1 //===- DeadStoreElimination.cpp - MemorySSA Backed Dead Store Elimination -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The code below implements dead store elimination using MemorySSA. It uses 10 // the following general approach: given a MemoryDef, walk upwards to find 11 // clobbering MemoryDefs that may be killed by the starting def. Then check 12 // that there are no uses that may read the location of the original MemoryDef 13 // in between both MemoryDefs. A bit more concretely: 14 // 15 // For all MemoryDefs StartDef: 16 // 1. Get the next dominating clobbering MemoryDef (MaybeDeadAccess) by walking 17 // upwards. 18 // 2. Check that there are no reads between MaybeDeadAccess and the StartDef by 19 // checking all uses starting at MaybeDeadAccess and walking until we see 20 // StartDef. 21 // 3. For each found CurrentDef, check that: 22 // 1. There are no barrier instructions between CurrentDef and StartDef (like 23 // throws or stores with ordering constraints). 24 // 2. StartDef is executed whenever CurrentDef is executed. 25 // 3. StartDef completely overwrites CurrentDef. 26 // 4. Erase CurrentDef from the function and MemorySSA. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/Scalar/DeadStoreElimination.h" 31 #include "llvm/ADT/APInt.h" 32 #include "llvm/ADT/DenseMap.h" 33 #include "llvm/ADT/MapVector.h" 34 #include "llvm/ADT/PostOrderIterator.h" 35 #include "llvm/ADT/SetVector.h" 36 #include "llvm/ADT/SmallPtrSet.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/ADT/Statistic.h" 39 #include "llvm/ADT/StringRef.h" 40 #include "llvm/Analysis/AliasAnalysis.h" 41 #include "llvm/Analysis/CaptureTracking.h" 42 #include "llvm/Analysis/GlobalsModRef.h" 43 #include "llvm/Analysis/LoopInfo.h" 44 #include "llvm/Analysis/MemoryBuiltins.h" 45 #include "llvm/Analysis/MemoryLocation.h" 46 #include "llvm/Analysis/MemorySSA.h" 47 #include "llvm/Analysis/MemorySSAUpdater.h" 48 #include "llvm/Analysis/MustExecute.h" 49 #include "llvm/Analysis/PostDominators.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/Analysis/ValueTracking.h" 52 #include "llvm/IR/Argument.h" 53 #include "llvm/IR/BasicBlock.h" 54 #include "llvm/IR/Constant.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstIterator.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/LLVMContext.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/InitializePasses.h" 72 #include "llvm/Pass.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/DebugCounter.h" 77 #include "llvm/Support/ErrorHandling.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Transforms/Scalar.h" 81 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 82 #include "llvm/Transforms/Utils/BuildLibCalls.h" 83 #include "llvm/Transforms/Utils/Local.h" 84 #include <algorithm> 85 #include <cassert> 86 #include <cstddef> 87 #include <cstdint> 88 #include <iterator> 89 #include <map> 90 #include <utility> 91 92 using namespace llvm; 93 using namespace PatternMatch; 94 95 #define DEBUG_TYPE "dse" 96 97 STATISTIC(NumRemainingStores, "Number of stores remaining after DSE"); 98 STATISTIC(NumRedundantStores, "Number of redundant stores deleted"); 99 STATISTIC(NumFastStores, "Number of stores deleted"); 100 STATISTIC(NumFastOther, "Number of other instrs removed"); 101 STATISTIC(NumCompletePartials, "Number of stores dead by later partials"); 102 STATISTIC(NumModifiedStores, "Number of stores modified"); 103 STATISTIC(NumCFGChecks, "Number of stores modified"); 104 STATISTIC(NumCFGTries, "Number of stores modified"); 105 STATISTIC(NumCFGSuccess, "Number of stores modified"); 106 STATISTIC(NumGetDomMemoryDefPassed, 107 "Number of times a valid candidate is returned from getDomMemoryDef"); 108 STATISTIC(NumDomMemDefChecks, 109 "Number iterations check for reads in getDomMemoryDef"); 110 111 DEBUG_COUNTER(MemorySSACounter, "dse-memoryssa", 112 "Controls which MemoryDefs are eliminated."); 113 114 static cl::opt<bool> 115 EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking", 116 cl::init(true), cl::Hidden, 117 cl::desc("Enable partial-overwrite tracking in DSE")); 118 119 static cl::opt<bool> 120 EnablePartialStoreMerging("enable-dse-partial-store-merging", 121 cl::init(true), cl::Hidden, 122 cl::desc("Enable partial store merging in DSE")); 123 124 static cl::opt<unsigned> 125 MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(150), cl::Hidden, 126 cl::desc("The number of memory instructions to scan for " 127 "dead store elimination (default = 150)")); 128 static cl::opt<unsigned> MemorySSAUpwardsStepLimit( 129 "dse-memoryssa-walklimit", cl::init(90), cl::Hidden, 130 cl::desc("The maximum number of steps while walking upwards to find " 131 "MemoryDefs that may be killed (default = 90)")); 132 133 static cl::opt<unsigned> MemorySSAPartialStoreLimit( 134 "dse-memoryssa-partial-store-limit", cl::init(5), cl::Hidden, 135 cl::desc("The maximum number candidates that only partially overwrite the " 136 "killing MemoryDef to consider" 137 " (default = 5)")); 138 139 static cl::opt<unsigned> MemorySSADefsPerBlockLimit( 140 "dse-memoryssa-defs-per-block-limit", cl::init(5000), cl::Hidden, 141 cl::desc("The number of MemoryDefs we consider as candidates to eliminated " 142 "other stores per basic block (default = 5000)")); 143 144 static cl::opt<unsigned> MemorySSASameBBStepCost( 145 "dse-memoryssa-samebb-cost", cl::init(1), cl::Hidden, 146 cl::desc( 147 "The cost of a step in the same basic block as the killing MemoryDef" 148 "(default = 1)")); 149 150 static cl::opt<unsigned> 151 MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(5), 152 cl::Hidden, 153 cl::desc("The cost of a step in a different basic " 154 "block than the killing MemoryDef" 155 "(default = 5)")); 156 157 static cl::opt<unsigned> MemorySSAPathCheckLimit( 158 "dse-memoryssa-path-check-limit", cl::init(50), cl::Hidden, 159 cl::desc("The maximum number of blocks to check when trying to prove that " 160 "all paths to an exit go through a killing block (default = 50)")); 161 162 // This flags allows or disallows DSE to optimize MemorySSA during its 163 // traversal. Note that DSE optimizing MemorySSA may impact other passes 164 // downstream of the DSE invocation and can lead to issues not being 165 // reproducible in isolation (i.e. when MemorySSA is built from scratch). In 166 // those cases, the flag can be used to check if DSE's MemorySSA optimizations 167 // impact follow-up passes. 168 static cl::opt<bool> 169 OptimizeMemorySSA("dse-optimize-memoryssa", cl::init(true), cl::Hidden, 170 cl::desc("Allow DSE to optimize memory accesses.")); 171 172 //===----------------------------------------------------------------------===// 173 // Helper functions 174 //===----------------------------------------------------------------------===// 175 using OverlapIntervalsTy = std::map<int64_t, int64_t>; 176 using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>; 177 178 /// If the value of this instruction and the memory it writes to is unused, may 179 /// we delete this instruction? 180 static bool isRemovable(Instruction *I) { 181 // Don't remove volatile/atomic stores. 182 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 183 return SI->isUnordered(); 184 185 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 186 switch (II->getIntrinsicID()) { 187 default: llvm_unreachable("Does not have LocForWrite"); 188 case Intrinsic::lifetime_end: 189 // Never remove dead lifetime_end's, e.g. because it is followed by a 190 // free. 191 return false; 192 case Intrinsic::init_trampoline: 193 // Always safe to remove init_trampoline. 194 return true; 195 case Intrinsic::memset: 196 case Intrinsic::memmove: 197 case Intrinsic::memcpy: 198 case Intrinsic::memcpy_inline: 199 // Don't remove volatile memory intrinsics. 200 return !cast<MemIntrinsic>(II)->isVolatile(); 201 case Intrinsic::memcpy_element_unordered_atomic: 202 case Intrinsic::memmove_element_unordered_atomic: 203 case Intrinsic::memset_element_unordered_atomic: 204 case Intrinsic::masked_store: 205 return true; 206 } 207 } 208 209 // note: only get here for calls with analyzable writes - i.e. libcalls 210 if (auto *CB = dyn_cast<CallBase>(I)) 211 return CB->use_empty(); 212 213 return false; 214 } 215 216 /// Returns true if the end of this instruction can be safely shortened in 217 /// length. 218 static bool isShortenableAtTheEnd(Instruction *I) { 219 // Don't shorten stores for now 220 if (isa<StoreInst>(I)) 221 return false; 222 223 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 224 switch (II->getIntrinsicID()) { 225 default: return false; 226 case Intrinsic::memset: 227 case Intrinsic::memcpy: 228 case Intrinsic::memcpy_element_unordered_atomic: 229 case Intrinsic::memset_element_unordered_atomic: 230 // Do shorten memory intrinsics. 231 // FIXME: Add memmove if it's also safe to transform. 232 return true; 233 } 234 } 235 236 // Don't shorten libcalls calls for now. 237 238 return false; 239 } 240 241 /// Returns true if the beginning of this instruction can be safely shortened 242 /// in length. 243 static bool isShortenableAtTheBeginning(Instruction *I) { 244 // FIXME: Handle only memset for now. Supporting memcpy/memmove should be 245 // easily done by offsetting the source address. 246 return isa<AnyMemSetInst>(I); 247 } 248 249 static uint64_t getPointerSize(const Value *V, const DataLayout &DL, 250 const TargetLibraryInfo &TLI, 251 const Function *F) { 252 uint64_t Size; 253 ObjectSizeOpts Opts; 254 Opts.NullIsUnknownSize = NullPointerIsDefined(F); 255 256 if (getObjectSize(V, Size, DL, &TLI, Opts)) 257 return Size; 258 return MemoryLocation::UnknownSize; 259 } 260 261 namespace { 262 263 enum OverwriteResult { 264 OW_Begin, 265 OW_Complete, 266 OW_End, 267 OW_PartialEarlierWithFullLater, 268 OW_MaybePartial, 269 OW_None, 270 OW_Unknown 271 }; 272 273 } // end anonymous namespace 274 275 /// Check if two instruction are masked stores that completely 276 /// overwrite one another. More specifically, \p KillingI has to 277 /// overwrite \p DeadI. 278 static OverwriteResult isMaskedStoreOverwrite(const Instruction *KillingI, 279 const Instruction *DeadI, 280 BatchAAResults &AA) { 281 const auto *KillingII = dyn_cast<IntrinsicInst>(KillingI); 282 const auto *DeadII = dyn_cast<IntrinsicInst>(DeadI); 283 if (KillingII == nullptr || DeadII == nullptr) 284 return OW_Unknown; 285 if (KillingII->getIntrinsicID() != Intrinsic::masked_store || 286 DeadII->getIntrinsicID() != Intrinsic::masked_store) 287 return OW_Unknown; 288 // Pointers. 289 Value *KillingPtr = KillingII->getArgOperand(1)->stripPointerCasts(); 290 Value *DeadPtr = DeadII->getArgOperand(1)->stripPointerCasts(); 291 if (KillingPtr != DeadPtr && !AA.isMustAlias(KillingPtr, DeadPtr)) 292 return OW_Unknown; 293 // Masks. 