A constant can't be in the dead pointer set.
705   if (isa<Constant>(UnderlyingPointer))
706     return;
707 
708   // If the kill pointer can be easily reduced to an alloca, don't bother doing
709   // extraneous AA queries.
710   if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
711     DeadStackObjects.remove(const_cast<Value*>(UnderlyingPointer));
712     return;
713   }
714 
715   // Remove objects that could alias LoadedLoc.
716   DeadStackObjects.remove_if([&](Value *I) {
717     // See if the loaded location could alias the stack location.
718     MemoryLocation StackLoc(I, getPointerSize(I, DL, *TLI));
719     return !AA->isNoAlias(StackLoc, LoadedLoc);
720   });
721 }
722 
723 /// Remove dead stores to stack-allocated locations in the function end block.
724 /// Ex:
725 /// %A = alloca i32
726 /// ...
727 /// store i32 1, i32* %A
728 /// ret void
729 static bool handleEndBlock(BasicBlock &BB, AliasAnalysis *AA,
730                              MemoryDependenceResults *MD,
731                              const TargetLibraryInfo *TLI,
732                              InstOverlapIntervalsTy &IOL,
733                              DenseMap<Instruction*, size_t> *InstrOrdering) {
734   bool MadeChange = false;
735 
736   // Keep track of all of the stack objects that are dead at the end of the
737   // function.
738   SmallSetVector<Value*, 16> DeadStackObjects;
739 
740   // Find all of the alloca'd pointers in the entry block.
741   BasicBlock &Entry = BB.getParent()->front();
742   for (Instruction &I : Entry) {
743     if (isa<AllocaInst>(&I))
744       DeadStackObjects.insert(&I);
745 
746     // Okay, so these are dead heap objects, but if the pointer never escapes
747     // then it's leaked by this function anyways.
748     else if (isAllocLikeFn(&I, TLI) && !PointerMayBeCaptured(&I, true, true))
749       DeadStackObjects.insert(&I);
750   }
751 
752   // Treat byval or inalloca arguments the same, stores to them are dead at the
753   // end of the function.
754   for (Argument &AI : BB.getParent()->args())
755     if (AI.hasByValOrInAllocaAttr())
756       DeadStackObjects.insert(&AI);
757 
758   const DataLayout &DL = BB.getModule()->getDataLayout();
759 
760   // Scan the basic block backwards
761   for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
762     --BBI;
763 
764     // If we find a store, check to see if it points into a dead stack value.
765     if (hasAnalyzableMemoryWrite(&*BBI, *TLI) && isRemovable(&*BBI)) {
766       // See through pointer-to-pointer bitcasts
767       SmallVector<Value *, 4> Pointers;
768       GetUnderlyingObjects(getStoredPointerOperand(&*BBI), Pointers, DL);
769 
770       // Stores to stack values are valid candidates for removal.
771       bool AllDead = true;
772       for (Value *Pointer : Pointers)
773         if (!DeadStackObjects.count(Pointer)) {
774           AllDead = false;
775           break;
776         }
777 
778       if (AllDead) {
779         Instruction *Dead = &*BBI;
780 
781         DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
782                      << *Dead << "\n  Objects: ";
783               for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
784                    E = Pointers.end(); I != E; ++I) {
785                 dbgs() << **I;
786                 if (std::next(I) != E)
787                   dbgs() << ", ";
788               }
789               dbgs() << '\n');
790 
791         // DCE instructions only used to calculate that store.
792         deleteDeadInstruction(Dead, &BBI, *MD, *TLI, IOL, InstrOrdering, &DeadStackObjects);
793         ++NumFastStores;
794         MadeChange = true;
795         continue;
796       }
797     }
798 
799     // Remove any dead non-memory-mutating instructions.
800     if (isInstructionTriviallyDead(&*BBI, TLI)) {
801       DEBUG(dbgs() << "DSE: Removing trivially dead instruction:\n  DEAD: "
802                    << *&*BBI << '\n');
803       deleteDeadInstruction(&*BBI, &BBI, *MD, *TLI, IOL, InstrOrdering, &DeadStackObjects);
804       ++NumFastOther;
805       MadeChange = true;
806       continue;
807     }
808 
809     if (isa<AllocaInst>(BBI)) {
810       // Remove allocas from the list of dead stack objects; there can't be
811       // any references before the definition.
