1 //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a trivial dead store elimination that only considers 11 // basic-block local redundant stores. 12 // 13 // FIXME: This should eventually be extended to be a post-dominator tree 14 // traversal. Doing so would be pretty trivial. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Transforms/Scalar/DeadStoreElimination.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 31 #include "llvm/Analysis/MemoryLocation.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/PassManager.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Scalar.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstddef> 63 #include <cstdint> 64 #include <iterator> 65 #include <map> 66 #include <utility> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "dse" 71 72 STATISTIC(NumRedundantStores, "Number of redundant stores deleted"); 73 STATISTIC(NumFastStores, "Number of stores deleted"); 74 STATISTIC(NumFastOther , "Number of other instrs removed"); 75 STATISTIC(NumCompletePartials, "Number of stores dead by later partials"); 76 STATISTIC(NumModifiedStores, "Number of stores modified"); 77 78 static cl::opt<bool> 79 EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking", 80 cl::init(true), cl::Hidden, 81 cl::desc("Enable partial-overwrite tracking in DSE")); 82 83 static cl::opt<bool> 84 EnablePartialStoreMerging("enable-dse-partial-store-merging", 85 cl::init(true), cl::Hidden, 86 cl::desc("Enable partial store merging in DSE")); 87 88 //===----------------------------------------------------------------------===// 89 // Helper functions 90 //===----------------------------------------------------------------------===// 91 using OverlapIntervalsTy = std::map<int64_t, int64_t>; 92 using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>; 93 94 /// Delete this instruction. Before we do, go through and zero out all the 95 /// operands of this instruction. If any of them become dead, delete them and 96 /// the computation tree that feeds them. 97 /// If ValueSet is non-null, remove any deleted instructions from it as well. 98 static void 99 deleteDeadInstruction(Instruction *I, BasicBlock::iterator *BBI, 100 MemoryDependenceResults &MD, const TargetLibraryInfo &TLI, 101 InstOverlapIntervalsTy &IOL, 102 DenseMap<Instruction*, size_t> *InstrOrdering, 103 SmallSetVector<Value *, 16> *ValueSet = nullptr) { 104 SmallVector<Instruction*, 32> NowDeadInsts; 105 106 NowDeadInsts.push_back(I); 107 --NumFastOther; 108 109 // Keeping the iterator straight is a pain, so we let this routine tell the 110 // caller what the next instruction is after we're done mucking about. 111 BasicBlock::iterator NewIter = *BBI; 112 113 // Before we touch this instruction, remove it from memdep! 114 do { 115 Instruction *DeadInst = NowDeadInsts.pop_back_val(); 116 ++NumFastOther; 117 118 // Try to preserve debug information attached to the dead instruction. 119 salvageDebugInfo(*DeadInst); 120 121 // This instruction is dead, zap it, in stages. Start by removing it from 122 // MemDep, which needs to know the operands and needs it to be in the 123 // function. 124 MD.removeInstruction(DeadInst); 125 126 for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) { 127 Value *Op = DeadInst->getOperand(op); 128 DeadInst->setOperand(op, nullptr); 129 130 // If this operand just became dead, add it to the NowDeadInsts list. 131 if (!Op->use_empty()) continue; 132 133 if (Instruction *OpI = dyn_cast<Instruction>(Op)) 134 if (isInstructionTriviallyDead(OpI, &TLI)) 135 NowDeadInsts.push_back(OpI); 136 } 137 138 if (ValueSet) ValueSet->remove(DeadInst); 139 InstrOrdering->erase(DeadInst); 140 IOL.erase(DeadInst); 141 142 if (NewIter == DeadInst->getIterator()) 143 NewIter = DeadInst->eraseFromParent(); 144 else 145 DeadInst->eraseFromParent(); 146 } while (!NowDeadInsts.empty()); 147 *BBI = NewIter; 148 } 149 150 /// Does this instruction write some memory? This only returns true for things 151 /// that we can analyze with other helpers below. 152 static bool hasAnalyzableMemoryWrite(Instruction *I, 153 const TargetLibraryInfo &TLI) { 154 if (isa<StoreInst>(I)) 155 return true; 156 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 157 switch (II->getIntrinsicID()) { 158 default: 159 return false; 160 case Intrinsic::memset: 161 case Intrinsic::memmove: 162 case Intrinsic::memcpy: 163 case Intrinsic::init_trampoline: 164 case Intrinsic::lifetime_end: 165 return true; 166 } 167 } 168 if (auto CS = CallSite(I)) { 169 if (Function *F = CS.getCalledFunction()) { 170 StringRef FnName = F->getName(); 171 if (TLI.has(LibFunc_strcpy) && FnName == TLI.getName(LibFunc_strcpy)) 172 return true; 173 if (TLI.has(LibFunc_strncpy) && FnName == TLI.getName(LibFunc_strncpy)) 174 return true; 175 if (TLI.has(LibFunc_strcat) && FnName == TLI.getName(LibFunc_strcat)) 176 return true; 177 if (TLI.has(LibFunc_strncat) && FnName == TLI.getName(LibFunc_strncat)) 178 return true; 179 } 180 } 181 return false; 182 } 183 184 /// Return a Location stored to by the specified instruction. If isRemovable 185 /// returns true, this function and getLocForRead completely describe the memory 186 /// operations for this instruction. 187 static MemoryLocation getLocForWrite(Instruction *Inst) { 188 189 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 190 return MemoryLocation::get(SI); 191 192 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) { 193 // memcpy/memmove/memset. 194 MemoryLocation Loc = MemoryLocation::getForDest(MI); 195 return Loc; 196 } 197 198 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 199 switch (II->getIntrinsicID()) { 200 default: 201 return MemoryLocation(); // Unhandled intrinsic. 202 case Intrinsic::init_trampoline: 203 return MemoryLocation(II->getArgOperand(0)); 204 case Intrinsic::lifetime_end: { 205 uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); 206 return MemoryLocation(II->getArgOperand(1), Len); 207 } 208 } 209 } 210 if (auto CS = CallSite(Inst)) 211 // All the supported TLI functions so far happen to have dest as their 212 // first argument. 