294 // TODO: check that KillingII's mask is a superset of the DeadII's mask. 295 if (KillingII->getArgOperand(3) != DeadII->getArgOperand(3)) 296 return OW_Unknown; 297 return OW_Complete; 298 } 299 300 /// Return 'OW_Complete' if a store to the 'KillingLoc' location completely 301 /// overwrites a store to the 'DeadLoc' location, 'OW_End' if the end of the 302 /// 'DeadLoc' location is completely overwritten by 'KillingLoc', 'OW_Begin' 303 /// if the beginning of the 'DeadLoc' location is overwritten by 'KillingLoc'. 304 /// 'OW_PartialEarlierWithFullLater' means that a dead (big) store was 305 /// overwritten by a killing (smaller) store which doesn't write outside the big 306 /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined. 307 /// NOTE: This function must only be called if both \p KillingLoc and \p 308 /// DeadLoc belong to the same underlying object with valid \p KillingOff and 309 /// \p DeadOff. 310 static OverwriteResult isPartialOverwrite(const MemoryLocation &KillingLoc, 311 const MemoryLocation &DeadLoc, 312 int64_t KillingOff, int64_t DeadOff, 313 Instruction *DeadI, 314 InstOverlapIntervalsTy &IOL) { 315 const uint64_t KillingSize = KillingLoc.Size.getValue(); 316 const uint64_t DeadSize = DeadLoc.Size.getValue(); 317 // We may now overlap, although the overlap is not complete. There might also 318 // be other incomplete overlaps, and together, they might cover the complete 319 // dead store. 320 // Note: The correctness of this logic depends on the fact that this function 321 // is not even called providing DepWrite when there are any intervening reads. 322 if (EnablePartialOverwriteTracking && 323 KillingOff < int64_t(DeadOff + DeadSize) && 324 int64_t(KillingOff + KillingSize) >= DeadOff) { 325 326 // Insert our part of the overlap into the map. 327 auto &IM = IOL[DeadI]; 328 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: DeadLoc [" << DeadOff << ", " 329 << int64_t(DeadOff + DeadSize) << ") KillingLoc [" 330 << KillingOff << ", " << int64_t(KillingOff + KillingSize) 331 << ")\n"); 332 333 // Make sure that we only insert non-overlapping intervals and combine 334 // adjacent intervals. The intervals are stored in the map with the ending 335 // offset as the key (in the half-open sense) and the starting offset as 336 // the value. 337 int64_t KillingIntStart = KillingOff; 338 int64_t KillingIntEnd = KillingOff + KillingSize; 339 340 // Find any intervals ending at, or after, KillingIntStart which start 341 // before KillingIntEnd. 342 auto ILI = IM.lower_bound(KillingIntStart); 343 if (ILI != IM.end() && ILI->second <= KillingIntEnd) { 344 // This existing interval is overlapped with the current store somewhere 345 // in [KillingIntStart, KillingIntEnd]. Merge them by erasing the existing 346 // intervals and adjusting our start and end. 347 KillingIntStart = std::min(KillingIntStart, ILI->second); 348 KillingIntEnd = std::max(KillingIntEnd, ILI->first); 349 ILI = IM.erase(ILI); 350 351 // Continue erasing and adjusting our end in case other previous 352 // intervals are also overlapped with the current store. 353 // 354 // |--- dead 1 ---| |--- dead 2 ---| 355 // |------- killing---------| 356 // 357 while (ILI != IM.end() && ILI->second <= KillingIntEnd) { 358 assert(ILI->second > KillingIntStart && "Unexpected interval"); 359 KillingIntEnd = std::max(KillingIntEnd, ILI->first); 360 ILI = IM.erase(ILI); 361 } 362 } 363 364 IM[KillingIntEnd] = KillingIntStart; 365 366 ILI = IM.begin(); 367 if (ILI->second <= DeadOff && ILI->first >= int64_t(DeadOff + DeadSize)) { 368 LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: DeadLoc [" 369 << DeadOff << ", " << int64_t(DeadOff + DeadSize) 370 << ") Composite KillingLoc [" << ILI->second << ", " 371 << ILI->first << ")\n"); 372 ++NumCompletePartials; 373 return OW_Complete; 374 } 375 } 376 377 // Check for a dead store which writes to all the memory locations that 378 // the killing store writes to. 379 if (EnablePartialStoreMerging && KillingOff >= DeadOff && 380 int64_t(DeadOff + DeadSize) > KillingOff && 381 uint64_t(KillingOff - DeadOff) + KillingSize <= DeadSize) { 382 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite a dead load [" << DeadOff 383 << ", " << int64_t(DeadOff + DeadSize) 384 << ") by a killing store [" << KillingOff << ", " 385 << int64_t(KillingOff + KillingSize) << ")\n"); 386 // TODO: Maybe come up with a better name? 387 return OW_PartialEarlierWithFullLater; 388 } 389 390 // Another interesting case is if the killing store overwrites the end of the 391 // dead store. 392 // 393 // |--dead--| 394 // |-- killing --| 395 // 396 // In this case we may want to trim the size of dead store to avoid 397 // generating stores to addresses which will definitely be overwritten killing 398 // store. 399 if (!EnablePartialOverwriteTracking && 400 (KillingOff > DeadOff && KillingOff < int64_t(DeadOff + DeadSize) && 401 int64_t(KillingOff + KillingSize) >= int64_t(DeadOff + DeadSize))) 402 return OW_End; 403 404 // Finally, we also need to check if the killing store overwrites the 405 // beginning of the dead store. 406 // 407 // |--dead--| 408 // |-- killing --| 409 // 410 // In this case we may want to move the destination address and trim the size 411 // of dead store to avoid generating stores to addresses which will definitely 412 // be overwritten killing store. 413 if (!EnablePartialOverwriteTracking && 414 (KillingOff <= DeadOff && int64_t(KillingOff + KillingSize) > DeadOff)) { 415 assert(int64_t(KillingOff + KillingSize) < int64_t(DeadOff + DeadSize) && 416 "Expect to be handled as OW_Complete"); 417 return OW_Begin; 418 } 419 // Otherwise, they don't completely overlap. 420 return OW_Unknown; 421 } 422 423 /// Returns true if the memory which is accessed by the second instruction is not 424 /// modified between the first and the second instruction. 425 /// Precondition: Second instruction must be dominated by the first 426 /// instruction. 427 static bool 428 memoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI, 429 BatchAAResults &AA, const DataLayout &DL, 430 DominatorTree *DT) { 431 // Do a backwards scan through the CFG from SecondI to FirstI. Look for 432 // instructions which can modify the memory location accessed by SecondI. 433 // 434 // While doing the walk keep track of the address to check. It might be 435 // different in different basic blocks due to PHI translation. 436 using BlockAddressPair = std::pair<BasicBlock *, PHITransAddr>; 437 SmallVector<BlockAddressPair, 16> WorkList; 438 // Keep track of the address we visited each block with. Bail out if we 439 // visit a block with different addresses. 440 DenseMap<BasicBlock *, Value *> Visited; 441 442 BasicBlock::iterator FirstBBI(FirstI); 443 ++FirstBBI; 444 BasicBlock::iterator SecondBBI(SecondI); 445 BasicBlock *FirstBB = FirstI->getParent(); 446 BasicBlock *SecondBB = SecondI->getParent(); 447 MemoryLocation MemLoc; 448 if (auto *MemSet = dyn_cast<MemSetInst>(SecondI)) 449 MemLoc = MemoryLocation::getForDest(MemSet); 450 else 451 MemLoc = MemoryLocation::get(SecondI); 452 453 auto *MemLocPtr = const_cast<Value *>(MemLoc.Ptr); 454 455 // Start checking the SecondBB. 456 WorkList.push_back( 457 std::make_pair(SecondBB, PHITransAddr(MemLocPtr, DL, nullptr))); 458 bool isFirstBlock = true; 459 460 // Check all blocks going backward until we reach the FirstBB. 461 while (!WorkList.empty()) { 462 BlockAddressPair Current = WorkList.pop_back_val(); 463 BasicBlock *B = Current.first; 464 PHITransAddr &Addr = Current.second; 465 Value *Ptr = Addr.getAddr(); 466 467 // Ignore instructions before FirstI if this is the FirstBB. 468 BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin()); 469 470 BasicBlock::iterator EI; 471 if (isFirstBlock) { 472 // Ignore instructions after SecondI if this is the first visit of SecondBB. 473 assert(B == SecondBB && "first block is not the store block"); 474 EI = SecondBBI; 475 isFirstBlock = false; 476 } else { 477 // It's not SecondBB or (in case of a loop) the second visit of SecondBB. 478 // In this case we also have to look at instructions after SecondI. 479 EI = B->end(); 480 } 481 for (; BI != EI; ++BI) { 482 Instruction *I = &*BI; 483 if (I->mayWriteToMemory() && I != SecondI) 484 if (isModSet(AA.getModRefInfo(I, MemLoc.getWithNewPtr(Ptr)))) 485 return false; 486 } 487 if (B != FirstBB) { 488 assert(B != &FirstBB->getParent()->getEntryBlock() && 489 "Should not hit the entry block because SI must be dominated by LI"); 490 for (BasicBlock *Pred : predecessors(B)) { 491 PHITransAddr PredAddr = Addr; 492 if (PredAddr.NeedsPHITranslationFromBlock(B)) { 493 if (!PredAddr.IsPotentiallyPHITranslatable()) 494 return false; 495 if (PredAddr.PHITranslateValue(B, Pred, DT, false)) 496 return false; 497 } 498 Value *TranslatedPtr = PredAddr.getAddr(); 499 auto Inserted = Visited.insert(std::make_pair(Pred, TranslatedPtr)); 500 if (!Inserted.second) { 501 // We already visited this block before. If it was with a different 502 // address - bail out! 503 if (TranslatedPtr != Inserted.first->second) 504 return false; 505 // ... otherwise just skip it. 506 continue; 507 } 508 WorkList.push_back(std::make_pair(Pred, PredAddr)); 509 } 510 } 511 } 512 return true; 513 } 514 515 static bool tryToShorten(Instruction *DeadI, int64_t &DeadStart, 516 uint64_t &DeadSize, int64_t KillingStart, 517 uint64_t KillingSize, bool IsOverwriteEnd) { 518 auto *DeadIntrinsic = cast<AnyMemIntrinsic>(DeadI); 519 Align PrefAlign = DeadIntrinsic->getDestAlign().valueOrOne(); 520 521 // We assume that memet/memcpy operates in chunks of the "largest" native 522 // type size and aligned on the same value. That means optimal start and size 523 // of memset/memcpy should be modulo of preferred alignment of that type. That 524 // is it there is no any sense in trying to reduce store size any further 525 // since any "extra" stores comes for free anyway. 526 // On the other hand, maximum alignment we can achieve is limited by alignment 527 // of initial store. 528 529 // TODO: Limit maximum alignment by preferred (or abi?) alignment of the 530 // "largest" native type. 531 // Note: What is the proper way to get that value? 532 // Should TargetTransformInfo::getRegisterBitWidth be used or anything else? 533 // PrefAlign = std::min(DL.getPrefTypeAlign(LargestType), PrefAlign); 534 535 int64_t ToRemoveStart = 0; 536 uint64_t ToRemoveSize = 0; 537 // Compute start and size of the region to remove. Make sure 'PrefAlign' is 538 // maintained on the remaining store. 539 if (IsOverwriteEnd) { 540 // Calculate required adjustment for 'KillingStart' in order to keep 541 // remaining store size aligned on 'PerfAlign'. 