812       DeadStackObjects.remove(&*BBI);
813       continue;
814     }
815 
816     if (auto CS = CallSite(&*BBI)) {
817       // Remove allocation function calls from the list of dead stack objects;
818       // there can't be any references before the definition.
819       if (isAllocLikeFn(&*BBI, TLI))
820         DeadStackObjects.remove(&*BBI);
821 
822       // If this call does not access memory, it can't be loading any of our
823       // pointers.
824       if (AA->doesNotAccessMemory(CS))
825         continue;
826 
827       // If the call might load from any of our allocas, then any store above
828       // the call is live.
829       DeadStackObjects.remove_if([&](Value *I) {
830         // See if the call site touches the value.
831         return isRefSet(AA->getModRefInfo(CS, I, getPointerSize(I, DL, *TLI)));
832       });
833 
834       // If all of the allocas were clobbered by the call then we're not going
835       // to find anything else to process.
836       if (DeadStackObjects.empty())
837         break;
838 
839       continue;
840     }
841 
842     // We can remove the dead stores, irrespective of the fence and its ordering
843     // (release/acquire/seq_cst). Fences only constraints the ordering of
844     // already visible stores, it does not make a store visible to other
845     // threads. So, skipping over a fence does not change a store from being
846     // dead.
847     if (isa<FenceInst>(*BBI))
848       continue;
849 
850     MemoryLocation LoadedLoc;
851 
852     // If we encounter a use of the pointer, it is no longer considered dead
853     if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
854       if (!L->isUnordered()) // Be conservative with atomic/volatile load
855         break;
856       LoadedLoc = MemoryLocation::get(L);
857     } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
858       LoadedLoc = MemoryLocation::get(V);
859     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
860       LoadedLoc = MemoryLocation::getForSource(MTI);
861     } else if (!BBI->mayReadFromMemory()) {
862       // Instruction doesn't read memory.  Note that stores that weren't removed
863       // above will hit this case.
864       continue;
865     } else {
866       // Unknown inst; assume it clobbers everything.
867       break;
868     }
869 
870     // Remove any allocas from the DeadPointer set that are loaded, as this
871     // makes any stores above the access live.
872     removeAccessedObjects(LoadedLoc, DeadStackObjects, DL, AA, TLI);
873 
874     // If all of the allocas were clobbered by the access then we're not going
875     // to find anything else to process.
876     if (DeadStackObjects.empty())
877       break;
878   }
879 
880   return MadeChange;
881 }
882 
883 static bool tryToShorten(Instruction *EarlierWrite, int64_t &EarlierOffset,
884                          int64_t &EarlierSize, int64_t LaterOffset,
885                          int64_t LaterSize, bool IsOverwriteEnd) {
886   // TODO: base this on the target vector size so that if the earlier
887   // store was too small to get vector writes anyway then its likely
888   // a good idea to shorten it
889   // Power of 2 vector writes are probably always a bad idea to optimize
890   // as any store/memset/memcpy is likely using vector instructions so
891   // shortening it to not vector size is likely to be slower
892   MemIntrinsic *EarlierIntrinsic = cast<MemIntrinsic>(EarlierWrite);
893   unsigned EarlierWriteAlign = EarlierIntrinsic->getDestAlignment();
894   if (!IsOverwriteEnd)
895     LaterOffset = int64_t(LaterOffset + LaterSize);
896 
897   if (!(isPowerOf2_64(LaterOffset) && EarlierWriteAlign <= LaterOffset) &&
898       !((EarlierWriteAlign != 0) && LaterOffset % EarlierWriteAlign == 0))
899     return false;
900 
901   DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW "
902                << (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *EarlierWrite
903                << "\n  KILLER (offset " << LaterOffset << ", " << EarlierSize
904                << ")\n");
905 
906   int64_t NewLength = IsOverwriteEnd
907                           ? LaterOffset - EarlierOffset
908                           : EarlierSize - (LaterOffset - EarlierOffset);