213 return MemoryLocation(CS.getArgument(0)); 214 return MemoryLocation(); 215 } 216 217 /// Return the location read by the specified "hasAnalyzableMemoryWrite" 218 /// instruction if any. 219 static MemoryLocation getLocForRead(Instruction *Inst, 220 const TargetLibraryInfo &TLI) { 221 assert(hasAnalyzableMemoryWrite(Inst, TLI) && "Unknown instruction case"); 222 223 // The only instructions that both read and write are the mem transfer 224 // instructions (memcpy/memmove). 225 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst)) 226 return MemoryLocation::getForSource(MTI); 227 return MemoryLocation(); 228 } 229 230 /// If the value of this instruction and the memory it writes to is unused, may 231 /// we delete this instruction? 232 static bool isRemovable(Instruction *I) { 233 // Don't remove volatile/atomic stores. 234 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 235 return SI->isUnordered(); 236 237 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 238 switch (II->getIntrinsicID()) { 239 default: llvm_unreachable("doesn't pass 'hasAnalyzableMemoryWrite' predicate"); 240 case Intrinsic::lifetime_end: 241 // Never remove dead lifetime_end's, e.g. because it is followed by a 242 // free. 243 return false; 244 case Intrinsic::init_trampoline: 245 // Always safe to remove init_trampoline. 246 return true; 247 case Intrinsic::memset: 248 case Intrinsic::memmove: 249 case Intrinsic::memcpy: 250 // Don't remove volatile memory intrinsics. 251 return !cast<MemIntrinsic>(II)->isVolatile(); 252 } 253 } 254 255 // note: only get here for calls with analyzable writes - i.e. libcalls 256 if (auto CS = CallSite(I)) 257 return CS.getInstruction()->use_empty(); 258 259 return false; 260 } 261 262 /// Returns true if the end of this instruction can be safely shortened in 263 /// length. 264 static bool isShortenableAtTheEnd(Instruction *I) { 265 // Don't shorten stores for now 266 if (isa<StoreInst>(I)) 267 return false; 268 269 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 270 switch (II->getIntrinsicID()) { 271 default: return false; 272 case Intrinsic::memset: 273 case Intrinsic::memcpy: 274 // Do shorten memory intrinsics. 275 // FIXME: Add memmove if it's also safe to transform. 276 return true; 277 } 278 } 279 280 // Don't shorten libcalls calls for now. 281 282 return false; 283 } 284 285 /// Returns true if the beginning of this instruction can be safely shortened 286 /// in length. 287 static bool isShortenableAtTheBeginning(Instruction *I) { 288 // FIXME: Handle only memset for now. Supporting memcpy/memmove should be 289 // easily done by offsetting the source address. 290 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 291 return II && II->getIntrinsicID() == Intrinsic::memset; 292 } 293 294 /// Return the pointer that is being written to. 295 static Value *getStoredPointerOperand(Instruction *I) { 296 //TODO: factor this to reuse getLocForWrite 297 MemoryLocation Loc = getLocForWrite(I); 298 assert(Loc.Ptr && 299 "unable to find pointer writen for analyzable instruction?"); 300 // TODO: most APIs don't expect const Value * 301 return const_cast<Value*>(Loc.Ptr); 302 } 303 304 static uint64_t getPointerSize(const Value *V, const DataLayout &DL, 305 const TargetLibraryInfo &TLI) { 306 uint64_t Size; 307 if (getObjectSize(V, Size, DL, &TLI)) 308 return Size; 309 return MemoryLocation::UnknownSize; 310 } 311 312 namespace { 313 314 enum OverwriteResult { 315 OW_Begin, 316 OW_Complete, 317 OW_End, 318 OW_PartialEarlierWithFullLater, 319 OW_Unknown 320 }; 321 322 } // end anonymous namespace 323 324 /// Return 'OW_Complete' if a store to the 'Later' location completely 325 /// overwrites a store to the 'Earlier' location, 'OW_End' if the end of the 326 /// 'Earlier' location is completely overwritten by 'Later', 'OW_Begin' if the 327 /// beginning of the 'Earlier' location is overwritten by 'Later'. 328 /// 'OW_PartialEarlierWithFullLater' means that an earlier (big) store was 329 /// overwritten by a latter (smaller) store which doesn't write outside the big 330 /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined. 331 static OverwriteResult isOverwrite(const MemoryLocation &Later, 332 const MemoryLocation &Earlier, 333 const DataLayout &DL, 334 const TargetLibraryInfo &TLI, 335 int64_t &EarlierOff, int64_t &LaterOff, 336 Instruction *DepWrite, 337 InstOverlapIntervalsTy &IOL) { 338 // If we don't know the sizes of either access, then we can't do a comparison. 339 if (Later.Size == MemoryLocation::UnknownSize || 340 Earlier.Size == MemoryLocation::UnknownSize) 341 return OW_Unknown; 342 343 const Value *P1 = Earlier.Ptr->stripPointerCasts(); 344 const Value *P2 = Later.Ptr->stripPointerCasts(); 345 346 // If the start pointers are the same, we just have to compare sizes to see if 347 // the later store was larger than the earlier store. 348 if (P1 == P2) { 349 // Make sure that the Later size is >= the Earlier size. 350 if (Later.Size >= Earlier.Size) 351 return OW_Complete; 352 } 353 354 // Check to see if the later store is to the entire object (either a global, 355 // an alloca, or a byval/inalloca argument). If so, then it clearly 356 // overwrites any other store to the same object. 357 const Value *UO1 = GetUnderlyingObject(P1, DL), 358 *UO2 = GetUnderlyingObject(P2, DL); 359 360 // If we can't resolve the same pointers to the same object, then we can't 361 // analyze them at all. 362 if (UO1 != UO2) 363 return OW_Unknown; 364 365 // If the "Later" store is to a recognizable object, get its size. 366 uint64_t ObjectSize = getPointerSize(UO2, DL, TLI); 367 if (ObjectSize != MemoryLocation::UnknownSize) 368 if (ObjectSize == Later.Size && ObjectSize >= Earlier.Size) 369 return OW_Complete; 370 371 // Okay, we have stores to two completely different pointers. Try to 372 // decompose the pointer into a "base + constant_offset" form. If the base 373 // pointers are equal, then we can reason about the two stores. 374 EarlierOff = 0; 375 LaterOff = 0; 376 const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL); 377 const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL); 378 379 // If the base pointers still differ, we have two completely different stores. 380 if (BP1 != BP2) 381 return OW_Unknown; 382 383 // The later store completely overlaps the earlier store if: 384 // 385 // 1. Both start at the same offset and the later one's size is greater than 386 // or equal to the earlier one's, or 387 // 388 // |--earlier--| 389 // |-- later --| 390 // 391 // 2. The earlier store has an offset greater than the later offset, but which 392 // still lies completely within the later store. 