542 uint64_t Off = 543 offsetToAlignment(uint64_t(KillingStart - DeadStart), PrefAlign); 544 ToRemoveStart = KillingStart + Off; 545 if (DeadSize <= uint64_t(ToRemoveStart - DeadStart)) 546 return false; 547 ToRemoveSize = DeadSize - uint64_t(ToRemoveStart - DeadStart); 548 } else { 549 ToRemoveStart = DeadStart; 550 assert(KillingSize >= uint64_t(DeadStart - KillingStart) && 551 "Not overlapping accesses?"); 552 ToRemoveSize = KillingSize - uint64_t(DeadStart - KillingStart); 553 // Calculate required adjustment for 'ToRemoveSize'in order to keep 554 // start of the remaining store aligned on 'PerfAlign'. 555 uint64_t Off = offsetToAlignment(ToRemoveSize, PrefAlign); 556 if (Off != 0) { 557 if (ToRemoveSize <= (PrefAlign.value() - Off)) 558 return false; 559 ToRemoveSize -= PrefAlign.value() - Off; 560 } 561 assert(isAligned(PrefAlign, ToRemoveSize) && 562 "Should preserve selected alignment"); 563 } 564 565 assert(ToRemoveSize > 0 && "Shouldn't reach here if nothing to remove"); 566 assert(DeadSize > ToRemoveSize && "Can't remove more than original size"); 567 568 uint64_t NewSize = DeadSize - ToRemoveSize; 569 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(DeadI)) { 570 // When shortening an atomic memory intrinsic, the newly shortened 571 // length must remain an integer multiple of the element size. 572 const uint32_t ElementSize = AMI->getElementSizeInBytes(); 573 if (0 != NewSize % ElementSize) 574 return false; 575 } 576 577 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW " 578 << (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *DeadI 579 << "\n KILLER [" << ToRemoveStart << ", " 580 << int64_t(ToRemoveStart + ToRemoveSize) << ")\n"); 581 582 Value *DeadWriteLength = DeadIntrinsic->getLength(); 583 Value *TrimmedLength = ConstantInt::get(DeadWriteLength->getType(), NewSize); 584 DeadIntrinsic->setLength(TrimmedLength); 585 DeadIntrinsic->setDestAlignment(PrefAlign); 586 587 if (!IsOverwriteEnd) { 588 Value *OrigDest = DeadIntrinsic->getRawDest(); 589 Type *Int8PtrTy = 590 Type::getInt8PtrTy(DeadIntrinsic->getContext(), 591 OrigDest->getType()->getPointerAddressSpace()); 592 Value *Dest = OrigDest; 593 if (OrigDest->getType() != Int8PtrTy) 594 Dest = CastInst::CreatePointerCast(OrigDest, Int8PtrTy, "", DeadI); 595 Value *Indices[1] = { 596 ConstantInt::get(DeadWriteLength->getType(), ToRemoveSize)}; 597 Instruction *NewDestGEP = GetElementPtrInst::CreateInBounds( 598 Type::getInt8Ty(DeadIntrinsic->getContext()), Dest, Indices, "", DeadI); 599 NewDestGEP->setDebugLoc(DeadIntrinsic->getDebugLoc()); 600 if (NewDestGEP->getType() != OrigDest->getType()) 601 NewDestGEP = CastInst::CreatePointerCast(NewDestGEP, OrigDest->getType(), 602 "", DeadI); 603 DeadIntrinsic->setDest(NewDestGEP); 604 } 605 606 // Finally update start and size of dead access. 607 if (!IsOverwriteEnd) 608 DeadStart += ToRemoveSize; 609 DeadSize = NewSize; 610 611 return true; 612 } 613 614 static bool tryToShortenEnd(Instruction *DeadI, OverlapIntervalsTy &IntervalMap, 615 int64_t &DeadStart, uint64_t &DeadSize) { 616 if (IntervalMap.empty() || !isShortenableAtTheEnd(DeadI)) 617 return false; 618 619 OverlapIntervalsTy::iterator OII = --IntervalMap.end(); 620 int64_t KillingStart = OII->second; 621 uint64_t KillingSize = OII->first - KillingStart; 622 623 assert(OII->first - KillingStart >= 0 && "Size expected to be positive"); 624 625 if (KillingStart > DeadStart && 626 // Note: "KillingStart - KillingStart" is known to be positive due to 627 // preceding check. 628 (uint64_t)(KillingStart - DeadStart) < DeadSize && 629 // Note: "DeadSize - (uint64_t)(KillingStart - DeadStart)" is known to 630 // be non negative due to preceding checks. 631 KillingSize >= DeadSize - (uint64_t)(KillingStart - DeadStart)) { 632 if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize, 633 true)) { 634 IntervalMap.erase(OII); 635 return true; 636 } 637 } 638 return false; 639 } 640 641 static bool tryToShortenBegin(Instruction *DeadI, 642 OverlapIntervalsTy &IntervalMap, 643 int64_t &DeadStart, uint64_t &DeadSize) { 644 if (IntervalMap.empty() || !isShortenableAtTheBeginning(DeadI)) 645 return false; 646 647 OverlapIntervalsTy::iterator OII = IntervalMap.begin(); 648 int64_t KillingStart = OII->second; 649 uint64_t KillingSize = OII->first - KillingStart; 650 651 assert(OII->first - KillingStart >= 0 && "Size expected to be positive"); 652 653 if (KillingStart <= DeadStart && 654 // Note: "DeadStart - KillingStart" is known to be non negative due to 655 // preceding check. 656 KillingSize > (uint64_t)(DeadStart - KillingStart)) { 657 // Note: "KillingSize - (uint64_t)(DeadStart - DeadStart)" is known to 658 // be positive due to preceding checks. 659 assert(KillingSize - (uint64_t)(DeadStart - KillingStart) < DeadSize && 660 "Should have been handled as OW_Complete"); 661 if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize, 662 false)) { 663 IntervalMap.erase(OII); 664 return true; 665 } 666 } 667 return false; 668 } 669 670 static Constant * 671 tryToMergePartialOverlappingStores(StoreInst *KillingI, StoreInst *DeadI, 672 int64_t KillingOffset, int64_t DeadOffset, 673 const DataLayout &DL, BatchAAResults &AA, 674 DominatorTree *DT) { 675 676 if (DeadI && isa<ConstantInt>(DeadI->getValueOperand()) && 677 DL.typeSizeEqualsStoreSize(DeadI->getValueOperand()->getType()) && 678 KillingI && isa<ConstantInt>(KillingI->getValueOperand()) && 679 DL.typeSizeEqualsStoreSize(KillingI->getValueOperand()->getType()) && 680 memoryIsNotModifiedBetween(DeadI, KillingI, AA, DL, DT)) { 681 // If the store we find is: 682 // a) partially overwritten by the store to 'Loc' 683 // b) the killing store is fully contained in the dead one and 684 // c) they both have a constant value 685 // d) none of the two stores need padding 686 // Merge the two stores, replacing the dead store's value with a 687 // merge of both values. 688 // TODO: Deal with other constant types (vectors, etc), and probably 689 // some mem intrinsics (if needed) 690 691 APInt DeadValue = cast<ConstantInt>(DeadI->getValueOperand())->getValue(); 692 APInt KillingValue = 693 cast<ConstantInt>(KillingI->getValueOperand())->getValue(); 694 unsigned KillingBits = KillingValue.getBitWidth(); 695 assert(DeadValue.getBitWidth() > KillingValue.getBitWidth()); 696 KillingValue = KillingValue.zext(DeadValue.getBitWidth()); 697 698 // Offset of the smaller store inside the larger store 699 unsigned BitOffsetDiff = (KillingOffset - DeadOffset) * 8; 700 unsigned LShiftAmount = 701 DL.isBigEndian() ? DeadValue.getBitWidth() - BitOffsetDiff - KillingBits 702 : BitOffsetDiff; 703 APInt Mask = APInt::getBitsSet(DeadValue.getBitWidth(), LShiftAmount, 704 LShiftAmount + KillingBits); 705 // Clear the bits we'll be replacing, then OR with the smaller 706 // store, shifted appropriately. 707 APInt Merged = (DeadValue & ~Mask) | (KillingValue << LShiftAmount); 708 LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n Dead: " << *DeadI 709 << "\n Killing: " << *KillingI 710 << "\n Merged Value: " << Merged << '\n'); 711 return ConstantInt::get(DeadI->getValueOperand()->getType(), Merged); 712 } 713 return nullptr; 714 } 715 716 namespace { 717 // Returns true if \p I is an intrisnic that does not read or write memory. 718 bool isNoopIntrinsic(Instruction *I) { 719 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 720 switch (II->getIntrinsicID()) { 721 case Intrinsic::lifetime_start: 722 case Intrinsic::lifetime_end: 723 case Intrinsic::invariant_end: 724 case Intrinsic::launder_invariant_group: 725 case Intrinsic::assume: 726 return true; 727 case Intrinsic::dbg_addr: 728 case Intrinsic::dbg_declare: 729 case Intrinsic::dbg_label: 730 case Intrinsic::dbg_value: 731 llvm_unreachable("Intrinsic should not be modeled in MemorySSA"); 732 default: 733 return false; 734 } 735 } 736 return false; 737 } 738 739 // Check if we can ignore \p D for DSE. 740 bool canSkipDef(MemoryDef *D, bool DefVisibleToCaller, 741 const TargetLibraryInfo &TLI) { 742 Instruction *DI = D->getMemoryInst(); 743 // Calls that only access inaccessible memory cannot read or write any memory 744 // locations we consider for elimination. 745 if (auto *CB = dyn_cast<CallBase>(DI)) 746 if (CB->onlyAccessesInaccessibleMemory()) { 747 if (isAllocLikeFn(DI, &TLI)) 748 return false; 749 return true; 750 } 751 // We can eliminate stores to locations not visible to the caller across 752 // throwing instructions. 753 if (DI->mayThrow() && !DefVisibleToCaller) 754 return true; 755 756 // We can remove the dead stores, irrespective of the fence and its ordering 757 // (release/acquire/seq_cst). Fences only constraints the ordering of 758 // already visible stores, it does not make a store visible to other 759 // threads. So, skipping over a fence does not change a store from being 760 // dead. 761 if (isa<FenceInst>(DI)) 762 return true; 763 764 // Skip intrinsics that do not really read or modify memory. 765 if (isNoopIntrinsic(DI)) 766 return true; 767 768 return false; 769 } 770 771 struct DSEState { 772 Function &F; 773 AliasAnalysis &AA; 774 EarliestEscapeInfo EI; 775 776 /// The single BatchAA instance that is used to cache AA queries. It will 777 /// not be invalidated over the whole run. This is safe, because: 778 /// 1. Only memory writes are removed, so the alias cache for memory 779 /// locations remains valid. 780 /// 2. No new instructions are added (only instructions removed), so cached 781 /// information for a deleted value cannot be accessed by a re-used new 782 /// value pointer. 783 BatchAAResults BatchAA; 784 785 MemorySSA &MSSA; 786 DominatorTree &DT; 787 PostDominatorTree &PDT; 788 const TargetLibraryInfo &TLI; 789 const DataLayout &DL; 790 const LoopInfo &LI; 791 792 // Whether the function contains any irreducible control flow, useful for 793 // being accurately able to detect loops. 794 bool ContainsIrreducibleLoops; 795 796 // All MemoryDefs that potentially could kill other MemDefs. 797 SmallVector<MemoryDef *, 64> MemDefs; 798 // Any that should be skipped as they are already deleted 799 SmallPtrSet<MemoryAccess *, 4> SkipStores; 800 // Keep track of all of the objects that are invisible to the caller before 801 // the function returns. 802 // SmallPtrSet<const Value *, 16> InvisibleToCallerBeforeRet; 803 DenseMap<const Value *, bool> InvisibleToCallerBeforeRet; 804 // Keep track of all of the objects that are invisible to the caller after 805 // the function returns. 806 DenseMap<const Value *, bool> InvisibleToCallerAfterRet; 807 // Keep track of blocks with throwing instructions not modeled in MemorySSA. 808 SmallPtrSet<BasicBlock *, 16> ThrowingBlocks; 809 // Post-order numbers for each basic block. Used to figure out if memory 810 // accesses are executed before another access. 811 DenseMap<BasicBlock *, unsigned> PostOrderNumbers; 812 813 /// Keep track of instructions (partly) overlapping with killing MemoryDefs per 814 /// basic block. 815 MapVector<BasicBlock *, InstOverlapIntervalsTy> IOLs; 816 817 // Class contains self-reference, make sure it's not copied/moved. 