909 
910   Value *EarlierWriteLength = EarlierIntrinsic->getLength();
911   Value *TrimmedLength =
912       ConstantInt::get(EarlierWriteLength->getType(), NewLength);
913   EarlierIntrinsic->setLength(TrimmedLength);
914 
915   EarlierSize = NewLength;
916   if (!IsOverwriteEnd) {
917     int64_t OffsetMoved = (LaterOffset - EarlierOffset);
918     Value *Indices[1] = {
919         ConstantInt::get(EarlierWriteLength->getType(), OffsetMoved)};
920     GetElementPtrInst *NewDestGEP = GetElementPtrInst::CreateInBounds(
921         EarlierIntrinsic->getRawDest(), Indices, "", EarlierWrite);
922     EarlierIntrinsic->setDest(NewDestGEP);
923     EarlierOffset = EarlierOffset + OffsetMoved;
924   }
925   return true;
926 }
927 
928 static bool tryToShortenEnd(Instruction *EarlierWrite,
929                             OverlapIntervalsTy &IntervalMap,
930                             int64_t &EarlierStart, int64_t &EarlierSize) {
931   if (IntervalMap.empty() || !isShortenableAtTheEnd(EarlierWrite))
932     return false;
933 
934   OverlapIntervalsTy::iterator OII = --IntervalMap.end();
935   int64_t LaterStart = OII->second;
936   int64_t LaterSize = OII->first - LaterStart;
937 
938   if (LaterStart > EarlierStart && LaterStart < EarlierStart + EarlierSize &&
939       LaterStart + LaterSize >= EarlierStart + EarlierSize) {
940     if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
941                      LaterSize, true)) {
942       IntervalMap.erase(OII);
943       return true;
944     }
945   }
946   return false;
947 }
948 
949 static bool tryToShortenBegin(Instruction *EarlierWrite,
950                               OverlapIntervalsTy &IntervalMap,
951                               int64_t &EarlierStart, int64_t &EarlierSize) {
952   if (IntervalMap.empty() || !isShortenableAtTheBeginning(EarlierWrite))
953     return false;
954 
955   OverlapIntervalsTy::iterator OII = IntervalMap.begin();
956   int64_t LaterStart = OII->second;
957   int64_t LaterSize = OII->first - LaterStart;
958 
959   if (LaterStart <= EarlierStart && LaterStart + LaterSize > EarlierStart) {
960     assert(LaterStart + LaterSize < EarlierStart + EarlierSize &&
961            "Should have been handled as OW_Complete");
962     if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
963                      LaterSize, false)) {
964       IntervalMap.erase(OII);
965       return true;
966     }
967   }
968   return false;
969 }
970 
971 static bool removePartiallyOverlappedStores(AliasAnalysis *AA,
972                                             const DataLayout &DL,
973                                             InstOverlapIntervalsTy &IOL) {
974   bool Changed = false;
975   for (auto OI : IOL) {
976     Instruction *EarlierWrite = OI.first;
977     MemoryLocation Loc = getLocForWrite(EarlierWrite);
978     assert(isRemovable(EarlierWrite) && "Expect only removable instruction");
979     assert(Loc.Size != MemoryLocation::UnknownSize && "Unexpected mem loc");
980 
981     const Value *Ptr = Loc.Ptr->stripPointerCasts();
982     int64_t EarlierStart = 0;
983     int64_t EarlierSize = int64_t(Loc.Size);
984     GetPointerBaseWithConstantOffset(Ptr, EarlierStart, DL);
985     OverlapIntervalsTy &IntervalMap = OI.second;
986     Changed |=
987         tryToShortenEnd(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
988     if (IntervalMap.empty())
989       continue;
990     Changed |=
991         tryToShortenBegin(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
992   }
993   return Changed;
994 }
995 
996 static bool eliminateNoopStore(Instruction *Inst, BasicBlock::iterator &BBI,
997                                AliasAnalysis *AA, MemoryDependenceResults *MD,
998                                const DataLayout &DL,
999                                const TargetLibraryInfo *TLI,
1000                                InstOverlapIntervalsTy &IOL,
1001                                DenseMap<Instruction*, size_t> *InstrOrdering) {
1002   // Must be a store instruction.
1003   StoreInst *SI = dyn_cast<StoreInst>(Inst);
1004   if (!SI)
1005     return false;
1006 
1007   // If we're storing the same value back to a pointer that we just loaded from,
1008   // then the store can be removed.