393 // 394 // |--earlier--| 395 // |----- later ------| 396 // 397 // We have to be careful here as *Off is signed while *.Size is unsigned. 398 if (EarlierOff >= LaterOff && 399 Later.Size >= Earlier.Size && 400 uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size) 401 return OW_Complete; 402 403 // We may now overlap, although the overlap is not complete. There might also 404 // be other incomplete overlaps, and together, they might cover the complete 405 // earlier write. 406 // Note: The correctness of this logic depends on the fact that this function 407 // is not even called providing DepWrite when there are any intervening reads. 408 if (EnablePartialOverwriteTracking && 409 LaterOff < int64_t(EarlierOff + Earlier.Size) && 410 int64_t(LaterOff + Later.Size) >= EarlierOff) { 411 412 // Insert our part of the overlap into the map. 413 auto &IM = IOL[DepWrite]; 414 DEBUG(dbgs() << "DSE: Partial overwrite: Earlier [" << EarlierOff << ", " << 415 int64_t(EarlierOff + Earlier.Size) << ") Later [" << 416 LaterOff << ", " << int64_t(LaterOff + Later.Size) << ")\n"); 417 418 // Make sure that we only insert non-overlapping intervals and combine 419 // adjacent intervals. The intervals are stored in the map with the ending 420 // offset as the key (in the half-open sense) and the starting offset as 421 // the value. 422 int64_t LaterIntStart = LaterOff, LaterIntEnd = LaterOff + Later.Size; 423 424 // Find any intervals ending at, or after, LaterIntStart which start 425 // before LaterIntEnd. 426 auto ILI = IM.lower_bound(LaterIntStart); 427 if (ILI != IM.end() && ILI->second <= LaterIntEnd) { 428 // This existing interval is overlapped with the current store somewhere 429 // in [LaterIntStart, LaterIntEnd]. Merge them by erasing the existing 430 // intervals and adjusting our start and end. 431 LaterIntStart = std::min(LaterIntStart, ILI->second); 432 LaterIntEnd = std::max(LaterIntEnd, ILI->first); 433 ILI = IM.erase(ILI); 434 435 // Continue erasing and adjusting our end in case other previous 436 // intervals are also overlapped with the current store. 437 // 438 // |--- ealier 1 ---| |--- ealier 2 ---| 439 // |------- later---------| 440 // 441 while (ILI != IM.end() && ILI->second <= LaterIntEnd) { 442 assert(ILI->second > LaterIntStart && "Unexpected interval"); 443 LaterIntEnd = std::max(LaterIntEnd, ILI->first); 444 ILI = IM.erase(ILI); 445 } 446 } 447 448 IM[LaterIntEnd] = LaterIntStart; 449 450 ILI = IM.begin(); 451 if (ILI->second <= EarlierOff && 452 ILI->first >= int64_t(EarlierOff + Earlier.Size)) { 453 DEBUG(dbgs() << "DSE: Full overwrite from partials: Earlier [" << 454 EarlierOff << ", " << 455 int64_t(EarlierOff + Earlier.Size) << 456 ") Composite Later [" << 457 ILI->second << ", " << ILI->first << ")\n"); 458 ++NumCompletePartials; 459 return OW_Complete; 460 } 461 } 462 463 // Check for an earlier store which writes to all the memory locations that 464 // the later store writes to. 465 if (EnablePartialStoreMerging && LaterOff >= EarlierOff && 466 int64_t(EarlierOff + Earlier.Size) > LaterOff && 467 uint64_t(LaterOff - EarlierOff) + Later.Size <= Earlier.Size) { 468 DEBUG(dbgs() << "DSE: Partial overwrite an earlier load [" << EarlierOff 469 << ", " << int64_t(EarlierOff + Earlier.Size) 470 << ") by a later store [" << LaterOff << ", " 471 << int64_t(LaterOff + Later.Size) << ")\n"); 472 // TODO: Maybe come up with a better name? 473 return OW_PartialEarlierWithFullLater; 474 } 475 476 // Another interesting case is if the later store overwrites the end of the 477 // earlier store. 478 // 479 // |--earlier--| 480 // |-- later --| 481 // 482 // In this case we may want to trim the size of earlier to avoid generating 483 // writes to addresses which will definitely be overwritten later 484 if (!EnablePartialOverwriteTracking && 485 (LaterOff > EarlierOff && LaterOff < int64_t(EarlierOff + Earlier.Size) && 486 int64_t(LaterOff + Later.Size) >= int64_t(EarlierOff + Earlier.Size))) 487 return OW_End; 488 489 // Finally, we also need to check if the later store overwrites the beginning 490 // of the earlier store. 491 // 492 // |--earlier--| 493 // |-- later --| 494 // 495 // In this case we may want to move the destination address and trim the size 496 // of earlier to avoid generating writes to addresses which will definitely 497 // be overwritten later. 498 if (!EnablePartialOverwriteTracking && 499 (LaterOff <= EarlierOff && int64_t(LaterOff + Later.Size) > EarlierOff)) { 500 assert(int64_t(LaterOff + Later.Size) < 501 int64_t(EarlierOff + Earlier.Size) && 502 "Expect to be handled as OW_Complete"); 503 return OW_Begin; 504 } 505 // Otherwise, they don't completely overlap. 506 return OW_Unknown; 507 } 508 509 /// If 'Inst' might be a self read (i.e. a noop copy of a 510 /// memory region into an identical pointer) then it doesn't actually make its 511 /// input dead in the traditional sense. Consider this case: 512 /// 513 /// memmove(A <- B) 514 /// memmove(A <- A) 515 /// 516 /// In this case, the second store to A does not make the first store to A dead. 517 /// The usual situation isn't an explicit A<-A store like this (which can be 518 /// trivially removed) but a case where two pointers may alias. 519 /// 520 /// This function detects when it is unsafe to remove a dependent instruction 521 /// because the DSE inducing instruction may be a self-read. 522 static bool isPossibleSelfRead(Instruction *Inst, 523 const MemoryLocation &InstStoreLoc, 524 Instruction *DepWrite, 525 const TargetLibraryInfo &TLI, 526 AliasAnalysis &AA) { 527 // Self reads can only happen for instructions that read memory. Get the 528 // location read. 529 MemoryLocation InstReadLoc = getLocForRead(Inst, TLI); 530 if (!InstReadLoc.Ptr) 531 return false; // Not a reading instruction. 532 533 // If the read and written loc obviously don't alias, it isn't a read. 534 if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) 535 return false; 536 537 if (isa<MemCpyInst>(Inst)) { 538 // LLVM's memcpy overlap semantics are not fully fleshed out (see PR11763) 539 // but in practice memcpy(A <- B) either means that A and B are disjoint or 540 // are equal (i.e. there are not partial overlaps). Given that, if we have: 541 // 542 // memcpy/memmove(A <- B) // DepWrite 543 // memcpy(A <- B) // Inst 544 // 545 // with Inst reading/writing a >= size than DepWrite, we can reason as 546 // follows: 547 // 548 // - If A == B then both the copies are no-ops, so the DepWrite can be 549 // removed. 