818 DSEState(const DSEState &) = delete; 819 DSEState &operator=(const DSEState &) = delete; 820 821 DSEState(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, DominatorTree &DT, 822 PostDominatorTree &PDT, const TargetLibraryInfo &TLI, 823 const LoopInfo &LI) 824 : F(F), AA(AA), EI(DT, LI), BatchAA(AA, &EI), MSSA(MSSA), DT(DT), 825 PDT(PDT), TLI(TLI), DL(F.getParent()->getDataLayout()), LI(LI) { 826 // Collect blocks with throwing instructions not modeled in MemorySSA and 827 // alloc-like objects. 828 unsigned PO = 0; 829 for (BasicBlock *BB : post_order(&F)) { 830 PostOrderNumbers[BB] = PO++; 831 for (Instruction &I : *BB) { 832 MemoryAccess *MA = MSSA.getMemoryAccess(&I); 833 if (I.mayThrow() && !MA) 834 ThrowingBlocks.insert(I.getParent()); 835 836 auto *MD = dyn_cast_or_null<MemoryDef>(MA); 837 if (MD && MemDefs.size() < MemorySSADefsPerBlockLimit && 838 (getLocForWriteEx(&I) || isMemTerminatorInst(&I))) 839 MemDefs.push_back(MD); 840 } 841 } 842 843 // Treat byval or inalloca arguments the same as Allocas, stores to them are 844 // dead at the end of the function. 845 for (Argument &AI : F.args()) 846 if (AI.hasPassPointeeByValueCopyAttr()) { 847 // For byval, the caller doesn't know the address of the allocation. 848 if (AI.hasByValAttr()) 849 InvisibleToCallerBeforeRet.insert({&AI, true}); 850 InvisibleToCallerAfterRet.insert({&AI, true}); 851 } 852 853 // Collect whether there is any irreducible control flow in the function. 854 ContainsIrreducibleLoops = mayContainIrreducibleControl(F, &LI); 855 } 856 857 /// Return 'OW_Complete' if a store to the 'KillingLoc' location (by \p 858 /// KillingI instruction) completely overwrites a store to the 'DeadLoc' 859 /// location (by \p DeadI instruction). 860 /// Return OW_MaybePartial if \p KillingI does not completely overwrite 861 /// \p DeadI, but they both write to the same underlying object. In that 862 /// case, use isPartialOverwrite to check if \p KillingI partially overwrites 863 /// \p DeadI. Returns 'OR_None' if \p KillingI is known to not overwrite the 864 /// \p DeadI. Returns 'OW_Unknown' if nothing can be determined. 865 OverwriteResult isOverwrite(const Instruction *KillingI, 866 const Instruction *DeadI, 867 const MemoryLocation &KillingLoc, 868 const MemoryLocation &DeadLoc, 869 int64_t &KillingOff, int64_t &DeadOff) { 870 // AliasAnalysis does not always account for loops. Limit overwrite checks 871 // to dependencies for which we can guarantee they are independent of any 872 // loops they are in. 873 if (!isGuaranteedLoopIndependent(DeadI, KillingI, DeadLoc)) 874 return OW_Unknown; 875 876 // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll 877 // get imprecise values here, though (except for unknown sizes). 878 if (!KillingLoc.Size.isPrecise() || !DeadLoc.Size.isPrecise()) { 879 // In case no constant size is known, try to an IR values for the number 880 // of bytes written and check if they match. 881 const auto *KillingMemI = dyn_cast<MemIntrinsic>(KillingI); 882 const auto *DeadMemI = dyn_cast<MemIntrinsic>(DeadI); 883 if (KillingMemI && DeadMemI) { 884 const Value *KillingV = KillingMemI->getLength(); 885 const Value *DeadV = DeadMemI->getLength(); 886 if (KillingV == DeadV && BatchAA.isMustAlias(DeadLoc, KillingLoc)) 887 return OW_Complete; 888 } 889 890 // Masked stores have imprecise locations, but we can reason about them 891 // to some extent. 892 return isMaskedStoreOverwrite(KillingI, DeadI, BatchAA); 893 } 894 895 const uint64_t KillingSize = KillingLoc.Size.getValue(); 896 const uint64_t DeadSize = DeadLoc.Size.getValue(); 897 898 // Query the alias information 899 AliasResult AAR = BatchAA.alias(KillingLoc, DeadLoc); 900 901 // If the start pointers are the same, we just have to compare sizes to see if 902 // the killing store was larger than the dead store. 903 if (AAR == AliasResult::MustAlias) { 904 // Make sure that the KillingSize size is >= the DeadSize size. 905 if (KillingSize >= DeadSize) 906 return OW_Complete; 907 } 908 909 // If we hit a partial alias we may have a full overwrite 910 if (AAR == AliasResult::PartialAlias && AAR.hasOffset()) { 911 int32_t Off = AAR.getOffset(); 912 if (Off >= 0 && (uint64_t)Off + DeadSize <= KillingSize) 913 return OW_Complete; 914 } 915 916 // Check to see if the killing store is to the entire object (either a 917 // global, an alloca, or a byval/inalloca argument). If so, then it clearly 918 // overwrites any other store to the same object. 919 const Value *DeadPtr = DeadLoc.Ptr->stripPointerCasts(); 920 const Value *KillingPtr = KillingLoc.Ptr->stripPointerCasts(); 921 const Value *DeadUndObj = getUnderlyingObject(DeadPtr); 922 const Value *KillingUndObj = getUnderlyingObject(KillingPtr); 923 924 // If we can't resolve the same pointers to the same object, then we can't 925 // analyze them at all. 926 if (DeadUndObj != KillingUndObj) { 927 // Non aliasing stores to different objects don't overlap. Note that 928 // if the killing store is known to overwrite whole object (out of 929 // bounds access overwrites whole object as well) then it is assumed to 930 // completely overwrite any store to the same object even if they don't 931 // actually alias (see next check). 932 if (AAR == AliasResult::NoAlias) 933 return OW_None; 934 return OW_Unknown; 935 } 936 937 // If the KillingI store is to a recognizable object, get its size. 938 uint64_t KillingUndObjSize = getPointerSize(KillingUndObj, DL, TLI, &F); 939 if (KillingUndObjSize != MemoryLocation::UnknownSize) 940 if (KillingUndObjSize == KillingSize && KillingUndObjSize >= DeadSize) 941 return OW_Complete; 942 943 // Okay, we have stores to two completely different pointers. Try to 944 // decompose the pointer into a "base + constant_offset" form. If the base 945 // pointers are equal, then we can reason about the two stores. 946 DeadOff = 0; 947 KillingOff = 0; 948 const Value *DeadBasePtr = 949 GetPointerBaseWithConstantOffset(DeadPtr, DeadOff, DL); 950 const Value *KillingBasePtr = 951 GetPointerBaseWithConstantOffset(KillingPtr, KillingOff, DL); 952 953 // If the base pointers still differ, we have two completely different 954 // stores. 955 if (DeadBasePtr != KillingBasePtr) 956 return OW_Unknown; 957 958 // The killing access completely overlaps the dead store if and only if 959 // both start and end of the dead one is "inside" the killing one: 960 // |<->|--dead--|<->| 961 // |-----killing------| 962 // Accesses may overlap if and only if start of one of them is "inside" 963 // another one: 964 // |<->|--dead--|<-------->| 965 // |-------killing--------| 966 // OR 967 // |-------dead-------| 968 // |<->|---killing---|<----->| 969 // 970 // We have to be careful here as *Off is signed while *.Size is unsigned. 971 972 // Check if the dead access starts "not before" the killing one. 973 if (DeadOff >= KillingOff) { 974 // If the dead access ends "not after" the killing access then the 975 // dead one is completely overwritten by the killing one. 976 if (uint64_t(DeadOff - KillingOff) + DeadSize <= KillingSize) 977 return OW_Complete; 978 // If start of the dead access is "before" end of the killing access 979 // then accesses overlap. 980 else if ((uint64_t)(DeadOff - KillingOff) < KillingSize) 981 return OW_MaybePartial; 982 } 983 // If start of the killing access is "before" end of the dead access then 984 // accesses overlap. 985 else if ((uint64_t)(KillingOff - DeadOff) < DeadSize) { 986 return OW_MaybePartial; 987 } 988 989 // Can reach here only if accesses are known not to overlap. 990 return OW_None; 991 } 992 993 bool isInvisibleToCallerAfterRet(const Value *V) { 994 if (isa<AllocaInst>(V)) 995 return true; 996 auto I = InvisibleToCallerAfterRet.insert({V, false}); 997 if (I.second) { 998 if (!isInvisibleToCallerBeforeRet(V)) { 999 I.first->second = false; 1000 } else { 1001 auto *Inst = dyn_cast<Instruction>(V); 1002 if (Inst && isAllocLikeFn(Inst, &TLI)) 1003 I.first->second = !PointerMayBeCaptured(V, true, false); 1004 } 1005 } 1006 return I.first->second; 1007 } 1008 1009 bool isInvisibleToCallerBeforeRet(const Value *V) { 1010 if (isa<AllocaInst>(V)) 1011 return true; 1012 auto I = InvisibleToCallerBeforeRet.insert({V, false}); 1013 if (I.second) { 1014 auto *Inst = dyn_cast<Instruction>(V); 1015 if (Inst && isAllocLikeFn(Inst, &TLI)) 1016 // NOTE: This could be made more precise by PointerMayBeCapturedBefore 1017 // with the killing MemoryDef. But we refrain from doing so for now to 1018 // limit compile-time and this does not cause any changes to the number 1019 // of stores removed on a large test set in practice. 1020 I.first->second = !PointerMayBeCaptured(V, false, true); 1021 } 1022 return I.first->second; 1023 } 1024 1025 Optional<MemoryLocation> getLocForWriteEx(Instruction *I) const { 1026 if (!I->mayWriteToMemory()) 1027 return None; 1028 1029 if (auto *CB = dyn_cast<CallBase>(I)) { 1030 // If the functions may write to memory we do not know about, bail out. 1031 if (!CB->onlyAccessesArgMemory() && 1032 !CB->onlyAccessesInaccessibleMemOrArgMem()) 1033 return None; 1034 1035 return MemoryLocation::getForDest(CB, TLI); 1036 } 1037 1038 return MemoryLocation::getOrNone(I); 1039 } 1040 1041 /// Returns true if \p UseInst completely overwrites \p DefLoc 1042 /// (stored by \p DefInst). 1043 bool isCompleteOverwrite(const MemoryLocation &DefLoc, Instruction *DefInst, 1044 Instruction *UseInst) { 1045 // UseInst has a MemoryDef associated in MemorySSA. It's possible for a 1046 // MemoryDef to not write to memory, e.g. a volatile load is modeled as a 1047 // MemoryDef. 1048 if (!UseInst->mayWriteToMemory()) 1049 return false; 1050 1051 if (auto *CB = dyn_cast<CallBase>(UseInst)) 1052 if (CB->onlyAccessesInaccessibleMemory()) 1053 return false; 1054 1055 int64_t InstWriteOffset, DepWriteOffset; 1056 if (auto CC = getLocForWriteEx(UseInst)) 1057 return isOverwrite(UseInst, DefInst, *CC, DefLoc, InstWriteOffset, 1058 DepWriteOffset) == OW_Complete; 1059 return false; 1060 } 1061 1062 /// Returns true if \p Def is not read before returning from the function. 1063 bool isWriteAtEndOfFunction(MemoryDef *Def) { 1064 LLVM_DEBUG(dbgs() << " Check if def " << *Def << " (" 1065 << *Def->getMemoryInst() 1066 << ") is at the end the function \n"); 1067 1068 auto MaybeLoc = getLocForWriteEx(Def->getMemoryInst()); 1069 if (!MaybeLoc) { 1070 LLVM_DEBUG(dbgs() << " ... could not get location for write.\n"); 1071 return false; 1072 } 1073 1074 SmallVector<MemoryAccess *, 4> WorkList; 1075 SmallPtrSet<MemoryAccess *, 8> Visited; 1076 auto PushMemUses = [&WorkList, &Visited](MemoryAccess *Acc) { 1077 if (!Visited.insert(Acc).second) 1078 return; 1079 for (Use &U : Acc->uses()) 1080 WorkList.push_back(cast<MemoryAccess>(U.getUser())); 1081 }; 1082 PushMemUses(Def); 1083 for (unsigned I = 0; I < WorkList.size(); I++) { 1084 if (WorkList.size() >= MemorySSAScanLimit) { 1085 LLVM_DEBUG(dbgs() << " ... hit exploration limit.