1009   if (LoadInst *DepLoad = dyn_cast<LoadInst>(SI->getValueOperand())) {
1010     if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
1011         isRemovable(SI) && memoryIsNotModifiedBetween(DepLoad, SI, AA)) {
1012 
1013       DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n  LOAD: "
1014                    << *DepLoad << "\n  STORE: " << *SI << '\n');
1015 
1016       deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, InstrOrdering);
1017       ++NumRedundantStores;
1018       return true;
1019     }
1020   }
1021 
1022   // Remove null stores into the calloc'ed objects
1023   Constant *StoredConstant = dyn_cast<Constant>(SI->getValueOperand());
1024   if (StoredConstant && StoredConstant->isNullValue() && isRemovable(SI)) {
1025     Instruction *UnderlyingPointer =
1026         dyn_cast<Instruction>(GetUnderlyingObject(SI->getPointerOperand(), DL));
1027 
1028     if (UnderlyingPointer && isCallocLikeFn(UnderlyingPointer, TLI) &&
1029         memoryIsNotModifiedBetween(UnderlyingPointer, SI, AA)) {
1030       DEBUG(
1031           dbgs() << "DSE: Remove null store to the calloc'ed object:\n  DEAD: "
1032                  << *Inst << "\n  OBJECT: " << *UnderlyingPointer << '\n');
1033 
1034       deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, InstrOrdering);
1035       ++NumRedundantStores;
1036       return true;
1037     }
1038   }
1039   return false;
1040 }
1041 
1042 static bool eliminateDeadStores(BasicBlock &BB, AliasAnalysis *AA,
1043                                 MemoryDependenceResults *MD, DominatorTree *DT,
1044                                 const TargetLibraryInfo *TLI) {
1045   const DataLayout &DL = BB.getModule()->getDataLayout();
1046   bool MadeChange = false;
1047 
1048   // FIXME: Maybe change this to use some abstraction like OrderedBasicBlock?
1049   // The current OrderedBasicBlock can't deal with mutation at the moment.
1050   size_t LastThrowingInstIndex = 0;
1051   DenseMap<Instruction*, size_t> InstrOrdering;
1052   size_t InstrIndex = 1;
1053 
1054   // A map of interval maps representing partially-overwritten value parts.
1055   InstOverlapIntervalsTy IOL;
1056 
1057   // Do a top-down walk on the BB.
1058   for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
1059     // Handle 'free' calls specially.
1060     if (CallInst *F = isFreeCall(&*BBI, TLI)) {
1061       MadeChange |= handleFree(F, AA, MD, DT, TLI, IOL, &InstrOrdering);
1062       // Increment BBI after handleFree has potentially deleted instructions.
1063       // This ensures we maintain a valid iterator.
1064       ++BBI;
1065       continue;
1066     }
1067 
1068     Instruction *Inst = &*BBI++;
1069 
1070     size_t CurInstNumber = InstrIndex++;
1071     InstrOrdering.insert(std::make_pair(Inst, CurInstNumber));
1072     if (Inst->mayThrow()) {
1073       LastThrowingInstIndex = CurInstNumber;
1074       continue;
1075     }
1076 
1077     // Check to see if Inst writes to memory.  If not, continue.
1078     if (!hasAnalyzableMemoryWrite(Inst, *TLI))
1079       continue;
1080 
1081     // eliminateNoopStore will update in iterator, if necessary.
1082     if (eliminateNoopStore(Inst, BBI, AA, MD, DL, TLI, IOL, &InstrOrdering)) {
1083       MadeChange = true;
1084       continue;
1085     }
1086 
1087     // If we find something that writes memory, get its memory dependence.
1088     MemDepResult InstDep = MD->getDependency(Inst);
1089 
1090     // Ignore any store where we can't find a local dependence.
1091     // FIXME: cross-block DSE would be fun. :)
1092     if (!InstDep.isDef() && !InstDep.isClobber())
1093       continue;
1094 
1095     // Figure out what location is being stored to.
1096     MemoryLocation Loc = getLocForWrite(Inst);
1097 
1098     // If we didn't get a useful location, fail.
1099     if (!Loc.Ptr)
1100       continue;
1101 
1102     // Loop until we find a store we can eliminate or a load that
1103     // invalidates the analysis. Without an upper bound on the number of
1104     // instructions examined, this analysis can become very time-consuming.