550 // - If A != B then A and B are disjoint locations in Inst. Since 551 // Inst.size >= DepWrite.size A and B are disjoint in DepWrite too. 552 // Therefore DepWrite can be removed. 553 MemoryLocation DepReadLoc = getLocForRead(DepWrite, TLI); 554 555 if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr)) 556 return false; 557 } 558 559 // If DepWrite doesn't read memory or if we can't prove it is a must alias, 560 // then it can't be considered dead. 561 return true; 562 } 563 564 /// Returns true if the memory which is accessed by the second instruction is not 565 /// modified between the first and the second instruction. 566 /// Precondition: Second instruction must be dominated by the first 567 /// instruction. 568 static bool memoryIsNotModifiedBetween(Instruction *FirstI, 569 Instruction *SecondI, 570 AliasAnalysis *AA) { 571 SmallVector<BasicBlock *, 16> WorkList; 572 SmallPtrSet<BasicBlock *, 8> Visited; 573 BasicBlock::iterator FirstBBI(FirstI); 574 ++FirstBBI; 575 BasicBlock::iterator SecondBBI(SecondI); 576 BasicBlock *FirstBB = FirstI->getParent(); 577 BasicBlock *SecondBB = SecondI->getParent(); 578 MemoryLocation MemLoc = MemoryLocation::get(SecondI); 579 580 // Start checking the store-block. 581 WorkList.push_back(SecondBB); 582 bool isFirstBlock = true; 583 584 // Check all blocks going backward until we reach the load-block. 585 while (!WorkList.empty()) { 586 BasicBlock *B = WorkList.pop_back_val(); 587 588 // Ignore instructions before LI if this is the FirstBB. 589 BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin()); 590 591 BasicBlock::iterator EI; 592 if (isFirstBlock) { 593 // Ignore instructions after SI if this is the first visit of SecondBB. 594 assert(B == SecondBB && "first block is not the store block"); 595 EI = SecondBBI; 596 isFirstBlock = false; 597 } else { 598 // It's not SecondBB or (in case of a loop) the second visit of SecondBB. 599 // In this case we also have to look at instructions after SI. 600 EI = B->end(); 601 } 602 for (; BI != EI; ++BI) { 603 Instruction *I = &*BI; 604 if (I->mayWriteToMemory() && I != SecondI) 605 if (isModSet(AA->getModRefInfo(I, MemLoc))) 606 return false; 607 } 608 if (B != FirstBB) { 609 assert(B != &FirstBB->getParent()->getEntryBlock() && 610 "Should not hit the entry block because SI must be dominated by LI"); 611 for (auto PredI = pred_begin(B), PE = pred_end(B); PredI != PE; ++PredI) { 612 if (!Visited.insert(*PredI).second) 613 continue; 614 WorkList.push_back(*PredI); 615 } 616 } 617 } 618 return true; 619 } 620 621 /// Find all blocks that will unconditionally lead to the block BB and append 622 /// them to F. 623 static void findUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks, 624 BasicBlock *BB, DominatorTree *DT) { 625 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 626 BasicBlock *Pred = *I; 627 if (Pred == BB) continue; 628 TerminatorInst *PredTI = Pred->getTerminator(); 629 if (PredTI->getNumSuccessors() != 1) 630 continue; 631 632 if (DT->isReachableFromEntry(Pred)) 633 Blocks.push_back(Pred); 634 } 635 } 636 637 /// Handle frees of entire structures whose dependency is a store 638 /// to a field of that structure. 639 static bool handleFree(CallInst *F, AliasAnalysis *AA, 640 MemoryDependenceResults *MD, DominatorTree *DT, 641 const TargetLibraryInfo *TLI, 642 InstOverlapIntervalsTy &IOL, 643 DenseMap<Instruction*, size_t> *InstrOrdering) { 644 bool MadeChange = false; 645 646 MemoryLocation Loc = MemoryLocation(F->getOperand(0)); 647 SmallVector<BasicBlock *, 16> Blocks; 648 Blocks.push_back(F->getParent()); 649 const DataLayout &DL = F->getModule()->getDataLayout(); 650 651 while (!Blocks.empty()) { 652 BasicBlock *BB = Blocks.pop_back_val(); 653 Instruction *InstPt = BB->getTerminator(); 654 if (BB == F->getParent()) InstPt = F; 655 656 MemDepResult Dep = 657 MD->getPointerDependencyFrom(Loc, false, InstPt->getIterator(), BB); 658 while (Dep.isDef() || Dep.isClobber()) { 659 Instruction *Dependency = Dep.getInst(); 660 if (!hasAnalyzableMemoryWrite(Dependency, *TLI) || 661 !isRemovable(Dependency)) 662 break; 663 664 Value *DepPointer = 665 GetUnderlyingObject(getStoredPointerOperand(Dependency), DL); 666 667 // Check for aliasing. 668 if (!AA->isMustAlias(F->getArgOperand(0), DepPointer)) 669 break; 670 671 DEBUG(dbgs() << "DSE: Dead Store to soon to be freed memory:\n DEAD: " 672 << *Dependency << '\n'); 673 674 // DCE instructions only used to calculate that store. 675 BasicBlock::iterator BBI(Dependency); 676 deleteDeadInstruction(Dependency, &BBI, *MD, *TLI, IOL, InstrOrdering); 677 ++NumFastStores; 678 MadeChange = true; 679 680 // Inst's old Dependency is now deleted. Compute the next dependency, 681 // which may also be dead, as in 682 // s[0] = 0; 683 // s[1] = 0; // This has just been deleted. 684 // free(s); 685 Dep = MD->getPointerDependencyFrom(Loc, false, BBI, BB); 686 } 687 688 if (Dep.isNonLocal()) 689 findUnconditionalPreds(Blocks, BB, DT); 690 } 691 692 return MadeChange; 693 } 694 695 /// Check to see if the specified location may alias any of the stack objects in 696 /// the DeadStackObjects set. If so, they become live because the location is 697 /// being loaded. 698 static void removeAccessedObjects(const MemoryLocation &LoadedLoc, 699 SmallSetVector<Value *, 16> &DeadStackObjects, 700 const DataLayout &DL, AliasAnalysis *AA, 701 const TargetLibraryInfo *TLI) { 702 const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr, DL); 703 704 // A constant can't be in the dead pointer set. 705 if (isa<Constant>(UnderlyingPointer)) 706 return; 707 708 // If the kill pointer can be easily reduced to an alloca, don't bother doing 709 // extraneous AA queries. 710 if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) { 711 DeadStackObjects.remove(const_cast<Value*>(UnderlyingPointer)); 712 return; 713 } 714 715 // Remove objects that could alias LoadedLoc. 716 DeadStackObjects.remove_if([&](Value *I) { 717 // See if the loaded location could alias the stack location. 