\n"); 1086 return false; 1087 } 1088 1089 MemoryAccess *UseAccess = WorkList[I]; 1090 // Simply adding the users of MemoryPhi to the worklist is not enough, 1091 // because we might miss read clobbers in different iterations of a loop, 1092 // for example. 1093 // TODO: Add support for phi translation to handle the loop case. 1094 if (isa<MemoryPhi>(UseAccess)) 1095 return false; 1096 1097 // TODO: Checking for aliasing is expensive. Consider reducing the amount 1098 // of times this is called and/or caching it. 1099 Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst(); 1100 if (isReadClobber(*MaybeLoc, UseInst)) { 1101 LLVM_DEBUG(dbgs() << " ... hit read clobber " << *UseInst << ".\n"); 1102 return false; 1103 } 1104 1105 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) 1106 PushMemUses(UseDef); 1107 } 1108 return true; 1109 } 1110 1111 /// If \p I is a memory terminator like llvm.lifetime.end or free, return a 1112 /// pair with the MemoryLocation terminated by \p I and a boolean flag 1113 /// indicating whether \p I is a free-like call. 1114 Optional<std::pair<MemoryLocation, bool>> 1115 getLocForTerminator(Instruction *I) const { 1116 uint64_t Len; 1117 Value *Ptr; 1118 if (match(I, m_Intrinsic<Intrinsic::lifetime_end>(m_ConstantInt(Len), 1119 m_Value(Ptr)))) 1120 return {std::make_pair(MemoryLocation(Ptr, Len), false)}; 1121 1122 if (auto *CB = dyn_cast<CallBase>(I)) { 1123 if (isFreeCall(I, &TLI)) 1124 return {std::make_pair(MemoryLocation::getAfter(CB->getArgOperand(0)), 1125 true)}; 1126 } 1127 1128 return None; 1129 } 1130 1131 /// Returns true if \p I is a memory terminator instruction like 1132 /// llvm.lifetime.end or free. 1133 bool isMemTerminatorInst(Instruction *I) const { 1134 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1135 return (II && II->getIntrinsicID() == Intrinsic::lifetime_end) || 1136 isFreeCall(I, &TLI); 1137 } 1138 1139 /// Returns true if \p MaybeTerm is a memory terminator for \p Loc from 1140 /// instruction \p AccessI. 1141 bool isMemTerminator(const MemoryLocation &Loc, Instruction *AccessI, 1142 Instruction *MaybeTerm) { 1143 Optional<std::pair<MemoryLocation, bool>> MaybeTermLoc = 1144 getLocForTerminator(MaybeTerm); 1145 1146 if (!MaybeTermLoc) 1147 return false; 1148 1149 // If the terminator is a free-like call, all accesses to the underlying 1150 // object can be considered terminated. 1151 if (getUnderlyingObject(Loc.Ptr) != 1152 getUnderlyingObject(MaybeTermLoc->first.Ptr)) 1153 return false; 1154 1155 auto TermLoc = MaybeTermLoc->first; 1156 if (MaybeTermLoc->second) { 1157 const Value *LocUO = getUnderlyingObject(Loc.Ptr); 1158 return BatchAA.isMustAlias(TermLoc.Ptr, LocUO); 1159 } 1160 int64_t InstWriteOffset = 0; 1161 int64_t DepWriteOffset = 0; 1162 return isOverwrite(MaybeTerm, AccessI, TermLoc, Loc, InstWriteOffset, 1163 DepWriteOffset) == OW_Complete; 1164 } 1165 1166 // Returns true if \p Use may read from \p DefLoc. 1167 bool isReadClobber(const MemoryLocation &DefLoc, Instruction *UseInst) { 1168 if (isNoopIntrinsic(UseInst)) 1169 return false; 1170 1171 // Monotonic or weaker atomic stores can be re-ordered and do not need to be 1172 // treated as read clobber. 1173 if (auto SI = dyn_cast<StoreInst>(UseInst)) 1174 return isStrongerThan(SI->getOrdering(), AtomicOrdering::Monotonic); 1175 1176 if (!UseInst->mayReadFromMemory()) 1177 return false; 1178 1179 if (auto *CB = dyn_cast<CallBase>(UseInst)) 1180 if (CB->onlyAccessesInaccessibleMemory()) 1181 return false; 1182 1183 return isRefSet(BatchAA.getModRefInfo(UseInst, DefLoc)); 1184 } 1185 1186 /// Returns true if a dependency between \p Current and \p KillingDef is 1187 /// guaranteed to be loop invariant for the loops that they are in. Either 1188 /// because they are known to be in the same block, in the same loop level or 1189 /// by guaranteeing that \p CurrentLoc only references a single MemoryLocation 1190 /// during execution of the containing function. 1191 bool isGuaranteedLoopIndependent(const Instruction *Current, 1192 const Instruction *KillingDef, 1193 const MemoryLocation &CurrentLoc) { 1194 // If the dependency is within the same block or loop level (being careful 1195 // of irreducible loops), we know that AA will return a valid result for the 1196 // memory dependency. (Both at the function level, outside of any loop, 1197 // would also be valid but we currently disable that to limit compile time). 1198 if (Current->getParent() == KillingDef->getParent()) 1199 return true; 1200 const Loop *CurrentLI = LI.getLoopFor(Current->getParent()); 1201 if (!ContainsIrreducibleLoops && CurrentLI && 1202 CurrentLI == LI.getLoopFor(KillingDef->getParent())) 1203 return true; 1204 // Otherwise check the memory location is invariant to any loops. 1205 return isGuaranteedLoopInvariant(CurrentLoc.Ptr); 1206 } 1207 1208 /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible 1209 /// loop. In particular, this guarantees that it only references a single 1210 /// MemoryLocation during execution of the containing function. 1211 bool isGuaranteedLoopInvariant(const Value *Ptr) { 1212 auto IsGuaranteedLoopInvariantBase = [this](const Value *Ptr) { 1213 Ptr = Ptr->stripPointerCasts(); 1214 if (auto *I = dyn_cast<Instruction>(Ptr)) { 1215 if (isa<AllocaInst>(Ptr)) 1216 return true; 1217 1218 if (isAllocLikeFn(I, &TLI)) 1219 return true; 1220 1221 return false; 1222 } 1223 return true; 1224 }; 1225 1226 Ptr = Ptr->stripPointerCasts(); 1227 if (auto *I = dyn_cast<Instruction>(Ptr)) { 1228 if (I->getParent()->isEntryBlock()) 1229 return true; 1230 } 1231 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 1232 return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) && 1233 GEP->hasAllConstantIndices(); 1234 } 1235 return IsGuaranteedLoopInvariantBase(Ptr); 1236 } 1237 1238 // Find a MemoryDef writing to \p KillingLoc and dominating \p StartAccess, 1239 // with no read access between them or on any other path to a function exit 1240 // block if \p KillingLoc is not accessible after the function returns. If 1241 // there is no such MemoryDef, return None. The returned value may not 1242 // (completely) overwrite \p KillingLoc. Currently we bail out when we 1243 // encounter an aliasing MemoryUse (read). 1244 Optional<MemoryAccess *> 1245 getDomMemoryDef(MemoryDef *KillingDef, MemoryAccess *StartAccess, 1246 const MemoryLocation &KillingLoc, const Value *KillingUndObj, 1247 unsigned &ScanLimit, unsigned &WalkerStepLimit, 1248 bool IsMemTerm, unsigned &PartialLimit) { 1249 if (ScanLimit == 0 || WalkerStepLimit == 0) { 1250 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n"); 1251 return None; 1252 } 1253 1254 MemoryAccess *Current = StartAccess; 1255 Instruction *KillingI = KillingDef->getMemoryInst(); 1256 LLVM_DEBUG(dbgs() << " trying to get dominating access\n"); 1257 1258 // Only optimize defining access of KillingDef when directly starting at its 1259 // defining access. The defining access also must only access KillingLoc. At 1260 // the moment we only support instructions with a single write location, so 1261 // it should be sufficient to disable optimizations for instructions that 1262 // also read from memory. 1263 bool CanOptimize = OptimizeMemorySSA && 1264 KillingDef->getDefiningAccess() == StartAccess && 1265 !KillingI->mayReadFromMemory(); 1266 1267 // Find the next clobbering Mod access for DefLoc, starting at StartAccess. 1268 Optional<MemoryLocation> CurrentLoc; 1269 for (;; Current = cast<MemoryDef>(Current)->getDefiningAccess()) { 1270 LLVM_DEBUG({ 1271 dbgs() << " visiting " << *Current; 1272 if (!MSSA.isLiveOnEntryDef(Current) && isa<MemoryUseOrDef>(Current)) 1273 dbgs() << " (" << *cast<MemoryUseOrDef>(Current)->getMemoryInst() 1274 << ")"; 1275 dbgs() << "\n"; 1276 }); 1277 1278 // Reached TOP. 1279 if (MSSA.isLiveOnEntryDef(Current)) { 1280 LLVM_DEBUG(dbgs() << " ... found LiveOnEntryDef\n"); 1281 return None; 1282 } 1283 1284 // Cost of a step. Accesses in the same block are more likely to be valid 1285 // candidates for elimination, hence consider them cheaper. 1286 unsigned StepCost = KillingDef->getBlock() == Current->getBlock() 1287 ? MemorySSASameBBStepCost 1288 : MemorySSAOtherBBStepCost; 1289 if (WalkerStepLimit <= StepCost) { 1290 LLVM_DEBUG(dbgs() << " ... hit walker step limit\n"); 1291 return None; 1292 } 1293 WalkerStepLimit -= StepCost; 1294 1295 // Return for MemoryPhis. They cannot be eliminated directly and the 1296 // caller is responsible for traversing them. 1297 if (isa<MemoryPhi>(Current)) { 1298 LLVM_DEBUG(dbgs() << " ... found MemoryPhi\n"); 1299 return Current; 1300 } 1301 1302 // Below, check if CurrentDef is a valid candidate to be eliminated by 1303 // KillingDef. If it is not, check the next candidate. 1304 MemoryDef *CurrentDef = cast<MemoryDef>(Current); 1305 Instruction *CurrentI = CurrentDef->getMemoryInst(); 1306 1307 if (canSkipDef(CurrentDef, !isInvisibleToCallerBeforeRet(KillingUndObj), 1308 TLI)) { 1309 CanOptimize = false; 1310 continue; 1311 } 1312 1313 // Before we try to remove anything, check for any extra throwing 1314 // instructions that block us from DSEing 1315 if (mayThrowBetween(KillingI, CurrentI, KillingUndObj)) { 1316 LLVM_DEBUG(dbgs() << " ... skip, may throw!\n"); 1317 return None; 1318 } 1319 1320 // Check for anything that looks like it will be a barrier to further 1321 // removal 1322 if (isDSEBarrier(KillingUndObj, CurrentI)) { 1323 LLVM_DEBUG(dbgs() << " ... skip, barrier\n"); 1324 return None; 1325 } 1326 1327 // If Current is known to be on path that reads DefLoc or is a read 1328 // clobber, bail out, as the path is not profitable. We skip this check 1329 // for intrinsic calls, because the code knows how to handle memcpy 1330 // intrinsics. 1331 if (!isa<IntrinsicInst>(CurrentI) && isReadClobber(KillingLoc, CurrentI)) 1332 return None; 1333 1334 // Quick check if there are direct uses that are read-clobbers. 1335 if (any_of(Current->uses(), [this, &KillingLoc, StartAccess](Use &U) { 1336 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(U.getUser())) 1337 return !MSSA.dominates(StartAccess, UseOrDef) && 1338 isReadClobber(KillingLoc, UseOrDef->getMemoryInst()); 1339 return false; 1340 })) { 1341 LLVM_DEBUG(dbgs() << " ... found a read clobber\n"); 1342 return None; 1343 } 1344 1345 // If Current does not have an analyzable write location or is not 1346 // removable, skip it. 1347 CurrentLoc = getLocForWriteEx(CurrentI); 1348 if (!CurrentLoc || !isRemovable(CurrentI)) { 1349 CanOptimize = false; 1350 continue; 1351 } 1352 1353 // AliasAnalysis does not account for loops. Limit elimination to 1354 // candidates for which we can guarantee they always store to the same 1355 // memory location and not located in different loops. 