1105     // However, the potential gain diminishes as we process more instructions
1106     // without eliminating any of them. Therefore, we limit the number of
1107     // instructions we look at.
1108     auto Limit = MD->getDefaultBlockScanLimit();
1109     while (InstDep.isDef() || InstDep.isClobber()) {
1110       // Get the memory clobbered by the instruction we depend on.  MemDep will
1111       // skip any instructions that 'Loc' clearly doesn't interact with.  If we
1112       // end up depending on a may- or must-aliased load, then we can't optimize
1113       // away the store and we bail out.  However, if we depend on something
1114       // that overwrites the memory location we *can* potentially optimize it.
1115       //
1116       // Find out what memory location the dependent instruction stores.
1117       Instruction *DepWrite = InstDep.getInst();
1118       if (!hasAnalyzableMemoryWrite(DepWrite, *TLI))
1119         break;
1120       MemoryLocation DepLoc = getLocForWrite(DepWrite);
1121       // If we didn't get a useful location, or if it isn't a size, bail out.
1122       if (!DepLoc.Ptr)
1123         break;
1124 
1125       // Make sure we don't look past a call which might throw. This is an
1126       // issue because MemoryDependenceAnalysis works in the wrong direction:
1127       // it finds instructions which dominate the current instruction, rather than
1128       // instructions which are post-dominated by the current instruction.
1129       //
1130       // If the underlying object is a non-escaping memory allocation, any store
1131       // to it is dead along the unwind edge. Otherwise, we need to preserve
1132       // the store.
1133       size_t DepIndex = InstrOrdering.lookup(DepWrite);
1134       assert(DepIndex && "Unexpected instruction");
1135       if (DepIndex <= LastThrowingInstIndex) {
1136         const Value* Underlying = GetUnderlyingObject(DepLoc.Ptr, DL);
1137         bool IsStoreDeadOnUnwind = isa<AllocaInst>(Underlying);
1138         if (!IsStoreDeadOnUnwind) {
1139             // We're looking for a call to an allocation function
1140             // where the allocation doesn't escape before the last
1141             // throwing instruction; PointerMayBeCaptured
1142             // reasonably fast approximation.
1143             IsStoreDeadOnUnwind = isAllocLikeFn(Underlying, TLI) &&
1144                 !PointerMayBeCaptured(Underlying, false, true);
1145         }
1146         if (!IsStoreDeadOnUnwind)
1147           break;
1148       }
1149 
1150       // If we find a write that is a) removable (i.e., non-volatile), b) is
1151       // completely obliterated by the store to 'Loc', and c) which we know that
1152       // 'Inst' doesn't load from, then we can remove it.
1153       // Also try to merge two stores if a later one only touches memory written
1154       // to by the earlier one.
1155       if (isRemovable(DepWrite) &&
1156           !isPossibleSelfRead(Inst, Loc, DepWrite, *TLI, *AA)) {
1157         int64_t InstWriteOffset, DepWriteOffset;
1158         OverwriteResult OR =
1159             isOverwrite(Loc, DepLoc, DL, *TLI, DepWriteOffset, InstWriteOffset,
1160                         DepWrite, IOL);
1161         if (OR == OW_Complete) {
1162           DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: "
1163                 << *DepWrite << "\n  KILLER: " << *Inst << '\n');
1164 
1165           // Delete the store and now-dead instructions that feed it.
1166           deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, &InstrOrdering);
1167           ++NumFastStores;
1168           MadeChange = true;
1169 
1170           // We erased DepWrite; start over.