718 MemoryLocation StackLoc(I, getPointerSize(I, DL, *TLI)); 719 return !AA->isNoAlias(StackLoc, LoadedLoc); 720 }); 721 } 722 723 /// Remove dead stores to stack-allocated locations in the function end block. 724 /// Ex: 725 /// %A = alloca i32 726 /// ... 727 /// store i32 1, i32* %A 728 /// ret void 729 static bool handleEndBlock(BasicBlock &BB, AliasAnalysis *AA, 730 MemoryDependenceResults *MD, 731 const TargetLibraryInfo *TLI, 732 InstOverlapIntervalsTy &IOL, 733 DenseMap<Instruction*, size_t> *InstrOrdering) { 734 bool MadeChange = false; 735 736 // Keep track of all of the stack objects that are dead at the end of the 737 // function. 738 SmallSetVector<Value*, 16> DeadStackObjects; 739 740 // Find all of the alloca'd pointers in the entry block. 741 BasicBlock &Entry = BB.getParent()->front(); 742 for (Instruction &I : Entry) { 743 if (isa<AllocaInst>(&I)) 744 DeadStackObjects.insert(&I); 745 746 // Okay, so these are dead heap objects, but if the pointer never escapes 747 // then it's leaked by this function anyways. 748 else if (isAllocLikeFn(&I, TLI) && !PointerMayBeCaptured(&I, true, true)) 749 DeadStackObjects.insert(&I); 750 } 751 752 // Treat byval or inalloca arguments the same, stores to them are dead at the 753 // end of the function. 754 for (Argument &AI : BB.getParent()->args()) 755 if (AI.hasByValOrInAllocaAttr()) 756 DeadStackObjects.insert(&AI); 757 758 const DataLayout &DL = BB.getModule()->getDataLayout(); 759 760 // Scan the basic block backwards 761 for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){ 762 --BBI; 763 764 // If we find a store, check to see if it points into a dead stack value. 765 if (hasAnalyzableMemoryWrite(&*BBI, *TLI) && isRemovable(&*BBI)) { 766 // See through pointer-to-pointer bitcasts 767 SmallVector<Value *, 4> Pointers; 768 GetUnderlyingObjects(getStoredPointerOperand(&*BBI), Pointers, DL); 769 770 // Stores to stack values are valid candidates for removal. 771 bool AllDead = true; 772 for (Value *Pointer : Pointers) 773 if (!DeadStackObjects.count(Pointer)) { 774 AllDead = false; 775 break; 776 } 777 778 if (AllDead) { 779 Instruction *Dead = &*BBI; 780 781 DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n DEAD: " 782 << *Dead << "\n Objects: "; 783 for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(), 784 E = Pointers.end(); I != E; ++I) { 785 dbgs() << **I; 786 if (std::next(I) != E) 787 dbgs() << ", "; 788 } 789 dbgs() << '\n'); 790 791 // DCE instructions only used to calculate that store. 792 deleteDeadInstruction(Dead, &BBI, *MD, *TLI, IOL, InstrOrdering, &DeadStackObjects); 793 ++NumFastStores; 794 MadeChange = true; 795 continue; 796 } 797 } 798 799 // Remove any dead non-memory-mutating instructions. 800 if (isInstructionTriviallyDead(&*BBI, TLI)) { 801 DEBUG(dbgs() << "DSE: Removing trivially dead instruction:\n DEAD: " 802 << *&*BBI << '\n'); 803 deleteDeadInstruction(&*BBI, &BBI, *MD, *TLI, IOL, InstrOrdering, &DeadStackObjects); 804 ++NumFastOther; 805 MadeChange = true; 806 continue; 807 } 808 809 if (isa<AllocaInst>(BBI)) { 810 // Remove allocas from the list of dead stack objects; there can't be 811 // any references before the definition. 812 DeadStackObjects.remove(&*BBI); 813 continue; 814 } 815 816 if (auto CS = CallSite(&*BBI)) { 817 // Remove allocation function calls from the list of dead stack objects; 818 // there can't be any references before the definition. 819 if (isAllocLikeFn(&*BBI, TLI)) 820 DeadStackObjects.remove(&*BBI); 821 822 // If this call does not access memory, it can't be loading any of our 823 // pointers. 824 if (AA->doesNotAccessMemory(CS)) 825 continue; 826 827 // If the call might load from any of our allocas, then any store above 828 // the call is live. 829 DeadStackObjects.remove_if([&](Value *I) { 830 // See if the call site touches the value. 831 return isRefSet(AA->getModRefInfo(CS, I, getPointerSize(I, DL, *TLI))); 832 }); 833 834 // If all of the allocas were clobbered by the call then we're not going 835 // to find anything else to process. 836 if (DeadStackObjects.empty()) 837 break; 838 839 continue; 840 } 841 842 // We can remove the dead stores, irrespective of the fence and its ordering 843 // (release/acquire/seq_cst). Fences only constraints the ordering of 844 // already visible stores, it does not make a store visible to other 845 // threads. So, skipping over a fence does not change a store from being 846 // dead. 847 if (isa<FenceInst>(*BBI)) 848 continue; 849 850 MemoryLocation LoadedLoc; 851 852 // If we encounter a use of the pointer, it is no longer considered dead 853 if (LoadInst *L = dyn_cast<LoadInst>(BBI)) { 854 if (!L->isUnordered()) // Be conservative with atomic/volatile load 855 break; 856 LoadedLoc = MemoryLocation::get(L); 857 } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) { 858 LoadedLoc = MemoryLocation::get(V); 859 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) { 860 LoadedLoc = MemoryLocation::getForSource(MTI); 861 } else if (!BBI->mayReadFromMemory()) { 862 // Instruction doesn't read memory. Note that stores that weren't removed 863 // above will hit this case. 864 continue; 865 } else { 866 // Unknown inst; assume it clobbers everything. 867 break; 868 } 869 870 // Remove any allocas from the DeadPointer set that are loaded, as this 871 // makes any stores above the access live. 872 removeAccessedObjects(LoadedLoc, DeadStackObjects, DL, AA, TLI); 873 874 // If all of the allocas were clobbered by the access then we're not going 875 // to find anything else to process. 876 if (DeadStackObjects.empty()) 877 break; 878 } 879 880 return MadeChange; 881 } 882 883 static bool tryToShorten(Instruction *EarlierWrite, int64_t &EarlierOffset, 884 int64_t &EarlierSize, int64_t LaterOffset, 885 int64_t LaterSize, bool IsOverwriteEnd) { 886 // TODO: base this on the target vector size so that if the earlier 887 // store was too small to get vector writes anyway then its likely 888 // a good idea to shorten it 889 // Power of 2 vector writes are probably always a bad idea to optimize 890 // as any store/memset/memcpy is likely using vector instructions so 891 // shortening it to not vector size is likely to be slower 892 MemIntrinsic *EarlierIntrinsic = cast<MemIntrinsic>(EarlierWrite); 893 unsigned EarlierWriteAlign = EarlierIntrinsic->getDestAlignment(); 894 if (!IsOverwriteEnd) 895 LaterOffset = int64_t(LaterOffset + LaterSize); 896 897 if (!