1356 if (!isGuaranteedLoopIndependent(CurrentI, KillingI, *CurrentLoc)) { 1357 LLVM_DEBUG(dbgs() << " ... not guaranteed loop independent\n"); 1358 WalkerStepLimit -= 1; 1359 CanOptimize = false; 1360 continue; 1361 } 1362 1363 if (IsMemTerm) { 1364 // If the killing def is a memory terminator (e.g. lifetime.end), check 1365 // the next candidate if the current Current does not write the same 1366 // underlying object as the terminator. 1367 if (!isMemTerminator(*CurrentLoc, CurrentI, KillingI)) { 1368 CanOptimize = false; 1369 continue; 1370 } 1371 } else { 1372 int64_t KillingOffset = 0; 1373 int64_t DeadOffset = 0; 1374 auto OR = isOverwrite(KillingI, CurrentI, KillingLoc, *CurrentLoc, 1375 KillingOffset, DeadOffset); 1376 if (CanOptimize) { 1377 // CurrentDef is the earliest write clobber of KillingDef. Use it as 1378 // optimized access. Do not optimize if CurrentDef is already the 1379 // defining access of KillingDef. 1380 if (CurrentDef != KillingDef->getDefiningAccess() && 1381 (OR == OW_Complete || OR == OW_MaybePartial)) 1382 KillingDef->setOptimized(CurrentDef); 1383 1384 // Once a may-aliasing def is encountered do not set an optimized 1385 // access. 1386 if (OR != OW_None) 1387 CanOptimize = false; 1388 } 1389 1390 // If Current does not write to the same object as KillingDef, check 1391 // the next candidate. 1392 if (OR == OW_Unknown || OR == OW_None) 1393 continue; 1394 else if (OR == OW_MaybePartial) { 1395 // If KillingDef only partially overwrites Current, check the next 1396 // candidate if the partial step limit is exceeded. This aggressively 1397 // limits the number of candidates for partial store elimination, 1398 // which are less likely to be removable in the end. 1399 if (PartialLimit <= 1) { 1400 WalkerStepLimit -= 1; 1401 LLVM_DEBUG(dbgs() << " ... reached partial limit ... continue with next access\n"); 1402 continue; 1403 } 1404 PartialLimit -= 1; 1405 } 1406 } 1407 break; 1408 }; 1409 1410 // Accesses to objects accessible after the function returns can only be 1411 // eliminated if the access is dead along all paths to the exit. Collect 1412 // the blocks with killing (=completely overwriting MemoryDefs) and check if 1413 // they cover all paths from MaybeDeadAccess to any function exit. 1414 SmallPtrSet<Instruction *, 16> KillingDefs; 1415 KillingDefs.insert(KillingDef->getMemoryInst()); 1416 MemoryAccess *MaybeDeadAccess = Current; 1417 MemoryLocation MaybeDeadLoc = *CurrentLoc; 1418 Instruction *MaybeDeadI = cast<MemoryDef>(MaybeDeadAccess)->getMemoryInst(); 1419 LLVM_DEBUG(dbgs() << " Checking for reads of " << *MaybeDeadAccess << " (" 1420 << *MaybeDeadI << ")\n"); 1421 1422 SmallSetVector<MemoryAccess *, 32> WorkList; 1423 auto PushMemUses = [&WorkList](MemoryAccess *Acc) { 1424 for (Use &U : Acc->uses()) 1425 WorkList.insert(cast<MemoryAccess>(U.getUser())); 1426 }; 1427 PushMemUses(MaybeDeadAccess); 1428 1429 // Check if DeadDef may be read. 1430 for (unsigned I = 0; I < WorkList.size(); I++) { 1431 MemoryAccess *UseAccess = WorkList[I]; 1432 1433 LLVM_DEBUG(dbgs() << " " << *UseAccess); 1434 // Bail out if the number of accesses to check exceeds the scan limit. 1435 if (ScanLimit < (WorkList.size() - I)) { 1436 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n"); 1437 return None; 1438 } 1439 --ScanLimit; 1440 NumDomMemDefChecks++; 1441 1442 if (isa<MemoryPhi>(UseAccess)) { 1443 if (any_of(KillingDefs, [this, UseAccess](Instruction *KI) { 1444 return DT.properlyDominates(KI->getParent(), 1445 UseAccess->getBlock()); 1446 })) { 1447 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n"); 1448 continue; 1449 } 1450 LLVM_DEBUG(dbgs() << "\n ... adding PHI uses\n"); 1451 PushMemUses(UseAccess); 1452 continue; 1453 } 1454 1455 Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst(); 1456 LLVM_DEBUG(dbgs() << " (" << *UseInst << ")\n"); 1457 1458 if (any_of(KillingDefs, [this, UseInst](Instruction *KI) { 1459 return DT.dominates(KI, UseInst); 1460 })) { 1461 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n"); 1462 continue; 1463 } 1464 1465 // A memory terminator kills all preceeding MemoryDefs and all succeeding 1466 // MemoryAccesses. We do not have to check it's users. 1467 if (isMemTerminator(MaybeDeadLoc, MaybeDeadI, UseInst)) { 1468 LLVM_DEBUG( 1469 dbgs() 1470 << " ... skipping, memterminator invalidates following accesses\n"); 1471 continue; 1472 } 1473 1474 if (isNoopIntrinsic(cast<MemoryUseOrDef>(UseAccess)->getMemoryInst())) { 1475 LLVM_DEBUG(dbgs() << " ... adding uses of intrinsic\n"); 1476 PushMemUses(UseAccess); 1477 continue; 1478 } 1479 1480 if (UseInst->mayThrow() && !isInvisibleToCallerBeforeRet(KillingUndObj)) { 1481 LLVM_DEBUG(dbgs() << " ... found throwing instruction\n"); 1482 return None; 1483 } 1484 1485 // Uses which may read the original MemoryDef mean we cannot eliminate the 1486 // original MD. Stop walk. 1487 if (isReadClobber(MaybeDeadLoc, UseInst)) { 1488 LLVM_DEBUG(dbgs() << " ... found read clobber\n"); 1489 return None; 1490 } 1491 1492 // If this worklist walks back to the original memory access (and the 1493 // pointer is not guarenteed loop invariant) then we cannot assume that a 1494 // store kills itself. 1495 if (MaybeDeadAccess == UseAccess && 1496 !isGuaranteedLoopInvariant(MaybeDeadLoc.Ptr)) { 1497 LLVM_DEBUG(dbgs() << " ... found not loop invariant self access\n"); 1498 return None; 1499 } 1500 // Otherwise, for the KillingDef and MaybeDeadAccess we only have to check 1501 // if it reads the memory location. 1502 // TODO: It would probably be better to check for self-reads before 1503 // calling the function. 1504 if (KillingDef == UseAccess || MaybeDeadAccess == UseAccess) { 1505 LLVM_DEBUG(dbgs() << " ... skipping killing def/dom access\n"); 1506 continue; 1507 } 1508 1509 // Check all uses for MemoryDefs, except for defs completely overwriting 1510 // the original location. Otherwise we have to check uses of *all* 1511 // MemoryDefs we discover, including non-aliasing ones. Otherwise we might 1512 // miss cases like the following 1513 // 1 = Def(LoE) ; <----- DeadDef stores [0,1] 1514 // 2 = Def(1) ; (2, 1) = NoAlias, stores [2,3] 1515 // Use(2) ; MayAlias 2 *and* 1, loads [0, 3]. 1516 // (The Use points to the *first* Def it may alias) 1517 // 3 = Def(1) ; <---- Current (3, 2) = NoAlias, (3,1) = MayAlias, 1518 // stores [0,1] 1519 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) { 1520 if (isCompleteOverwrite(MaybeDeadLoc, MaybeDeadI, UseInst)) { 1521 BasicBlock *MaybeKillingBlock = UseInst->getParent(); 1522 if (PostOrderNumbers.find(MaybeKillingBlock)->second < 1523 PostOrderNumbers.find(MaybeDeadAccess->getBlock())->second) { 1524 if (!isInvisibleToCallerAfterRet(KillingUndObj)) { 1525 LLVM_DEBUG(dbgs() 1526 << " ... found killing def " << *UseInst << "\n"); 1527 KillingDefs.insert(UseInst); 1528 } 1529 } else { 1530 LLVM_DEBUG(dbgs() 1531 << " ... found preceeding def " << *UseInst << "\n"); 1532 return None; 1533 } 1534 } else 1535 PushMemUses(UseDef); 1536 } 1537 } 1538 1539 // For accesses to locations visible after the function returns, make sure 1540 // that the location is dead (=overwritten) along all paths from 1541 // MaybeDeadAccess to the exit. 1542 if (!isInvisibleToCallerAfterRet(KillingUndObj)) { 1543 SmallPtrSet<BasicBlock *, 16> KillingBlocks; 1544 for (Instruction *KD : KillingDefs) 1545 KillingBlocks.insert(KD->getParent()); 1546 assert(!KillingBlocks.empty() && 1547 "Expected at least a single killing block"); 1548 1549 // Find the common post-dominator of all killing blocks. 1550 BasicBlock *CommonPred = *KillingBlocks.begin(); 1551 for (BasicBlock *BB : llvm::drop_begin(KillingBlocks)) { 1552 if (!CommonPred) 1553 break; 1554 CommonPred = PDT.findNearestCommonDominator(CommonPred, BB); 1555 } 1556 1557 // If CommonPred is in the set of killing blocks, just check if it 1558 // post-dominates MaybeDeadAccess. 1559 if (KillingBlocks.count(CommonPred)) { 1560 if (PDT.dominates(CommonPred, MaybeDeadAccess->getBlock())) 1561 return {MaybeDeadAccess}; 1562 return None; 1563 } 1564 1565 // If the common post-dominator does not post-dominate MaybeDeadAccess, 1566 // there is a path from MaybeDeadAccess to an exit not going through a 1567 // killing block. 1568 if (PDT.dominates(CommonPred, MaybeDeadAccess->getBlock())) { 1569 SetVector<BasicBlock *> WorkList; 1570 1571 // If CommonPred is null, there are multiple exits from the function. 1572 // They all have to be added to the worklist. 1573 if (CommonPred) 1574 WorkList.insert(CommonPred); 1575 else 1576 for (BasicBlock *R : PDT.roots()) 1577 WorkList.insert(R); 1578 1579 NumCFGTries++; 1580 // Check if all paths starting from an exit node go through one of the 1581 // killing blocks before reaching MaybeDeadAccess. 1582 for (unsigned I = 0; I < WorkList.size(); I++) { 1583 NumCFGChecks++; 1584 BasicBlock *Current = WorkList[I]; 1585 if (KillingBlocks.count(Current)) 1586 continue; 1587 if (Current == MaybeDeadAccess->getBlock()) 1588 return None; 1589 1590 // MaybeDeadAccess is reachable from the entry, so we don't have to 1591 // explore unreachable blocks further. 1592 if (!DT.isReachableFromEntry(Current)) 1593 continue; 1594 1595 for (BasicBlock *Pred : predecessors(Current)) 1596 WorkList.insert(Pred); 1597 1598 if (WorkList.size() >= MemorySSAPathCheckLimit) 1599 return None; 1600 } 1601 NumCFGSuccess++; 1602 return {MaybeDeadAccess}; 1603 } 1604 return None; 1605 } 1606 1607 // No aliasing MemoryUses of MaybeDeadAccess found, MaybeDeadAccess is 1608 // potentially dead. 1609 return {MaybeDeadAccess}; 1610 } 1611 1612 // Delete dead memory defs 1613 void deleteDeadInstruction(Instruction *SI) { 1614 MemorySSAUpdater Updater(&MSSA); 1615 SmallVector<Instruction *, 32> NowDeadInsts; 1616 NowDeadInsts.push_back(SI); 1617 --NumFastOther; 1618 1619 while (!NowDeadInsts.empty()) { 1620 Instruction *DeadInst = NowDeadInsts.pop_back_val(); 1621 ++NumFastOther; 1622 1623 // Try to preserve debug information attached to the dead instruction. 1624 salvageDebugInfo(*DeadInst); 1625 salvageKnowledge(DeadInst); 1626 1627 // Remove the Instruction from MSSA. 1628 if (MemoryAccess *MA = MSSA.getMemoryAccess(DeadInst)) { 1629 if (MemoryDef *MD = dyn_cast<MemoryDef>(MA)) { 1630 SkipStores.insert(MD); 1631 } 1632 1633 Updater.removeMemoryAccess(MA); 1634 } 1635 1636 auto I = IOLs.find(DeadInst->getParent()); 1637 if (I != IOLs.end()) 1638 I->second.erase(DeadInst); 1639 // Remove its operands 1640 for (Use &O : DeadInst->operands()) 1641 if (Instruction *OpI = dyn_cast<Instruction>(O)) { 1642 O = nullptr; 1643 if (isInstructionTriviallyDead(OpI, &TLI)) 1644 NowDeadInsts.push_back(OpI); 1645 } 1646 1647 EI.removeInstruction(DeadInst); 1648 DeadInst->eraseFromParent(); 1649 } 1650 } 1651 1652 // Check for any extra throws between \p KillingI and \p DeadI that block 1653 // DSE. This only checks extra maythrows (those that aren't MemoryDef's). 