1171           InstDep = MD->getDependency(Inst);
1172           continue;
1173         } else if ((OR == OW_End && isShortenableAtTheEnd(DepWrite)) ||
1174                    ((OR == OW_Begin &&
1175                      isShortenableAtTheBeginning(DepWrite)))) {
1176           assert(!EnablePartialOverwriteTracking && "Do not expect to perform "
1177                                                     "when partial-overwrite "
1178                                                     "tracking is enabled");
1179           int64_t EarlierSize = DepLoc.Size;
1180           int64_t LaterSize = Loc.Size;
1181           bool IsOverwriteEnd = (OR == OW_End);
1182           MadeChange |= tryToShorten(DepWrite, DepWriteOffset, EarlierSize,
1183                                     InstWriteOffset, LaterSize, IsOverwriteEnd);
1184         } else if (EnablePartialStoreMerging &&
1185                    OR == OW_PartialEarlierWithFullLater) {
1186           auto *Earlier = dyn_cast<StoreInst>(DepWrite);
1187           auto *Later = dyn_cast<StoreInst>(Inst);
1188           if (Earlier && isa<ConstantInt>(Earlier->getValueOperand()) &&
1189               Later && isa<ConstantInt>(Later->getValueOperand()) &&
1190               memoryIsNotModifiedBetween(Earlier, Later, AA)) {
1191             // If the store we find is:
1192             //   a) partially overwritten by the store to 'Loc'
1193             //   b) the later store is fully contained in the earlier one and
1194             //   c) they both have a constant value
1195             // Merge the two stores, replacing the earlier store's value with a
1196             // merge of both values.
1197             // TODO: Deal with other constant types (vectors, etc), and probably
1198             // some mem intrinsics (if needed)
1199 
1200             APInt EarlierValue =
1201                 cast<ConstantInt>(Earlier->getValueOperand())->getValue();
1202             APInt LaterValue =
1203                 cast<ConstantInt>(Later->getValueOperand())->getValue();
1204             unsigned LaterBits = LaterValue.getBitWidth();
1205             assert(EarlierValue.getBitWidth() > LaterValue.getBitWidth());
1206             LaterValue = LaterValue.zext(EarlierValue.getBitWidth());
1207 
1208             // Offset of the smaller store inside the larger store
1209             unsigned BitOffsetDiff = (InstWriteOffset - DepWriteOffset) * 8;
1210             unsigned LShiftAmount =
1211                 DL.isBigEndian()
1212                     ? EarlierValue.getBitWidth() - BitOffsetDiff - LaterBits
1213                     : BitOffsetDiff;
1214             APInt Mask =
1215                 APInt::getBitsSet(EarlierValue.getBitWidth(), LShiftAmount,
1216                                   LShiftAmount + LaterBits);
1217             // Clear the bits we'll be replacing, then OR with the smaller
1218             // store, shifted appropriately.
1219             APInt Merged =
1220                 (EarlierValue & ~Mask) | (LaterValue << LShiftAmount);
1221             DEBUG(dbgs() << "DSE: Merge Stores:\n  Earlier: " << *DepWrite
1222                          << "\n  Later: " << *Inst
1223                          << "\n  Merged Value: " << Merged << '\n');
1224 
1225             auto *SI = new StoreInst(
1226                 ConstantInt::get(Earlier->getValueOperand()->getType(), Merged),
1227                 Earlier->getPointerOperand(), false, Earlier->getAlignment(),
1228                 Earlier->getOrdering(), Earlier->getSyncScopeID(), DepWrite);
1229 
1230             unsigned MDToKeep[] = {LLVMContext::MD_dbg, LLVMContext::MD_tbaa,
1231                                    LLVMContext::MD_alias_scope,
1232                                    LLVMContext::MD_noalias,
1233                                    LLVMContext::MD_nontemporal};
1234             SI->copyMetadata(*DepWrite, MDToKeep);
1235             ++NumModifiedStores;
1236 
1237             // Remove earlier, wider, store
1238             size_t Idx = InstrOrdering.lookup(DepWrite);
1239             InstrOrdering.erase(DepWrite);
1240             InstrOrdering.insert(std::make_pair(SI, Idx));
1241 
1242             // Delete the old stores and now-dead instructions that feed them.
1243             deleteDeadInstruction(Inst, &BBI, *MD, *TLI, IOL, &InstrOrdering);
1244             deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL,
1245                                   &InstrOrdering);
1246             MadeChange = true;
1247 
1248             // We erased DepWrite and Inst (Loc); start over.
1249             break;
1250           }
1251         }
1252       }
1253 
1254       // If this is a may-aliased store that is clobbering the store value, we
1255       // can keep searching past it for another must-aliased pointer that stores
1256       // to the same location.  For example, in:
1257       //   store -> P
1258       //   store -> Q
1259       //   store -> P
1260       // we can remove the first store to P even though we don't know if P and Q
1261       // alias.