(isPowerOf2_64(LaterOffset) && EarlierWriteAlign <= LaterOffset) && 898 !((EarlierWriteAlign != 0) && LaterOffset % EarlierWriteAlign == 0)) 899 return false; 900 901 DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW " 902 << (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *EarlierWrite 903 << "\n KILLER (offset " << LaterOffset << ", " << EarlierSize 904 << ")\n"); 905 906 int64_t NewLength = IsOverwriteEnd 907 ? LaterOffset - EarlierOffset 908 : EarlierSize - (LaterOffset - EarlierOffset); 909 910 Value *EarlierWriteLength = EarlierIntrinsic->getLength(); 911 Value *TrimmedLength = 912 ConstantInt::get(EarlierWriteLength->getType(), NewLength); 913 EarlierIntrinsic->setLength(TrimmedLength); 914 915 EarlierSize = NewLength; 916 if (!IsOverwriteEnd) { 917 int64_t OffsetMoved = (LaterOffset - EarlierOffset); 918 Value *Indices[1] = { 919 ConstantInt::get(EarlierWriteLength->getType(), OffsetMoved)}; 920 GetElementPtrInst *NewDestGEP = GetElementPtrInst::CreateInBounds( 921 EarlierIntrinsic->getRawDest(), Indices, "", EarlierWrite); 922 EarlierIntrinsic->setDest(NewDestGEP); 923 EarlierOffset = EarlierOffset + OffsetMoved; 924 } 925 return true; 926 } 927 928 static bool tryToShortenEnd(Instruction *EarlierWrite, 929 OverlapIntervalsTy &IntervalMap, 930 int64_t &EarlierStart, int64_t &EarlierSize) { 931 if (IntervalMap.empty() || !isShortenableAtTheEnd(EarlierWrite)) 932 return false; 933 934 OverlapIntervalsTy::iterator OII = --IntervalMap.end(); 935 int64_t LaterStart = OII->second; 936 int64_t LaterSize = OII->first - LaterStart; 937 938 if (LaterStart > EarlierStart && LaterStart < EarlierStart + EarlierSize && 939 LaterStart + LaterSize >= EarlierStart + EarlierSize) { 940 if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart, 941 LaterSize, true)) { 942 IntervalMap.erase(OII); 943 return true; 944 } 945 } 946 return false; 947 } 948 949 static bool tryToShortenBegin(Instruction *EarlierWrite, 950 OverlapIntervalsTy &IntervalMap, 951 int64_t &EarlierStart, int64_t &EarlierSize) { 952 if (IntervalMap.empty() || !isShortenableAtTheBeginning(EarlierWrite)) 953 return false; 954 955 OverlapIntervalsTy::iterator OII = IntervalMap.begin(); 956 int64_t LaterStart = OII->second; 957 int64_t LaterSize = OII->first - LaterStart; 958 959 if (LaterStart <= EarlierStart && LaterStart + LaterSize > EarlierStart) { 960 assert(LaterStart + LaterSize < EarlierStart + EarlierSize && 961 "Should have been handled as OW_Complete"); 962 if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart, 963 LaterSize, false)) { 964 IntervalMap.erase(OII); 965 return true; 966 } 967 } 968 return false; 969 } 970 971 static bool removePartiallyOverlappedStores(AliasAnalysis *AA, 972 const DataLayout &DL, 973 InstOverlapIntervalsTy &IOL) { 974 bool Changed = false; 975 for (auto OI : IOL) { 976 Instruction *EarlierWrite = OI.first; 977 MemoryLocation Loc = getLocForWrite(EarlierWrite); 978 assert(isRemovable(EarlierWrite) && "Expect only removable instruction"); 979 assert(Loc.Size != MemoryLocation::UnknownSize && "Unexpected mem loc"); 980 981 const Value *Ptr = Loc.Ptr->stripPointerCasts(); 982 int64_t EarlierStart = 0; 983 int64_t EarlierSize = int64_t(Loc.Size); 984 GetPointerBaseWithConstantOffset(Ptr, EarlierStart, DL); 985 OverlapIntervalsTy &IntervalMap = OI.second; 986 Changed |= 987 tryToShortenEnd(EarlierWrite, IntervalMap, EarlierStart, EarlierSize); 988 if (IntervalMap.empty()) 989 continue; 990 Changed |= 991 tryToShortenBegin(EarlierWrite, IntervalMap, EarlierStart, EarlierSize); 992 } 993 return Changed; 994 } 995 996 static bool eliminateNoopStore(Instruction *Inst, BasicBlock::iterator &BBI, 997 AliasAnalysis *AA, MemoryDependenceResults *MD, 998 const DataLayout &DL, 999 const TargetLibraryInfo *TLI, 1000 InstOverlapIntervalsTy &IOL, 1001 DenseMap<Instruction*, size_t> *InstrOrdering) { 1002 // Must be a store instruction. 1003 StoreInst *SI = dyn_cast<StoreInst>(Inst); 1004 if (!SI) 1005 return false; 1006 1007 // If we're storing the same value back to a pointer that we just loaded from, 1008 // then the store can be removed. 1009 if (LoadInst *DepLoad = dyn_cast<LoadInst>(SI->getValueOperand())) { 1010 if (SI->getPointerOperand() == DepLoad->getPointerOperand() && 1011 isRemovable(SI) && memoryIsNotModifiedBetween(DepLoad, SI, AA)) { 1012 1013 DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n LOAD: " 1014 << *DepLoad << "\n STORE: " << *SI << '\n'); 1015 1016 deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, InstrOrdering); 1017 ++NumRedundantStores; 1018 return true; 1019 } 1020 } 1021 1022 // Remove null stores into the calloc'ed objects 1023 Constant *StoredConstant = dyn_cast<Constant>(SI->getValueOperand()); 1024 if (StoredConstant && StoredConstant->isNullValue() && isRemovable(SI)) { 1025 Instruction *UnderlyingPointer = 1026 dyn_cast<Instruction>(GetUnderlyingObject(SI->getPointerOperand(), DL)); 1027 1028 if (UnderlyingPointer && isCallocLikeFn(UnderlyingPointer, TLI) && 1029 memoryIsNotModifiedBetween(UnderlyingPointer, SI, AA)) { 1030 DEBUG( 1031 dbgs() << "DSE: Remove null store to the calloc'ed object:\n DEAD: " 1032 << *Inst << "\n OBJECT: " << *UnderlyingPointer << '\n'); 1033 1034 deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, InstrOrdering); 1035 ++NumRedundantStores; 1036 return true; 1037 } 1038 } 1039 return false; 1040 } 1041 1042 static bool eliminateDeadStores(BasicBlock &BB, AliasAnalysis *AA, 1043 MemoryDependenceResults *MD, DominatorTree *DT, 1044 const TargetLibraryInfo *TLI) { 1045 const DataLayout &DL = BB.getModule()->getDataLayout(); 1046 bool MadeChange = false; 1047 1048 // FIXME: Maybe change this to use some abstraction like OrderedBasicBlock? 1049 // The current OrderedBasicBlock can't deal with mutation at the moment. 1050 size_t LastThrowingInstIndex = 0; 1051 DenseMap<Instruction*, size_t> InstrOrdering; 1052 size_t InstrIndex = 1; 1053 1054 // A map of interval maps representing partially-overwritten value parts. 1055 InstOverlapIntervalsTy IOL; 1056 1057 // Do a top-down walk on the BB. 1058 for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) { 1059 // Handle 'free' calls specially. 