1654 // MemoryDef that may throw are handled during the walk from one def to the 1655 // next. 1656 bool mayThrowBetween(Instruction *KillingI, Instruction *DeadI, 1657 const Value *KillingUndObj) { 1658 // First see if we can ignore it by using the fact that KillingI is an 1659 // alloca/alloca like object that is not visible to the caller during 1660 // execution of the function. 1661 if (KillingUndObj && isInvisibleToCallerBeforeRet(KillingUndObj)) 1662 return false; 1663 1664 if (KillingI->getParent() == DeadI->getParent()) 1665 return ThrowingBlocks.count(KillingI->getParent()); 1666 return !ThrowingBlocks.empty(); 1667 } 1668 1669 // Check if \p DeadI acts as a DSE barrier for \p KillingI. The following 1670 // instructions act as barriers: 1671 // * A memory instruction that may throw and \p KillingI accesses a non-stack 1672 // object. 1673 // * Atomic stores stronger that monotonic. 1674 bool isDSEBarrier(const Value *KillingUndObj, Instruction *DeadI) { 1675 // If DeadI may throw it acts as a barrier, unless we are to an 1676 // alloca/alloca like object that does not escape. 1677 if (DeadI->mayThrow() && !isInvisibleToCallerBeforeRet(KillingUndObj)) 1678 return true; 1679 1680 // If DeadI is an atomic load/store stronger than monotonic, do not try to 1681 // eliminate/reorder it. 1682 if (DeadI->isAtomic()) { 1683 if (auto *LI = dyn_cast<LoadInst>(DeadI)) 1684 return isStrongerThanMonotonic(LI->getOrdering()); 1685 if (auto *SI = dyn_cast<StoreInst>(DeadI)) 1686 return isStrongerThanMonotonic(SI->getOrdering()); 1687 if (auto *ARMW = dyn_cast<AtomicRMWInst>(DeadI)) 1688 return isStrongerThanMonotonic(ARMW->getOrdering()); 1689 if (auto *CmpXchg = dyn_cast<AtomicCmpXchgInst>(DeadI)) 1690 return isStrongerThanMonotonic(CmpXchg->getSuccessOrdering()) || 1691 isStrongerThanMonotonic(CmpXchg->getFailureOrdering()); 1692 llvm_unreachable("other instructions should be skipped in MemorySSA"); 1693 } 1694 return false; 1695 } 1696 1697 /// Eliminate writes to objects that are not visible in the caller and are not 1698 /// accessed before returning from the function. 1699 bool eliminateDeadWritesAtEndOfFunction() { 1700 bool MadeChange = false; 1701 LLVM_DEBUG( 1702 dbgs() 1703 << "Trying to eliminate MemoryDefs at the end of the function\n"); 1704 for (int I = MemDefs.size() - 1; I >= 0; I--) { 1705 MemoryDef *Def = MemDefs[I]; 1706 if (SkipStores.contains(Def) || !isRemovable(Def->getMemoryInst())) 1707 continue; 1708 1709 Instruction *DefI = Def->getMemoryInst(); 1710 auto DefLoc = getLocForWriteEx(DefI); 1711 if (!DefLoc) 1712 continue; 1713 1714 // NOTE: Currently eliminating writes at the end of a function is limited 1715 // to MemoryDefs with a single underlying object, to save compile-time. In 1716 // practice it appears the case with multiple underlying objects is very 1717 // uncommon. If it turns out to be important, we can use 1718 // getUnderlyingObjects here instead. 1719 const Value *UO = getUnderlyingObject(DefLoc->Ptr); 1720 if (!isInvisibleToCallerAfterRet(UO)) 1721 continue; 1722 1723 if (isWriteAtEndOfFunction(Def)) { 1724 // See through pointer-to-pointer bitcasts 1725 LLVM_DEBUG(dbgs() << " ... MemoryDef is not accessed until the end " 1726 "of the function\n"); 1727 deleteDeadInstruction(DefI); 1728 ++NumFastStores; 1729 MadeChange = true; 1730 } 1731 } 1732 return MadeChange; 1733 } 1734 1735 /// \returns true if \p Def is a no-op store, either because it 1736 /// directly stores back a loaded value or stores zero to a calloced object. 1737 bool storeIsNoop(MemoryDef *Def, const Value *DefUO) { 1738 StoreInst *Store = dyn_cast<StoreInst>(Def->getMemoryInst()); 1739 MemSetInst *MemSet = dyn_cast<MemSetInst>(Def->getMemoryInst()); 1740 Constant *StoredConstant = nullptr; 1741 if (Store) 1742 StoredConstant = dyn_cast<Constant>(Store->getOperand(0)); 1743 if (MemSet) 1744 StoredConstant = dyn_cast<Constant>(MemSet->getValue()); 1745 1746 if (StoredConstant && StoredConstant->isNullValue()) { 1747 auto *DefUOInst = dyn_cast<Instruction>(DefUO); 1748 if (DefUOInst) { 1749 if (isCallocLikeFn(DefUOInst, &TLI)) { 1750 auto *UnderlyingDef = 1751 cast<MemoryDef>(MSSA.getMemoryAccess(DefUOInst)); 1752 // If UnderlyingDef is the clobbering access of Def, no instructions 1753 // between them can modify the memory location. 1754 auto *ClobberDef = 1755 MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def); 1756 return UnderlyingDef == ClobberDef; 1757 } 1758 1759 if (MemSet) { 1760 if (F.hasFnAttribute(Attribute::SanitizeMemory) || 1761 F.hasFnAttribute(Attribute::SanitizeAddress) || 1762 F.hasFnAttribute(Attribute::SanitizeHWAddress) || 1763 F.getName() == "calloc") 1764 return false; 1765 auto *Malloc = const_cast<CallInst *>(dyn_cast<CallInst>(DefUOInst)); 1766 if (!Malloc) 1767 return false; 1768 auto *InnerCallee = Malloc->getCalledFunction(); 1769 if (!InnerCallee) 1770 return false; 1771 LibFunc Func; 1772 if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) || 1773 Func != LibFunc_malloc) 1774 return false; 1775 1776 auto shouldCreateCalloc = [](CallInst *Malloc, CallInst *Memset) { 1777 // Check for br(icmp ptr, null), truebb, falsebb) pattern at the end 1778 // of malloc block 1779 auto *MallocBB = Malloc->getParent(), 1780 *MemsetBB = Memset->getParent(); 1781 if (MallocBB == MemsetBB) 1782 return true; 1783 auto *Ptr = Memset->getArgOperand(0); 1784 auto *TI = MallocBB->getTerminator(); 1785 ICmpInst::Predicate Pred; 1786 BasicBlock *TrueBB, *FalseBB; 1787 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Ptr), m_Zero()), TrueBB, 1788 FalseBB))) 1789 return false; 1790 if (Pred != ICmpInst::ICMP_EQ || MemsetBB != FalseBB) 1791 return false; 1792 return true; 1793 }; 1794 1795 if (Malloc->getOperand(0) == MemSet->getLength()) { 1796 if (shouldCreateCalloc(Malloc, MemSet) && 1797 DT.dominates(Malloc, MemSet) && 1798 memoryIsNotModifiedBetween(Malloc, MemSet, BatchAA, DL, &DT)) { 1799 IRBuilder<> IRB(Malloc); 1800 const auto &DL = Malloc->getModule()->getDataLayout(); 1801 if (auto *Calloc = 1802 emitCalloc(ConstantInt::get(IRB.getIntPtrTy(DL), 1), 1803 Malloc->getArgOperand(0), IRB, TLI)) { 1804 MemorySSAUpdater Updater(&MSSA); 1805 auto *LastDef = cast<MemoryDef>( 1806 Updater.getMemorySSA()->getMemoryAccess(Malloc)); 1807 auto *NewAccess = Updater.createMemoryAccessAfter( 1808 cast<Instruction>(Calloc), LastDef, LastDef); 1809 auto *NewAccessMD = cast<MemoryDef>(NewAccess); 1810 Updater.insertDef(NewAccessMD, /*RenameUses=*/true); 1811 Updater.removeMemoryAccess(Malloc); 1812 Malloc->replaceAllUsesWith(Calloc); 1813 Malloc->eraseFromParent(); 1814 return true; 1815 } 1816 return false; 1817 } 1818 } 1819 } 1820 } 1821 } 1822 1823 if (!Store) 1824 return false; 1825 1826 if (auto *LoadI = dyn_cast<LoadInst>(Store->getOperand(0))) { 1827 if (LoadI->getPointerOperand() == Store->getOperand(1)) { 1828 // Get the defining access for the load. 1829 auto *LoadAccess = MSSA.getMemoryAccess(LoadI)->getDefiningAccess(); 1830 // Fast path: the defining accesses are the same. 1831 if (LoadAccess == Def->getDefiningAccess()) 1832 return true; 1833 1834 // Look through phi accesses. Recursively scan all phi accesses by 1835 // adding them to a worklist. Bail when we run into a memory def that 1836 // does not match LoadAccess. 1837 SetVector<MemoryAccess *> ToCheck; 1838 MemoryAccess *Current = 1839 MSSA.getWalker()->getClobberingMemoryAccess(Def); 1840 // We don't want to bail when we run into the store memory def. But, 1841 // the phi access may point to it. So, pretend like we've already 1842 // checked it. 1843 ToCheck.insert(Def); 1844 ToCheck.insert(Current); 1845 // Start at current (1) to simulate already having checked Def. 1846 for (unsigned I = 1; I < ToCheck.size(); ++I) { 1847 Current = ToCheck[I]; 1848 if (auto PhiAccess = dyn_cast<MemoryPhi>(Current)) { 1849 // Check all the operands. 1850 for (auto &Use : PhiAccess->incoming_values()) 1851 ToCheck.insert(cast<MemoryAccess>(&Use)); 1852 continue; 1853 } 1854 1855 // If we found a memory def, bail. This happens when we have an 1856 // unrelated write in between an otherwise noop store. 1857 assert(isa<MemoryDef>(Current) && 1858 "Only MemoryDefs should reach here."); 1859 // TODO: Skip no alias MemoryDefs that have no aliasing reads. 1860 // We are searching for the definition of the store's destination. 1861 // So, if that is the same definition as the load, then this is a 1862 // noop. Otherwise, fail. 1863 if (LoadAccess != Current) 1864 return false; 1865 } 1866 return true; 1867 } 1868 } 1869 1870 return false; 1871 } 1872 1873 bool removePartiallyOverlappedStores(InstOverlapIntervalsTy &IOL) { 1874 bool Changed = false; 1875 for (auto OI : IOL) { 1876 Instruction *DeadI = OI.first; 1877 MemoryLocation Loc = *getLocForWriteEx(DeadI); 1878 assert(isRemovable(DeadI) && "Expect only removable instruction"); 1879 1880 const Value *Ptr = Loc.Ptr->stripPointerCasts(); 1881 int64_t DeadStart = 0; 1882 uint64_t DeadSize = Loc.Size.getValue(); 1883 GetPointerBaseWithConstantOffset(Ptr, DeadStart, DL); 1884 OverlapIntervalsTy &IntervalMap = OI.second; 1885 Changed |= tryToShortenEnd(DeadI, IntervalMap, DeadStart, DeadSize); 1886 if (IntervalMap.empty()) 1887 continue; 1888 Changed |= tryToShortenBegin(DeadI, IntervalMap, DeadStart, DeadSize); 1889 } 1890 return Changed; 1891 } 1892 1893 /// Eliminates writes to locations where the value that is being written 1894 /// is already stored at the same location. 1895 bool eliminateRedundantStoresOfExistingValues() { 1896 bool MadeChange = false; 1897 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs that write the " 1898 "already existing value\n"); 1899 for (auto *Def : MemDefs) { 1900 if (SkipStores.contains(Def) || MSSA.isLiveOnEntryDef(Def) || 1901 !isRemovable(Def->getMemoryInst())) 1902 continue; 1903 MemoryDef *UpperDef; 1904 // To conserve compile-time, we avoid walking to the next clobbering def. 1905 // Instead, we just try to get the optimized access, if it exists. DSE 1906 // will try to optimize defs during the earlier traversal. 