1262       if (DepWrite == &BB.front()) break;
1263 
1264       // Can't look past this instruction if it might read 'Loc'.
1265       if (isRefSet(AA->getModRefInfo(DepWrite, Loc)))
1266         break;
1267 
1268       InstDep = MD->getPointerDependencyFrom(Loc, /*isLoad=*/ false,
1269                                              DepWrite->getIterator(), &BB,
1270                                              /*QueryInst=*/ nullptr, &Limit);
1271     }
1272   }
1273 
1274   if (EnablePartialOverwriteTracking)
1275     MadeChange |= removePartiallyOverlappedStores(AA, DL, IOL);
1276 
1277   // If this block ends in a return, unwind, or unreachable, all allocas are
1278   // dead at its end, which means stores to them are also dead.
1279   if (BB.getTerminator()->getNumSuccessors() == 0)
1280     MadeChange |= handleEndBlock(BB, AA, MD, TLI, IOL, &InstrOrdering);
1281 
1282   return MadeChange;
1283 }
1284 
1285 static bool eliminateDeadStores(Function &F, AliasAnalysis *AA,
1286                                 MemoryDependenceResults *MD, DominatorTree *DT,
1287                                 const TargetLibraryInfo *TLI) {
1288   bool MadeChange = false;
1289   for (BasicBlock &BB : F)
1290     // Only check non-dead blocks.  Dead blocks may have strange pointer
1291     // cycles that will confuse alias analysis.
1292     if (DT->isReachableFromEntry(&BB))
1293       MadeChange |= eliminateDeadStores(BB, AA, MD, DT, TLI);
1294 
1295   return MadeChange;
1296 }
1297 
1298 //===----------------------------------------------------------------------===//
1299 // DSE Pass
1300 //===----------------------------------------------------------------------===//
1301 PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
1302   AliasAnalysis *AA = &AM.getResult<AAManager>(F);
1303   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1304   MemoryDependenceResults *MD = &AM.getResult<MemoryDependenceAnalysis>(F);
1305   const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1306 
1307   if (!eliminateDeadStores(F, AA, MD, DT, TLI))
1308     return PreservedAnalyses::all();
1309 
1310   PreservedAnalyses PA;
1311   PA.preserveSet<CFGAnalyses>();
1312   PA.preserve<GlobalsAA>();
1313   PA.preserve<MemoryDependenceAnalysis>();
1314   return PA;
1315 }
1316 
1317 namespace {
1318 
1319 /// A legacy pass for the legacy pass manager that wraps \c DSEPass.
1320 class DSELegacyPass : public FunctionPass {
1321 public:
1322   static char ID; // Pass identification, replacement for typeid
1323 
1324   DSELegacyPass() : FunctionPass(ID) {
1325     initializeDSELegacyPassPass(*PassRegistry::getPassRegistry());
1326   }
1327 
1328   bool runOnFunction(Function &F) override {
1329     if (skipFunction(F))
1330       return false;
1331 
1332     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1333     AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1334     MemoryDependenceResults *MD =
1335         &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
1336     const TargetLibraryInfo *TLI =
1337         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1338 
1339     return eliminateDeadStores(F, AA, MD, DT, TLI);
1340   }
1341 
1342   void getAnalysisUsage(AnalysisUsage &AU) const override {
1343     AU.setPreservesCFG();
1344     AU.addRequired<DominatorTreeWrapperPass>();
1345     AU.addRequired<AAResultsWrapperPass>();
1346     AU.addRequired<MemoryDependenceWrapperPass>();
1347     AU.addRequired<TargetLibraryInfoWrapperPass>();
1348     AU.addPreserved<DominatorTreeWrapperPass>();
1349     AU.addPreserved<GlobalsAAWrapperPass>();
1350     AU.addPreserved<MemoryDependenceWrapperPass>();
1351   }
1352 };
1353 
1354 } // end anonymous namespace
1355 
1356 char DSELegacyPass::ID = 0;
1357 
1358 INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false,
1359                       false)
1360 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1361 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1362 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
1363 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
1364 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1365 INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false,
1366                     false)
1367 
1368 FunctionPass *llvm::createDeadStoreEliminationPass() {
1369   return new DSELegacyPass();
1370 }
1371