1060 if (CallInst *F = isFreeCall(&*BBI, TLI)) { 1061 MadeChange |= handleFree(F, AA, MD, DT, TLI, IOL, &InstrOrdering); 1062 // Increment BBI after handleFree has potentially deleted instructions. 1063 // This ensures we maintain a valid iterator. 1064 ++BBI; 1065 continue; 1066 } 1067 1068 Instruction *Inst = &*BBI++; 1069 1070 size_t CurInstNumber = InstrIndex++; 1071 InstrOrdering.insert(std::make_pair(Inst, CurInstNumber)); 1072 if (Inst->mayThrow()) { 1073 LastThrowingInstIndex = CurInstNumber; 1074 continue; 1075 } 1076 1077 // Check to see if Inst writes to memory. If not, continue. 1078 if (!hasAnalyzableMemoryWrite(Inst, *TLI)) 1079 continue; 1080 1081 // eliminateNoopStore will update in iterator, if necessary. 1082 if (eliminateNoopStore(Inst, BBI, AA, MD, DL, TLI, IOL, &InstrOrdering)) { 1083 MadeChange = true; 1084 continue; 1085 } 1086 1087 // If we find something that writes memory, get its memory dependence. 1088 MemDepResult InstDep = MD->getDependency(Inst); 1089 1090 // Ignore any store where we can't find a local dependence. 1091 // FIXME: cross-block DSE would be fun. :) 1092 if (!InstDep.isDef() && !InstDep.isClobber()) 1093 continue; 1094 1095 // Figure out what location is being stored to. 1096 MemoryLocation Loc = getLocForWrite(Inst); 1097 1098 // If we didn't get a useful location, fail. 1099 if (!Loc.Ptr) 1100 continue; 1101 1102 // Loop until we find a store we can eliminate or a load that 1103 // invalidates the analysis. Without an upper bound on the number of 1104 // instructions examined, this analysis can become very time-consuming. 1105 // However, the potential gain diminishes as we process more instructions 1106 // without eliminating any of them. Therefore, we limit the number of 1107 // instructions we look at. 1108 auto Limit = MD->getDefaultBlockScanLimit(); 1109 while (InstDep.isDef() || InstDep.isClobber()) { 1110 // Get the memory clobbered by the instruction we depend on. MemDep will 1111 // skip any instructions that 'Loc' clearly doesn't interact with. If we 1112 // end up depending on a may- or must-aliased load, then we can't optimize 1113 // away the store and we bail out. However, if we depend on something 1114 // that overwrites the memory location we *can* potentially optimize it. 1115 // 1116 // Find out what memory location the dependent instruction stores. 1117 Instruction *DepWrite = InstDep.getInst(); 1118 if (!hasAnalyzableMemoryWrite(DepWrite, *TLI)) 1119 break; 1120 MemoryLocation DepLoc = getLocForWrite(DepWrite); 1121 // If we didn't get a useful location, or if it isn't a size, bail out. 1122 if (!DepLoc.Ptr) 1123 break; 1124 1125 // Make sure we don't look past a call which might throw. This is an 1126 // issue because MemoryDependenceAnalysis works in the wrong direction: 1127 // it finds instructions which dominate the current instruction, rather than 1128 // instructions which are post-dominated by the current instruction. 1129 // 1130 // If the underlying object is a non-escaping memory allocation, any store 1131 // to it is dead along the unwind edge. Otherwise, we need to preserve 1132 // the store. 1133 size_t DepIndex = InstrOrdering.lookup(DepWrite); 1134 assert(DepIndex && "Unexpected instruction"); 1135 if (DepIndex <= LastThrowingInstIndex) { 1136 const Value* Underlying = GetUnderlyingObject(DepLoc.Ptr, DL); 1137 bool IsStoreDeadOnUnwind = isa<AllocaInst>(Underlying); 1138 if (!IsStoreDeadOnUnwind) { 1139 // We're looking for a call to an allocation function 1140 // where the allocation doesn't escape before the last 1141 // throwing instruction; PointerMayBeCaptured 1142 // reasonably fast approximation. 1143 IsStoreDeadOnUnwind = isAllocLikeFn(Underlying, TLI) && 1144 !PointerMayBeCaptured(Underlying, false, true); 1145 } 1146 if (!IsStoreDeadOnUnwind) 1147 break; 1148 } 1149 1150 // If we find a write that is a) removable (i.e., non-volatile), b) is 1151 // completely obliterated by the store to 'Loc', and c) which we know that 1152 // 'Inst' doesn't load from, then we can remove it. 1153 // Also try to merge two stores if a later one only touches memory written 1154 // to by the earlier one. 1155 if (isRemovable(DepWrite) && 1156 !isPossibleSelfRead(Inst, Loc, DepWrite, *TLI, *AA)) { 1157 int64_t InstWriteOffset, DepWriteOffset; 1158 OverwriteResult OR = 1159 isOverwrite(Loc, DepLoc, DL, *TLI, DepWriteOffset, InstWriteOffset, 1160 DepWrite, IOL); 1161 if (OR == OW_Complete) { 1162 DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " 1163 << *DepWrite << "\n KILLER: " << *Inst << '\n'); 1164 1165 // Delete the store and now-dead instructions that feed it. 1166 deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, &InstrOrdering); 1167 ++NumFastStores; 1168 MadeChange = true; 1169 1170 // We erased DepWrite; start over. 1171 InstDep = MD->getDependency(Inst); 1172 continue; 1173 } else if ((OR == OW_End && isShortenableAtTheEnd(DepWrite)) || 1174 ((OR == OW_Begin && 1175 isShortenableAtTheBeginning(DepWrite)))) { 1176 assert(!EnablePartialOverwriteTracking && "Do not expect to perform " 1177 "when partial-overwrite " 1178 "tracking is enabled"); 1179 int64_t EarlierSize = DepLoc.Size; 1180 int64_t LaterSize = Loc.Size; 1181 bool IsOverwriteEnd = (OR == OW_End); 1182 MadeChange |= tryToShorten(DepWrite, DepWriteOffset, EarlierSize, 1183 InstWriteOffset, LaterSize, IsOverwriteEnd); 1184 } else if (EnablePartialStoreMerging && 1185 OR == OW_PartialEarlierWithFullLater) { 1186 auto *Earlier = dyn_cast<StoreInst>(DepWrite); 1187 auto *Later = dyn_cast<StoreInst>(Inst); 1188 if (Earlier && isa<ConstantInt>(Earlier->getValueOperand()) && 1189 Later && isa<ConstantInt>(Later->getValueOperand()) && 1190 memoryIsNotModifiedBetween(Earlier, Later, AA)) { 1191 // If the store we find is: 1192 // a) partially overwritten by the store to 'Loc' 1193 // b) the later store is fully contained in the earlier one and 1194 // c) they both have a constant value 1195 // Merge the two stores, replacing the earlier store's value with a 1196 // merge of both values. 