1907 if (Def->isOptimized()) 1908 UpperDef = dyn_cast<MemoryDef>(Def->getOptimized()); 1909 else 1910 UpperDef = dyn_cast<MemoryDef>(Def->getDefiningAccess()); 1911 if (!UpperDef || MSSA.isLiveOnEntryDef(UpperDef)) 1912 continue; 1913 1914 Instruction *DefInst = Def->getMemoryInst(); 1915 Instruction *UpperInst = UpperDef->getMemoryInst(); 1916 auto IsRedundantStore = [this, DefInst, 1917 UpperInst](MemoryLocation UpperLoc) { 1918 if (DefInst->isIdenticalTo(UpperInst)) 1919 return true; 1920 if (auto *MemSetI = dyn_cast<MemSetInst>(UpperInst)) { 1921 if (auto *SI = dyn_cast<StoreInst>(DefInst)) { 1922 auto MaybeDefLoc = getLocForWriteEx(DefInst); 1923 if (!MaybeDefLoc) 1924 return false; 1925 int64_t InstWriteOffset = 0; 1926 int64_t DepWriteOffset = 0; 1927 auto OR = isOverwrite(UpperInst, DefInst, UpperLoc, *MaybeDefLoc, 1928 InstWriteOffset, DepWriteOffset); 1929 Value *StoredByte = isBytewiseValue(SI->getValueOperand(), DL); 1930 return StoredByte && StoredByte == MemSetI->getOperand(1) && 1931 OR == OW_Complete; 1932 } 1933 } 1934 return false; 1935 }; 1936 1937 auto MaybeUpperLoc = getLocForWriteEx(UpperInst); 1938 if (!MaybeUpperLoc || !IsRedundantStore(*MaybeUpperLoc) || 1939 isReadClobber(*MaybeUpperLoc, DefInst)) 1940 continue; 1941 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *DefInst 1942 << '\n'); 1943 deleteDeadInstruction(DefInst); 1944 NumRedundantStores++; 1945 MadeChange = true; 1946 } 1947 return MadeChange; 1948 } 1949 }; 1950 1951 static bool eliminateDeadStores(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, 1952 DominatorTree &DT, PostDominatorTree &PDT, 1953 const TargetLibraryInfo &TLI, 1954 const LoopInfo &LI) { 1955 bool MadeChange = false; 1956 1957 DSEState State(F, AA, MSSA, DT, PDT, TLI, LI); 1958 // For each store: 1959 for (unsigned I = 0; I < State.MemDefs.size(); I++) { 1960 MemoryDef *KillingDef = State.MemDefs[I]; 1961 if (State.SkipStores.count(KillingDef)) 1962 continue; 1963 Instruction *KillingI = KillingDef->getMemoryInst(); 1964 1965 Optional<MemoryLocation> MaybeKillingLoc; 1966 if (State.isMemTerminatorInst(KillingI)) 1967 MaybeKillingLoc = State.getLocForTerminator(KillingI).map( 1968 [](const std::pair<MemoryLocation, bool> &P) { return P.first; }); 1969 else 1970 MaybeKillingLoc = State.getLocForWriteEx(KillingI); 1971 1972 if (!MaybeKillingLoc) { 1973 LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for " 1974 << *KillingI << "\n"); 1975 continue; 1976 } 1977 MemoryLocation KillingLoc = *MaybeKillingLoc; 1978 assert(KillingLoc.Ptr && "KillingLoc should not be null"); 1979 const Value *KillingUndObj = getUnderlyingObject(KillingLoc.Ptr); 1980 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by " 1981 << *KillingDef << " (" << *KillingI << ")\n"); 1982 1983 unsigned ScanLimit = MemorySSAScanLimit; 1984 unsigned WalkerStepLimit = MemorySSAUpwardsStepLimit; 1985 unsigned PartialLimit = MemorySSAPartialStoreLimit; 1986 // Worklist of MemoryAccesses that may be killed by KillingDef. 1987 SetVector<MemoryAccess *> ToCheck; 1988 ToCheck.insert(KillingDef->getDefiningAccess()); 1989 1990 bool Shortend = false; 1991 bool IsMemTerm = State.isMemTerminatorInst(KillingI); 1992 // Check if MemoryAccesses in the worklist are killed by KillingDef. 1993 for (unsigned I = 0; I < ToCheck.size(); I++) { 1994 MemoryAccess *Current = ToCheck[I]; 1995 if (State.SkipStores.count(Current)) 1996 continue; 1997 1998 Optional<MemoryAccess *> MaybeDeadAccess = State.getDomMemoryDef( 1999 KillingDef, Current, KillingLoc, KillingUndObj, ScanLimit, 2000 WalkerStepLimit, IsMemTerm, PartialLimit); 2001 2002 if (!MaybeDeadAccess) { 2003 LLVM_DEBUG(dbgs() << " finished walk\n"); 2004 continue; 2005 } 2006 2007 MemoryAccess *DeadAccess = *MaybeDeadAccess; 2008 LLVM_DEBUG(dbgs() << " Checking if we can kill " << *DeadAccess); 2009 if (isa<MemoryPhi>(DeadAccess)) { 2010 LLVM_DEBUG(dbgs() << "\n ... adding incoming values to worklist\n"); 2011 for (Value *V : cast<MemoryPhi>(DeadAccess)->incoming_values()) { 2012 MemoryAccess *IncomingAccess = cast<MemoryAccess>(V); 2013 BasicBlock *IncomingBlock = IncomingAccess->getBlock(); 2014 BasicBlock *PhiBlock = DeadAccess->getBlock(); 2015 2016 // We only consider incoming MemoryAccesses that come before the 2017 // MemoryPhi. Otherwise we could discover candidates that do not 2018 // strictly dominate our starting def. 2019 if (State.PostOrderNumbers[IncomingBlock] > 2020 State.PostOrderNumbers[PhiBlock]) 2021 ToCheck.insert(IncomingAccess); 2022 } 2023 continue; 2024 } 2025 auto *DeadDefAccess = cast<MemoryDef>(DeadAccess); 2026 Instruction *DeadI = DeadDefAccess->getMemoryInst(); 2027 LLVM_DEBUG(dbgs() << " (" << *DeadI << ")\n"); 2028 ToCheck.insert(DeadDefAccess->getDefiningAccess()); 2029 NumGetDomMemoryDefPassed++; 2030 2031 if (!DebugCounter::shouldExecute(MemorySSACounter)) 2032 continue; 2033 2034 MemoryLocation DeadLoc = *State.getLocForWriteEx(DeadI); 2035 2036 if (IsMemTerm) { 2037 const Value *DeadUndObj = getUnderlyingObject(DeadLoc.Ptr); 2038 if (KillingUndObj != DeadUndObj) 2039 continue; 2040 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DeadI 2041 << "\n KILLER: " << *KillingI << '\n'); 2042 State.deleteDeadInstruction(DeadI); 2043 ++NumFastStores; 2044 MadeChange = true; 2045 } else { 2046 // Check if DeadI overwrites KillingI. 2047 int64_t KillingOffset = 0; 2048 int64_t DeadOffset = 0; 2049 OverwriteResult OR = State.isOverwrite( 2050 KillingI, DeadI, KillingLoc, DeadLoc, KillingOffset, DeadOffset); 2051 if (OR == OW_MaybePartial) { 2052 auto Iter = State.IOLs.insert( 2053 std::make_pair<BasicBlock *, InstOverlapIntervalsTy>( 2054 DeadI->getParent(), InstOverlapIntervalsTy())); 2055 auto &IOL = Iter.first->second; 2056 OR = isPartialOverwrite(KillingLoc, DeadLoc, KillingOffset, 2057 DeadOffset, DeadI, IOL); 2058 } 2059 2060 if (EnablePartialStoreMerging && OR == OW_PartialEarlierWithFullLater) { 2061 auto *DeadSI = dyn_cast<StoreInst>(DeadI); 2062 auto *KillingSI = dyn_cast<StoreInst>(KillingI); 2063 // We are re-using tryToMergePartialOverlappingStores, which requires 2064 // DeadSI to dominate DeadSI. 2065 // TODO: implement tryToMergeParialOverlappingStores using MemorySSA. 2066 if (DeadSI && KillingSI && DT.dominates(DeadSI, KillingSI)) { 2067 if (Constant *Merged = tryToMergePartialOverlappingStores( 2068 KillingSI, DeadSI, KillingOffset, DeadOffset, State.DL, 2069 State.BatchAA, &DT)) { 2070 2071 // Update stored value of earlier store to merged constant. 2072 DeadSI->setOperand(0, Merged); 2073 ++NumModifiedStores; 2074 MadeChange = true; 2075 2076 Shortend = true; 2077 // Remove killing store and remove any outstanding overlap 2078 // intervals for the updated store. 2079 State.deleteDeadInstruction(KillingSI); 2080 auto I = State.IOLs.find(DeadSI->getParent()); 2081 if (I != State.IOLs.end()) 2082 I->second.erase(DeadSI); 2083 break; 2084 } 2085 } 2086 } 2087 2088 if (OR == OW_Complete) { 2089 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DeadI 2090 << "\n KILLER: " << *KillingI << '\n'); 2091 State.deleteDeadInstruction(DeadI); 2092 ++NumFastStores; 2093 MadeChange = true; 2094 } 2095 } 2096 } 2097 2098 // Check if the store is a no-op. 2099 if (!Shortend && isRemovable(KillingI) && 2100 State.storeIsNoop(KillingDef, KillingUndObj)) { 2101 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *KillingI 2102 << '\n'); 2103 State.deleteDeadInstruction(KillingI); 2104 NumRedundantStores++; 2105 MadeChange = true; 2106 continue; 2107 } 2108 } 2109 2110 if (EnablePartialOverwriteTracking) 2111 for (auto &KV : State.IOLs) 2112 MadeChange |= State.removePartiallyOverlappedStores(KV.second); 2113 2114 MadeChange |= State.eliminateRedundantStoresOfExistingValues(); 2115 MadeChange |= State.eliminateDeadWritesAtEndOfFunction(); 2116 return MadeChange; 2117 } 2118 } // end anonymous namespace 2119 2120 //===----------------------------------------------------------------------===// 2121 // DSE Pass 2122 //===----------------------------------------------------------------------===// 2123 PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) { 2124 AliasAnalysis &AA = AM.getResult<AAManager>(F); 2125 const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F); 2126 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 2127 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2128 PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 2129 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 2130 2131 bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, TLI, LI); 2132 2133 #ifdef LLVM_ENABLE_STATS 2134 if (AreStatisticsEnabled()) 2135 for (auto &I : instructions(F)) 2136 NumRemainingStores += isa<StoreInst>(&I); 2137 #endif 2138 2139 if (!Changed) 2140 return PreservedAnalyses::all(); 2141 2142 PreservedAnalyses PA; 2143 PA.preserveSet<CFGAnalyses>(); 2144 PA.preserve<MemorySSAAnalysis>(); 2145 PA.preserve<LoopAnalysis>(); 2146 return PA; 2147 } 2148 2149 namespace { 2150 2151 /// A legacy pass for the legacy pass manager that wraps \c DSEPass. 2152 class DSELegacyPass : public FunctionPass { 2153 public: 2154 static char ID; // Pass identification, replacement for typeid 2155 2156 DSELegacyPass() : FunctionPass(ID) { 2157 initializeDSELegacyPassPass(*PassRegistry::getPassRegistry()); 2158 } 2159 2160 bool runOnFunction(Function &F) override { 2161 if (skipFunction(F)) 2162 return false; 2163 2164 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2165 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2166 const TargetLibraryInfo &TLI = 2167 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2168 MemorySSA &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2169 PostDominatorTree &PDT = 2170 getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 2171 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2172 2173 bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, TLI, LI); 2174 2175 #ifdef LLVM_ENABLE_STATS 2176 if (AreStatisticsEnabled()) 2177 for (auto &I : instructions(F)) 2178 NumRemainingStores += isa<StoreInst>(&I); 2179 #endif 2180 2181 return Changed; 2182 } 2183 2184 void getAnalysisUsage(AnalysisUsage &AU) const override { 2185 AU.setPreservesCFG(); 2186 AU.addRequired<AAResultsWrapperPass>(); 2187 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2188 AU.addPreserved<GlobalsAAWrapperPass>(); 2189 AU.addRequired<DominatorTreeWrapperPass>(); 2190 AU.addPreserved<DominatorTreeWrapperPass>(); 2191 AU.addRequired<PostDominatorTreeWrapperPass>(); 2192 AU.addRequired<MemorySSAWrapperPass>(); 2193 AU.addPreserved<PostDominatorTreeWrapperPass>(); 2194 AU.addPreserved<MemorySSAWrapperPass>(); 2195 AU.addRequired<LoopInfoWrapperPass>(); 2196 AU.addPreserved<LoopInfoWrapperPass>(); 2197 } 2198 }; 2199 2200 } // end anonymous namespace 2201 2202 char DSELegacyPass::ID = 0; 2203 2204 INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false, 2205 false) 2206 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2207 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 2208 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2209 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 2210 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 2211 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 2212 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2213 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2214 INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false, 2215 false) 2216 2217 FunctionPass *llvm::createDeadStoreEliminationPass() { 2218 return new DSELegacyPass(); 2219 } 2220