1197 // TODO: Deal with other constant types (vectors, etc), and probably 1198 // some mem intrinsics (if needed) 1199 1200 APInt EarlierValue = 1201 cast<ConstantInt>(Earlier->getValueOperand())->getValue(); 1202 APInt LaterValue = 1203 cast<ConstantInt>(Later->getValueOperand())->getValue(); 1204 unsigned LaterBits = LaterValue.getBitWidth(); 1205 assert(EarlierValue.getBitWidth() > LaterValue.getBitWidth()); 1206 LaterValue = LaterValue.zext(EarlierValue.getBitWidth()); 1207 1208 // Offset of the smaller store inside the larger store 1209 unsigned BitOffsetDiff = (InstWriteOffset - DepWriteOffset) * 8; 1210 unsigned LShiftAmount = 1211 DL.isBigEndian() 1212 ? EarlierValue.getBitWidth() - BitOffsetDiff - LaterBits 1213 : BitOffsetDiff; 1214 APInt Mask = 1215 APInt::getBitsSet(EarlierValue.getBitWidth(), LShiftAmount, 1216 LShiftAmount + LaterBits); 1217 // Clear the bits we'll be replacing, then OR with the smaller 1218 // store, shifted appropriately. 1219 APInt Merged = 1220 (EarlierValue & ~Mask) | (LaterValue << LShiftAmount); 1221 DEBUG(dbgs() << "DSE: Merge Stores:\n Earlier: " << *DepWrite 1222 << "\n Later: " << *Inst 1223 << "\n Merged Value: " << Merged << '\n'); 1224 1225 auto *SI = new StoreInst( 1226 ConstantInt::get(Earlier->getValueOperand()->getType(), Merged), 1227 Earlier->getPointerOperand(), false, Earlier->getAlignment(), 1228 Earlier->getOrdering(), Earlier->getSyncScopeID(), DepWrite); 1229 1230 unsigned MDToKeep[] = {LLVMContext::MD_dbg, LLVMContext::MD_tbaa, 1231 LLVMContext::MD_alias_scope, 1232 LLVMContext::MD_noalias, 1233 LLVMContext::MD_nontemporal}; 1234 SI->copyMetadata(*DepWrite, MDToKeep); 1235 ++NumModifiedStores; 1236 1237 // Remove earlier, wider, store 1238 size_t Idx = InstrOrdering.lookup(DepWrite); 1239 InstrOrdering.erase(DepWrite); 1240 InstrOrdering.insert(std::make_pair(SI, Idx)); 1241 1242 // Delete the old stores and now-dead instructions that feed them. 1243 deleteDeadInstruction(Inst, &BBI, *MD, *TLI, IOL, &InstrOrdering); 1244 deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, 1245 &InstrOrdering); 1246 MadeChange = true; 1247 1248 // We erased DepWrite and Inst (Loc); start over. 1249 break; 1250 } 1251 } 1252 } 1253 1254 // If this is a may-aliased store that is clobbering the store value, we 1255 // can keep searching past it for another must-aliased pointer that stores 1256 // to the same location. For example, in: 1257 // store -> P 1258 // store -> Q 1259 // store -> P 1260 // we can remove the first store to P even though we don't know if P and Q 1261 // alias. 1262 if (DepWrite == &BB.front()) break; 1263 1264 // Can't look past this instruction if it might read 'Loc'. 1265 if (isRefSet(AA->getModRefInfo(DepWrite, Loc))) 1266 break; 1267 1268 InstDep = MD->getPointerDependencyFrom(Loc, /*isLoad=*/ false, 1269 DepWrite->getIterator(), &BB, 1270 /*QueryInst=*/ nullptr, &Limit); 1271 } 1272 } 1273 1274 if (EnablePartialOverwriteTracking) 1275 MadeChange |= removePartiallyOverlappedStores(AA, DL, IOL); 1276 1277 // If this block ends in a return, unwind, or unreachable, all allocas are 1278 // dead at its end, which means stores to them are also dead. 1279 if (BB.getTerminator()->getNumSuccessors() == 0) 1280 MadeChange |= handleEndBlock(BB, AA, MD, TLI, IOL, &InstrOrdering); 1281 1282 return MadeChange; 1283 } 1284 1285 static bool eliminateDeadStores(Function &F, AliasAnalysis *AA, 1286 MemoryDependenceResults *MD, DominatorTree *DT, 1287 const TargetLibraryInfo *TLI) { 1288 bool MadeChange = false; 1289 for (BasicBlock &BB : F) 1290 // Only check non-dead blocks. Dead blocks may have strange pointer 1291 // cycles that will confuse alias analysis. 1292 if (DT->isReachableFromEntry(&BB)) 1293 MadeChange |= eliminateDeadStores(BB, AA, MD, DT, TLI); 1294 1295 return MadeChange; 1296 } 1297 1298 //===----------------------------------------------------------------------===// 1299 // DSE Pass 1300 //===----------------------------------------------------------------------===// 1301 PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) { 1302 AliasAnalysis *AA = &AM.getResult<AAManager>(F); 1303 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1304 MemoryDependenceResults *MD = &AM.getResult<MemoryDependenceAnalysis>(F); 1305 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 1306 1307 if (!eliminateDeadStores(F, AA, MD, DT, TLI)) 1308 return PreservedAnalyses::all(); 1309 1310 PreservedAnalyses PA; 1311 PA.preserveSet<CFGAnalyses>(); 1312 PA.preserve<GlobalsAA>(); 1313 PA.preserve<MemoryDependenceAnalysis>(); 1314 return PA; 1315 } 1316 1317 namespace { 1318 1319 /// A legacy pass for the legacy pass manager that wraps \c DSEPass. 1320 class DSELegacyPass : public FunctionPass { 1321 public: 1322 static char ID; // Pass identification, replacement for typeid 1323 1324 DSELegacyPass() : FunctionPass(ID) { 1325 initializeDSELegacyPassPass(*PassRegistry::getPassRegistry()); 1326 } 1327 1328 bool runOnFunction(Function &F) override { 1329 if (skipFunction(F)) 1330 return false; 1331 1332 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1333 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1334 MemoryDependenceResults *MD = 1335 &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); 1336 const TargetLibraryInfo *TLI = 1337 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1338 1339 return eliminateDeadStores(F, AA, MD, DT, TLI); 1340 } 1341 1342 void getAnalysisUsage(AnalysisUsage &AU) const override { 1343 AU.setPreservesCFG(); 1344 AU.addRequired<DominatorTreeWrapperPass>(); 1345 AU.addRequired<AAResultsWrapperPass>(); 1346 AU.addRequired<MemoryDependenceWrapperPass>(); 1347 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1348 AU.addPreserved<DominatorTreeWrapperPass>(); 1349 AU.addPreserved<GlobalsAAWrapperPass>(); 1350 AU.addPreserved<MemoryDependenceWrapperPass>(); 1351 } 1352 }; 1353 1354 } // end anonymous namespace 1355 1356 char DSELegacyPass::ID = 0; 1357 1358 INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false, 1359 false) 1360 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1361 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1362 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 1363 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 1364 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1365 INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false, 1366 false) 1367 1368 FunctionPass *llvm::createDeadStoreEliminationPass() { 1369 return new DSELegacyPass(); 1370 } 1371